
Lecture 02: Algorithms

Administrator
Typewriter
Md. Taslim Arefin
Associate Professor
Department of ETE

Administrator
Typewriter
ETE 111

2

Problem Solving Process

• System Design:
– Find a set of sub-problems such that

– each sub-problem is easy to solve; and

– the desired problem can be solved by solving them

• Algorithm Design:
– Find solution to each sub-problem

• Programming:
– Translate algorithms into codes

3

Algorithms

• Computing problems
– Solved by executing a series of actions in a specific order

• Algorithm is a procedure determining
– Actions to be executed

– Order to be executed

– Example: recipe

• Program control
– Specifies the order in which statements are executed

© Bhaskar Shrestha 5

Algorithm: Definition

• An algorithm is a precise specification of a
sequence of instructions to be carried out in
order to solve a given problem
– Each instruction tells what task is to be done

– Specification of a sequence of instructions to do a job
is used in many fields

• A cooking recipe, The rules of how to play a game, VCR
instructions, Description of a martial arts technique,
Directions for driving from A to B, A knitting pattern, A
car repair manual

© Bhaskar Shrestha 6

Recipe: Chocolate Chip Cookies (1/2)

• Ingredients:
– 2 ¼ cups flour, 1 tsp salt, 1 tsp baking soda, 2 eggs, ¾ cup brown

sugar, 1 tsp vanilla extract, ¾ cup granulated sugar, 1 cup soft
butter, 12 oz. semi-sweet chocolate chips

• Steps:
1. Preheat oven to 375 degrees
2. Combine flour, salt, baking soda, in bowl. Set mixture aside.
3. Combine sugars, butter, vanilla and beat until creamy.
4. Add eggs and beat.
5. Add dry mixture and mix well.
6. Stir in chocolate chips.
7. Drop mixture by teaspoons onto ungreased cookie sheet.
8. Bake 8 to 10 minutes

6

Recipe: Chocolate Chip Cookies (2/2)

• Although the recipe given in the previous slide does not
technically qualify as an algorithm but is similar to
algorithm
– It is a sequence of instructions to be carried out to solve the

problem of making chocolate chip cookies

– It begins with a list of ingredients which is the input

– The sequence of instructions specify the actions to be carried
out with the input to produce the cake which is the output

– It takes a finite time to execute the instructions and stop

7

A Wrong Algorithm

• What is wrong with this so called algorithm?
– Directions: (From the back of a shampoo bottle.)

– Wet hair.

– Apply a small amount of shampoo, lather, rinse,
repeat.

• If you follow this algorithm, you will never finish
washing your hair!

8

Properties of Algorithms (1/2)

• Inputs:
– A number of quantities are provided to an algorithm initially

before the algorithm begins. These quantities are the inputs
which are processed by the algorithm.

• Definiteness:
– The processing rules specified in the algorithm must be

precise, unambiguous and lead to a specific action.
• Effectiveness:

– Each instruction must be sufficiently basic such that it can, in
principle, be carried out in a finite time by a person with paper
and pencil.

9

Properties of Algorithms (2/2)

• Finiteness:
– The total time to carry out all the steps in the algorithm must

be finite. An algorithm may contain instructions to repetitively
carry out a group of instructions. This requirement implies that
the number repetitions must be finite

• Outputs:
– An algorithm must have one or more output

• Correctness:
– Correct set of output must be produced from the set of inputs.

For the same input data, it must always produce the same
output

10

Origin of word Algorithm

• Named after famous Persian mathematician Abu Jafar
Mohammad ibn Musa al-Khowarizmi, who wrote the book “Kitab
al jabr Walmuqabla” (Rules of restoration and reduction) around
825 A.D.
– The last part of his name get corrupted to algorithm

• The word algorism originally referred only to the rules of
performing arithmetic using Arabic numerals but evolved into
algorithm by the 18th century

• The first case of an algorithm written for a computer was Ada
Byron’s notes on the analytical engine written in 1842, for which
she is considered by many to be the world’s first programmer

12

Writing Algorithms

• There are various techniques that can be used to write
algorithms:
– in English (e.g. enrolment guide)

– by diagrams (e.g. instructions for assembling kitset furniture)

– by Flowcharts

– in pseudocode

– in a computer programming language

– in some other more-or-less formal language (e.g. knitting
pattern)

12

A Simple Example

• Fahrenheit to Celsius Conversion
– Step 1: Read the temperature in Fahrenheit from the

keyboard

– Step 2: Calculate its Celsius equivalent as (F-32) ×
5/9, where F is the inputted Fahrenheit value

– Step 3: Print the calculated Celsius value on the
screen

13

Another Example (1/2)

• An algorithm to pick the largest tender from a set of
tenders

• Step 1: Read the first tender and note down its value as
the maximum tender value so far encountered. Note
down the tender identification number

• Step 2: As long as tenders are not exhausted do Steps 3
and 4. Go to Step 5 when tenders are exhausted

• Step 3: Read the next tender and compare the tender
with the current maximum tender value

14

Another Example (2/2)

• Step 4: If this tender value is greater than that previously
noted down as maximum tender then erase the previous
maximum value noted and replace it by this new value.
Replace the previously noted tender identification
number by this identification number. Else do not do
anything

• Step 5: Print the final value of maximum tender and its
identification noted down in Step 4

15

Pseudocode

• Pseudocode is a written statement of an algorithm using a
restricted and well-defined vocabulary

• It is, as the name suggests, cannot be executed on a real computer,
but models and resembles real programming code, and is written
at roughly the same level of detail

• It is very much like a 3GL and is therefore more easily translated
into programming language

• For many programmers and program designers is the preferred
way to state algorithms and program specifications

• No standard rules for writing

16

Writing Algorithms in Pseudocode

• Pseudocode contains two main elements, the first being
keywords

• These keywords often resemble programming
commands and often occur as pairs of words
– When writing a keyword in pseudocode we would often write

it in UPPERCASE and may even highlight it using boldface

• The second element is that pseudocode relies on
indenting to show structure
– This enables the person working with the algorithm to easily

see the flow of logic through the algorithm

17

Example

• Computing area of a rectangle

• Input: length and breadth of the rectangle

• Output: Area of the rectangle

• Step 1. READ length

• Step 2. READ breadth

• Step 3. COMPUTE length * breadth GIVING area

• Step 4. PRINT area

18

Values and Variables

• Values
– Represent quantities, amounts or measurements

– May be numerical or alphabetical (or other things)

– Often have a unit related to their purpose

– Example:
Recipe ingredients

• Variables
– Are containers for values

– places to store values

This jar
can contain

10 cookies

50 grams of sugar

3 slices of cake

etc.

Values
Variable

19

Components of an Algorithm
• Values and Variables
• Instruction (a.k.a. primitive)

– Some action that is simple and unambiguous

• Sequence (of instructions)
– A series of instructions to be carried out one after the other

• Selection (between instructions)
– An instruction that decides which of two possible sequences is executed
– The decision is based on a single true/false condition

• Repetition (of instructions)
– Repeat an instruction. while (or maybe until) some true or false condition

occurs
– Test the condition each time before repeating the instruction

20

Writing Pseudcodes
Group Key words Example

Input/Output INPUT, READ
Used to get values from a data
source, a keyboard for instance

DISPLAY, PRINT
Used to output values to a data sink,
a screen or printer for instance

INPUT counter

DISPLAY new_value

Processing ADD

SUBTRACT

COMPUTE

SET

ADD 3 TO count
SUBTRACT 5 FROM count
SET count TO 12
COMPUTE 10 + count
GIVING new_count

© Bhaskar Shrestha 22

Writing Pseudocodes
Group Keywords Example

Repetition REPEAT
statement

UNTIL <condition>

DOWHILE <condition>
statement

END DOWHILE

FOR <var> = <start value>
to <stop value>
ENDFOR

SET count_value TO 0
REPEAT

DISPLAY count_value
ADD 1 TO count_value;

UNTIL count_value > 10

DOWHILE count_value < 10
DISPLAY count_value
count_value = count_value + 1

END DOWHILE

FOR count = 1 to 10
DISPLAY count + count

ENDFOR

22

Writing Pseudocodes
Group Keywords Example

Decision IF <condition> THEN
statement

ENDIF

IF <condition> THEN
statement

ELSE
statement

ENDIF

IF count > 10 THEN
DISPLAY count

ENDIF

IF count > 10 THEN
DISPLAY 'count > 10'
ADD 4 to sum

ELSE
DISPLAY 'count <= 10'
ADD 3 to sum

ENDIF

23

Using Operators
• Although the processing group are very useful most program

designers tend to prefer to use operators like:
– + add

- subtract
* multiply
/ divide
= assign

– These are the arithmetic operators

• These are more intuitive since we use them in arithmetical
expressions and they are easier to write, for instance:
– count = count + 22

x = count / 12
sum = sum - count
x = count * sum

24

Relational Operators
Operator Example Description
== equal to IF count == 32 THEN ... This decision states that if the

variable count contains 32 execute
the statement following THEN.

<= less than or
equal to

>= greater than
or equal to

<> not equal to

DOWHILE count <= 50
...
END DOWHILE

The statements in the while loop
will execute while the value of
count is 50 or less.

REPEAT
...
UNTIL count > 12

The statements in the repeat loop
will execute until the value of count
exceeds 12.

IF count <> total THEN ... If the value of count is not the same
as the value of total execute the
statement following THEN.

25

Logical Operators
Operator Example Description

AND IF (x = = 32) AND (y = = 7) THEN
sumxy = x + y

if it is true that x == 32
AND it is also true that y
== 7 then add x and y
together and store the result
in variable sumxy.

OR

NOT

IF (letter = = 'A') OR (letter = = 'E')
THEN
DISPLAY 'Vowel'

if the variable letter contains
either 'A' or 'B' then display
the word vowel on the
output device

IF NOT (letter = = 'A') THEN
DISPLAY 'Not letter A'

If it is true that letter is equal
to 'A', the NOT operator in
NOT (letter = 'A') will give
a value of FALSE.

26

Example 1

• Finding largest of two numbers
• 1. READ num1
• 2. READ num2
• 3. IF num1 > num2 THEN
• 4. PRINT ‘num1 is larger’
• 5. ELSE
• 6. PRINT ‘num2 is larger’
• 8. ENDIF

27

Example 2
• Sum of first n natural numbers
• 1. READ n
• 2. counter = 1
• 3. sum = 0
• 4. DOWHILE counter <= n
• 5 sum = sum + counter
• 6. counter = counter + 1
• 7. END DOWHILE
• 8. DISPLAY sum

28

Developing an Algorithm

• Understand the problem (Do problem by hand.
Note the steps)

• Devise a plan (look for familiarity and patterns)

• Carry out the plan (trace)

• Review the plan (refinement)

29

Problem Example (1/5)

• Find the average from a given set of numbers

• 1. Understanding the problem:
• (i) Write down some numbers on paper and find the average

manually, noting each step carefully. e.g. Given a list say: 5,
3, 25, 0, 9

• (ii) Count numbers, i.e. How many? 5

• (iii) Add them up, i.e. 5 + 3 + 25 + 0 + 9 = 42

• (iv) Divide result by numbers counted, i.e. 42/5 = 8.4

30

Problem Example (2/5)

• 2. Devising a plan:
– Make note of not what you did in steps (i) through (iv), but

how you did it. In doing so, you will begin to develop the
algorithm.

– e.g. How do we count the numbers?
• Starting at 0 i.e. set COUNTER to 0

• Look at 1st number, add 1 to COUNTER

• Look at 2nd number, add 1 to COUNTER

• and so on,

• until you reach the end of the list

31

Problem Example (3/5)

– How do we add numbers?
• Let SUM be the sum of numbers in list. Set SUM to 0

• Look at 1st number, add number to SUM

• Look at 2nd number, add number to SUM

• and so on,

• until we reach end of list

– How do we compute the average?
• Let AVE be the average

• then AVE = total sum of items/ number of items, i.e. SUM/COUNTER

32

Problem Example (4/5)

• 3. Identifying patterns, repetitions and
familiar tasks.
– Familiarity: Unknown number of items? i.e. n item

– Patterns : look at each number in the list

– Repetitions: Look at a number
• Add number to sum

• Add 1 to counter

33

Problem Example (5/5)
• 4. Carrying out the plan

– Check each step
– Consider special cases
– Check result
– Check boundary conditions:

• i.e. what if the list is empty?
• Division by 0?
• Are all numbers within the specified range?

• In this example, no range is specified - No special cases.
• Check result by tracing the algorithm with a list of numbers e.g. 7,

12, 1, 5,13

© Bhaskar Shrestha 35

Complete Pseudocode
• 1. total = 0

• 2. average = 0

• 3. count = 0

• 4. READ n

• 5. DOWHILE count < n

• 6. READ number

• 7. total = total + number

• 8. count = count + 1

• 9. END DOWHILE

• 10. average = total/count

• 11. PRINT average

35

Flowcharts

• Graphical representation of an algorithm that illustrates the
sequence of operations to be performed using special-purpose
symbols connected by arrows

• Flowcharts typically show a program’s logic
• Generally drawn in the early stages of formulating computer

solution
• Facilitate communication between programmers and business

people
• These flowcharts play a vital role in the programming of a

problem and are quite helpful in understanding the logic of
complicated and lengthy problems

36

Flowchart Symbols

Start or end of the program

Computational steps or processing function of a
program

Input or output operation

Decision making and branching

Connector or joining of two parts of program

Flow lines

Annotations

37

Guidelines

• In drawing a proper flowchart, all necessary requirements should
be listed out in logical order.

• The flowchart should be clear, neat and easy to follow There
should not be any room for ambiguity in understanding the
flowchart.

• The usual direction of the flow of a procedure or system is from
left to right or top to bottom.

• Only one flow line should come out from a process symbol

or

38

Guidelines

• Only one flow line should enter a decision symbol, but two or
three flow lines, one for each possible answer, should leave the
decision symbol

• Only one flow line is used in conjunction with terminal symbol

39

Example 1: Larger of two numbers
START

READ num1

READ num2

Is num1 > num2?

PRINT num1 PRINT num2

END

True False

40

Example 2: Sum of first n natural
numbers

START

READ n

counter = 1
Sum = 0

Is counter <= n?

PRINT sum

sum = sum + counter
counter = counter + 1

END

True

False

41

Some rules for flow charts
• Every flow chart has a START symbol and a STOP symbol
• The flow of sequence is generally from the top of the page to the

bottom of the page. This can vary with loops which need to flow
back to an entry point.

• Use arrow-heads on connectors where flow direction may not be
obvious.

• There is only one flow chart per page
• A page should have a page number and a title
• A flow chart on one page should not break and jump to another

page
• A flow chart should have no more than around 15 symbols (not

including START and STOP)

42

Advantages of Flowcharts
• Communication: Flowcharts are better way of communicating the

logic of a system to all concerned
• Effective analysis: With the help of flowchart, problem can be

analyzed in more effective way
• Proper documentation: Program flowcharts serve as a good

program documentation, which is needed for various purposes
• Efficient Coding: The flowcharts act as a guide or blueprint

during the systems analysis and program development phase
• Proper Debugging: The flowchart helps in debugging process
• Efficient Program Maintenance: The maintenance of operating

program becomes easy with the help of flowchart. It helps the
programmer to put efforts more efficiently on that part

43

Disadvantages of Flowcharts

• Complex logic: Sometimes, the program logic is quite
complicated. In that case, flowchart becomes complex
and clumsy.

• Alterations and Modifications: If alterations are
required the flowchart may require re-drawing
completely.

• Reproduction: As the flowchart symbols cannot be
typed, reproduction of flowchart becomes a problem.

• The essentials of what is done can easily be lost in the
technical details of how it is done

44

System Flowchart
• System flowchart describes the data flow for a data processing

system
• It provides a logical diagram of how the system operates. It

represents the flow of documents, the operations performed in
data processing system

• It also reflects the relationship between inputs, processing and
outputs

• Following are the features of system flowcharts:
– the sources from which data is generated and device used for this purpose
– various processing steps involved
– the intermediate and final output prepared and the devices used for their

storage

45

Example

46

Program Flowchart

• A program flowchart represents, in detail, the various steps to be
performed within the system for transforming the input into output

• The various steps are logical/ arithmetic operations, algorithms etc
• It serves as the basis for discussions and communication between

the system analysts and the programmers
• Program flowcharts are quite helpful to programmers in

organizing their programming efforts
• These flowcharts constitute an important component of

documentation for an application

47

Example

	ITC213: STRUCTURED PROGRAMMING
	Lecture 02: Algorithms
	Problem Solving Process
	Algorithms
	Algorithm: Definition
	Recipe: Chocolate Chip Cookies (1/2)
	Recipe: Chocolate Chip Cookies (2/2)
	A Wrong Algorithm
	Properties of Algorithms (1/2)
	Properties of Algorithms (2/2)
	Origin of word Algorithm
	Writing Algorithms
	A Simple Example
	Another Example (1/2)
	Another Example (2/2)
	Pseudocode
	Writing Algorithms in Pseudocode
	Example
	Values and Variables
	Components of an Algorithm
	Writing Pseudcodes
	Writing Pseudocodes
	Writing Pseudocodes
	Using Operators
	Relational Operators
	Logical Operators
	Example 1
	Example 2
	Developing an Algorithm
	Problem Example (1/5)
	Problem Example (2/5)
	Problem Example (3/5)
	Problem Example (4/5)
	Problem Example (5/5)
	Complete Pseudocode
	Flowcharts
	Flowchart Symbols
	Guidelines
	Guidelines
	Example 1: Larger of two numbers
	Example 2: Sum of first n natural numbers
	Some rules for flow charts
	Advantages of Flowcharts
	Disadvantages of Flowcharts
	System Flowchart
	Example
	Program Flowchart
	Example

