
Lecture 04: Introduction to C

Jewel
Typewriter
Md. Taslim Arefin
Associate Professor, Department of ETE
Daffodil International University

2

What is C?

• C is a general-purpose, structured programming language that is
powerful, efficient and compact

• Its instructions consists of terms that resemble algebraic
expressions, supplemented by certain English keywords such as if,
else, for, and do

• Features modern flow control and data structures, and a rich set of
operators

• Contains additional features that allow it to be used at a lower
level

• Used for writing system programs and application programs

3

History of C (1/3)
• C was developed in the 1970s by Dennis Ritchie at Bell

Labs (Murray Hill, New Jersey) in the process of
implementing the Unix operating system on a DEC
PDP-11 computer

• 1960s, CPL (Combined Programming Language),
(Barron et al., 1963)
– Purpose: to create a language that was capable of both high

level machine independent programming and would still allow
the programmer to control the behavior of individual bits of
data.

– Drawback: it was too large for use in many applications

4

History of C (2/3)

• In 1967, BCPL (Basic CPL)
– a scaled down version of CPL while still retaining its basic

features

• In 1970, B
– Ken Thompson developed the B language, which was a scaled

down version of BCPL written specifically for use in systems
programming

• In 1972, C
– Dennis Ritchie returned some of the features found in BCPL to

the B language and developed C

5

History of C (3/3)

• Limited to use within Bell Laboratories until 1978

• In 1978, Brian Kernighan and Dennis Ritchie produced
the first publicly available description of C in their book
titled “The C Programming Language”, now known as
the K&R C

• ANSI formed a committee in 1983 to establish a
standard definition of C, now known as ANSI C (1989)
– Updated in 1995

• New features added in 1999, now known as C99

6

Features of C

• Small:
– C is a language of few words, containing only a handful of

terms, called keywords, which serve as the base on which the
language’s functionality is built

• Portable:
– Portable means that a C program written for one computer

system (an IBM PC, for example) can be compiled and run on
another system (a DEC VAX system, perhaps) with little or no
modification

– C provides a standard library of functions that work in the
same way on all machines

7

Features of C

• Middle-level language
– C is often called a middle-level computer language because it

combines the best elements of high-level language with the
control and flexibility of assembly language

• Structured Language
– C allows programmer to divide program into modules
– C provides all basic control structures
– Use of subroutines that employ local variables
– Use of code block
– No use of go-to statements

8

C Is a Programmer’s Language

• Not all computer programming languages are for programmers

• For example, COBOL was designed, in part, to enable
nonprogrammers to read and presumably (however unlikely) to
understand the program

• In contrast, C was created, influenced, and field-tested by working
programmers

• C gives the programmer what the programmer wants: few
restrictions, few complaints, block structure, stand-alone
functions, and a compact set of keywords

9

Preparing to Program

• The Programming Process
– Determine the objective of the program
– Design your solution

• Inputs, outputs and logical steps to achieve the outputs

– Code your solution
– Compile your program

• Handling errors

– Run and Test your program

10

Structure of a C Program

• A program is a sequence of instructions

• Instructions of a C program are written as a statement

• A statement is terminated by a semicolon (;)

• One or more statements forms a block (compound)
statement with the individual statements enclosed within
a pair of braces, i.e., { }

• All executable statements must be inside a function

11

Structure of a C Program

• A function is where all program activity occurs

• Every C program consists of one or more functions

• Every C program must contain a special function named
main

– The statements within this function is the first one to be
executed

• Comments are written within the delimiters /* and */
– E.g., /* this is a comment */

12

First Program: hello.c

/* A simple C program that outputs two lines of text */

#include <stdio.h> /* I/O header file */

main() /* main function heading */

{

printf("Hello, world\n"); /* call to printf */

printf("Welcome to Cse122\n");

}

© Bhaskar Shrestha 14

Comments in C

• The first line
/* A simple C program that outputs two lines of text
*/

starts with /* and ends with */
• Anything written between /* and */ is called a

comment
• Comments are not executable statements and they are

ignored by the compiler
– They have no effect on the behavior of the resulting program

• Comment serves as documentation for the human reader
of the program

14

Preprocessor Directives (1/2)

• The line
#include <stdio.h>

is called the preprocessor directive

• Lines that begin with the # (read hash) sign are
preprocessor directives

• It is mostly written at the beginning of the program

• They are not executable code line but indications for the
C preprocessor

15

Preprocessor Directives (2/2)

• The C preprocessor is a tool which filters your source
code before it is compiled

• In this case, it tells the compiler’s preprocessor that the
contents of the file stdio.h should be included at the
place where #include appears

• The file stdio.h is called a header file in C and it
contains the declaration needed to perform standard
input output operations

16

The main Function (1/2)

• The next line
main()

is the first line of a function main

• The function main() is required in all C programs

• The main function is the starting point of a C program

• It is independent from whether it is at the beginning, at
the end or by the middle of the code - its content is
always the first to be executed when a program starts

17

The main Function (2/2)

• main goes followed by a pair of parenthesis () because
it is a function

• In C, all functions are followed by a pair of parenthesis
() that, optionally, can include arguments within

• The content of the main function follows immediately to
its header enclosed between braces {}, as in our example

• The code inside the braces {} are program statements
that are to be executed

18

Main Function Body (1/2)

• The first statement
printf("Hello, world\n");

causes the text Hello, world, enclosed in quotes, to be
printed in the standard output device (often known as the
console)

• Here, printf is a C function that outputs the text
– Anything written within the quotes is printed

• The printf function is defined in the file stdio.h

19

Main Function Body (2/2)

• Here \n is a nonprinting character and is one of the
escape sequence of C

• \n tells to print a new line which causes the next text to
be printed on next line

• Hence, the next printf causes the text Welcome to
ITC213 to be printed on next line

• The closing brace } at the last line program signifies the
end of the main() function and hence the end of
program

20

The Build Process

• An editor is a specialized word processor used to prepare source
modules in the language of choice (e.g. C, C++, Java, Fortran)

• The preprocessor adds in standard pre-written code (boilerplate)
from include files you specify to produce a complete source
module

• The compiler produces object code for the target computer/
operating system

• The linker ties multiple modules together into a complete program
• An executable file is a program that will run on the computer. The

editor, preprocessor, compiler and linker are all executables. So is
your program

 21

The Build Process
Editor

Source File

Executable File

Preprocessor

Source File

Compiler

Object File
Other object

Files
Library
Files

Linker

Include Files

22

Compilation and Linker Errors

• A compilation error occurs when the compiler finds
something in the source code that it can’t compile
– A misspelling, typographical error, or any of a dozen other

things can be a cause

• Linker errors are relatively rare and usually result from
misspelling the name of a C library function
– In this case, you get an Error: undefined symbols: error

message, followed by the misspelled name (preceded by an
underscore)

© Bhaskar Shrestha 24

Another Example
/* Program to find the area and perimeter of a rectangle

given its width and height */

#include <stdio.h>

main()

{

int width, length; /* variable declaration */
int area, perimeter;

width = 5; /* assign the value 5 to the variable width */
length = 7; /* assign the value 7 to the variable length */

area = width*length; /* calculate the area */
perimeter = 2*(width+length); /* calculate the perimeter */

/* Print the results */
printf("Area is %d\n", area);
printf("Perimeter is %d\n", perimeter);

}

	ITC213: STRUCTURED PROGRAMMING
	Lecture 04: Introduction to C
	What is C?
	History of C (1/3)
	History of C (2/3)
	History of C (3/3)
	Features of C
	Features of C
	C Is a Programmer’s Language
	Preparing to Program
	Structure of a C Program
	Structure of a C Program
	First Program: hello.c
	Comments in C
	Preprocessor Directives (1/2)
	Preprocessor Directives (2/2)
	The main Function (1/2)
	The main Function (2/2)
	Main Function Body (1/2)
	Main Function Body (2/2)
	The Build Process
	The Build Process
	Compilation and Linker Errors
	Another Example

