
Lecture 05: C Fundamentals

Jewel
Typewriter
Md. Taslim Arefin
Associate Professor, Dept. of ETE
Daffodil International University



The C Character Set

• Set of characters that are used as building blocks to form 
basic program elements

• The C character set consists of
– The 52 upper- and lower-case letters of the Latin alphabet

– The ten decimal digits

– Certain special characters
+ - * / = % & #
! ? ^ " ' ~ \ |
< > ( ) [ ] { }
: ; . , _ (blank space)

Special characters used in C



3

Identifiers (1/2)

• Names given to various program elements such as 
variables, functions, labels, and other user defined items

• Naming rule for identifiers:
– Can be a combination of letters, digits and underscore (_), in 

any order

– The first character of an
identifier must not be a digit

Correct Incorrect
x "x"
y12 12y
nepal nepal’s
item_1 item 1
_temp 4th
order_no order-no



4

Identifiers (2/2)

• In an identifier, upper- and lowercase are treated as 
different
– For e.g., the identifier count is not equivalent to Count or 
COUNT

• There is no restriction on the length of an identifier

• However, only the first 31 characters are generally 
significant
– For e.g., if your C compiler recognizes only the first 3 

characters, the identifiers pay and payment are same



© Bhaskar Shrestha 6

Keywords

• Keywords are reserved words that have standard, predefined 
meanings in C

• You cannot use a keyword for any other purpose other than as a 
keyword in a C program

– For e.g., you cannot use a keyword for a variable name

• The ANSI C defines 32 keywords

voidstaticlongexterncontinue

unsignedsizeofintenumconst

unionsignedifelsechar

typedefshortgotodoublecase

whileswitchreturnfordobreak

volatilestructregisterfloatdefaultauto



6

Data Types

• Data types determine the way a computer organizes data 
in memory

• Determines how much space it occupies in storage and 
how the bit pattern stored is interpreted

• Types can be either predefined or derived
• The predefined types in C are the basic types and the 

type void
• Basic types consist of the integer types and the floating 

types



© Bhaskar Shrestha 8

Basic Data Types

• The C language supports four basic data types, each of 
which are represented differently within the computer 
memory

1E-37 to 1E+37
with ten digits of precision

1E-37 to 1E+37
with six digits of precision 

-32,768 to 32,767 or
-2,147,483,648 to 
2,147,483,647

-128 to 127 or 0 to 255

Minimal Range

8 bytesDouble-precision 
floating-point number

double

4 bytesSingle precision 
floating-point number

float

2 bytes or 4 bytesAn integer value, 
typically reflecting the 
natural size of integers 
on the host machine

int

1 byteA single characterchar

Typical Memory 
Requirements

DescriptionData Type



Variables

• Named location in memory

• Used to hold a value that can be modified by a 
program

• Has a type associated with it

• Specifying a variable requires two things:
– you must give it a name, and

– you must identify what kind of data you propose



© Bhaskar Shrestha 10

Variable Declaration

• When you declare a variable, you instruct the compiler 
to set aside storage space for the variable

• All variables must be declared before you can use them

int apples;

This specifies the type of data the variable 
will hold in this case an integer

This is the name given to 
the variable

The semi-colon indicates 
the end of statement

Syntax:
data-type var1, var2, var3, ..., varn;

Syntax:
data-type var1, var2, var3, ..., varn;

int count;
int m,n;
char letter;
double profit, loss;

int count;
int m,n;
char letter;
double profit, loss;



Modifying the Basic Data Types

• The basic data types can have various qualifiers
preceding them

• The four qualifiers are signed, unsigned, long, and 
short

– The int type can be qualified by signed, short, long and 
unsigned

– The char type can be modified by unsigned and signed
– You can also apply long to double

• When a type qualifier is used by itself, then int is 
assumed



9

Modifying the Basic Data Types

• The intent is that short and long should provide 
different lengths of integers where practical; int will 
normally be the natural size for a particular machine
– shorts and ints are at least 16 bits, longs are at least 32 bits, 

and short is no longer than int, which is no longer than long

• signed and unsigned values require same storage size 
but they differ in the way that their high-order bit is 
interpreted

• The type long double specifies extended-precision 
floating point



Data Types Ranges and Memory Requirements

1×10+37 to 1×10–37 with ten digits 
of precision

10long double

1×10+37 to 1×10–37 with ten digits 
of precision

4double

1×10+37 to 1×10–37 with six digits 
of precision

4float

0 to 42949672954unsigned long int

–2147483648 to 21474836474long int, signed long int

0 to 655352unsigned short int 

–32768 to 327672short int, signed short int

0 to 655352 or 4unsigned int

–32768 to 327672 or 4int, signed int

–128 to 1271signed char

0 to 2551unsigned char

–128 to 127 or 0 to 2551char

Minimal RangeTypical Size in BytesData Type



Constants

• Like a variable, a constant is a data storage location used by your 
program

• Unlike a variable, the value stored in a constant can’t be changed 
during program execution

• Every constant has a type that is determined by its value and its 
notation

• C has two types of constants: literal constants and symbolic 
constants

• A literal constant is a value that is typed directly into the source 
code wherever it is needed

• Literal constants are also only referred as constants



Numeric Constants

• Floating-point constants:
– written with a decimal point is a floating-point constant

– represented by the C compiler as a double-precision number

• Integer constants:
– A constant written without a decimal point

Floating-point constants Integer constants
123.456 1.23E2 1245 (base 10)
0.019 4.08e6 0147 (base 8)
100. 0.85e-4 0x1F (base 16)



Character Constants
• A single character, enclosed in apostrophes
• Character constants have integer values that are determined by the 

computer’s particular character set
• Most computers, and virtually all personal computers, make use of 

the ASCII character set
• In ASCII, each individual character is numerically encoded with 

its own unique 7-bit combination

Character constants examples
'A' 'c' '#' ' ' '3'

Constant ASCII Value
'A' 65
'x' 120
'3' 51
'?' 63
' ' 32



14

Escape Sequences

• Certain nonprinting characters, as well as the backslash (\) and the 
apostrophe ('), can be expressed in terms of escape sequences

• Begins with a backward slash and is followed by one or more 
special characters

• Represents a single character

• A character constant written in the form of escape sequence is 
called backslash character constant

Character Escape Sequence ASCII Value
bell (alert) \a 007
horizontal tab \t 009
newline \n 011
quotation mark \" 034
apostrophe ( ' ) \' 039
backslash ( \ ) \\ 092



String Constants

• Consists of any number of consecutive characters (including 
none), enclosed in (double) quotation marks

• A character constant (e.g., 'A') and the corresponding single-
character string constant ("A") are not equivalent

"green"   "D haka, B angladesh"   "977-01-496567"

"Tk. 1,000"   "The lucky number is: ""2*(I+3)/J"

"      " "Line 1\nLine 2\nLine 3" ""
"\tTo continue, press the \"Enter\" key\n"



Symbolic Constants

• Constant that is represented by a name (symbol) in your 
program

• Like a literal constant, a symbolic constant can’t change

• Whenever you need the constant’s value in your program, 
you use its name as you would use a variable name

• C has two methods for defining a symbolic constant: the 
#define directive and the const keyword

#define PI 3.14159
...
...
area = PI * (radius)*(radius);

const double PI = 3.14159;
...
...
area = PI * (radius)*(radius); 



Initialization of Variables

• When a variable, its initial value is undefined

• Before using a variable, you should always initialize it to a known 
value 

• To initialize a variable, the declaration must consist of a data type, 
followed by a variable name, and equal sign (=) and a literal 
constant of the appropriate type

char ch = 'a';
int first = 0;
float balance = 123.23;
double factor = 0.21023E–6;
unsigned int type = 15U;
long int result = 9786788L;



18

Expressions

• An expression is any valid combination of different entities for 
example a constant, a variable, an array element or a reference to a 
function

• It may also consist of some combination of such entities, 
interconnected by one or more operators

• Simple expressions

– The simplest C expression consists of a single item: a simple 
variable, literal constant or symbolic constant

Expression Description
PI A symbolic constant (defined in the program)
20 A literal constant
rate A variable
-1.25 Another literal constant



Complex Expressions

• Complex expressions consist of simpler expressions 
connected by operators

• For example:
– 2 + 8

is an expression consisting of the sub expressions 2 and 8 and 
the addition operator +

• You can also write C expressions of great complexity:
– 1.25/8 + 5*rate + rate*rate/cost



Logical Expressions

• Expressions can also represent logical conditions 
that are either true or false

• In C the conditions true and false are represented 
by the integer values 1 and 0, respectively

Examples
x <= y
x == y



Statements

• A statement is a complete direction instructing the 
computer to carry out some task

• A statement specifies an action

• There are three different classes of statements in C
– Expression statements,

– Compound statements,

– Control statements



Expression Statements

• An expression statement consists of an expression 
followed by a semicolon

• The execution of an expression statement causes the 
expression to be evaluated 

a = 3;
c = a+b;
++i;
printf("Area = %f", area);
;



Compound Statements
• Consists of several individual statements enclosed within a pair of 

braces { }
• The individual statements may themselves be expression 

statements, compound statements or control statements
• Provides a capability for embedding statements within other 

statements
• Unlike an expression statement, a compound statement does not

end with a semicolon
{
pi = 3.141593;
circumference = 2. *pi * radius;
area = pi * radius * radius;
}



Control Statements

• Used to create special program features, such as logical tests, 
loops and branches

• Many control statements require that other statements be 
embedded within them

while (count <= n)
{

print ("x = ");
scanf ("%f", &x);
sum += x;
++count;

}



25

Statements and White Spaces

• The term white space refers to spaces, tabs, and blank lines in 
your source code

• When the compiler reads a statement in your source code, it looks 
for the characters in the statement and for the terminating 
semicolon, but it ignores white space

• An exception: white spaces in string
literal constant is not ignored

x=2+3; x = 2 + 3;

x      =
2
+
3;

{
printf("Hello, ");
printf("world!");

}

{printf("Hello, ");
printf("world!");}




