
ITC213: STRUCTURED
PROGRAMMING

Lecture 09: Functions

Readings: Chapter 7

© Bhaskar Shrestha 3

Introduction

• Divide and Conquer
– Construct a program from smaller pieces or components

– These smaller pieces are called modules

– Each piece is more manageable than the original program

• Functions
– Modules in C

– Building blocks of C and the place where all program activity occurs

– Programs combine user-defined functions with library functions

– C standard library has a wide variety of functions

© Bhaskar Shrestha 4

Function Defined
• A function is a named, independent section of a program that

performs a specific, well-defined task and can optionally return a
value to the calling program
– Each function has a unique name
– A function can perform its task without interference from or interfering

with other parts of the program
– A task is a discrete job that your program must perform as part of its overall

operation, such as sending a line of text to a printer, sorting an array into
numerical order, or calculating a cube root

– When your program calls a function, the statements it contains are
executed. If you want them to, these statements can pass information back
to the calling program

© Bhaskar Shrestha 5

Functions (1/2)

• Every C program consists of one or more functions
• One of these functions is the main function
• Execution of a program will always begin by carrying

out the instructions in main
• Additional functions will be subordinate to main, and

perhaps one to another
• If a program contains multiple functions, their

definitions may appear in any order, though they must be
independent of one another

© Bhaskar Shrestha 6

Functions (2/2)

• A function will carry out its action whenever the
function is called from some other portion of the
program

• Same function can be called from several different parts
of the program

• Generally, a function will process information that is
passed to it from the calling portion of the program and
return a single value

• Information is passed to the function via special
identifiers called arguments and returned via the return
statement

© Bhaskar Shrestha 7

Using Functions
• To use a C function, you must

– Provide a function definition
– Provide a function prototype
– Call the function

• For library functions
– Already defined and compiled
– Use header files to provide prototype
– Only call the function properly

• For user-defined functions you have do all the three things
yourself

© Bhaskar Shrestha 8

Example
long cube(long x); /* function prototype */
int main()
{
long answer, input;
printf("Enter an integer value: ");
scanf("%ld", &input);
answer = cube(input); /* function call */
printf("\nThe cube is %ld.\n", answer);
return 0;

}

long cube(long x)
{

long x_cubed;
x_cubed = x * x * x;
return x_cubed;

}

function definition

© Bhaskar Shrestha 9

How Function Works

func1()
{

...
}

func1()
{

...
}

int main()

{

call func1

...

call func2

...

call func3

}

int main()

{

call func1

...

call func2

...

call func3

}

func1()
{

...
}

func1()
{

...
}

func1()
{

...
}

func1()
{

...
}

Main Program

© Bhaskar Shrestha 10

Advantages of Using Functions

• Manageable program development
– Allows a program to be broken down into a number of smaller,

self-contained components

• Code Reuse
– Use existing functions as building blocks for new programs

– Avoids the need for repeated programming of the same
instructions

• Abstraction
– hide internal details (library functions)

© Bhaskar Shrestha 11

Function Definition (1/2)

• Function definition format
– return-value-type function-name(parameter-list)
{

declarations and statements
}

• function-name: any valid identifier
• return-value-type: data type of the result (can be

omitted, defaults int)
– void – indicates that the function returns nothing

• parameter-list: comma separated list, declares
parameter variables
– A type must be listed explicitly for each parameter

© Bhaskar Shrestha 12

Function Definition (2/2)

• Declarations and statements: function body (block)
– The function body will contain the statements that defines the

action to be taken by the function

– The statements inside the body can be expression statements,
compound statements, control statements and so on

– Variables can be declared inside blocks (can be nested)
• All variables declared inside functions are local variables (Known only

inside the function)

– Functions can not be defined inside other functions

© Bhaskar Shrestha 13

Function Definition Example

double power(double x, int n)

{

double result = 1.0;

int i;

for (i = 0; i < n; i++)

{

result *= x;

}

return result;

}

The name of
the function

The parameters define the types of
values passed to the function when it
is called, and they identify their names
in the body of the function

The type of
value returned
from the function

The function
body is between
the braces

local variables
known only to
this function

© Bhaskar Shrestha 14

More Examples
void sayhello(void)
{
puts("Hello");

}

double squared(double number)
{
return (number * number);

}

void printchar(char ch, int times)
{
int i;
for (i = 0; i < times; i++)

putchar(ch);
}

© Bhaskar Shrestha 15

The return keyword

• The return keyword is used to return the program
control from a function to the calling function

• In general terms, the return statement is written as
return expression;

– The value of expression is returned to the calling function of
the program

– No expression is present if a function return type is void

• A function definition can contain multiple return
statements. However, only one gets executed

© Bhaskar Shrestha 16

Examples

void func(int n)
{
if (n < 1)
{
puts("Number is not positive");
return;

}
if (n%2 == 0)
puts("Number is even");

else
puts("Number is odd");

}

int maximum(int a, int b)
{

if (a > b)
return a;

else
return b;

}

© Bhaskar Shrestha 17

Calling a function
• When a function is called its code gets executed

– Call a function by specifying its name, followed by list of arguments
enclosed in parentheses and separated by commas

• Arguments
– the value of the arguments is transferred to the corresponding parameter in

the function definition
– arguments can be constants, single variables, or more complex expressions
– type of argument must match the parameter type
– the no of arguments must be equal to no. of parameters in the function

definition
– if no arguments are required, an empty () must be present

• Can be called more than once as desired

© Bhaskar Shrestha 18

Calling Functions Example

result = power(10.0, 5);
c = maximum(a, b);
y = squared(x);

print_report(1);
sayhello();
solvequadratic(a, b, c);

g = power(x, maximum(y*2, n));
if (maximum(x,y) > 10)
{
...
}

© Bhaskar Shrestha 19

Parameters and Arguments

• You pass information to a function by means of the
arguments that you specify when you call a function

• The arguments are placed between parentheses
following the function name in the call
– printf("%g\t", power(8.0, i));

• When a function is called the value of the arguments is
copied to the corresponding parameters in the function
definition

• Arguments are also called actual arguments and
parameters are called formal parameters

© Bhaskar Shrestha 20

Parameters and Arguments

double power(double x, int n)
{

double result = 1.0;
int i;

for (i = 0; i < n; i++)
{
result *= x;

}
return result;

}

printf("%g\t", power(8.0, 2)) The arguments in a function call map to
the parameters in its definition

The code in the body of the
function executes with the
argument values in places of
the parameters

The value 64.0 is
returned when the
function completes
execution

© Bhaskar Shrestha 21

Function Prototypes (1/2)

• Function prototype is a declaration statement that
– specifies the function name, the no and types of its

parameters and the return type of the function
• Prototype only needed if function definition comes

after use in program
• They are generally written at the beginning of a

program, ahead of any user-defined function
• The function with the prototype

double power(double x, int n);

– Takes in one double and one int
– Returns a double

© Bhaskar Shrestha 22

Function Prototypes (2/2)

• Function prototype is identical to the function header,
with a semicolon appended

• Parameters name can be different than that of the
function definition
– double power(double val, int exponent);

• Parameter names can be omitted
– double power(double , int);

• Function prototype facilitate error checking between
calls to a function and the corresponding function
definition

© Bhaskar Shrestha 23

Passing Arguments to a Function

• Two mechanisms used generally in C to pass arguments
to functions

• Pass by value
– Copy of argument passed to function
– Changes in function do not effect original argument passed
– Use when function does not need to modify argument
– Avoids accidental changes

• Pass by reference
– Passes original argument
– Changes in function effect original
– Only used with trusted functions

© Bhaskar Shrestha 24

Pass By Value
double value = 20.0;

int index = 3;

double result;

result = power(value, index);

double power(double x, int n)

{

...

}

The code here cannot access the
original values of index and value

3

20.0

3

20.0
Copy of index

Copy of value

index

value

© Bhaskar Shrestha 25

Failure to modify arguments value

Variable it in main() 5
A copy is made when the
function is called 5 Copy of it

int changeIt(int it)

{

it += 10;

printf("\nWithin function,

it = %d\n", it);

return it;

}

int result = changeIt(it);

This will increment the copy by 10. It
always refers to the copy of the argument.

A copy of the value to
be returned is made

15

The copy of the value returned is
used in main(). The variable it in
changeIt() has been discarded and
no longer exists at this point.

It has the value 5
when the copy is
made

© Bhaskar Shrestha 26

Declarations Vs. Definitions
• Declaration: introduces a name – an identifier – to the compiler

– tells the compiler: “This function or this variable exists somewhere, and
here is what it should look like

• Function Prototypes are declarations

• Definition: allocates storage for the name
– tells the compiler: “Make this variable here” or “Make this function here
– For a variable, determines how big that variable is and causes space to be

generated in memory For a function, generates code, which ends up
occupying storage in the memory

• You can declare a variable or a function in many different places,
but there must be only one definition in C

• A definition can also be a declaration

© Bhaskar Shrestha 27

Storage Classes

• The storage class of a variable determines its scope, its
storage duration, and its linkage

• Storage duration – how long a variable exists in
memory

• Scope – where the variable can be referenced in program
• Linkage – specifies the files in which the variable is

known
• The storage class of a variable is determined by the

position of its declaration in the source file and by the
storage class specifier, if any
– auto, extern, static, register

© Bhaskar Shrestha 28

Automatic Storage Duration (1/2)

• Variables defined inside a block (including formal
parameters) have automatic storage

• In automatic storage, the variable is created each time
program flow enters the block in which it is defined

• When the block is terminated, the memory occupied by
the variable is freed

• The storage class specifier auto or register may be
used for variables defined inside functions

© Bhaskar Shrestha 29

Automatic Storage Duration (2/2)

• auto:
– default for variables defined inside functions
– auto double x, y;

• register:
– tries to put variable into high-speed registers
– Can only be used for automatic variables
– register int counter = 1;

• Automatic variables have unknown values if they are not
initialized

© Bhaskar Shrestha 30

Examples
int x = 10, y;
printf("Outer x: %d\n", x);
printf("y: %d\n", y);
{

int x = 20;
printf("Inner x: %d\n", x);

}
printf("Outer x: %d\n", x); int i;

for (i = 1; i <= 5; i++)
{

int x = 10;
x += 10;
printf("x = %d\n", x);

}
/* ERROR: Can’t access x here */
/* printf("%d\n", x); */

© Bhaskar Shrestha 31

Static Storage

• The variable is created and initialized once for the first
time its definition statement is encountered

• It exists continuously throughout the execution of the
program

• Default value of zero

• Variables defined outside of any function and variables
defined with static storage class specifier inside
function have static storage

© Bhaskar Shrestha 32

Static Variables

• Static global variables:
– Variables defined outside of any function with static storage

class specifier
– Can be used by any functions in the same file

• Static local variables
– Variables defined inside

a block with static storage
class specifier

– Can be used only in the
function where it is
declared

int i;
for (i = 1; i < 10; i++)
{

static int x = 10;
x += 10;
printf("x = %d\n", x);

}
/*ERROR: Can’t access x here*/
/* printf("%d\n", x); */

© Bhaskar Shrestha 33

External Variables

• Extern:
– Can be used by any function

– Variables defined outside
of any function

– Default for global
variables and functions

int x = 10;
void func(void)
{

x += 10;
printf("%d\n", x);

}
main()
{

printf("%d\n", x);
func();
x += 10;
printf("%d\n", x);

}

© Bhaskar Shrestha 34

Use of extern keyword

• Use the extern keyword to
declare a global variable that
has been defined elsewhere
in the program

extern int;
void func(void)
{

x += 10;
printf("%d\n", x);

}
main()
{

printf("%d\n", x);
func();
x += 10;
printf("%d\n", x);

}
int x = 10;

© Bhaskar Shrestha 35

Scope Rules

• File scope
– Identifier declared outside function, known in all

functions
– Used for global variables, function definitions,

function prototypes

• Function scope
– Can only be referenced inside a function body
– Used only for labels (start:, case: , etc.)

© Bhaskar Shrestha 36

Scope Rules

• Block scope
– Identifier declared inside a block

• Block scope begins at declaration, ends at right brace

– Used for variables, function parameters (local variables of
function)

– Outer blocks "hidden" from inner blocks if there is a variable
with the same name in the inner block

• Function prototype scope
– Used for identifiers in parameter list

