

Coordinates Transformation BY

M.A. Halim Senior Lecturer (Mathematics) Department of GED

DIU

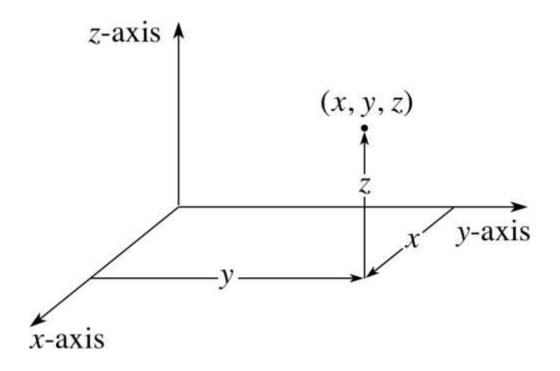
In three dimensional systems there are three coordinate systems such as

- 1. Cartesian /Rectangular coordinate System (RS)
 - 2. Cylindrical coordinate System (CS)
- 3. Spherical coordinate System (SS)

Cartesian /Rectangular coordinate System:

In the Cartesian coordinate system in 3D, the point in a space or in three dimensional systems be represented by the symbol (x, y, z) where x is the distance on x axis, y is the distance on y axis and z is the distance on z axis of the point (x, y, z).

Figure:

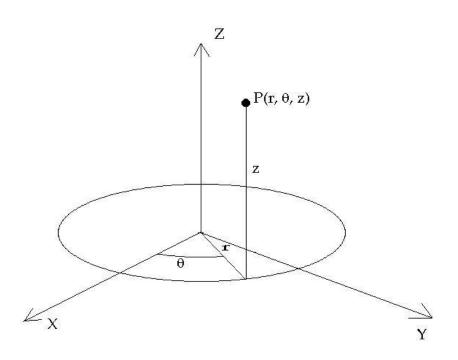


Cylindrical coordinate System:

In the Cylindrical coordinate system in 3D, the point in a space or in three dimensional systems be represented by the symbol (r, θ, z) where r is the distance of the point from origin or length of radial line, θ is the angle between radial line and x axis and z is the distance of the point (r, θ, z) from the xy plane.

Many mathematicians use the symbol ' ρ ' in place of 'r'.

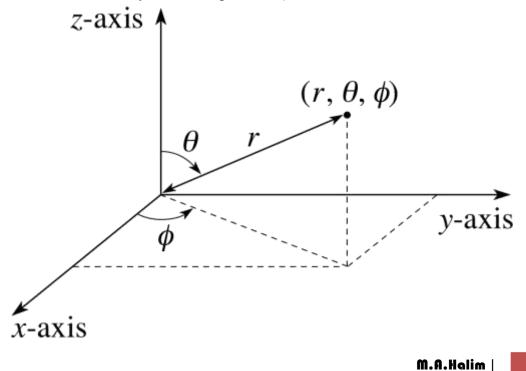
M.A.Halim |



Spherical coordinate system:

In the Spherical coordinate system in 3D, the point in a space or in three dimensional systems be represented by the symbol (ρ, θ, φ) where r is the distance of the point from origin or length of radial line, θ is the angle between radial line and z axis and φ the angle between radial line (joining with the foot point of the perpendicular from the given point on the xy plane) and the x axis.

Many mathematicians use the symbol 'r' in place of ' ρ '.



D Relation between Cartesian and Cylindrical System:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \left(\frac{y}{x}\right)$$

$$z = z$$

D Relation between Cartesian and Spherical System:

$$x = \rho \sin \theta \cos \varphi$$

$$y = \rho \sin \theta \sin \varphi$$

$$z = \rho \cos \theta$$

$$\varphi = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$

$$\varphi = \tan^{-1} \left(\frac{y}{x} \right)$$

$$\varphi = \tan^{-1} \left(\frac{y}{z} \right)$$

$$\varphi = \tan^{-1} \left(\frac{y}{z} \right)$$

D Relation between Cylindrical and Spherical System:

$$r = \rho \sin \theta$$

$$\theta = \varphi$$

$$z = \rho \cos \theta$$

$$\rho = \sqrt{z^{2} + r^{2}}$$

$$\theta = \tan^{-1} \left(\frac{r}{z}\right)$$

$$\varphi = \theta$$

Restriction:

$$x, y, z \in (-\infty, \infty); \quad \rho, r \in [0, \infty); \quad \theta \in [0^\circ, 180^\circ] \text{ and } \varphi \in [0^\circ, 360^\circ]$$

Mathematical Problems Problem no: 01

Convert $\left(3, \frac{\pi}{3}, -4\right)$ from Cylindrical to Cartesian Coordinates.

Solution:

Given that,

Cylindrical coordinates of a point is $(r, \theta, z) = \left(3, \frac{\pi}{3}, -4\right)$

We know that,

$$x = r\cos\theta$$
, $y = r\sin\theta$ and $z = z$
Now, $x = r\cos\theta = 3\cos\frac{\pi}{3} = 3 \times \frac{1}{2} = \frac{3}{2}$

$$y = 3\sin\frac{\pi}{3} = 3 \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$$

$$z = z = -4$$

Therefore the Cartesian coordinates of the given point is $(x, y, z) = \left(\frac{3}{2}, \frac{3\sqrt{3}}{3}, -4\right)$.

H.W:

Convert the followings cylindrical coordinates to the Cartesian Coordinates system:

1.
$$\left(4\sqrt{3}, \frac{\pi}{4}, -4\right)$$

2. $\left(4\sqrt{3}, 0, 5\right)$

Problem no: 02

Convert (-2, 2, 3) from Cartesian to Cylindrical Coordinates.

Solution:

Given that,

Cartesian coordinates of a point is (x, y, z) = (-2, 2, 3)

We know that,

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

z = z

Now,

$$r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) \Longrightarrow \tan \theta = \frac{y}{x} \Longrightarrow \tan \theta = \frac{2}{-2} = -1$$

Here

$$\tan \theta = -\tan \frac{\pi}{4}$$
$$\tan \theta = \tan(\pi - \frac{\pi}{4})$$
$$\tan \theta = \tan(\frac{3\pi}{4})$$
$$\theta = \frac{3\pi}{4}$$

 $\tan \theta = -1$

And

$$z = z = 3$$

Therefore the Cylindrical coordinates of the given point is $(r, \theta, z) = \left(2\sqrt{2}, \frac{3\pi}{4}, 3\right)$.

H.W:

Convert the followings Cartesian coordinates to the Cylindrical Coordinates system:

1.
$$(4\sqrt{3}, 4, -4)$$

2. $(-\sqrt{3}, -4, 4)$
3. $(-\sqrt{3}, 4, 2)$
4. $(4\sqrt{2}, -1, -4)$
5. $(\sqrt{3}, 0, 0)$
6. $(0, 4, 9)$
7. $(4\sqrt{3}, 0, 5)$

Problem no: 03

Convert
$$\left(8, \frac{\pi}{4}, \frac{\pi}{6}\right)$$
 from Spherical to Cartesian Coordinates.

Solution: Given that,

Spherical coordinates of a point is $(\rho, \theta, \varphi) = \left(8, \frac{\pi}{4}, \frac{\pi}{6}\right)$

We know that,

 $x = \rho \sin \theta \cos \varphi$, $y = \rho \sin \theta \sin \varphi$ and $z = \rho \cos \theta$ Now,

$$x = \rho \sin \theta \cos \varphi = 8 \sin \frac{\pi}{4} \cos \frac{\pi}{6} = 8 \times \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} = \frac{4\sqrt{3}}{\sqrt{2}} = 2\sqrt{6}$$
$$y = \rho \sin \theta \sin \varphi = 8 \sin \frac{\pi}{4} \sin \frac{\pi}{6} = 8 \times \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

And

$$z = \rho \cos \theta = 8 \cos \frac{\pi}{4} = 8 \times \frac{1}{\sqrt{2}} = 4\sqrt{2}$$

Therefore the Cartesian coordinates of the given point is $(x, y, z) = (2\sqrt{6}, 2\sqrt{2}, 4\sqrt{2})$

H.W:

Convert the followings Spherical coordinates to the Cartesian Coordinates system:

1.
$$\left(4\sqrt{3}, \frac{\pi}{4}, \frac{\pi}{4}\right)$$

2. $\left(-\sqrt{3}, 124^{\circ}, 75^{\circ}\right)$
3. $\left(\sqrt{3}, 140^{\circ}, 140^{\circ}\right)$

Problem no: 04

Convert $(2\sqrt{3}, 6, -4)$ from Cartesian to Spherical Coordinates. Solution:

Given that,

Cartesian coordinates of a point is $(x, y, z) = (2\sqrt{3}, 6, -4)$

We know that,

$$\rho = \sqrt{x^2 + y^2 + z^2}$$
$$\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$
$$\varphi = \tan^{-1} \left(\frac{y}{x} \right)$$

Now,

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{(2\sqrt{3})^2 + 6^2 + (-4)^2} = \sqrt{12 + 36 + 16} = \sqrt{64} = 8$$
$$\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right) \Longrightarrow \tan \theta = \frac{\sqrt{x^2 + y^2}}{z} \Longrightarrow \tan \theta = \frac{\sqrt{(2\sqrt{3})^2 + 6^2}}{-4}$$
$$\Rightarrow \tan \theta = \frac{\sqrt{12 + 36}}{-4} = \frac{\sqrt{48}}{-4} = \frac{4\sqrt{3}}{-4} = -\sqrt{3}$$

Here

$$\tan \theta = -\sqrt{3}$$
$$\tan \theta = -\tan \frac{\pi}{3}$$
$$\tan \theta = \tan \left(\pi - \frac{\pi}{3} \right)$$
$$\tan \theta = \tan \left(\frac{2\pi}{3} \right)$$
$$\therefore \theta = \frac{2\pi}{3}$$

And

$$\varphi = \tan^{-1}\left(\frac{y}{x}\right) \Rightarrow \tan \varphi = \frac{y}{x} \Rightarrow \tan \varphi = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

Here

$$\tan \varphi = \sqrt{3}$$
$$\tan \varphi = \tan \frac{\pi}{3}$$
$$\therefore \varphi = \frac{\pi}{3}$$

Therefore the Spherical coordinates of the given point is $(\rho, \theta, \varphi) = \left(8, \frac{2\pi}{3}, \frac{\pi}{3}\right)$.

H.W:

Convert the followings Cartesian coordinates to the Spherical Coordinates system:

1. $(4\sqrt{3},4,-4)$ 2. $(-\sqrt{3},-4,4)$ 3. $(-\sqrt{3},4,2)$ 4. $(4\sqrt{2},-1,-4)$ 5. $(\sqrt{3},0,0)$ 6. (0,4,9)7. $(4\sqrt{3},0,5)$

Problem no: 05

Convert $\left(1, \frac{\pi}{2}, 1\right)$ from Cylindrical to Spherical Coordinates. Solution:

Given that,

Cylindrical coordinates of a point is $(r, \theta, z) = (1, \frac{\pi}{2}, 1)$ We know that,

$$\rho = \sqrt{z^2 + r^2}$$
$$\theta = \tan^{-1} \left(\frac{r}{z}\right)$$
$$\varphi = \theta$$

Now,

$$\rho = \sqrt{z^2 + r^2} = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$$

M.A.Halim |

$$\theta = \tan^{-1}\left(\frac{r}{z}\right) \Longrightarrow \tan \theta = \frac{r}{z} = \frac{1}{1} = 1$$

Here

$$\tan \theta = 1$$
$$\tan \theta = \tan \frac{\pi}{4}$$
$$\cdot \theta = \frac{\pi}{4}$$

And

$$\varphi = \theta = \frac{\pi}{2}$$

Therefore the Spherical coordinates of the given point is $(\rho, \theta, \varphi) = (\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}).$

H.W:

Convert the followings Cylindrical coordinates to the Spherical Coordinates system:

1. $(4\sqrt{3}, 42^{\circ}, -4)$ 2. $(4\sqrt{3}, 0^{\circ}, 5)$ 3. $(-\sqrt{3}, 134^{\circ}, -4)$

Problem no: 06

Convert $\left(4\sqrt{3}, \frac{\pi}{4}, \frac{\pi}{4}\right)$ from Spherical to Cylindrical Coordinates.

Solution:

Given that,

Spherical coordinates of a point is $(\rho, \theta, \varphi) = \left(4\sqrt{3}, \frac{\pi}{4}, \frac{\pi}{4}\right)$

We know that,

$$r = \rho \sin \theta$$
$$\theta = \varphi$$
$$z = \rho \cos \theta$$

Now,

$$r = \rho \sin \theta = 4\sqrt{3} \sin \frac{\pi}{4} = 4\sqrt{3} \times \frac{1}{\sqrt{2}} = 2\sqrt{6}$$
$$\theta = \varphi = \frac{\pi}{4}$$

 $z = \rho \cos \theta = 4\sqrt{3} \times \cos \frac{\pi}{4} = 4\sqrt{3} \times \frac{1}{\sqrt{2}} = 2\sqrt{6}$

And

Therefore the Cylindrical coordinates of the given point is $(r, \theta, z) = \left(2\sqrt{6}, \frac{\pi}{4}, 2\sqrt{6}\right)$.

H.W:

Convert the followings Spherical coordinates to the Cylindrical Coordinates system:

1.
$$\left(-\sqrt{3},\frac{\pi}{4},\frac{\pi}{3}\right)$$

Transformation of Equations

Mathematical problems

Problem: 01

Express Cartesian Equation $x^2 - y^2 = 25$ in Cylindrical Equation. Solution:

Given Cartesian Equation is $x^2 - y^2 = 25$

we have

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $z = z$

Replacing x and y from the given equation we get desired Cylindrical equation as follows,

$$(r\cos\theta)^{2} - (r\sin\theta)^{2} = 25$$
$$r^{2}\cos^{2}\theta - r^{2}\sin^{2}\theta = 25$$
$$r^{2}(\cos^{2}\theta - \sin^{2}\theta) = 25$$
$$r^{2}\cos(2\theta) = 25$$
$$r^{2} = 25Sec(2\theta)$$

(As desired)

Problem: 02

Express Cartesian Equation $x^2 + y^2 + z^2 = 0$ in Cylindrical Equation. Solution:

Given Cartesian Equation is $x^2 + y^2 + z^2 = 0$ We have,

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $z = z$

Replacing x, y and z from the given equation we get desired Cylindrical equation as follows,

$$(r\cos\theta)^{2} + (r\sin\theta)^{2} + z^{2} = 0$$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta + z^{2} = 0$$

$$r^{2}(\cos^{2}\theta + \sin^{2}\theta) + z^{2} = 0$$

$$r^{2} + z^{2} = 0$$
(As desired)

H.W:

Transform the following Cartesian equations into the Cylindrical Equations:

1. $x^{2} - y^{2} + 2z^{2} = 3x$ 2. $x^{2} + y^{2} + z^{2} = 2z$ 3. $z^{2} = y^{2} - x^{2}$

M.A.Halim |

4. x + y + z = 1

Problem: 03

Transform Cartesian Equation $x^2 + y^2 - z^2 = 1$ to Spherical Equation. Solution:

Given Cartesian Equation is $x^2 + y^2 - z^2 = 1$

We have,

$$x = \rho \sin \theta \cos \varphi$$
$$y = \rho \sin \theta \sin \varphi$$
$$z = \rho \cos \theta$$

Replacing x, y and z from the given equation we get desired Cylindrical equation as follows,

$$(\rho \sin \theta \cos \varphi)^{2} + (\rho \sin \theta \sin \varphi)^{2} - (\rho \cos \theta)^{2} = 1$$

$$\rho^{2} \sin^{2} \theta \cos^{2} \varphi + \rho^{2} \sin^{2} \theta \sin^{2} \varphi - \rho^{2} \cos^{2} \theta = 1$$

$$\rho^{2} \sin^{2} \theta (\cos^{2} \varphi + \sin^{2} \varphi) - \rho^{2} \cos^{2} \theta = 1$$

$$\rho^{2} \sin^{2} \theta - \rho^{2} \cos^{2} \theta = 1$$

$$\rho^{2} (\sin^{2} \theta - \cos^{2} \theta) = 1$$

$$-\rho^{2} (\cos^{2} \theta - \sin^{2} \theta) = 1$$

$$-\rho^{2} \cos (2\theta) = 1$$

$$\rho^{2} \cos (2\theta) = -1$$

$$\rho^{2} = -\sec(2\theta)$$
(As desired)

H.W:

Transform the following Cartesian equations into the Spherical Equations:

1.
$$x^{2} - y^{2} + 2z^{2} = 3x$$

2. $x^{2} + y^{2} + z^{2} = 2z$
3. $z^{2} = y^{2} - x^{2}$
4. $x^{2} + y^{2} + z^{2} = 0$
5. $x + y + z = 1$

Problem: 04

Transform Spherical Equation $\rho = 2\cos\varphi$ to Cylindrical Equation.

Solution:

Given Spherical Equation is $\rho = 2\cos\varphi$ We have,

$$\rho = \sqrt{z^2 + r^2}$$
$$\theta = \tan^{-1}\left(\frac{r}{z}\right)$$
$$\varphi = \theta$$

Replacing ρ and ϕ from the given equation we get desired Cylindrical equation as follows,

$$\sqrt{z^{2} + r^{2}} = 2\cos\theta$$

$$\sqrt{z^{2} + r^{2}} = 2 \times \frac{z}{\rho} \qquad [\because z = \rho\cos\theta]$$

$$\sqrt{z^{2} + r^{2}} = 2 \times \frac{z}{\sqrt{z^{2} + r^{2}}}$$

$$z^{2} + r^{2} = 2z \qquad (As \text{ desired})$$

H.W:

Transform the following Spherical Equations into the Cylindrical Equations:

- 1. $\varphi = \frac{\pi}{4}$
- $2. \quad \rho = 2 \sec \theta$
- 3. $\rho = \cos e c \theta$

Problem: 04

Transform Cylindrical Equation $r^2 \cos 2\theta = z$ to Cartesian/Rectangular Equation. Solution:

Given Cylindrical Equation is $r^2 \cos 2\theta = z$ We have,

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $z = z$

Given equation is

$$r^{2} \cos 2\theta = z$$

$$r^{2} (\cos^{2} \theta - \sin^{2} \theta) = z$$

$$r^{2} (\cos^{2} \theta - \sin^{2} \theta) = z$$

$$r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta = z$$

$$(r \cos \theta)^{2} - (r \sin \theta)^{2} = z$$

$$(x)^{2} - (y)^{2} = z$$
 [Putting values] (As desired)

H.W:

Transform the following Cylindrical Equations into the Cartesian/Rectangular Equations:

- $1. \quad r = 2\sin\theta$
- $2. \quad z = 5\sin\theta$

Problem: 05

Transform Spherical Equation $\rho \sin \theta = 1$ to Cartesian/Rectangular Equation.

Solution:

Given Spherical Equation is $\rho \sin \theta = 1$

We have,

 $x = \rho \sin \theta \cos \varphi, y = \rho \sin \theta \sin \varphi, z = \rho \cos \theta \text{ and } \rho = \sqrt{x^2 + y^2 + z^2}$

Now,

 $\rho \sin \theta = 1$ $\rho^{2} \sin^{2} \theta = 1$ $\rho^{2} (1 - \cos^{2} \theta) = 1$ $\rho^{2} - \rho^{2} \cos^{2} \theta = 1$ $\rho^{2} - (\rho \cos \theta)^{2} = 1$ $\rho^{2} - (\rho \cos \theta)^{2} = 1$ $x^{2} + y^{2} + z^{2} - z^{2} = 1$ $x^{2} + y^{2} = 1$

(As desired)

H.W:

Transform the following Spherical Equations into the Cartesian/Rectangular Equations:

- $1. \quad \rho \sin \varphi = 1$
- $2. \quad \rho = 2 \sec \varphi$
- 3. $\rho = \csc \varphi$
- 4. $\rho \sin \varphi = 2 \cos \theta$