Variables in C

Topics

« What is Variable

Naming Variables
Declaring Variables

Using Variables

The Assignment Statement

CMSC 104, Version 9/01

What Are Variables in C?

« Variables are the names that refer to sections of
memory into which data can be stored.

- Variables in C have the same meaning as
variables in algebra. That is, they represent some
unknown, or variable, value.

X=a+b
z+2=3(y-5)

« Remember that variables in algebra are
represented by a single alphabetic character.

CMSC 104, Version 9/01 2

Naming Variables

 Rules for variable naming:

o

Can be composed of letters (both uppercase and
lowercase letters), digits and underscore only.

The first character should be either a letter or an
underscore(not any digit).

Punctuation and special characters are not allowed
except underscore.

Variable name should not be keywords.
names are case sensitive.

There is no rule for the length of a variable name.
However, the first 31 characters are discriminated by the
compiler. So, the first 31 letters of two name in a program
should be different.

CMSC 104, Version 9/01

Reserved Words (Keywords) in C

e auto

e case

e const
« default
« double
« enum
 float

« goto

CMSC 104, Version 9/01

break Int

char register
continue short

do signed
else Sizeof
extern struct

for typedef

if unsigned

volatile

long
return

static
switch
union
void
while

Naming Conventions

« C programmers generally agree on the
following conventions for naming variables.

o Begin variable names with lowercase letters
o Use meaningful identifiers

o Separate “words” within identifiers with
underscores or mixed upper and lower case.

o Examples: surfaceArea surface Area
surface area

o Be consistent!

CMSC 104, Version 9/01

Naming Conventions (con'’ t)

» Use all uppercase for symbolic constants
(used In #define preprocessor directives).

- Examples:

#define Pl 3.14159
#define AGE 52

CMSC 104, Version 9/01 6

Case Sensitivity
« Cis case sensitive

o It matters whether an identifier, such as a
variable name, Is uppercase or lowercase.

o Example:
area
Area
AREA
ArkEa

are all seen as different variables by the
compiler.

CMSC 104, Version 9/01

Which Are Legal Identifiers?

AREA area_under the curve
3D num45

Last-Chance #values

X_yt3 pI

num$ %done

ucky***

CMSC 104, Version 9/01

Declaring Variables

« Before using a variable, you must give the
compiler some information about the
variable; I.e., you must declare it.

« The declaration statement includes the
data type of the variable.

« Examples of variable declarations:
iInt meatballs ;
float area;

CMSC 104, Version 9/01

Declaring Variables (con’ t)

« \When we declare a variable

o Space Is set aside in memory to hold a value of
the specified data type

o That space Is associated with the variable name
o That space Is associated with a unique address

e Visualization of the declaration

Int meatballs :
meatballs

garbage

FEO7Y

CMSC 104, Version 9/01

More About Variables

C has three basic predefined data types:

* Integers (whole numbers)
o Int

 Floating point (real numbers)
o float,
o double

 Characters
o char

CMSC 104, Version 9/01

11

Using Variables: Initialization

« Variables may be given initial values, or
Initialized, when declared. Examples:

length

int length =7 ; :> 7

diameter

float diameter =5.9 ;) 5.9

initial

char initial = ‘A’ ; :> ‘A

CMSC 104, Version 9/01

Using Variables: Initialization (con’ t)

- Do not “hide” the initialization
o put initialized variables on a separate line
o a comment Is always a good idea

o Example:
Int height ;

[* rectang

iInt width =6 ; /* rectang

Int area :

e height */
e width */

/* rectang

e area */

NOT int height, width = 6, area ;

CMSC 104, Version 9/01

13

Using Variables: Assignment

« Variables may have values assigned to them through
the use of an assignment statement.

 Such a statement uses the assignment operator =

« This operator does not denote equality. It assigns
the value of the righthand side of the statement (the
expression) to the variable on the lefthand side.

« Examples:
diameter =5.9 ;
area = length * width ;

Note that only single variables may appear on the
lefthand side of the assignment operator.

CMSC 104, Version 9/01 14

Example: Declarations and Assignments

#include <stdio.h>
Int main()

{

ﬁ::>

Int Inches, feet, fathoms ;

fathoms =7 :
feet = 6 * fathoms ;
Inches = 12 * feet ;

CMSC 104, Version 9/01

AR

inches

garbage

feet

garbage

fathoms

garbage

fathoms

-

feet

42

inches

504

15

Example: Declarations and Assignments (cont’” d)

orintf (“
orintf (“
orintf (“

return O ;

CMSC 104, Version 9/01

%0
%0

%0

orintf (“Its depth at sea: \n”) ;

fathoms \n”, fathoms) ;
feet\n”, feet) ;
inches \n”, inches) ;

16

Enhancing Our Example

- What if the depth were really 5.75 fathoms?
Our program, as it is, couldn’ t handle it.

« Unlike integers, floating point numbers can
contain decimal portions. So, let’ s use
floating point, rather than integer.

 Let’ s also ask the user to enter the number
of fathoms, rather than “hard-coding” it in.

CMSC 104, Version 9/01 17

Enhanced Program

#include <stdio.h>
Int main ()

{

float inches, feet, fathoms ;

printf (“Enter the depth in fathoms : ”) ;
scanf (“%f”, &fathoms) ;

feet = 6 * fathoms ;

iInches =12 * feet ;

printf (“Its depth at sea: \n”) ;

printf (* %f fathoms \n”, fathoms) ;
printf (* %f feet \n”, feet) ;

printf (* %f inches \n”, inches) ;
return O ;

CMSC 1%4, Version 9/01

18

Final “Clean” Program

#include <stdio.h>

{

Int main()
float inches ; [* number of inches deep */
float feet ; [* number of feet deep */

float fathoms ; /* number of fathoms deep */

[* Get the depth in fathoms from the user */

printf ("Enter the depth in fathoms : 7) ;
scanf (“%f”, &fathoms) ;

[* Convert the depth to inches */

feet = 6 * fathoms
Inches =12 * feet ;

CMSC 104, Version 9/01

19

Final “Clean” Program (con'’ t)

[* Display the results */

printf (“Its depth at sea: \n”) ;

printf (* %f fathoms \n”, fathoms) ;
printf (* %f feet \n”, feet);

printf (* %f inches \n”, inches);

return O ;

CMSC 104, Version 9/01

20

Good Programming Practices

 Place each variable declaration on its own
iIne with a descriptive comment.

« Place a comment before each logical
“chunk” of code describing what it does.

« Do not place a comment on the same line as
code (with the exception of variable
declarations).

« Use spaces around all arithmetic and
assignment operators.

« Use blank lines to enhance readabillity.

CMSC 104, Version 9/01 21

Good Programming Practices (con’ t)

 Place a blank line between the last variable
declaration and the first executable
statement of the program.

 Indent the body of the program 3 to 4 tab
stops -- be consistent!

CMSC 104, Version 9/01 22

