
CMSC 104, Version 9/01 1

Variables in C

Topics

• What is Variable

• Naming Variables

• Declaring Variables

• Using Variables

• The Assignment Statement

CMSC 104, Version 9/01 2

What Are Variables in C?

• Variables are the names that refer to sections of

memory into which data can be stored.

• Variables in C have the same meaning as

variables in algebra. That is, they represent some

unknown, or variable, value.

x = a + b

z + 2 = 3(y - 5)

• Remember that variables in algebra are

represented by a single alphabetic character.

CMSC 104, Version 9/01 3

Naming Variables

• Rules for variable naming:

o Can be composed of letters (both uppercase and

lowercase letters), digits and underscore only.

o The first character should be either a letter or an

underscore(not any digit).

o Punctuation and special characters are not allowed

except underscore.

o Variable name should not be keywords.

o names are case sensitive.

o There is no rule for the length of a variable name.

However, the first 31 characters are discriminated by the

compiler. So, the first 31 letters of two name in a program

should be different.

CMSC 104, Version 9/01 4

Reserved Words (Keywords) in C

• auto break

• case char

• const continue

• default do

• double else

• enum extern

• float for

• goto if

int long

register return

short

signed

sizeof static

struct switch

typedef union

unsigned void

volatile while

CMSC 104, Version 9/01 5

Naming Conventions

• C programmers generally agree on the

following conventions for naming variables.

o Begin variable names with lowercase letters

o Use meaningful identifiers

o Separate “words” within identifiers with

underscores or mixed upper and lower case.

o Examples: surfaceArea surface_Area

surface_area

o Be consistent!

CMSC 104, Version 9/01 6

Naming Conventions (con’t)

• Use all uppercase for symbolic constants

(used in #define preprocessor directives).

• Examples:

#define PI 3.14159

#define AGE 52

CMSC 104, Version 9/01 7

Case Sensitivity

• C is case sensitive

o It matters whether an identifier, such as a

variable name, is uppercase or lowercase.

o Example:

area

Area

AREA

ArEa

are all seen as different variables by the

compiler.

CMSC 104, Version 9/01 8

Which Are Legal Identifiers?

AREA area_under_the_curve

3D num45

Last-Chance #values

x_yt3 pi

num$ %done

lucky***

CMSC 104, Version 9/01 9

Declaring Variables

• Before using a variable, you must give the

compiler some information about the

variable; i.e., you must declare it.

• The declaration statement includes the

data type of the variable.

• Examples of variable declarations:

int meatballs ;

float area ;

CMSC 104, Version 9/01 10

Declaring Variables (con’t)

• When we declare a variable

o Space is set aside in memory to hold a value of

the specified data type

o That space is associated with the variable name

o That space is associated with a unique address

• Visualization of the declaration

int meatballs ;
meatballs

FE07

garbage

CMSC 104, Version 9/01 11

More About Variables

C has three basic predefined data types:

• Integers (whole numbers)

o Int

• Floating point (real numbers)

o float,

o double

• Characters

o char

CMSC 104, Version 9/01 12

Using Variables: Initialization

• Variables may be given initial values, or

initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

7

5.9

‘A’

length

diameter

initial

CMSC 104, Version 9/01 13

Using Variables: Initialization (con’t)

• Do not “hide” the initialization

o put initialized variables on a separate line

o a comment is always a good idea

o Example:

int height ; /* rectangle height */

int width = 6 ; /* rectangle width */

int area ; /* rectangle area */

NOT int height, width = 6, area ;

CMSC 104, Version 9/01 14

Using Variables: Assignment

• Variables may have values assigned to them through

the use of an assignment statement.

• Such a statement uses the assignment operator =

• This operator does not denote equality. It assigns

the value of the righthand side of the statement (the

expression) to the variable on the lefthand side.

• Examples:

diameter = 5.9 ;

area = length * width ;

Note that only single variables may appear on the

lefthand side of the assignment operator.

CMSC 104, Version 9/01 15

Example: Declarations and Assignments

#include <stdio.h>

int main()
{

int inches, feet, fathoms ;

fathoms = 7 ;

feet = 6 * fathoms ;

inches = 12 * feet ;
•

•

•

inches

feet

fathoms

garbage

fathoms

7

garbage
feet

42

garbage

504

inches

CMSC 104, Version 9/01 16

Example: Declarations and Assignments (cont’d)

•
•
•

printf (“Its depth at sea: \n”) ;
printf (“ %d fathoms \n”, fathoms) ;
printf (“ %d feet \n”, feet) ;
printf (“ %d inches \n”, inches) ;

return 0 ;
}

CMSC 104, Version 9/01 17

Enhancing Our Example

• What if the depth were really 5.75 fathoms?

Our program, as it is, couldn’t handle it.

• Unlike integers, floating point numbers can

contain decimal portions. So, let’s use

floating point, rather than integer.

• Let’s also ask the user to enter the number

of fathoms, rather than “hard-coding” it in.

CMSC 104, Version 9/01 18

Enhanced Program

#include <stdio.h>

int main ()

{

float inches, feet, fathoms ;

printf (“Enter the depth in fathoms : ”) ;

scanf (“%f”, &fathoms) ;

feet = 6 * fathoms ;

inches = 12 * feet ;

printf (“Its depth at sea: \n”) ;

printf (“ %f fathoms \n”, fathoms) ;

printf (“ %f feet \n”, feet) ;

printf (“ %f inches \n”, inches) ;

return 0 ;

}

CMSC 104, Version 9/01 19

Final “Clean” Program

#include <stdio.h>

int main()

{
float inches ; /* number of inches deep */
float feet ; /* number of feet deep */
float fathoms ; /* number of fathoms deep */

/* Get the depth in fathoms from the user */

printf (“Enter the depth in fathoms : ”) ;

scanf (“%f”, &fathoms) ;

/* Convert the depth to inches */

feet = 6 * fathoms ;

inches = 12 * feet ;

CMSC 104, Version 9/01 20

Final “Clean” Program (con’t)

/* Display the results */

printf (“Its depth at sea: \n”) ;

printf (“ %f fathoms \n”, fathoms) ;

printf (“ %f feet \n”, feet);

printf (“ %f inches \n”, inches);

return 0 ;

}

CMSC 104, Version 9/01 21

Good Programming Practices

• Place each variable declaration on its own

line with a descriptive comment.

• Place a comment before each logical

“chunk” of code describing what it does.

• Do not place a comment on the same line as

code (with the exception of variable

declarations).

• Use spaces around all arithmetic and

assignment operators.

• Use blank lines to enhance readability.

CMSC 104, Version 9/01 22

Good Programming Practices (con’t)

• Place a blank line between the last variable

declaration and the first executable

statement of the program.

• Indent the body of the program 3 to 4 tab

stops -- be consistent!

