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STRESSES IN CONCRETE (CONCENTRIC TENDON)

Stresses in Concrete Due to Prestress

Some of the basic principles of stress cnmputatiﬁn for prestressed concréte bave
already been mentioned in section 1-2, They will be discussed in greatér detail
here. First of all, let us consider the effect of prestress. According to present

practice, stresses in concrete due to prestress are always computed by the elastic
theory. Consider the prestress F existing at the time under discussion, whether it
be the initial or the final value. If F is applied at the centroid of the concrete
section, and if the section under consideration is sufficiently far from the point
of applhication of the prestress, then, by St. Venant’s principle, the unit stress in
concrete 15 uniform across that section and is given by the usual formula,

F
f=

where 4 is the area of that concrete section.
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Fig. 5-1. Transfer of concentric prestress in a pretensioned member.



STRESSES IN CONCRETE (CONCENTRIC TENDON)

For a pretensioned member, when the prestress in the steel is transferred from
the bulkheads to the concrete, Fig. 5-1, the force that was resisted by the
bulkheads is now transferred to both the steel and the concrete in the member.

The release of the resistance from the bulkheads is equivalent to the application
of an opposite force F, to the member. Using the transformed section method,

and with 4_ =net sectional area of concrete, the compressive stress produced in
the concrete is

(3-1)

Je= A +nd, A4,
while that induced in the steel is

Y T B (5-2)

‘ ‘4:+H‘{: - At

which represents the immediate reduction of the prestress in the steel as a result
of the transfer.
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STRESSES IN CONCRETE (CONCENTRIC TENDON)

shortening of concrete and approximated by
. _ ' F | AR | _
Af, = ”?i Gt e (5-3)

= ""{E

which differs a little from formula 5-2 but is close enﬁugh_fcrr all practical
purposes, since the total amount of reduction is only about 2 or 3% and the

value of n cannot be accurately known anyway. The high-strength steel used for
prestressing requires smaller area for the tension stee]l than would be used in

reinforced concrete, thus there is not a large difference between A4 and A,.




STRESSES IN CONCRETE (CONCENTRIC TENDON)

Example 5.1 (from T.Y.Lin)

A pretensioned member, similar to that shown in Fig. 5-1, has a section of 8 in. by 12 in.
(203 mm by 305 mm). It is concentrically prestressed with 0.8 sq in. (516 mm®) of
high-tensile steel wire, which is anchored to the bulkheads of a unit stress of 150,000 psi
(1034 N/mm?). Assuming that 7=6, compute the stresses in the concrete and steel
immediately after transfer. |

Solution | | .
. An exact theoretical solution. Using the elastic theory, we have

__ R __ - F
f“Aﬁmf, A, #(n—1A, |
_ 0.8X 150,000 Ly

_ P 3
= S ETSx038 1200 psi (8.3 N/mm")

nf, =6 X 1200="7200 psi (49.6 N /mm?)

" Stress in steel after transfer = 150,000 — 7200 = 142,800 psi (985 N/mm?).
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Fig. 5-1. Transfer of concentric prestress in a pretensioned member.



STRESSES IN CONCRETE (CONCENTRIC TENDON)

Example 5.1 (from T.Y.Lin)

A pretensioned member, similar to that shown in Fig. 5-1, has a section of 8 in. by 12in.
(203 mm by 305 mm). It is concentrically prestressed with 0.8 sq in. (516 mm?) of
high-tensile steel wire, which is anchored to the bulkheads of 2 unit stress of 150,000 psi
(1034 N/mm?). Assuming that n=6, compute the stresses in the concrete and steel
immediately after transfer. |

2. An approximate solution. The loss of prestress in steel due to elastic shortenung of

Note that, in this second solution, the approximations introduced are: (1) using gross
area of concrete instead of net area, (2) using the initial stress in steel instead of the
reduced stress. But the answers are very nearly the same for both solutions. The
second method 1s more convenient and is usually followed.




STRESSES IN CONCRETE (CONCENTRIC TENDON)

Example 5.1 (from T.Y.Lin)

2. An approximate solution. The loss of prestress in steel due to elastic shortening of

concrete 1s estimated by

F, Here, Fi=AsXx S
-"d . - =0.8x150,000=120,000Ib
g
120,000 . |
Stress in steel after loss=150,000—7500= 142,500 psi (983 N /mm?). Stress in con-

crete is

£= 142,500 0.8
¢ 96

= 1190 psi (8.2 N/mm?)




STRESSES IN CONCRETE (ECCENTRIC TENDON)

Next, suppose that the prestress F is applied to the concrete section with an
eccentricity e, Fig. 5-2; then it is possible to resolve the prestress into two
components: a concentric load F through the centroid, and a moment Fe. By the
usual elastic theory, the fiber stress at any point due to moment Fe is given by
the formula

My  Fey
fJ= =5 (5-4)

Then the resultant fiber stress due to the eccentric prestress is given by

F  Fey
I=3*T (>-3)




STRESSES IN CONCRETE (ECCENTRIC TENDON)

The question again arises as to what section should be considered when
computing the values of e and I, whether the gross or the net concrete section or
the transformed section, and what prestress F to be used in the formula, the
initial or the reduced value. Consider a pretensioned member, Fig. 5-3. The steel
has already been bonded to the concrete; the release of the force from the
bulkhead is equivalent to the application of an eccentric force to the composite
member; hence the force should be the total F,, and 7 should be the moment of

(~._ - |5 £
"""--..____. IH‘"""‘----..._,_ [
Eccentric Prestress F A Couple and a Concentric Prestress

Flg. 5-2. Eccentric prestress on a section
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Fig. 5-3. Transfer of eccentric prestress in a pretensioned member.

inertia of the transformed section, and e should be measured from the centroidal
axis of that transformed section. However, in practice, this procedure’is seldom
followed. Instead, the gross or net concrete section is considered, and either the
initial or the reduced prestress is applied. The error is negligible in most cases.




STRESSES IN CONCRETE (ECCENTRIC TENDON)

Example 5.2 (from T.Y.Lin)

A pretensioned member similar to that shown in Fig. 5-3 has a section of 8 n. by 12 in.
(203 mm by 305 mm) deep. It is eccentrically prestressed with 0.8 sq in. (516 mm?®) of
high-tensile steel wire which is anchored to the bulkheads at a unit stress of 150,000 psi
(1034 N/mm?). The c.g.s. is 4 in. (101.6 mm) above the bottom fiber. Assuming that
n=16, compute the stresses in the concrete immediately after transfer due to the prestress -

only.
— 1 8"'
Fil< R F ; *
T i, AR W
L] Before Transfer _ L o
- - N
C.ES5 ou & o @ -
- T & 8 @
p———
‘ C.g 1.}
Ff—————— —— e = pe— F; C. 54—t
KA NN A - AN N TR, . Secti
Section of ' Beam ion
Outing Transfar Member Fig. 5-4. Example 5-2.

Flg. 5-3. Transfer of eccentric prestress in a pretensioned member.




STRESSES IN CONCRETE (ECCENTRIC TENDON)

Example 5.2 (from T.Y.Lin)

Solution |
2. An approximate solution, The loss of prestress can be approximately computed, as in
example 5-1, to be 7500 psi in the steel. Hence the reduced pmtress is 142,500 psi or

114,000 Ib.
The loss of prestress due to elastic shortening of concrete
mni Here, Fi=As X S
Ay - =0.8x150,000=120,000 Ib
120,000 . |
6 S 13 =7500 psi {51.7 N/mm?)

Stress in steel after loss= 150,000~ 7500=142,500 psi (983 N/mm?).



STRESSES IN CONCRETE (ECCENTRIC TENDON)

Example 5.2 (from T.Y.Lin)

Extreme fiber stresses in the concrete can be computed to be
F Fey

=3 =T
_ —114,000 , 114,000X2X6
%  (8x12%)/12
=—1187+1187
=0 in the top fiber

= ~2374 psi (— 1637 N/mm?) in the bottom fiber




STRESSES IN CONCRETE (ECCENTRIC TENDON)

Example 5.3 (from T.Y.Lin)

A posttensioned beam has a midspan cross section with a duct of 2 1n. by’ 3 1n. (50.8 mm
by 76.2 mm) to house the wires, as shown in Fig. 5-6. It is prestressed with 0.8 sq in. (516
mm?) of steel to an initial stress of 150,000 psi (1034 N/mm?). Immediately after transfer
the stress 1s reduced by 5% owing to anchorage loss and elastic shorteming of concrete.
Compute the stresses in the concrete at transfer.

Fig. 5-6. Example 5-3.




STRESSES IN CONCRETE (ECCENTRIC TENDON)

Example 5.3 (from T.Y.Lin)
Total prestress in steel= 150,000<0.8 xX95%= 114,000 1b (507 kIN)
Solution

2. Using the gross section of concrete. An approximate solution using the gross concrete
section would give results not so close in this case (11% difference):

. Extreme fiber stresses in the concrete can be computed to be

F _F
=g _
fom L4000, 11400036

T (8x12%)/12
= — 1270+ 1940 = + 1783
= + 596 psi (+4.11 N/mm?) for top fiber

= —2970 psi ( —20.48 N /mm?) for bottom fiber
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STRESSES IN CONCRETE (oue 1o Loabs)

Stresses In Concrete Due to Loads

Stresses in concrete produced by external bending moment, whether due to the

beam’s own weight  or to any externally applied loads, are cr:rmputed by the
usual elasnc theory. .

My

= .

For a pretensioned beam, steel 1s always bonded to the concrete before any

external moment is applied. Hence the section resisting external moment is the

combined section.' In other words, the values of y and 7 should be computed on

the basis of a transformed section, .considering both steel and concrete. For

approximation, however, either the gross or the net section of concrete alone can

be used in the calculations; the magmtude of error so involved can be eshmated
and should not be serious except in special cases.

(5-6)




STRESSES IN CONCRETE (oue 1o Loabs)

Example 5.4 (from T.Y.Lin)
A posttensioned bonded concrete beam, Fig. 5-8, has a prestress of 350 kips (1,557 kN) in
the stee]l immediately after prestressing, which eventually reduces to 300 kips (1334 kN)
due to losses. The beam carries two live loads of 10 kips (44.48 kN) each in addition to its
own weight of 300 plf (4.377 kN /m). Compute the extreme fiber stresses at midspan, (a)
under the initial condition with full prestress and no live load, and (5) under the final
condition, after the losses have taken place, and with full live load. , .

10k 10 k
15° P o100 | 15 , 12
1 g
0~ — _ e 1 ~ .
““““““““““““ £gs. 4 .| &
2 T
Bearn Elevation Midspan Section

Fig. 5-8. Exampie 5-4.



STRESSES IN CONCRETE (oue 1o Loabs)

Example 5.4 (from T.Y.Lin)

Solution To be theoretically exact, the net concrete section should be used up to the
time of grouting, after which the transformed section should be considered. This is not
deemed necessary, and an approximate but sufficiently exact solution is given below,
using the gross section of concrete at all tumes that is,

1=12x%24%/12=13,800in.* (5744 % m" 4)

. Initial condition. Dead-load moment at midspan, assuming that the beam 1s simply
supported after prestressing:

2 ) .
M= “’3’" = 3““:"“ — 60,000 ft-Ib (81,360 N —m)

o F + Fey - My
7 7 |
_ —350,000 _ 350,000x5x12 _ 60,000X12X12
288 13,800 13,800
= — 1215+ 1520 — 625=—320 psi (~2.21 N/mm?), top fiber

= — 1215 — 1520+ 625 = —2110 psi (— 14.55 N,/mm?), bottom fiber




STRESSES IN CONCRETE (oue 1o Loabs)

Example 5.4 (from T.Y.Lin)

2. Final condition. Live-load moment at midspan= 150,000 ft-lb (203,400 N-m);
therefore, total external moment=210,000 ft-lb (284,760 N-m), while the prastress is

reduced to 300,000 1b (1,334 kN); hence,

— 300,000 , 300,000X5X12 Ziﬂﬂ]]xlixlz
o3 *T 1380 13,800

= — 1040+ 1300 —2190= — 1930 psi (—13.31 N/mm?), top fiber
= — 1040 — 1300 +2190= — 150 psi (—1.03 N/mm?), bottom fiber




STRESSES IN CONCRETE (oue 1o Loabs)

Example 5.5 (from T.Y.Lin)

For the same problem as mn example 54, compute the concrete stresses under the final
loading conditions by locating the center of pressure C for the concrete section.

A posttensioned bonded concrete beam, Fig, 5-8, has a prestress of 350 kips (1,557 kN) in
the stee] immediately after prestressing, which eventually reduces to 300 kips (1334 kN)
due to losses. The beam carries two live loads of 10 kips (44.48 kN) each in addition to its
own weight of 300 plf (4.377 kN /m). Compute the extreme fiber stresses at midspan, (a)
under the initial condition with full prestress and no live load, and (b) under the final
condition, after the losses have taken place, and with full hive load. |

It is internal resisting couple concept




STRESSES IN CONCRETE (oue 1o Loabs)

Example 5.5 (from T.Y.Lin)

Solution Rﬁfﬂﬂiﬁg to Fig._ﬁ-lﬂ, ais :amﬁumd by
| a=(210%12)/300=84 in. (213 mm)
Hence e for Cis 8.4=5=3.4 in. Since C= F=300,000 Ib (1,334 kN).

=Lty 10k
A~ 1 .15 |5
_ —300,000 _ 300,000x3.4Xx12 - 'lr
- 288 T 13,800 | . 38"
= ~ 1040 —890= — 1930 psi (— 13.31 N/mm?), top fiber ~ U~~~ —<ES Jett mend N
| . | T 300k
= — 040+ 890= — 150 psi (—~1.03 N/mm?), bottom fiber /5 gar -

Half Elevation of Beam

Flg. 5-10. Example 5-5.

~1930 psi

rJ ‘\.“%
150 psi— b

Stress Distribution
al- Midspan




STRESSES IN STEEL pue o Loaps)

In order to get a clear understanding of the behavior of a prestressed-concrete
beam, it will be interesting to first study the variation of steel stress as the load
increases. For the midspan section of a simple beam, the variation of steel stress
with load on the béam is shown in Fig. 5-11. Along the X-axis 1s plotted the load
on the beam, and along the Y-axis is plotted the stress in the steel. As prestress 1s
applied to the steel, the stress in the steel changes from A to B, where B is at the

level of f,, which is the initial prestress in the steel after losses due to anchorage
and elastic shortening have taken place.
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Fig. 5-11. Variation of steei stress with load.




STRESSES IN STEEL pue o Loaps)

Immediately after transfer, no load will yet be carried by the beam if it is
supported on its falsework and if it is not cambered upward by the prestress. As
the falsework is removed, the beam carries its own weight and deflects down-
ward shghtly, thus changing the stress in the sieel, increasing it from B to C.
When the dead weight of the beam is relatively light, then it can be bowed
upward during the course of the transfer of prestress. The beam may actually
begin to carry load when the average prestress in the steel is somewhere at B’.
There may be a sudden breakaway of the beam’s soffit from the falsework so
that the weight of the beam is at once transferred to be carried by the beam
itself, or the weight may be transferred gradually, depending on the actual
conditions of support. But, in any event, the stress in steel will increase from B’
up to point C’. The stress at C” is slightly lower than f, by virtue of the loss of
prestress in the steel as caused by the upward bending of the beam. Consider
now that the losses of prestress take place so that the stress in the steel drops
from C or C’ to some point D, representing the effective prestress f, for the
beam. Actually, the losses will not take place all at once but will continue for
some length of time. However, for convenience in discussion, let us assume that
all the losses take place before the application of superimposed dead and live

loads.




STRESSES IN STEEL pue o Loaps)

At the section of maximum moment, the stress in an unbonded tendon will
increase more slowly than that in a bonded tendon. This is because any strain in
an unbonded tendon will be distributed throughout its entire length. Hence, as
the load is increased to the working or the cracking load, the steel stress will
increase from D to E|, F), and Fj, below E, F, and F’, respectively, Fig. 5-11. To
compute the average strain for the cable, it is necessary to determine the total
lengthening of the tendon due to moments in the beam. This can be done by
integrating the strain along the entire length. Let M be the moment at any point
of an unbonded beam; the unit strain in concrete at any point is given by

ﬁfMy
E E|I




STRESSES IN STEEL pue o Loaps)

The total strain along the cable is then

a- foaee [ 2
The average strain is t
_"f 7
The average stress is )
"E"=fL£;‘ix_'EfMyd I - 1)

If y and I are constant and M is an integrable form of x, the solution of this.
integral is simple. Otherwise, it will be easier to use a graphical or an approxi-

mate integration.
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C.EC.

After Loading
Flg. 5-12. Change of cable length in an unbonded beam.
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After cracks have developed in the unbonded beam, stress in the steel
increases more rapidly with the load, but again it does not increase as fast as
that at the maximum moment section in a similar bonded beam. In an un-
bonded beam, it is generally not possible to develop the ultimate strength of the
steel at the rupture of the beam. Thus the stress curve is shown going up from F;
to G,, with G, below G by an appreciable amount. It 1s evident that the ultimate
load for an unbonded beam is less than that for a corresponding bonded one,
although there may be very little difference between the cracking loads for the
two beams. There is a tendency for the unbonded beams to develop large cracks
before rupture. These large cracks tend to concentrate strains at some localized
sections in the concrete, thus lowering ultimate strength. Therefore, the strength
of unbonded beams may be appreciably increased by the addition of nonpres-
tressed bonded reinforcements, which tend to spread the cracks and to lLimit
their size, as well as to contribute toward the tensile force in the ultimate
resisting couple. The ACI Code specifies minimum amounts of such supplemen-

tal bonded reinforcement.
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Example 5.6 (from T.Y.Lin)

A posttensioned simple beam on a span of 40 {t is shown in Fig 5.-]'3._ ;t carries a
superimposed load of 750 plf in addition to its own weight of 300 plf. The mmtial prestress
in the steel is 138,000 psi, reducing to 120,000 psi after deducting all losses and assuming
no bending of the beam. The parabolic cable has an area of 2.5 sq in., n= 6. Compute the
stress in the steel at midspan, assuming: (1) the steel is bonded by grouting: (2) the steel
is unbonded and entirely free to slip. (Span=12.2 m, superimposed load =10.94 kN/m,
self-weight=4377 kN/m, initial prestress=951.5 N/ mm*, effective prestress=3827.4
N /mm?, and cable area= 1613 mm?))
Solution
.. Moment at midspan due to dead and live loads 1s

wL?  (300+750)402

8 8 | .
= + 210,000 ft-1b (+ 284,760 N-m)




STRESSES IN STEEL pue o Loaps)

Example 5.6 (from T.Y.Lin)

Moment at midspan due to prestress is
2.5% 120,000 X £ = ~ 125,000 ft-Ib (- 169,500 N-m)

Net moment at midspan is 210,000 — 125,000 =85,000 ft-Ib (115,260 N —m). Stress-in

concrete at the level of steel due to bending, using / of gross concrete section, is

_ My _ 85,000X12X5
I 13,800

il

=370 psi (2.55 N /mm?)

Stress i steel i1s thus increased by
f,=nf,=6x370=2220 psi (15.31 N/mm?)

Resultant stress in steel=122,220 psi (842.7 N/mm*) at midspan.




STRESSES IN STEEL pue o Loaps)

Example 5.6 (from T.Y.Lin)

Solution
2, If the cable is unbonded and free to slip, the average strain or stress must be obtained
for the whole length of cable as given by formula 5-10,

Using yo and M, for those at midspan and measuring x from the midspan, we can

express y and M 1n terms of x, thus,

M= M.,[l - ( I‘;—E)IJ

yﬂyﬂ[l“(z'f,—f)z]
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Example 5.6 (from T.Y.Lin)

750 + 300 pif ‘E‘] % .
RN EEEREEN Y i L Liz______

o~ Parabeiic cable

’f_g_ =
|
l Beam Elevation !

Lj2 | _{

Parabalic v Diagram
H’g- !"'Iai E'HE"'IF"IE' E-'E-
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Example 5.6 (from T.Y.Lin)

_n +L/2 B X 2 12
L=17 _ip Mﬂfﬂ[l [L;'z) ] ax

=Hﬂfnfﬂ[x 2 x3 + x> ]H"m

LI " 3wy s/,
8 (nMpyo\ |
- 15( ] ) -
which is 5% of the stress for midspan of the bonded beam, or %(2220)=1180 psi (8.14

N/mm?)., .

- Resultant stress in steel is 120,000+ 1180= 121,180 psi (835.5 N/mm?) throughout
the entire cable. In this calculation, the / of the gross concrete section is used and the
effect of the increase in the steel stress on the concrete stresses is also neglected, But
these are errors of the second order. Since the change in steel stress is relatively small,
exact computations are seldom required in an actual design problem.




CRACKING MOMENT

Cracking Moment

The moment producing first hair cracks in a prestressed concrete beam is
computed by the elastic theory, assuming that cracking starts when the tensile
stress in the extreme fiber of concrete reaches its modulus of rupture. Questions
have been raised as to the correctness of this method. First, some engineers
believed that concrete under prestress became a complex substance whose
behavior could not be predicted by the elastic theory with any accuracy.! Then
it was further questioned whether the usual bending test for modulus of rupture
could give values to represent the tensile stremgth of concrete in a prestressed
beam. However, most available test data seem to indicate that the elastic theory
is sufficiently accurate up to the point of cracking, and the method is currently
used. The ACI Code value for modulus of rupture, £, is 7.5V with units for

both f and f as psi.




CRACKING MOMENT

Attention must be paid to the fact that the modulus of rupture is only a
measure of the beginming of hair cracks which are often invisible to the naked
eye. A tensile stress higher than the modulus is necessary to produce visible
cracks. On the other hand, if the concrete has been previously cracked by
overloading, shninkage, or other causes, cracks may reappear at the shightest
tensile stress. If the beam is made of concrete blocks, the cracking strength will

depend on the tensile strength of the joining material.
Referring to formula 5-7, if £ is the modulus of rupture, it is seen that, when

= I8N
A I

cracks are supposed to start. Transposing terms, we have the value of cracking
moment given by

_ £
M Fa+Ac - (5-11)

where [ 1 ,f -:_g;ivﬂ the resisting moment due to modulus of rupture of concrete,
Fe the resistimg moment due to the eccentricity of prestress, and FI/A¢ that due
to the direct compression of the prestress.




CRACKING MOMENT

Formula 5-11 can be derived from another approach. When the center of
pressure in the concrete is at the top kern point, there will be zero stress in the
bottom fiber. The resisting moment is given by the prestress F times its lever arm
measured to the top kern point, (see Appendix A for definition of kern points &,
and k, ), Fig. 5-14, thus, |

2
M[=F(e+ f——)
c

Additional moment resisted by the concrete up to its modulus of rupture is
M,=f,1/c. Hence the total moment at cracking is given by

£I

- (5-12)

2
M=M|+HJ=F{E+ JF?)+

which can be seen to be identical with formula 5-11.

In order to be theoretically correct when applying the above two formulas,
care must be exercised in choosing the proper section for the computation of [,
r, &, and ¢. For computing the term fJ/c, the transformed section should be
used for bonded beams, while the net concrete section should be used for
unbonded beams (proper modification being made for the value of prestress due




CRACKING MOMENT

Stress Block
| M, =F(e+k,) for Afy

Flg. 5-14. Cracking moment.
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CRACKING MOMENT

Fd
to bending of the beam as explained in section 4-8). For the term £ ( e+ %)

either the gross or the net section should be considered, depending on the
computation of the effective prestress F. For a practical problem, these refine-
ments are often unnecessary, and it will be easier to use one section for all the
computations. [n order to simplify the computations, the gross section of
the concrete is most often used. If the area of holes is an important portion
of the gross area, then net area may be used. If the percentage of steel is high,
the transformed area may be preferred. The engineer must use discretion in
choosing a4 method of solution consistent with the degree of accuracy required
for his particular problem.




CRACKING MOMENT

Example 5.7 (from T.Y.Lin)

For the problem given in example 5-6, compute the total dead and hive uniform load that
can be carried by the beam, (1) for zero tensile stress in the bottom fibers, (2) for cracking
in the bottom fibers at a modulus of rupture of 600 ps: (4.14 N /mm*), and assuming
concrete to take tension up to that value.

Solution . :
1. Considering the critical midspan section and using the gross concreie section for all

computations, k, is readily computed to be at 4 in. (101 .6 mm) above the middepth,
Fig. 5-15. To obtain zero stress in the bottom fibers, the center of pressure must be
located at the top kern point. Hence the resisting moment is given by the prestress
multiplied by the lever arm, thus

F(e+k,)=300(5+4)/12=225 k-ft (305.1 kN-m)
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Example 5.7 (from T.Y.Lin)

Solution . ' | |
2. Additional moment carried by the section up to beginping of cracks 1s

fI _ 600 x 13,800
¢ 12
- =690,000 in.-Ib
=57.6 k-ft (78,1 kKN —m) |
Total moment at cracking is 225+ 57.6 =282.6 k-f1 (383.2 kN-m), which can also be
obtained directly by applying formula 5-11 or 5-12 :
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. -2 | | — 2680
12 . ps 3 g
S S e |
T = 300k | . |
B T e & + =
S &\ | 300k
i- ) -'I—-—.r - -
' = k= . !
Beam Sechion - M =225kt Erﬂ[}—l - 600 — L
M = 225 k-fi M =576 k-t M=2828 k-it

Fig. 5-15. Example 5-7.
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ULTIMATE MOMENT (sonoeo enoon)

Ultimate Moment—Bonded Tendons

Exact analysis for the ultimate strength of a prestressed-concrete section under
flexure is a complicated theoretical problem, because both steel and concrete are
generally stressed beyond their elastic range. The following section develops
such an analysis technique for bonded beams. However, for the purpose of
practical design, where an accuracy of 5-10% is considered sufficient, relatively
simple procedures can be developed.

Many tests have been run, and many papers writlen, on the ultimate flexural
strength of prestressed concrete sections. Worthy of special mention are the
group of papers on this thesis® presented before the First International Congress
on Prestressed Concrete held in London, October 1953, and another summary
paper presented at the Third Congress of the International Federation for
Prestressing.” In the United States, laboratory investigations carried out at the
University of Illinois and the Portland Cement Association gave the results of
extensive tests, together with definite recommendations.*>® Although formulas
for ultimate strength proposed by various authors seem to differ greatly on the
surface, they generally yield values within a few per cent of one another. Hence
it can be concluded that the ultimate strength of prestressed concrete under
flexure can be predicted with sufficient accuracy.
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A simple method for determining ultimate flexural strength following the ACI
Code is presented herewith, based on the results of the aforementioned tests as
well as others. This method 15 limited to the following conditions.

1. The failure is primarily a flexural failure, without shear, bond, or anchorage
failure which might decrease the strength of the section.
2. The beams are bonded. Unbonded beams possess different ultimate strength

and are discussed later.
3. The beams are statically determinate. Although the discussions apply equally

well to individual sections of continuous beams, the ultimate strength of
continuous beams as a whole is explained by the plastic hinge theory to be

discussed in Chapter 10.
4. The load considered is the ultimate load obtained as the result of a short

static test. Impact, fatipue, or long-time loadings are not considered.
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Of the methods proposed for determining the ultimate flexural strength of
prestressed-concrete sections, some are purely empirical and others highly theo-
retical. The empirical methods are generally simple but are limited only to the
conditions which were encountered in the tests. The theoretical ones are in-
tended for research studies and hence unnecessanly complicated for the desig-
ner. For the purpose of design, a rational approach is presented in the following,
consistent with test results, but neglecting refinements so that reasonably correct
values can be obtained with the minimum amount of effort. The method is
based on the simple principle of a resisting couple in a prestressed beam, as that
in any other beam. At the ultimate load, the couple is made of two forces, T"
and C’, acting with a lever arm a’. The steel supplies the'tensile fur::: T", and the
concrete, the compressive force C'.
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