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ANALYSIS OF SECTIONS
FOR FLEXURE

5-1 Introduction and Sign Conventions

Differentiation can be made between the analysis and design of prestressed
sections for flexure. By analysis is meant the determination of stresses in the steel
and concrete when the form and size of a section are already given or assumed.

This is obviously a simpler operation than the design of the section, which

involves the choice of a suitable section out of many possible shapes and
dimensions. In actual practice, it is often necessary to first perform the process
of design when assuming a section, and then to analyze that assumed section.
But, for the purpose of study, it is easier to learn first the methods of analysis
and then those of design. This reversal of order is desirable in the study of
prestressed as well as reinforced concrete.

This chapter will be devoted to the first part, the analysis; the next chapter
will deal with design. The discussion is limited to the analysis of sections for
flexure, meaning members under bending, such as beams and slabs. Only the
effect of moment is considered here; that of shear and bond is treated in
Chapter 7. ' ) :

A rather controversial point in the analysis of prestressed-concrete beams has
been the choice of a proper system of sign conventions. Many authors have used
positive sign (+) for compressive stresses and negative sign (—) for tensile
stresses, basing their convention on the idea that prestressed-concrete beams are
normally under compression and hence the plus sign should be employed to
denote that state of stress. The author prefers to maintain the common sign
convention as used for the design of other structures; that is, minus for
compressive and plus for tensile stresses. Throughout this treatise, plus will stand
for temsion and minus for compression, whether we are talking of stresses in
steel or concrete, prestressed or reinforced. When the sense of the stress is
self-evident, signs will be omitted.

5-2 Stresses In Concrete Due to Prestress

Some of the basic principles of stress computation for prestressed concréte have
already been mentioned in section 1-2. They will be discussed in greater detail
here. First of all, let us consider the effect of prestress. According to present
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practice, stresses in concrete due to prestress are always computed by the elastic
theory. Consider the prestress F existing at the time under discussion, whether it
be the initial or the final value. If F is applied at the centroid of the concrete
section, and if the section under consideration is sufficiently far from the point
of application of the prestress, then, by 5t. Venant’s principle, the unit stress in
concrete is uniform across that section and is given by the usual formula,

F

A

where 4 is the area of that concrete section.

For a pretensioned member, when the prestress in the steel is transferred from
the bulkheads to the concrete, Fig. 5-1, the force that was resisted by the
bulkbeads is now transferred to both the steel and the concrete in the member.
The release of the resistance from the bulkheads is equivalent to the application
of an opposite force F; to the member. Using the transformed section method,
and with A4, =net sectional area of concrete, the compressive stress produced in
the concrete is

= £ .-—F" 5-1
GE T s o8
while that induced in the steel is
. nF, nkE
Af =pf =4 73 ’
fo=nt, A +nd, 4, (>-2)

which represents the immediate reduction of the prestress in the steel as a result
of the transfer.

Although this method of computation is correct according to the elastic
theory, the usual practice is not to follow such a procedure, but rather to
consider the prestress in the steel being reduced by a loss resulting from elastic
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Flg. 5-1. Transfer of concentric prestress in a pretensioned member.
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shortemng of concrete and approximated by

o

Af_-ﬁ or o ()

." -4

which differs a litile from formula 5-2 but is close enough for all practical

purposes, since the total amount of reduction is only about 2 or 3% and the
value of n cannot be accurately known anyway. The high-strength steel used for

prestressing requires smaller area for the tenston steel than would be used in

. reinforced concreéte, thus there is not a large difference between 4, and 4,.
After the transfer of prestress, further losses will occur owing to the creep and
shrinkage in concrete. Theoretically, all such losses should be calculated on the

" basis of a transformed section, taking into consideration the area of steel. But, -

again, that is seldom done, the practice being simply to allow for the losses by
an approximate percentage. In other words, the simple formula f=F/4 is
always used, with the value of F estimated for the given condition, and the gross
area of concrete used for A. For a posttensioned member, the same reasomng
holds true. Suppose that there are several tendons in the member prestressed n

succession. Every tendon that is tensioned becomes part of the section after itis

bonded by grouting. The effect of tensioning any subsequent tendon on the
stresses in the previously tensioned ones should be calculated on the basis of a
transformed section. Theoretically, there will be a different transformed section
after the tensioning of every tendon. However, such refinements are not justi-
fied, and the usual procedure is simply to use the formula f=F/4, with F based

on the initial prestress in the steel.

EXAMPLE 5-1
A pretensioned member, similar to that shown in Fig. 5-1, has a section of 8 in. by 12 in.

(203 mm by 305 mm) It is concentrically prestressed with 0.8 sq in. (516 mr?) of
high-tensile steel wxre, which is anchored to the bulkheads of a unit stress of 150,000 psi
(1034 N/mm?). Assuming that n=6, _compute the stresses in the concrete and steel
immediately after transfer.

Solution
1. An exact theoretical so]uuon Usmg the elastic r.heory, we have

Y -
S= A Fra, T A, ¥ (- DA,
= 28XI0000 _ 1500 psi (8.5 N/min?)

T 12x8+5%08
nf, =6 X 1200=7200 psi (49.6 N /mm?)

Stress in steel after transfer = 150,000 —7200= 142, 800 psi (985 meniz). .

Solution
2. An approximate solution. The loss of prcstress in steel due to elastic shortening of
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conerete is estimated by

=n—i
8
120,000 .
=6 = 7500 psi (51.7 N/mu?)
Stress in steel after loss=150,000—7500= 142,500 psi (983 N/mm?). Stress in con-
crete is
142,500x0.8

Jo= —=gr—— =190 psi (8.2 N/mm?)

Note that, in this second solution, the approximations introduced are: (1) using gross
area of concrete instead of net area, (2) using the initial stress in steel instead of the

reduced stress. But the answers are very nearly the same for both solutions. The
second method is more convenient and is usually followed.

Next, suppose that the prestress F is applied to the concrete section with an
eccentricity e, Fig. 5-2; then it is possible to resolve the prestress into two
components: a concentric load F through the centroid, and a moment Fe. By the
usual elastic theory, the fiber stress at any point due to moment Fe is given by
the formula

=T T (>4)
Then the resultant fiber stress due to the eccentric prestress is given by
F  F
fmg e (5-5)

The question again arises as to what section should be considered when
computing the values of e and I, whether the gross or the net concrete section or
the transformed section, and what prestress F to be used in the formula, the
initial or the reduced value. Consider a pretensioned member, Fig. 5-3. The steel
has already been bonded to the concrete; the release of the force from the
bulkhead is equivalent to the application of an eccentric force to the composite
member; hence the force should be the total F, and 7 should be the moment of ‘
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Flg. 5-2. Eccentric prestress on a section
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Flg. 5-3. Transfer of eccentric prestress in a pretensioned member.

inertia of the transformed section, and e should be measured from the centroidal
axis of that transformed section. However, in practice, this procedure’is seldom
followed. Instead, the gross or net concrete section is considered, and either the
initial or the reduced prestress is applied. The error is negligible in most cases.

EXAMPLE 5-2 -

A pretepsioned member similar to that shown in Fig. 5-3 has a section of 8 in. by 12 in.
(203 mm by 305 mm) deep. It is eccentrically prestressed with 0.8 sq in. (516 mm?) of
high-tensile steel wire which is anchored to the bulkheads at a unit stress of 150,000 psi
(1034 N/mm?). The c.gs. is 4 in. (101.6 mm) above the bottom fiber. Assuming that

n=6, compute the stresses in the concrete immediately after transfer due to the prestress -

only.
Solution _
1. An exact theoretical solution. Using the elastic theory, the centroid of the trans-
formed section and its moment of inertia are obtained as follows. Referring to Fig,
54, for (n— 1A, =5%x08=4sqg in, : '

~ax2
Y™ 9634

812
=1

=1152+0.6+14.7

=1167.3 in.* (485.9 % 10° mm*)

—0.08 in. (2.032 mm)

+96x0.082+4x1.92%

_ F F
Top fiber stress= - + 42
A, 1

_ 120,000 120,000 1.92 X 6.08
7100 1167.3
= — 1200+ 1200

=0

Stresses in Concrete Due to Prectrese 131

-

|.._8'_, f‘_s'_"f
:j!_ § 192
e & cg . ) 4 5,
-—-——-—T—-—-E-—-—: St c.gs. ,—-—E—-—-—-—-—-—]-ET -
(w1}
<
[T2]
Beam Section Transformed Section

Flg. 5-4. Example 5-2.

B fibe _ =120,000 _ 120,000x1.92X5.92
ottom fiber stresse= —— 55 167 3

= 1200~ 1170
= —2370 psi (- 16.34 N/mom’)

Solution

2. An approximate solution. The loss of prestress can be approximately computed, as in

example 5-1, to be 7500 psi in the steel. Hence the reduced prestress is 142,500 psi or

114,000 Ib. Extreme fiber stresses in the concrete can be computed to be

F _ Fe
L= g =T
_ —114,000  114,000X2X6
% T (gx12*)/12

= —~1187+1187
=0 in the top fiber

= —2374 psi (—16.37 N/mm? ) in the bottom fiber

The ap'proximatioris here introduced are: using an approximate value of reduced
prestress, and using the gross area of concrete. This second solution, although
approximate, is more often used because of its simplicity.

Now consider a pretensioned curved member as in Fig. 5-5. If the transfer of
prestress is considered as a force F; applied at each end, the eccentricity and the

P NN
During Transfer

Fig. 5-5. Transfer of prestress in a curved pretensioned member.
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moment of inertia will vary for each section. If the exact method of elastic
analysis is preferred, different I’s and e’s will have to be computed for different
sections. If an approximate method is permitted, a constant I based on the gross
concrete area would suffice for all sections, and the eccentncxty can be readily
measured from the middepth of the section.

. For a posttensioned member before being bonded, the prestress F to be used
in the stress computations is again the initial prestress minus the estimated
losses. For the value of 7, either the net or the gross concrete section: is used,
although, theoretically, the net section is the correct one. After the steel is
bonded to the concrete, any loss that takes place actually happens to the section
as a whole. However, for the sake of simplicity, a rigorous analysis based on the
transformed section is seldom made. Instead, the reduced prestress is estimated
and the stresses in the concrete are computed for that reduced prestress acting
on the net concrete section (gross concrete section may sometimes be conveni-
ently used). Stresses produced by external loads, however, are often computed
on the basis of the transformed section if accuracy is desired; otherwise, gross
section is used for the computation. The permissible simplifications for each
case will depend to a large degree on the degree of accuracy required and the

time available for computation.

EXAMPLE 53

A postiensioned beam has a midspan cross section with a duct of 2 in, by 3 in. (50.8 mm
by 76.2 mm) to house the wires, as shown in Fig. 5-6. It is prestressed with 0.8 sq m. (516

mn?) of steel to an initial stress of 150,000 psi (1034 N/mm?). Immediately after transfer
the stress is reduced by 5% owing to anchorage loss and elastic shortening of concrete.

Compute the stresses in the concrete at transfer,

Solution
1. Using net section of concrete. The centroid and I of the net concrete section are

computed as follows
A.=96—6=90sq in. (58.1 X 10° mm?)
6x3
Yo~ 56-8
2% 3

3)(12 2_ . 2.
12 +96:)(0.2 ~7 6x3.2

=1152+38~4.5-61.5
=1090 o
" Total prestress in steel= 150,000x0.8 x95%= 114,000 Ib (507 kIN}
= ~ 114,000 _ 114,000%3.2%5.8
‘ 9% = 1050,
= — 1270+ 1940 = + 670 psi (+4.62 N/mmz) for top fiber
f= — 1270 2070~ —3340 psi (—23.03 N/mu?) for bottom. fiber

=0.2in. (5.08'mm)
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Flg. 5-6. Example 5-3.

Solution
2. Using the gross section of concrete. An approximate solution using the gross concrete
section would give results not $Q close in this case (11% difference):

= 114000 114,000x3x6
e 96 - 3
(8x12%)/12
= —1270+ 1940= +]783
= + 596 psi (+4.11 N/mm?} for top fiber

= —~ 2970 psi { —20.48 N /mm?) for bottom fiber

If the eccentricity does not occur along one of the principal axes of the section,
It 1§ becessary to further resolve the moment into two component momenis
along the two principal axes, Fig. 5-7; then the stress at any point is given by

F  Fex Feyy

EE —
I, T

:x.

Since concrete is not a really elastic material, the above elastic theory is not
exact. But, within working loads, it is considered an accepted form of computa-
tion. When the stresses are excessively high, the elastic theory may no longer be
nearly correct.

S
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Fig. 5-7. Eccentricity of prestress in two directions.
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The above method further assumes that the concrete section has not cracked.
If it has, the cracked portion has to be computed or estimated, and computa-

tions made accordingly. The computation for cracked section in concrete is °

always complicated. Fortunately, such a condition is seldom met with in actual
design of prestressed concrete. In general, any high-tensile stresses produced by
prestress are counterbalanced by compressive stresses due to the weight of the
member itself, so that in reality no cracks exist under the combined action of the
prestress and the beam’s own weight. Hence the entire concrete séction can be
considered as effective, even though at certain stages of the computauon
high-tensile stresses may appear on paper.

During posttensioning operations, concrete may be sub_]ected to abnormal

stresses, Suppose that there is one tendon at each corner of a square concrete .

section. When all four tendons are tensioned, the entire concrete section will be
under uniform compression. But when only one tendon is fully tensioned, there
will exist high tensile stress as well as high compréssive siress in the concrete. If
two jacks are available, it may be desirable to tension two diagonally opposite
tendons at the same time. Sometimes it may be necessary to tension the tendons

in steps, that is, to tension them only partially and 1o retension them after others |
have been tensioned. Computation for stresses during tensioning is also made on:

the elastic theory, It is believed that the elastic theory is sufficiently accurate up
to the point of cracking, although it cannot be used to pred.lct the ultimate
strength.

Control of allowable stresses is a means of controlling semceabmty, and thc
ACI Code continues to use limiting values of allowable stresses.

5.3 Stresses in Concrete Due {0 Loads

Stresses in concrete produced by external bending moment, whether due to the
beam’s own weight or to any externally applied loads, are computed by the
usual elastic theory. ’ '
' =M
I

For a pretensioned beam, steel is always bonded to the concrete before any
external moment is applied. Hence the section resisting external moment is the
combined section. In other words, the values of y and I should be computed on
the basis of a transformed section, considering both steel and concrete. For
approximation, however, either the gross or the net section of concrete alone can
be used in the calculations; the magnitude of error so mvolvcd can be estlmated
and should not be serious except in special cases.

When the beam is posttensioned and bonded, for any load apphed ‘after the
bonding has taken place, the transformed section should be used as for preten-
sioned beams. However, if the load or the weight of the beam itself is applied

(5:6)
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before bonding takes place, it acts on the net concrete section, which should
hence be the basis for stress computation. For posttensioned unbonded beams,
the net concrete section is the proper one for all stress computations. It should
be borne in mind, though, that when the beam is unbonded, any bending of the
beam may change the overall prestress in the steel, the effect of which can be
separately computed or estimated as discussed in section 4-5. .

Often, only the resulting stresses in corcrete due to both prestress and loads
are desired, instead of their separate values. They are given by the following
formula, a combination of 5-5 and 5-6.

= “+ + 2’. -
== = (Fex M) (5-7)

Any of these three forms may be used, whichever happens to be the most
convenient. But, to be strictly correct, the section used in computing y and /
must correspond to the actual section at the application of the force. It quite
frequently happens that the prestress F acts on the net concrete section, while
the external loads act on the transformed section. Judgment should be exercised
in deciding whether refinement is necessary or whether approximation is permis-
sible for each particular case.

When prestress eccentricity and external moments exist along two principal
axes, the general elastic formula can be used.

F Fe.x Feyy L Mx M,y

f= o+ + =* =+
A7, 1, I, T 1
F X ¥y
= *(Fe tM)—*x(Fe, =M, )= (5-8)
A ( X) Ix ( ¥ ¥ IJ’ .

EXAMPLE 54
A posttensioned bonded concrete beam, Fig. 5-8, has a prestress of 350 kips (1,557 kN) in
the steel immediately after prestressing, which eventnally reduces to 300 kips (1334 kN)

10k 10k
15° 10’ 15* 12"
- S || , l .
e e = g
Beamn Elevation Midspan Section

Fig. 5-8. Example 54.
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due to 10sses. The beam carries two Live loads of 10 kips (44.48 kN) each in addition to its
own weight of 300 plf {4.377 kN/m). Compute the extreme fiber stresses at midspan, (a)
under the initial condition with full prestress and no live load, and (b) under the final
condition, after the losses have taken place, and with full live load.

Solution. To be theoretically exact, the net concrete section should be used up to the
time of grouting, after which the transformed section should be considered. This is not
deemed necessary, and an approximate but sufficiently exact solution is given below,
using the gross section of concrete at all times that is,

J=12%24%/12=13 800 in.* (5744 % u::6 4)

L. Initial condition. Dead-load moment at midspan, assuming that the beam is simply
supported after prestressing:

2 2 .
M= 3%5 - 10-‘1-;5-59— =60,000 ft-1b (81,360 N —m)
f= F Fgf My
777 |
_ —350,000 L 350,000x5x12 , 60,000x12x12
2880 T 13,800 - 13,800

= — 1215+ 1520~ 625= — 320 psi (~2.2] N /), top fiber
= = ]215~1520+625= —2110 psi ( — 14.55 N/mm?), bottom fiber

2. Final condition. LiveJoad moment at midspan= 150,000 ft-lb (203,400 N-m);
therefore, total external moment=210,000 ft-lb (284,760 N-m}, while the prutress is

reduced to 300,000 1b (1,334 kN); hence, “
_ —300,000 , 300,000x5%12 . 210,000% 12X 12
f=—3 - 13,300 - 13,800
= — 1040+ 1300 — 2190= ~ 1930 psi (—13.31 N/mm?), top fiber
= — 1040— 1300 +2190= — 150 psi (—1.03 N/mm?), bottom fiber

- Example 5-4 describes the conventional method of stress analysis for prestressed
concrete, but it will be recalled that in section 1-2 another method of approach
is described in which the center of pressure C in the concrete is set at distance a
from the center of prestress T in the steel such that '

=Ca=M (5-9)

By this methed, tlli'e stresses in concrete are not treated as being produced by 7

. prestress and external moments separately, but are determined by the magnitude

and location of the center of pressure C, Fig. 5-9. Most beams do not carry axial -

load, therefore, C equals T and is located at a distance from 7.
a=M/T

Since the value of 7 is the value of F in a prestressed beam it'1s quite

accurately known. Thus the computation of a for a given moment M is simply a

i
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Flg. 5-9. Internal resisting couple C-T with arm a.

matter of statics. Once the center pressure C is located for a concrete section, the
distribution of stresses can be determined either by the elastic theory or by the
plastic theory. Generally the elastic theory s followed, in which case we have,
since

+ 52

T * foy (5-10}

C=T=F, f= ik

Mﬁ
| ey

where ¢ is the eccentricity of C, not of F.

Following this approach, a prestressed beam is considered similar to a
reinforced-concrete beam with the steel supplying the tensile force 7, and the
concrete supplying the compressive force C. C and T together form a couple
resisting the external moment. Hence the value of 4 and f to be used in the
above formula should be the net section of the concrete, and not the trans-
formed section. If a beam has conduits grouted for bond, the stress in the grout
is actually different from that in the adjacent concrete, and an exact theoretical
solution would be guite involved. Under such conditions it is advisable to use
the gross section of concrete for all computations for the sake of simplicity. Only

- when investigating the stresses before grouting should the net concrete section

be used and even this refinement may not be required in most cases for design.

It can be noted that formula 5-10 is only a different form of formula 5-7, with
e measured to C, thus combining the effect of M with the eccentricity of F.
Although the formulas are in fact identical, the approaches are different. By
following this second approach, all the inaccuracies are thrown into the estirma-
tion of the effective prestress in steel, which can generally be estimated within
5%. After that, the location of C is a simple problem in statics, and the
distribution of € across the section can be easily computed or visualized. This
method of approach will be further explained in the next chapter on the design
of beam sections.

EXAMPLE 5-5

For the same problem as in example 54, compute the concrete stresses under the final

loading conditions by locating the center of pressure  for the concrete section.
Solution Referring to Fig. 5-10, o is computed by '

a=(210%12)/300=8 4 in. (213 mm)
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Flg. 5-10. Example 5-5.

Hence ¢ for C is 8.4 —~5=3.4 in. Since C'=F=300,000 Ib (1,334 kN).

C  Ce
f=a=T
_ —300,000 | 300,000%3.4x12
B 288 - 13,800

= — 1040 — 890= — 1930 psi ( — 13.31 N/mm?), top fiber
= — 1040 +890= ~ 150 psi (—1.03 N/mm?), bottom fiber

Also, by inspection, since the center of pressure is near the third point, the stress
distribution should be nearly triangular as is shown. By comparing this solution ‘with that
for example 5-4, the directness and simplicity of this method seem to be evident.

5-4 Stresses In Steel Due to Loads o

In prestressed concrete, prestress in the steel is measured during tensioning
operations, then the losses are computed or estimated as described in Chapter 4.
When dead and live loads are applied to the member, minor changes in stress.
will be induced in the steel. In a reinforcedsconcrete beam, steel stresses are
assumed to be directly proportional to the external bending moment. When
there is no moment, there is no stress. When the moment increases, the steel
stresses increase in direct proportion. This is not true for a prestressed-concrete
beam, whose resistance to external moment is furnished by a lengthening of the
lever arm between the re51stmg forces C and T which remain relatwely un-
changed in magnitude.

In order to get a clear understandmg of the behavior of a prestresscd—concrete
beam, it will be interesting to first study the variation of steel stress as the load

increases. For the midspan section of a simple beam, the variation of steel stress

with load on the béam is shown in Fig. 5-11. Along the X-axis is plotted the load
on the beam, and along the Y-axis is plotted the stress in the steel. As prestress is
applied to the steel, the stress in the steel changes from A4 to B, where B is at the
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Fig. 5-11. Variation of steel stress with load.

level of f,, which is the initial prestress in the steel after losses due to anchorage
and elastic shortening have taken place,

Immediately after transfer, no load will yet be carried by the beam if it is
supported on its falsework and if it is not cambered upward by the prestress. As
the falsework is removed, the beam carries its own weight and deflects down-
ward slightly, thus changing the stress in the steel, increasing it from B to C.
When the dead weight of the beam is relatively light, then it can be bowed
upward during the course of the transfer of prestress. The beam may actually
begin to carry load when the average prestress in the steel is somewhere at B,
There may be a sudden breakaway of the beam’s soffit from the falsework so
that the weight of the beam is at once transferred to be carried by the beam
itself, or the weight may be transferred gradually, depending on the actual
conditions of support. But, in any event, the stress in steel will increase from B’
up to point C’. The stress at C’ is slightly lower than f, by virtue of the loss of
prestress in the steel as caused by the upward bending of the beam. Consider
now that the losses of prestress take place so that the stress in the steel drops
from C or C’ to some point D, representing the effective prestress £, for the
beam. Actually, the losses will not take place all at once but will continue for
some length of time. However, for convenience in discussion, let us assume that
all the losses take place before the application of superimposed dead and live
loads.



140  Analysis of Sections for Flexure

Now let us add live load on the beam until the fun-desigh working load ison’

it. The beam will bend and deflect downward, and stress in the steel will
increase. For a bonded beam, such increase can be simply computed by the

usual -elastic theory,

Af,=nf=n _ﬁ;;_»_
where 7 and y correspond to the transformed section, and n is the modular ratio
bf steel to concrete. Since the maximum change in concrete stresses at the level
of steel is not more than about 2000 psi (13.79 N/mmz) in most cases, the
corresponding change of stress in steel is limited to 2000n, or 12,000 psi {82.74
N/mm?) for a value of n=6. This stage is represented by the line DE i Fig.
5-11. It is significant to note that, in prestressed concrete, the variation in steel
stress for working loads is limited to a range of about 12,000 psi (82.74 N/ mr’)
even though the prestress is probably as high as 150,000 psi (1,034 N/mm?).
If the beam 1s overloaded, beyond its working load and up to the. point of
cracking, the increase in steel stress still follows the same elastic theory. Hence
the line DE is prolonged to point F, This would represent a tensile stress around
500 psi (3.45 N/mm?) in the concrete at the level of steel indicating an increase
in steel stress of about 6 X .500=23000 psi (20.68 N/mm’) from Eto F.
When the section cracks, there is a sudden increase of stress in the steel, from
F to F’ for thé bondeéd beam. After cracking, the stress in the steel will increase
faster with the load. As the Ioad is further increased, the section will gradually
approach its ultimate strength, the lever arm for the internal C-T couple cannot
be increased any more, and increase in load is accompanied by a proportional
increase in steel stress. This continues up to the point of failure. From the results
of various tests, it is known that the stress in the steel approaches very nearly its

ultimate strength at the rupture of the beam provided compression failure does

not start in the concrete and failure of the beam is not produced by shear or
bond. Hence the siress curve can be approximately drawn as from F to G,
usually slightly below f,,, the steel ultimate strength. ‘

The computation of steel stress beyond cracking and up to the ultimate load is -

a problem which can be rather accurately solved by analysis as shown fater in
this chapter. But it must be pointed out that between the two points, F' and G,
there is one point when the steel ceases to be elastic, elastic in the sense that no
appreciable permanent set is caused by the external load. This point is the Jimit
to which a structure, such as a bridge or a building, could ever be subjected
without permanent damage, but it will be higher than service load level. If it can
be conveniently determined, it may be a more significant criterion for design
than the cracking or ultimate load f or some special situations. ,
If the beam js unbonded, the stress in the steel will be different from the
bonded beam. Assuming that the same effective prestress is obtained before the

P
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addition of any external load, we can discuss the stress in an unbonded tendon
as follows: Starting from point D, when load is added to the beam, the beam
bends while the steel slips with respect to the concrete. Owihg o d;is ship, the
usual _method of a composite steel and concrete section no longer applies. Be.,-forei
c;ackmg of the concrete, stress in the concrete due to any external moment M is
given by
My
=7
where I and y refer to those for the net concrete section. But it must be
remembered that the stress in the steel changes as load is applied, Fig. 5-12
Hence the question becomes more complicated. ’ . ‘
. At the section of maximum rhoment, the stress in an unbonded tendon wil)
increase more slowly than that in a bonded tendon. This is because any strain in
an unbon.ded tendon will be distributed throughout its entire length. Hence, as
.the load is increased to the working or the cracking icad, the steel stress :vVi]}
increase from D to E|, F;, and Fj, below E, F, and F’, resj)ectively, Fig. 5-11. To
compute the average strain for the cable, it is necessary to determine the t.otal
!cngtheging of the tendon due to moments in the beam. This can be done by
integrating the strain along the entire length. Let M be the moment at any point
of an unbonded beam; the unit strain in conecrete at any point is given by

g=d M
E_ELI

The total strain along the cable is then

A=f6dx=f§b}dx

The average strain is

A_r M
L JIEI
F}'
o . ] C.EC.
[?_—-i“‘i;'-'-“_ g e, e A A e Ve NN W R

After Loading
Flg. 5-12. Change of cable length in an unbonded beam.
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The average stress is - .
A MyE =~ n r My ‘ ' -
L—Esz—fmdx—zf 7 dx .. (5-]0)

If y and I are constant and M is an integrable form of x, the solution of this.

integral is simple. Otherwise, it will be edsier to use a graphical or an approxi-
mate integration. , ' '

After cracks have developed in the unbonded beam, stress in the steel
increases more rapidly with the load, but again it does pot increase as fast as
that at the maximum moment section in a similar bonded beam. In an un-
bonded beam, it is generally not possible to develop the ultimate strength of the
steel at the rupture of the beam. Thus the stress curve is shown going up from F|
to G,, with G, below G by an appreciable amount. It is evident that the ultimate
{oad for an unbonded beam is less than that for a corresponding bonded one,
although there may be very little difference between the cracking loads for the
two beams. There is a tendency for the unbonded beams to develop large cracks
before rupture. These large cracks tend to concentrate strains at some localized
sections in the concrete, thus lowering ultimate strength. Therefore, the strength
of unbonded beams may be appreciably increased by the addition of nonpres-
tressed bonded reinforcements, which tend to spread the cracks and to limit
their size, as well as to contribute toward the tensile force in the ultimate
resisting couple, The ACI Code specifies minimum amounts of such supplemen-
tal bonded reinforcement. -

EXAMPLE 5-6 : :
A posttensioned simple beam on a span of 40 ft is shown in Fig. 5-13. It carries a
superimposed load of 750 plf in addition to its own weight of 300 plf. The initial prestress
in the stee] is 138,000 psi, reducing to 120,000 psi after deducting all losses and assuming
no bending of the beam. The parabolic cable bas an area of 2.5 5q in., n=6. Compute the
stress in the steel at midspan, assuming: (1) the steel is bonded by grouting: (2) the steel
is unbonded and entirely free to slip. (Span=12.2 m, superimposed load= 10.94 kN /m,
self-weight=4377 kN/m, initial prestress=9515 N /mm?, effective prestress=_827.4
N/mm?, and cable area= 1613 mm?®)

Solution
I.. Moment at midspan due to dead and live loads is

wL? _ (300+750)40°
g~ 8

= +210,000 ft-Ib (+ 284,760 N-m)

Moment at midspan due to prestress is
2.5% 120,000 X & = — 125,000 ft-Ib (— 169,500 N-m)
Net moment at midspas is 210,000 — 125,000 = 85,000 ft-1b (115,260 N —m). Stress-in
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concrete at the level of steel due to bending, using J of gross concrete section, is
- =TT 0 =370 psi (2.55 N/mot)
Stress in steel is thus increased by
fi=nf,=6x370=2220 psi (15.31 N/mm?)
Resultant stress in steel= 122,220 psi (842.7 N/mm’) at midspan.

Solution

2, If the cable is unbonded and free to slip, the average strain or stress must be obtained
for the whole length of cable as given by formula 5-10,

=2 (M
LA

Using y, and M, for those at midspan and measwring x from the midspan, we can

. 127
750 + 300 pif
VUi i Ly
e ~Parabolic cable h et ‘
““"--—-L_.__,____. ;;;;; -7 il ST
T
40’ X
1 : Midspan Section

Beam Elevation

i

Li2

Parabolic Moment Diagram

.77 %

i

L2

Parabelic y Diagram
Fig. 5-13. Example 5-6.
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express ¥y and M in terms of x, thus,
x 2
M—MD[]-(ITz—) J
X 2
"’ﬂy"[!"(;:/z) }
_a e _{ x VP
fo= LILL/Z MM’O[I (L/2) } &
=nMoyo x__2_ x3 4 x3 Lz
L 3L/ s/t
-L/2
_8 (ﬂMo}’o) '

s\ T

which is % of the stress for midspan of the bonded beam, or £(2220)=1380 psi (8. 14
N/mm?),

Resultant stress in steel is 120000+ 1180=121,180 psi (835.5 N/mm?) throughout
thc entire cable. In this calculation, the 7 of the gross concrete section is used and the

effect of the increase in the steel stress on the concrete stresses is also neglected, But .

these are errors of the second order. Since the change in steel stress is relatively small,
exact computations are seldom required in an actual design problem.

5-5 Cracklng Moment

The moment producing first hair cracks in a prestressed concrete beam is
computed by the elastic theory, assuming that cracking starts when the tensile
stress in the extreme fiber of concrete reaches its modulus of rupture. Questions
have been raised as to the correctness of this method. First, some engineers
believed that concrete under prestress became a complex substance whose
behavior could not be predicted by the elastic theory with any accuracy.’ Then
it was further questioned whether the usual bending test for modulus of rupture
could give values to represent the tensile strength of concrete in a prestressed
beam. However, most available test data seem to indicate that the elastic theory
1s sufficiently accurate up to the point of cracking, and the method is currently
used. The ACI Code value for modulus of ripture, £, is 7.5Vf with units for

both f and £ as psi.
- Attention must be paid to the fact that the modulus of rupture is only a

- measure of the beginning of hair cracks which are often invisible to the nakedl
eye. A tensile stress higher than the modulus is necessary to produce visible

cracks. On the other hand, if the concrete has been previously cracked by
overloading, shrinkage, or other causes, cracks may reappear at the slightest

tensile stress. If the beam is made of concrete blocks, the cracking strength will .

depend on the tensile strength of the joining material. .
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Referring to formula 5-7, if f, is the modulus of rupture, it is seen that, when

cracks are supposed to start. Transposing terms, we have the value of cracking
moment given by

I
M=Fe +f-{+f—

Y (5-11)
where f.{/c gives the resisting moment due to modulus of rupture of concrete,
Fe the resisting moment due to the eccentricity of prestress, and FI/Ac that due
to the direct compression of the prestress.

Formula 5-11 can be derived from another approach. When the center of
pressure in the concrete is at the top kern point, there will be zero stress in the
bottom fiber. The resisting moment is given by the prestress F times its lever arm
measured to the top kern point, (see Appendix A for definition of kern points &,

and k,), Fig. 5-14, thus,
2
MI———F(e-i- -’:—)

Additional moment resisted by the concrete up to its modulus of rupture is
M,=fI/c. Hence the total moment at cracking is given by :

2\ f1
M=M1+M2=F(e+ 16—)+f£- (5-12)

¢
which can be seen to be identical with formula 5-11.

In order to be theoretically correct when applying the above two formulas,
care must be exercised in choosing the proper section for the computation of 7,
r, e, and ¢. For computing the term f1I/c, the transformed section should be
used for bonded beams, while the net concrete section should be used for
unbonded beams (proper modification being made for the value of prestress due

S o

<

—
'--.____ F
L f ? N
Stress Block __I L_ , __l L
M =F(e+k} for M, f f
Stress Ellock Stress Block
for Mz" £L for M, + M,

Flg. 5-14. Cracking moment.
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. | ,
to bending of the beam as explained in section 4-8). For the term F (e+ ic—)

either the gross or the net section should be considered, depending on the
computation of the effective prestress F. For a practical problem, these refine-
ments are often unnecessary, and it will be easier to use one section for all the
computations. In order to simplify the computations, the gross section of
. the concrete is most often used. If the area of holes is an important portion
of the gross area, then net area may be used. If the percentage of steel is high,
the transformed area may be preferred. The engineer must use discretion in
choosing 4 method of solution consistent with the degree of accuracy required
for his particular problem. :

EXAMPLE 5.7
For the problem given in example 5-6, compute the total dead and live uniform load that

can be carried by the beam, (1) for zero tensile stress in the bottom fibers, (2) for cracking
in the bottom fibers at a modulus of rupture of 600 psi (4.14 N/mm?), and ‘assurming
concrete to take tension up to that value.
Solution
1. Considering the critical midspan section and -using the gross concrete section for all
computations, , is readily computed to be at 4 in. (101.6 mm) above the middepth,
Fig. 5-15. To obtain zero stress in the bottom fibers, the center of pressure must be
-located at the top kern point. Hence the resisting moment is given by the prestress
multiplied by the lever arm, thus
Fle+ k,)-300(5+4)/12=‘225 k-ft (305.1 kN-m)
Solution .
2. Additional moment carried by the section up to begmmng of cracks is
£1_ 600% 13,800
1z
- =6%0,000 in.-ib
=57.6 k-ft (78 1 kN m)

' Total moment at cracking is 225+ 57.6=282.6 k-ft (333.2 kN-m), which can also be
obtained directly by applying formula 5-11 or 5-12.

~ 2080 psi ‘ - 2680

N r—. - 600 l——-—]
= . .
I . 7 T r , )
= 300k .
- I + =
. & 300k
i et
B Sect C M =225kt . :
eam Section ‘M 25 ‘ GOOJ I 500 —! L ]
M= 225 k—ft M=576 kit M =2826 k-t

Fig. 5-15. Example 5-7.
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5-6 Ultimate Moment—Bonded Tendons

Exact analysis for the ultimate strength of a prestressed-concrete section under
flexure is a complicated theoretical problem, because both steel and concrete are '
generally stressed beyond their elastic range. The following section develops
such an analysis technique for bonded beams. However, for the purpose of
practical design, where an accuracy of 5-10% is considered sufficient, relatively
simple procedures can be developed.

Many tests have been run, and many papers written, on the ultimate flexura}
strength of prestressed concrete sections. Worthy of special mention are the
group of papers on this thesis? presented before the First International Congress
on Prestressed Concrete held in London, October 1953, and another summary
paper presented at the Third Congress of the International Federation for
Prestressing.” In the United States, laboratory investigations carried out at the
University of Illinois and the Portland Cement Association gave the results of
extensive tests, together with definite recommendations.**¢ Although formulas
for uitimate strength proposed by various authors seem to differ greatly on the
surface, they generally yield values within a few per cent of one another. Hence
it can be concluded that the ultimate strength of prestressed concrete under
flexure can be predicted with sufficient accuracy.

A simple method for determining ultimate flexural strength follomng the AC]
Code is presented herewith, based on the results of the aforementioned tests as
well as others. This method is limited to the following conditions.

L. The failure is primarily a flexural failure, without shear, bond, or anchorage
failure which might decrease the strength of the section.

2. The beams are bonded. Unbonded beams possess different ultimate strength
and are discussed later.

| 3. The beams are statically determinate. Although the discussions apply equally

well to individual sections of continuous beams, the ultimate strength of
continuous beams as a whole i is explained by the plastic hinge theory to be
discussed in Chapter 10.

4. The load considered is the ultimate load obtained as the result of a short
static test. Impact, fatigue, or long-time loadings are not considered.

Of the methods proposed for determining the ultimate flexural strength of
prestressed-concrete sections, some are purely empirical and others highly theo-
retical. The empirical methods are generally simple but are limited only to the
conditions which were encountered in the tests. The theoretical ones are in-
tended for research studies and hence unnecessarily complicated for the desig-
ner. For the purpose of design, a rational approach is presented in the following,
consistent with test results, but neglecting refinements so that reasonably correct
vaiues can be obtained with the minimum amount of effort. The method is
based on the simple principle of a resisting couple in a prestressed beam, as that
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in any other beam. At the ultimate load, the couple is made of two forces, 7"
and C’, acting with a lever arm a’. The steel supplies the tensile force T, and the
concrete, the compressive force C'.

Before going any further with the method, let us fn'st study the ‘modes of -
failure of prestressed—beam sections. The failure of a section may start either in’
the steel or in. the concrete, and may end up in one or the other. The most :
general case is that of an underreinforced section, where the failure starts with .
the excessive elongation of steel and ends with the crushing of concrete. This.

type of failure occurs in both presiressed- and reinforced-concrete beams, when
they are underreinforced. Only in some rare instances may fracture of steel
occur in such beams; that happens, for example, when the compressive flange is
restrained and possesses a higher actual strength. A relatively uncommon mode
of failure is that of an overreinforced section, where the concrete is crushed
before the steel is stressed into the plastic range. Hence there is only a limited
amount of deflection before rupture, and a brittle mode of failure is obtained.

This is similar to an overreinforced nonprestressed-concrete beam. Another

unusual mode of failure is that of a too lightly reinforced section, where failure
may occuir by the breaking of the steel immediately following the cracking of
concrete. This happens when the tensile force in the concrete is suddenly
transferred to the steel whose area is too small to absorb that additional tension.

There is no sharp line of demarcation between the percentage. of reinforce-
ment for.an overremforced beam and that for an underreinforced one. The
transition from one type to another takes place gradually as the percentage of
steel js: varied. A sharp definition of “balanced condition” carinot be made since

the steel used for prestressing does not exhibit a sharp yield point. For the .

materials presently used in prestressed work, the reinforcement index, w,, which
approximates the limiting value to assure that the prestressed steel (4,,) will be
slightly into its yield range, is given by the ACI Code as follows:

=0, o0 [ <030 o (5-13)

where
0= Ay / bd

There are situations where prestressing steel (4,,) and ordinary reinforcing
bars (A,) are used together in a prestressed beam. In this case the total of all the
tension steel is considered along with the poss1b1hty of compression steel (A7)
The limiting reinforcement ratio is given as

(w+a, —e)<030 (5-14)

. where ‘ ’ .
w=pf/f, and  p=A/bd

W =p'f,/f and = p'=A,/bd
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Such ratios of reinforcement almost always end in plastic failure and can be
termed as underreinforced ratios. If the ratio from equation 5-14 is over 1.0,
sudden crushing of concrete without substantial elongation of sieel will be likely
to take place. If it is less than about 0.10, breaking of the wires following
cracking of concrete may occur. '

A proper definition of the percentage of steel p is important for prestressed
sections because of their irregular shapes. For ultimate strength it is not the total
concrete area or the shape of cross section but the concrete area in the
compressive flange that matters; hence p will be more indicative of the relative
strength of concrete and steel if it is expressed in terms of A, /bd, where b is the
width or average width of the compressive flange and J the effective depth as
indicated above for the ACI Code expressions.

ACI Code Bonded Beams. For underreinforced bonded beams following the
ACI Code, the steel is stressed to a stress level which approaches its ultimate
strength at the point of failure for the beam in flexure. For the purpose of
practical design, it will be sufficiently accurate to assume that the steel is
stressed to the stress level, £, given by the equation for bonded beams from the
ACI Code which closely approximates test results.® Provided the effective
prestress, f,, is not less than 0.5f,,, the following approximate value for the steel
stress at ultimate moment capacity for the beam is applicable for bonded beams:

fs=f (1 05pp.§, ) (5-15)

Note that as the steel ratio p, is reduced, the member is increasingly underrein-
forced; and the steel stress _af” approaches the ultimate strength of prestressing
steel. In fact, there are some test data which seem to show that the stecl was
stressed even beyond its ultimate strength. Though this does not seem to be
possible, it might perhaps be explained by the fact that the group strength of
wires forced to fail together at one section of a beam might be higher than the
tested sirength of steel in the specimens, since, during specimen tests, only the
strength of the weakest link is recorded.

The computation of the ultimate resisting moment is a relatively simple matter
and can be carried out as follows, Referring to Fig. 5-16, the ultimate compres-
sive force in the concrete C’ equals the ultimate tensile force in the steel 77, thus,

C'=T=A/f,
Let a” be the lever arm between the forces C* and T7; then the uitimate resisting
moment is given by

M'=Ta'=A,f, =M, (ACI Code nominal strength)

To determine the lever anm a’, it is only necessary to locate the center of
pressure C’. There are many plastic theories for the distribution of compressive
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Flg. §5-16. Ultimate moment,

stress in concrete at failure,” assuming the stress block to take the shape of a

rectangle, trapezoid, parabola, etc. Although the actual stress distribution is a

very interesting problem for research, for the purpose of design, any of these

methods would be sufficiently accurate, because they would yield nearly the -

same lever arm ¢', seldom differing by more than 5%.
Choosing the simplest stress block, a rectangle, for the uitimate compression
in concrete, the depth to the ultimate neutral axis k'd is computed by
C'=k,f;k'bd :

where k, f/, is the average compressive stress in concrete at rupture. Hence,

pram S Aok
kb kifb
p A.rj_:u ‘
K= (5-16)

These formulas apply if the compressive flange has a uniform width b at failure.
Locating C’ at the center of the rectangular stress block, we have the lever
arm

a'=d—k ‘df2
k’
=dl]— = -
(1 d ) (5-17)
Hence, the ultimate resisting moment is
M’=Ap,j;sd(l— 52'—)=M” (ACI notation) (5—.18) ‘

Now the determination of the value of k, deserves some comments. Accord-
ing to Whitney’s plastic theory of reinforced-concrete beams, &, should be 0.85,
based on cylinder strength. According to some authors in Europe, should be
0.60 to 0.70 based on the cube strength; since cube strength is 25% higher than
cylinder strength, this would give approximately 0.75 to 0.88 for k, based on the
cylinder strength. The important thing for the designer to see is the fact ‘that
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variation of the value of k, does not appreciably affect the lever arm o’. Hence it
is considered accurate enough to adopt some approximate value, such as 0.85 for
k,. Using 0.85 for k,, formula 5-16 can be written as

A f -
L pSPS _
= 5357bd (5-19)

By substituting this expression for &’ into equation 5-18, we have

’ Ap.:-]:p: )
M ‘Awﬂ"d(‘“ 2><0.85f;bd) (5-20)

For a rectangular section for the compression area, we can let p, =4 ,:/bd. Then
we have the following formula:

, 0.5%, f,,
M =.4P,Jg,,d(1 - -—f—’i-i) .(5-21)
or-from Fig. 5-16 with ACI notation k'd=a
a o
M=4,.4(d-3) (522)

which is identical to that given in the commentary of the American Concrete
Institute and as first proposed by the ACI-ASCE Recommendations.?

The ACI Code introduces the strength reduction factor, ¢, and writes equa-
tion 5-21 in terms of w, to solve the design ultimate moment as follows:

M, =4[ 4,,5,,d(1=0.5%,)] (5-23)

The alternative equation (5-22) written directly in terms of the 7" and C” force
couple becomes the following ACI Code design ultimate moment equation:

M,=¢] 4,5 (d-3)] (5:24)

For flexure the ACI Code uses ¢=0.9 in the two equations for M, given
above, (5-23) and (5-24). These expressions apply to rectangular beams or beams
which have a rectangular-shaped compression zone for the concrete cross

section.

EXAMPLE 58

An I-shaped beam is prestressed with 4, =2.75 in.? as prestressing ste¢l with an effective
stress, f,,, of 160 ksi. The c.gs. of the strands which supply the prestress is 4,5 in. above
the bottom of the bearm as shown in Fig. 5-17 along with the shape of the concrete cross
section. Material properties are: f,, =270 ksi; f/ =7000 psi. Find the ultimate resisting
moment for the section for design following the ACI Code. (4, = 1,774 mm?, f,, =1,103
N/mn?, £, =1,862 N/mm?, and f; =48 N/mm’)
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Flg. 5-17. Example 5-8.

 Solution: _
_ 275
= 1G1s)

Estim.;ite steel siress at ultimate by the ACI equation (5-15) which is valid to usé since
fre =160 ksi (1103 N /mm?) > 0.5£,, =135 ksi (931 N/mm?).

L= 270,000[1 - 05000485 2258 )]

=0.00435

{5-15)

Jos = 245,000 psi = 245 ksi (1689 N /ran?)

Check the reinforcement index
‘ ' (0.00485)(245,000)
“ T 7000
Referring to Fig. 5-17 sketch of section
T'=d,,f, =2.75X245=674 k (2,998 kN)
C'=0.85f X 18Xa=674k (2,998 kN)
am— 574 _629in.<7in. 0.K. rectangular section
(0.85)(N(18) behavior
M,=T(d-5)=674(31.5- 52 ) = 19,10 in k. (2158 kN-m)  (522)
M, =0.9M, =17,200 in.-k. (1944 kN-m) - (5-24)

=0.17<0.30 (1)

Note that even though the section in example 5-8 is I-shaped it behaves as a
“rectangular section™; the compression zone of the concrete is rectarigulaf as
shown by the shaded area in Fig. 5-17. The following example illustrates the
case where the compression zone is nonrectangular. ‘

For flanged sections (nomrectangular compression zone) we may still use
equation 5-15 to estimate the steel stress at ultimate, s The total area of
prestressed steel, 4, , is divided into two parts with A, developing the flanges
and 4,, developing the web as shown in Fig. 5-18. The ultimate moment is
simply computed from the two parts: the flange part has the compression
resultant foreé acting at middepth of flange, A /2, and the arm of the moment
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Total (5 — b, )
A e
d b, = + '
e =3 3
Aps App Apw
Total Section Flange Part Web Part

Flg. 5-18. Flanged section

2
a/2 from the top the beam, and the arm of the moment couple is (d—- fl—). The
equivalent rectangular stress block is assumed as before, Fig. 5-17, and the depth
a is determined by the compression area required based on equal total compres-
sion and tension forces at ultimate. The commentary of the ACI Code contains
equations for M, to cover this case which it terms “flanged section.”

h
couple is (d— .y ); the web part has the compression resultant force acting at

a , hy
M, =¢ prLs(d— -2—) +0.85£:(b~b, ;| d— = (5-25)
where Ay =A, ~A,, (5-26)
and .
- A, =0857(b=b,)h,/f,, (5-27)
EXAMPLE 5-9

The same I-shaped prestressed concrete beam as example 5-3 but the steel area is
increased t0 A,,=3.67 in.? The effective steel stress' rernains 160 ksi. The c.gs. of the
strands is 4.5 in. above the bottom of the beam as shown in Fig. 5-19 along with the

085
v A

T

tr

Fig. 5-19. Example 5-9.
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shape of the cross section: material properties are same as example 5‘-8: ;f,u=2?0 ksi,
f/=7000 psi. Find the ultimate resisting moment for the section fgr des1gx,1 following Ll;e
ACI Code. (4,,~2368 mar’, £,=1103 N/mm?, f,,= 1862 N/mu?, and /=48 N /mm?).
Solution ‘
= 35T _0.00647
= (15)(31.5)
Use equation 5-15 to estimate steel stress atultimate.

oo o900 (2]

£,»=236,000 psi=236 ksi (1627 N/mm?)
Check the reinforcement index after the flanged section is evatuated pelow.
Referring to Fig. 5-18 and 5-19 determine the extent of the compression zgne
T'(total)=(3.67)(236) =866 k (3,852 kN)-

. - 866 . 2san 3 3
Area of compression zone= W = 145.5 in.% (93.87 X 10° mm®)

Flange area =18 X7 =126.0in.2 (81’.25)( 10% :mmz)
Web area below flange = 19.5 .2 (12.58 X 10? mm?)

a=7+ _‘52;53 =7+3.55=10.55 in. (268 mm)
“This verifies that the section is behaving a.s “flanged” as shown by Fig. 5-18 and M,

can now be evaluated. .
Referring to Fig. 5-18 and using ACI Commentary equations

A, =(0.85)(7000)(18.0~5.5)(7)/236,000=2.21 in.? (1426 mm?) = (527)
(5-26)

A, =3.67-221=1.46in7 (942 mm*)

Check reinforcement index for the flanged section;
Oow =Apu/brd= 1.46/(5.5)(31.5)=0.00843.

@, =(0.00843)(236,000) /7000 =0.284 < 0.30
L4
M’ for web‘part=Aij;,(d— 5)

1055\ o
o = (1623631 5= 22 ) =9,080 ink (10215 kN—m)

h
‘ /
M’ for flange parl=0.85ﬁ(b——b_.,)hj(d— —2—)
\ Mange =(0.85)(7.0)(18.0- 5.547)(31.5-7/2)=14,580 in.-k (1647.5 kN —m}
Mo =9040 + 14,580=23,620 in.-k (2669 kN~ m) =M,

Note that the ACI commentary equation (5-25) contains these two terms, and
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we may write it in the form:
Mu =¢[ M’web +M’I]auge] =¢[M’loml]

thus
_Mu = (0.9)(23,620)=21,260 in.-k (2,402 kN —m)

The examples 5-8 and 5-9 illustrate the simplicity of analysis for M, whether
the section behaves as a “rectangular” or “flanged” section. It should be noted
that the addition of more prestressed steel to the section in example 5-9 causes
the section to almost reach the limit of reinforcement index, @=0.30, which the
ACI Code would allow. Further addition of tension steel would cause the beam
to be overreinforced, and the beam would not have a ductile failure. Addition of
compression steel might be required to be sure that duetility is assured (equation
5-14). For the flanged section we use the web of the section with b,, and the steel
area required to develop the compressive strength of the web only w0 find
@,, <0.30 as illustrated in example 5-9. The ACI Code has this requirement
stated as follows: (similar to equation 5-14):

(ww+wpw_ ;)€0.30 (5-28)

The terms involving ordinary reinforcement are w, (tension steel) and «’,
{compression steel) for equation 5-28. In equation 5-14 the corresponding terms
are w and «'. Thus in prestressed concrete as in reinforced concrete analysis,
addition of compression steel will add ductility as the steel (unstressed bars) on
the compression side of the beam carries a part of the total compressive force,
relieving compression that would otherwise be carried by the concrete.

Note also in example 5-9 that addition of more prestressing strand causes the
steel stress at ultimate to be reduced. The stress-strain curve for the prestressing
steel, Fig. 2-7, has the characteristic of continuing slight increase in stress with
strain in excess of yield. The more ductile beam of example 5-8 (w,=0.17 <0.30)
will fail in flexure with higher steel strain and Jos=245 ksi; with added Ay in
example 5-9 (w,, =028 <0.30) we have less ductility, smaller steel strain at
ultimatie, and j;,=236 ksi. This will be discussed later in connection with the
more exact moment-curvature analysis, but the trends in behavior are important
to observe in the ACI Code analysis, which gives results in good agreement with
fests. '

If material strengths and physical dimensions are in agreement with assumed
values, the ultimate moment will be quite close to M" computed by the ACI
Code analysis. The ¢=0.9 strength reduction factor adds safety in design, the
intent being to allow for possible understrength in materials, dimensional errors
in construction and errors in the assurptions made in analysis,
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5-7 Moment-Curvature Anaiys'ls—-Bonded Beams

A rational analysis which follows the behavior of a bonded prestressed concrete
through the total load range from initial loading to failure has been developed,®®
and tests bave shown the results of the analysis to be quite rehable. This
moment-curvature analysis is derived from basic assumptions about materials
and member behavior. The technique is described below, and a numerical
example will show that the ultimate strength found by this more exact procedure
is close to the ACI Code estimate, M’. But the added understanding of behavior
which can be gained for the progressive load stages leading to failure is
important to emphasize. This complete analysis is quite general, and computer
programs have been written which perform the detailed calculations very rapidly.

Hand calculation can be used as will be illustrated by the example problem.

~ The following assumptions are made in connection with the moment-curvature

‘analysis: _ :

1. Tendons are bonded to the concrete. Changes in strain in the steel and
concrete after bonding are assumed to be the same.

2. The initial strain from the effective prestress in the tendon when no moment
from applied loads acts on the section 1s illustrated by Fig. 5-20{a). At the
level of steel, the concrete compressive strain, €_,, exists while the tendon has
a rensile strain, e,,, which corresponds to the stress f,,, which is initially

effective. . . .
3. Stress-strain properties for the materials are known or assurned (Fig. 5-21)

for use in analysis.

4. Strains are assumed to be distributed linearly over the depth of the beam as
shown in Fig. 5-20.

5. Tension and compression forces acting on the cross section must be in
equilibrium for the beam which has only flexure without any applied axial

load.
€
s _ . € '1
- - - \ - .
J \ - 1 || ¢ = -E..
’ 1 "/ (Positive Curvature)
# (MNegative Curvature) 4
] ' // |
’ \ Ece
//:“ {]/ -
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€ Exe
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Strain Distribution

{a) Strain Distribution  {b)
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At Zero Moment

Flg...s-'zo. Distribution of strain assumed.
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Flg. 5-21. Stress-strain properties for materials.

2 2
Concretg stress=f, =fc'[ Lox -—(E) ] as shown in Fig. 5-21c

€ €

_cc=bﬂ—§c1[l_—
: [1]

2

€y

where ¢x=e in the expression from Hognestad similar to Fig. 5-21a.

 (rpamp [ 28X _ #°
ol J;j;bdx~b_ﬂj;(—;)———eg—

solving this, the resultant compression force for a rectangular section is

) dx (see Fig. 5-21c)

1587

(5-29)
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: - _Tap fiber strain = c¢
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€

{¢) Resultant Compression Force
Fig. 5-21(c). Resultant Compression Force.

xC. = [5( fbdx)x substituting the expression above for C, and rearranging
terms, the distance from ueutral axis to line of action for resultam compression

force is
8&0 —3éc 7
[ 12¢, ~4oc } (5-30)

6. Ultimate moment corresponds to the occurrence of a strain in the concrete
which causes crushing (usually 0.003 in./in.) or a steel strain which would
fracture the tendon (for most prestressing steel about 5% strain).

7. The failure analyzed is in flexure, and it is assumed that the member will
have adequate shear strength to prevent failure. Bond and anchorage of steel
is assumned adequate to prevent failure prior to reaching ﬂexurai strength at

the section being analyzed.

The assumptions listed above are justified by experimental data, and a few
comments are in order before describing the analysis procedure. Item I is
extremely ‘important; bonded pretensioned beams and posttemsioned beams
{grouted tendons following stressing) satisfy this assumption, Unbonded tendons
will slip with respect to the concrete and thus will not satisfy this assumption of
strain change compatibility for steel and concrete. Item 2 relates to the initial
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strains which exist prior to the application of external moment. The steel will
have experienced losses which would be estimated to find the effectlve stress, Jies
which exists as the starting point for analysis.

This leads to Item 3, the known stress-strain relationship for the steel, since
the €,, is simply the steel strain corresponding to f,, from this curve. The tests
of typical materials used for tendons provide these data (Appendix B). The
comcrete stress-strain curve is assumed here as a parabolic form following
Hognestad very closely. This is convenient because it allows integration to solve
the resultant compressive force, and its Jocation in a closed form solution as
shown in Fig. 5-21(c). The secant modulus of elasticity for concrete, Fig.
5-21(a), is made to correspond to the ACI Code value for E,, and E, is taken
from the stress-strain curve for the steel used in the beam. The mmal response

for the member prior to cracking (at tension in the concrete, f,=7. 5\/—) 15
elastic, and the values of E_ and E, relate stress to strain in the materials. As
shown in Fig. 5-22 the value of £, follows the ACI equation with scatter above or
below this value.

Ttem 4 relates to linear strains over the depth of the member, which has been
verified by tests of bonded beams where measurements were made over a gage
length including cracks. Good bond of the steel results in the formation of
numerous cracks as observed in tests of both pretensioned and posttensioned
beams, and the average curvature is adequate to represent the beam response to
moment, Fig. 5-23. This analysis deals with average curvatures with higher
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[ ]
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Fig. 5-22. Relationship between moduius of rupture and compressive strength of
concrete.’®
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Flg. 5-23. Distribution of strain and curvature along the span.

values at a crack being averaged with lower values between cracks. The angle, ¢,
measured from the linear strains over the depth of the section is the curvature,
Fig. 5-20. Note that this is initially negative as shown in Fig. 20(a), (camber
results) but becomes positive curvature (downward deflection) as moment is
added, Fig. 5-20(b).

The equilibrium of forces is implied from statics, but xt is-a key assumption
here as Item 5. The total tension, 77, acts together with an equal resultant

comptession, C’. The stress-strain curve for concrete together with the shape of

the compression zone determine the point of action of C” while the tension force
T is determined from the placement of the tendons. The force is usually taken
to act at the centroid of the tendon steel. Where both tendons and reinforcing
bars .are used in the same beam as tension steel, 7" would be solved for each
type of reinforcement and these two forces (acting at centroid of each type of
steel) would be combined into a single total resultant, 7",

Strain at ultimate, Item 6, is based on test data. The ACI Code value for
design, 0.003 in./in., is a lower-bound value from these data. Actually, the
assumption of higher strain for crushmg ‘of concrete doesn’t significantly change
the ultimate moment calculated. Higher strain at ultimate would lead to greater
deformation, thus the ACI Code value may be considered purposely conserva-
tive for safe design. Only a very lightly remforced beam would fail by fracture of
the steel prior to reaching crushing strain in’ the concrete at- the extreme
compressive fiber. As indicated by Item 7; we assume no other type of failure
occurs: that is, this flexural analysis cannot assure adequate shear, bond or
anchorage strength since these must be checked separately.

The analysis procedure is carried out assuming two stages of behav1or hrst
the beam is elastic and uncracked; second, the beam is cracked and the actual
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(3) Assume strain a7 top fiber—say £, = 0.0015 for this paint

(@ Assume depth to neutral axis ¢ and compute internat forces.

€. = 00015 FA
Ass f ¢ @ s - - :.c’
UME & = -
7 i i a
/ K
/ M
S e
e :
1 L. — i
Stress Strain

Ld
(3) Check 10 see if assumed ¢ yields C' = T°
@ Revise assurnption for ¢ until equilibrium is satisfied (C' = T'),
@ With final value of ¢ find ¢ and moment of couple.

@ Assume another top fiber strain_in@ and repeat@
through to obtain ¢ and moment.

Flg. 5-24. Paosteracking analysis for moment-curvature.

material properties are used for analysis of the cracked section response. The
first stage is assumed elastic, but the second stage is inelastic following the
response of the materials. Figure 5-24 shows the steps in the postcracking
analysis. A point-to-point check is made for a series of assumed values for top
fiber strain, the points collectively describing the moment-curvature relationship
as shown in the numerical example, example 5-10.

EXAMPLE 5-10
The beam cross section of example 5-8 is to be analyzed to determine its moment-curvature
relationship. The materials are normal weight concrete; f7 =7000 psi (48 N/mm?),
limiting strain at ultimate=0.003; 7-wire¢ strand with £, =270 ksi (1.862 N/mm?)
specified, Use the acrual curve for analysis, Fig. 5-25a, which bhas breaking strength of
approximately 280 ksi (1,931 N/mm?) from typical test. (Figure 5-25b shows f, vs. e.', for
concrete.) '
Find points for moment, M, and curvature, ¢, for each of these stages as moment is
increased:
{a) Initial stage—zero applied moment, f,, == 160 ksi.
(b) Zero strain in concrete at level of steel.
(¢) Cracking at f, =7.5Vf] .
(d) Top fiber strain 0.001.
(e) Top fiber strain 0.002.
(f) Top fiber strain 0.003.
Make a semmary of resulis including the steel stress at each stage, and plot the M vs. ¢

cracked section

Tocuarve.



300
280 [

280 ¢~
240
220+
200 1~
180 (-
160 —

140 for

Stress—ksi

120
100
80
&0 |—
40 [
204

— fps =264 ksi @M . oo

a— T T —

Breaking strength fp, = 282 ksi  _|

.
7~Wire stress relieved strand —
. (Test result from manufacturar)

| | -1 H §

J |

0.002 0004 0006 0.008 0.010 0.012 0014 0.016 0.018

Strain
{a} Steei Stress-Strain Curve

Fi = 7000 psi

50%f .

E, = 4,77 x 105 psi

~

Eq

. {¥) Concrete Stress-Strain Curve

€q = 0.00248
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Salution (a) Initial stage: assume elastic beam may be analyzed for stresses in the
concrete using gross section properties and F=4, f,

Section properties: A4 =373 in.2 (241 X 10° mm?) =18 in. (457.2 mm)
(Fig. 5-17 shows cross-section dimensions)
1, =58,890 in.* (24.51 X 10° mm*) e=13.5 in. (342.9 mm)
S, =3272in.? (53.62 % 10° mm?)
F=(2.75)(160)=440 k (1957 kN)

E,=57,000V/f =57,000V7000 =4.77 10° psi (32.89 kN /mm?)

Compute stress and .corresponding strains in section due to F=440 k (1957 kN) at
¢=13.5 in, (342.9 mm), '

—1180 +1816 636 1.33x 107*
NS S = - . —_—
E )
* = 36" —5.33x 1067%=
-—533x 107 =¢,
S -1180 1816 ~2995 —6.28 x 107
F . Fi . -
5=1180psi < = 1816 psi £ofee Concrete Strain = SIL258

£

Stress IF = 440 k}

Flg. 5-26(a). |nitial stage, exampie 5-10,

-4 ~4
¢=curvature (slope of Fig. 5-26(a} strain gradient)= 1.33x1077 +6.28x10

36
¢=—2.11x10"" rad/in. at M=0 (applied moment)
Find €, =steel strain at f,, = 160 ksi (1103 N /mm?)
e = M =582%10"3
27.5%10¢
=L

l T

£ =533 x 107°

£ = 5.82x107° H

Flg. 5-26(b). Initial steel and congcrete strains, example 5-10.

(&) Zero swrain in concrete at level of steel: an applied moment which produces
€. =533%107* at the level of steel will cause the strain in (he concrete to be zero as
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desired for this step. We note that the same change in strain will occur in the bonded
steel, thus the steel strain will become ‘

€y =€+, =5.82X 1073 +0.533x 107 *=6.35x10"*

fos =€ps X E,, =6.35X 1073 X27.5X 10% = 175 ksi (1207 N/mm?)
F=(2.75)(175) =481 k (2139 kN}-

Thus the effective stress increases from that in (a), and we can find the concrete
stresses which result from this increased force as shown in Fig. 5-26(¢).

-1290 +1985 + 585

8 Jod

~1290 1985 ~3275 _

Mx 138 _ .
‘ Stress {F = 481 k) ) 58856 - 2779 psi

Flg. 5-26{c). Stresses for example 5-10 at stage (b).

Solving M from tﬁé stress to reduce 1o zero the combined stress (and strain} at level of
steel as shown in Fig. 5-26(c) and using 2779 psi=2.779 ksi:

M= %ﬂﬂ 12,120 in.-k (1370 kN ~m)

Complete the combined stress sketch with this _M zltcling, and find corresponding
strains (stress/E,) to allow ¢ to be solved as shown in Fig. 5-26(d).

+605  —3705 3010 —6.31x107° :
. 57 % = % é %vb = 2.00 x 1075 rad/in.
+ = .
—3278 o 3708 +430 0.801 x 10~°
F, Fe Me : Stress
AT I i . » » _
@ F = 481 @M=12.120 5=831x10 3;0.90:10 =200 x 10~ radfin. |

Flg. 5-26(d). Solving curvature at stage (b), example 5710.

From these calculations we have determined a second point in the elastic range of

behavior:
M=12,120in.-k (1,370 kN —m).

d=+2.00x 10~5

(¢) The two previous points will be used to establish the linear elastic response of .r..hc
moment-curvature relationship, but we wish sow to estimate the cracking moment which
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is the endpoint for this uncracked section analysis. M., is associated with =75 \/f.’ , the
modulus of rupture for concrete. )
£=735V7000 =627 psi (4.32 N/mm?)

Since the bottom fiber stress has 430 psi (2.96 N/mm?) tension stréss at stage (4)
above, we can see that it will require only a rather small moment additional to pick up
the additional tension stress

627—-430=197 psi

=0.197 ksi (1.36 N/mm?)
AfT _ (0.197)(58,8%0)
¢ 18
M,,=12,120+645=12,765 in.-k (1443 kN —m)

The very slight additiona! tension strain in the steel which accompanies this moment

could be neglected. We can determine it rather easily however since

A My
Afy=n i

AM= =645 in.-k (73 KN ~m)

where y = distance to c.g.s.=13.5 in.

27.5  645%13.5 .
B =g X —Sgg9n =085 ksi (5.86 N/mm?)

The steel stress at M, is
Sos=175+0.85== 176 ksi (1214 N/mm?)

We can also evaluate the additional curvature, which must be associated with the
additional 197 psi (136 N/mm’) extreme fiber stress, Fig. 5-26(e), and obtain the
cracking curvature, ¢,,.

—187 ~0.413x 70"
q
1 ;K ap=A2LQAIXI0 ) 693 1075 radsin,
197 +.413x10 *
Stress Strain

@, = St2ge b curvature + Ag
B S 2.00%10 % 4+023x 10 *=2.23x10 Sradfin,
Flg. 5-26(e). Additional curvature o cause cracking, example 5-10,

(d) The top fiber strain at cracking is the combination of the results from (b) and
{ck: ‘
€= —631X107*~0413X107%= —6.72x [0~*

€= =0.000672 in /in. < ~0.001 in. /in.

We know that the cracked section analysis is valid for the next point asked for where
€,=0.001.
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The step-by-step procedure of Fig. 5-24 will now be followed for €, =0.001 (top fiber
strain). The expression from Fig. 5-21(c) for resultant compression force and its point of
action will be used in this solution. The stress-strain curve for the steel, Fig. 5-23, is used
as well as the prior strain in%he steel at stage (») when zero strain existed in the concrete

at level of steel. From (&) we know that
e HE,, =635%1077
The first trial-neutral axis assumed 12 in. (304 8 mm) below the top fiber as shown in Fig.

5-26(f)

— b=18" | —>-| 0.001 |—<—
s
A 1 ™~ o f=12
% -5 =4 — % - Neutral axis
31.8" {: ~
i be— 55" = b > 19.5”
b [a} p ! ~ .
2;-{ ~ {
e : - . i
\_...\f...-..r-/ \___\/_/
635x107% ¢ =1.625x107° -
=2.75in T
Strain - 9= -04%]-1" = 8,33 x 1075 radfin.

Flg. 5-26(f). First trial stage (d), exampie 5-10.

From the sketch above we note the neutral axis falls in the web, thus the compression -

zone is not rectangular as assumed in the derivation of the expression for resultant
compression in Fig. 5-21(¢). We will first assume the width &= 18 in. (457.2 mm) extends
to the neutral axis as shown on the sketch and solve the resultant compressiye force C;.
Next we will correct this by using the width (5—8,,) for the 5 in. (127 mm} above the
peutral axis as shown blocked out on the sketch. This C; force will be given a negative
sign, and the resultant compression C, will be the algebraic sum of € and C;.

—hep 2 -2 - )
C, =bc*f] < {1 3¢, ] (5-29)
where €,=0.00248=2.48 x 107 in./in. from 5-25(b) gives secant modulus of
elasticity assumed in previous parts. '
-3 . “3y¥1
c —(18)(12)2(7000) 333 1075 | _ (8:33x10)(12) (5:29)
' 2.48x 1072 (3N2.48%107%)
C,. =527,500 Ib (2346 kN)
Using b= 18—~5.5=12.5 in. (317.5 mm) for C_, correction:
: -5 33X 1073)(5; ;
C.,- —(12.5)(5)’(7000)(_m~——8‘33 X ”’_3)[1— (#33x107)05) ] (5-29)

24810
,= —69,3601b {~308.5 kN)
C, =527,500~ 69, 360 458,140 Ib=458 k (2,037 kN)

(N248x10-3 |

Moment-Gurvature Analysis—8onded Beams 167

From Fig. 5.26{ f) find strain in the prestressing sieel

€,,=6.35X1073+1.625x 1073 =7.98x 1073

From Fig. 5-25 we determme stress correspondmg to this strain to be f,, =218 ksi {1503
N/mm?). For 4,,=2.75 in.? (1774 mm®) the tension is

T=(2.75)(218) =600 k (2669 kN) > C, =458 k (2037 kN)

The neutral axis is too high, resulting in a steel strain which is too high, making 77> C,.
For the second trial make the assumed distance to the neutral axis larger.
Second trial-—neutral axis assumed 16.5 in. (419.1 mm) below top fiber as shown in

Fig. 5-26(g).

f—18"— —] 0001

% > A -
at.g" £z = 95" " -i16'5 o [= 4"

N i
\\ 15"
~ { :
—— ;‘V"':’ . T
6.35x107% ¢ =0809x 1077
Ay =275in2 Strain Forces

o =200 - 6.06 x 107 ravin.

Flg. 5-26(g). Second trial stage (d), example 5-10.

¢ =(18 16_527000(6.06><10~5) _ (6.06x107°)(16.5)
;= (18)(16.5)°(7000){ S5 |1 | A1) (5-29)
C,,=725,700 Ib (3228 kN)
— _(12.5)(9.5)%(7000y $-98X107* | (6.06x107°)(5.5) ’
(1239.57(r000)| SEXI0Y) | e

C,,= — 178,060 Ib (- 792 kN)
C.=1725,700— 178,060= 547,640 Ib= 548 k (2436 kN)

From Fig. 5-26(g) find strain in prestressing steel

s =6.35% 1072 +0.909x 10 *=7.26x10 3

From Fig. 5-25 we determine the steel stress, fp., comesponding to this strain to be 200
ksi (1379N/mm?) and 4,, =2.75 in.? (1774 mm®) is known, thus

T=(2.75)(200) = 550 k (2,225 kN) = 548 k (2436 kN)=C,




168  Analysis of Sections for Flexure -

Referring to Fig. 5-26(g) and using expression (5-30) from Fig. 5-21(c) to locate
resultant C, forces: ’ : :
(5-30)

‘ Beg—3Ipe ' ' i
= c[ 1250 s ] measured from neutral axis

S 165 (8)(248%X 10" — (3)(606><10“5)(165) _=m‘8m_'(274m)
(12)(248x10'3) (4)(606><10‘5)(165) ‘

2,9 5[ (8)(2.48% 107%) = (3)(6.06X 10 ~*)(5.5) ]=6_25m‘ (155 ma)
(12)(2.48 10 7*) — (4)(6.06 X 10~9)(9.5) : -
. Summing moments about the tension steel location
. M=C,(15+%)~C(15+%2)
= (725.7)(15+10.8) = (178.1)(15+6.25)
M= 14,940 in -k (1,688 kKN —m) at $=6.06 % 1073

(&) With top fiber strain=0.002 the solution is carried out as above. The results are

. ¢=101n. (254 m.m)—top fiber to neutral axis
C.=T =688 k (3060 kN)
f+=250ksi (1724 N /mm?)
AM=19,200 in k. (2170 kKN—m)
o=200%10-5 radfin.

(f) Withtop fiber strain=0.003 the solution wili be shown. This is the uitimate

moment corresponding to the limiting strain specified by the ACI Code. -
Try c=8 in. (2032 mm) with top fiber strain 0.003 as shown in Fig. 5 -26(h):

375% 10~5\| . (3.75%107°)(8)
Cvf‘”"*’z”"m}(w)[“ aﬁm]

C,,=T727,000 Ib (3234 kN) (5-29)
o 2 37.5%107%Y\i . (3-75%107°)(1) -
Cy=~ (125D (7000)( z.4sx10'3){] (3)(2.43>_<10"’)] _
(5-29)

C,=— 12,500 1b (—55.6 kN)
C,=727,000—12, 500 714,500 1b =715 k (3178 kN)
From Fig. 5-26{h) find strain in the prcstressmg steel
ps=0.35% 103 +8.81 X 1073=15.16 X 1073
From Fig. 5-25 we find the stress corresponding to this strain
fps=264 ksi (1820 N/mm®)
T=(215)(264) =726 k (3,229 kN) vs. C,=TIS k GIT8XN) .

vt nlcnsins b+

o S
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e —] - 005
C
—L \ C‘ 8 Ccz ral
1 ' o - S
=1 RSS2 %2
™~ s
i o
A F 8 v -4 T
635x 102 & =B81x107°
Aps =275 in" X
Strain Forces
. o= g«‘%—‘- =37.5 % 107° rad/in,
Flg. §-26(h. Stage (f), example 5-10.
This is acceptable within 1.5%.
%, =g BH2.48x10 =3} (3)(37.5% 10 ~5)(8) |
| (12)(2.4810 ")~ (4)(37.5x 10 ~*)(8) |
¥, =4.86in. (123.4 mm) (5-30)
2, =] (DEAEX 10-3)~(3)(37.5% 10 -5 )(1) |
| (12)(2.48X10 ~%)— (4)(37.5x 10~ )(1)
%, =0.66 in. (16.8 mm) (5-30)
T | T i T
20000 |- (el -{E"—‘""
= [.003 = 0.0035
B & = 0.002 f, = 264 ksi fs = 267 ksi
i f,=750ksi
£ 15000 |~ 000
1 ¢, = 0.00 18" N
= £ = 200 ksi i —
E 10000 -
E — ]
S . = 7000 psi . A =373 in.
({!ormal weigi:ﬂ Ap =270t syzgr 387 ;‘ =_58,QDC! in;,'q
oo f:.,,, _ 282 ksi . = 3272 in.
4'f="r 17” s N
2 | | | 1 : LI?_}J
4 5
5 a +5 +10 +16 +20 +25 +30 +35 +40 +45

Curvature—¢ x 1072 rad/in,
Fig. 5-27. Moment-curvature results, example 5-10.
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Summing moments about the tension steel:
=(727)(23.5+4.86) — (12.5)(23.5+0.66)

=20,320in.-k (2296 kN —m) at $=37.5x 1073
Summary of results for example 5-10 (plotted Fig. 5-27):

Stage Moment (in.-k) Curvature (rad/in.) Steel Stress (ksi)

(a) 0 -2.11x1073 160
(&) 12,120 _ +2.00x107° 175
(¢) 12,763 : +2.23%1073 176
(d) 14,940 +6.06x107° 200
(e) 19,200 +200%x 1071 250
N 20,320 +37.5% 1073 264

The use of the actual test curve results in M’ =20,320 in.-k (2,296 kN —m) as
the ultimate moment in example 5-10. We must make two observations in order
to compare this result with the ACI Code M, for this same section in example
5-8. F1rst the estimate in example 5-8 was made with f,=270 ksi (1862
© N/mm?), the guaranteed strength rather than };,,,~—-282 ksi (1944 N/mm?), the
actual strength in example 5-10 (Fig. 5-25, stress-strain curve). Second, the M, in
example 5-8 was that for ultimate design moment under the ACI Code, Mu=
$pM =0.9M'. We can make corrections for both faclors and then compare M,
values.

We will estimate that the ultunate moment js increased in proportion to f,, for
example 5-10. Making this correction we have

270
282
M, =(0.9)(19,460)= 17,510 in.-k {1979 kN +m) vs. _ 17,220 in.-k (1944 kN —m)
{example 5-10) {example 5-8)

M= ( )(20 320) = 19,460 in.-k (2199 kN —m)

This excellent agreement indicates that the ACI Code estimate is certamly
adequate for analysis when performing strength design.
The moment-curvature analysis allows the total range of performance to be

examined, and the last point on Fig. 5-27 is the ultimate moment. We will find
this total curve useful later in making estimates of ultimate deflection. It is
generally true, however, that the load-deflection curve for a beamt will have the

same form as the M —¢ curve. Thus, the curve of Fig. 5-27 indicates ductile
behavior which we want in structural design. The curvature at the ultimate
moment is much larger than that at'cracking, and most designs of prestressed
concrete beams limit stress at service load to keep the beam uncracked.
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Another observation from the moment vs. curvature curve of Fig. 5-27 is that
the ratio of ultimate moment to cracking moment is 1.59. The ACI Code
requires that this ratio be at least 1.2 to insure that a2 beam will not bave the
possibility of collapse at the instant of cracking. Increase in strength after
cracking as observed in Fig. 5-27 is the behavior we desire in the design of
prestressed concrete beams.

The versatility and reliability of the moment-curvature analysis are apparent
in the observed test results shown compared to calculated response shown
Fig. 5-28. Note that this curve is for a member with both prestressed strands and’
unstressed reinforcing bars. The procedure for finding moment and correspond-
ing curvature for points defining the M vs. ¢ curve for this beam would be done
in the step-by-step manner described in example 5-10.

The only special consideration here which was not a part of the previous
example is illustrated by Fig. 5-29, which shows the internal forces. Note that
the two types of steel are handled separately, and the difference in their strain
histories is taken into account in the analysis. The force T, in the prestressed

_ strands would be calculated from the area 4, for the strands and the stress for

the strand material which corresponds to the total strain (e, +¢,, +¢;), Fig.

Calculated

a0
-
]
ﬁ T
a
T 30 > pi2 pl2
1 w
: = e
:‘t‘; i—
2 204 |
f& = 7000 psi

o =3/8" ¢-250 k-7-wire strand

10 4 - Observed values
——ipee Calculated o =#5rebar f, =58 ks
fii = 1875 ksi
| | [ I | ] ] -
+0.5 -0.5 1.0 15 20 25 30

Midspan defiection (in.}

Flg. 5-28. Comparison of load-deflection observed (test) and caiculated (anaiysns
using M—¢ curve).
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Fig. 5-29. Forces acting for beam of Fig. 5-28,

5-29. The force T in the unstressed bars, 4., would be calculated from the area
A, and the stress for the reinforcing bar material which corresponds to the strain
€, Fig. 5-29. These two tension forces combine to form the total resultant T,
which must be equal to the total resultant compression C’, and the moment M’
would be M'=1"z=C(C"z.

- The compression force C in the concrete would be computed for an assumed
neutral axis position and top fiber strain, ¢, as was done in example 5-10. If the
neutral axis were in the web, this calculation might be done in two parts as
shown previously with C/ being the resultant compression force acting at a
distance X, above the neutral axis, Fig. 5-29. The compression steel reinforcing

bar, A, has a stress corresponding to €; from the material stress-strain curve;.

thus the force C; may be solved. The total compression C’ is the resultant of the
steel and concrete compressive forces, Fig. 5-29.

Fig. 5-28 shows the load-deflection response which has the same form as the
M~—¢ relationship for the cross section. The deflection for load levels after
cracking must be computed by utilizing the known moment diagram for the
simple beam together with the M —¢ relationship solved by analysts of the cross
section. Figure 5-30 shows the changing form of the distribution of curvature
along the span at various load levels. As load approaches ultimate, note that the
ultimate curvature, ¢, at midspan is much larger than the curvature at this
section at. cracking. As shown by the load-deflection curve of Fig. 5-28, the
deflection at ultimate is much larger than at cracking. The deflection is calcu-

lated from the distribution of curvature along the span, shown in Fig. 5-30 as the -

¢ diagram. We must sum the moment about 4 of area under the diagram
between A and B (shaded in Fig. 5-30) to obtain the deflection at B. Note that
this calculation would reflect the large contribution to deflection which results
from the large curvatures which develop in the middle portion of the span with
flexural cracking. The end regions of the beam remain uncracked in flexure (Fig.
5-30) since the moment is less than the cracking moment in these regions, and

R S A R BT
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€
P2 pi2 we {beam v;eight?
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it J’ = € Curvature, ¢ .

Flg. 5-30. Moment and curvature at various load levels.

they contribute insignificantly to the deflection after extensive cracking has
developed. '

More will be said about deflections in Chapter 8 but this tie between
curvature along the span and the resulting deflection should be thought of as a
part of analysis for flexure. As discussed here, the flexural behavior of a simple
beam with bonded reinforcement may be analyzed for the whoie range of
apPlied load. This analysis may be coded for the computer, but only a few
points from hand calculation can give reasonable accuracy. Normally, we want
the character of the response and not an exact prediction of ultimate deflection.

5-8 Ultimate Moment—Unbonded Beams

An accurate calculation for the ultimate strength of unbonded beams is more
difficult than for that of bonded ones, because the stress in the steel at rupture
of the beam cannot be closely computed. Also there have not been sufficient
data on the ultimate strength of unbonded beams to establish definitely a
reliable method of computation. It is agreed, however, that unbonded beams are
weaker than the corresponding bonded omes in their ultimate strength, the
difference being placed at 10-30%.

Explanations can be offered for the lower strength of unbonded beams. First,
since the tendon is free 1o slip, the strain in a tendon is more or less equalized



174 Analysis of Sections for Flexure

along its length,-and the strain at the critical section is lessened. Hence the stress
in the tendon is increased only slowly so that, when the crushing strain has been
reached in the concrete, stress in the steel is often far below its ultimate strength.
When there are no cracks in the beam, stress in steel can be computed as in
solution 2, example 5-6. As soon as part of the beam cracks or is stretched into
the plastic range, the stress cannot be conveniently calculated. For the purpose
of design, however, it may be possible to estimate the stress in' the steel at the
rupture of the beam and to compute the corresponding lever arm so as to
approximate the ultimate resisting moment. Until further test data are available,
such estimation may often err by 10~ 15%. Fortunately, unbonded beams are not
often used where ultimate strength is a controlling factor, and they are generally
designed for the working loads by the elastic theory rather than for the ultimate
load. ' - :

Another reason for the lower ultimate strength of unbonded beams is the
appearance of a few large cracks in the concrete instead of many small ones well
distributed. Such wide cracks tend to concentrate the strains in the concrete at
these sections, thus resulting in early failure. _

Tests prove that the ultimate strength of unbonded beams can be materially
increased by the addition of nonprestressed stéel. Such increase is attributed to
the resistance of the monprestressed steel itself as well as to its effect in
distributing and limiting the cracks in the concrete. This will be discussed in
Chapter 11. The ACI Code requires minimum amounts of bonded reinforcement
to assure that cracking will be distributed along the span rather than allowing
only one or two cracks in the unbonded member at ultimate. _

A general formula for f,, the stress in steel at ultimate load, in an unbonded
beam is a

fos=fet AL

where f,, is the effective prestress in the steel, and Af, is the additional stress in
the steel produced as a result of beam bending up to the ultimate load. Tests at
the University of Illinois (Fig. 117, reference 6) showed Af, varying from about
10,000 to 80,000 psi (68.95-551.6 N/mm?); those at the Portland- Cement
Association showed A f, between 40,000 and 60,000 psi (275.8 and 413.7 N /mm?®)
(p. 615, reference 5). Limited tests at the University of California indicated A,
varying from 30,000 psi to 80,000 psi (206.85-551.6 N/mm?’), with the higter
values of Af, occurring for the curved tendons, where frictional force probably
restricted the free slipping of the wires, and for the beams which had a sizable
amount of nonprestressed steel. Test results from simple and continuous beams
at the University of Texas at Austin and the University of Washington show
similar results. o

Tests on simple and continuous beams by Mattock'"'* at the University of
Washington resulted in the correlation of fs as shown in Fig. 5-31. The
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Fig. 5-31. Posttensioned beams without bond, increase in tendon stress during load-
ing to ultimate.™
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recommended equation for unbonded members which resulted from beam tests
was as follows: .

_ L4f;
_f};:'—f_‘"'i' 10,000'1"!—@ (5-31)

F

. T‘he equation was slightly modified by ACI-ASCE Committee #423 to make
it slightly more conservative, giving the following ACI Code equation;
Los=f,,+ 10,000+ —é-——
100;9,
where : . LeShy

fs < oo+ 60,000

(532)

In general, simple beams with unbonded tendons wouid be conservatively
analyzed by this expression for L5~ Shallow slabs (span/depth=43) have been
observed to develop slightly less than this %4> but the error is not significant. The
geometry of the tendon Jayout enters into the elongation which will develop in

the unbonded tendon. Almost no increase above S will result until after
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cracking. The Af, increase will develop as deflections become large, and equa-
tion 5-30 is adequate for analysis requiring the ultimate steel stress.

The analysis for ultirnate moment M’ for an unbonded beam would proceed
as outlined above using thé simplified ACI Code equation (5-32) for f..
minimum bonded reinforcement which must be included for beams and one- way
. slabs to distribute cracking and also contribute to strength is given by the
i following expression: :

A, =0.0044 | (5-33)

where
A= area of that part of the cross section between
the flexural tension face and the center of
gravity of the cross section

; The steel which supplies this A, acts at the specified yield point for the bars
- supplied, but not over 60,000 psi (414 N/mm?) may be used. Tests show that
these bars will yield as assumed in ‘analysis. Ample ductility is assured by the
limitation on « as required by the ACI Code, which assures that beams wili be

under-reinforced.

" EXAMPLE 5»11

! Assume the beam of Example 5-8 is provided with unbonded tendons but is otherwise the

| same as shown in Fig. 5-17. How much bonded reinforcement must be provided to satisfy
AC] Code. requ:remenrs",What is the estimated ultimate moment capacity of the section
with A, =275 in.? and minimum bonded reinforcement supplied with deformed bars
having [, =60 ksi? Assume f,, =160 ksi for the unbonded tendons, and f; o =230 ksi;

K =7000 psi as before. (A,, =1.774 mm?, f, r-=414 N/mm?, f,, = 1,103 N/mm s Jop = 1,586

- m?, andf, =4s N/mm?). '

- o o g, =0.00485 (same as example 5-8)
. for analysis of the beam use equation (5-31_)'hcre'rather than the ACI Codé equation
(5-32) which is used for design.

1 P
emht 10,000+ 70 f
P

(1.4)(7000) -
(100)(0.00485) -

U f,= 160,000+ 10,000-+20,200= 190,200 psi (1311 N /mun?) <;;,

'=1600004-10000+

- m230,000 psi(1586 N/mm?)
| A£=10,000+20,200=30,200 psi (208 N/mi) < 60,000 psi (414 N /mm2)
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Bonded reinforcement required by ACI Code:
A,=0.0044 B (5-33)

A="half of cross section area since
peutral axis is at middepth of sym-
metrical I-shaped beam

A=(18~5.5)(7)+(55)(18)=87.5+99=186.5 in.? (120 10° mm?)}
A,=(0.004}(186.5)=0.75 in.? (480 mm?*) - (5-33)
Use four #4 bars—A,=0.80 in.2 (516 mm?)
For this problem assume this steel is placed 2 in. (50.8 mm) above bottom of section as
shown in Fig. 5-32. .o
Ty =f, A, =(190.2)(2.75) =523 k (2326 kN)
I =fA4,=(60.0)(0.80) =48 k (213.5 XN)

T'(total) = 523+ 48 =571 k (2540 kN)

(523)(4 g;r (48)(2) =429 in. (109 mm)
T'=C"=571 k=(0.85)( £/ }(6)(a)
571

a= W =533 in. (135 mm)

z= 36-—5%-4 29=29.04 in. {738 mm)

=T"z=(571)(29.04) = 16,580 in.-k (1.874 kN —m)

The ultimate moment is less than M’ =19,100 in.-k for the bonded beam of example
5-8 as anticipated. If the ACl Code were followed, the steel stress for the unbonded
tendon from equation-5-30 is a little less ( Jps==184 ksi}, and this resuls in slightly smaller
M’"=16,130 in-k, In design this would be further reduced by the strength reduction

e —— —
V222 1

35" 5%
4
S
s} | S e T

—— e i

T
A, =080in2

Apy % 2.75in2 & 2

Flg. 5-32. Example 5-11.
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factor ¢==0.9. This beam would have M, =(0.9) (16,130)= 14,520 in.-k following the ACI
Code for design. Additional A, or A, could be used to increase this to the M, =17,200
in.-k found for the bonded beam in example 5-8 if the design loads required this strength.

$-9 Composite Sections

In prestressed-concrete construction it is often advantageous to precast part of a
section (either by pretensioning for by posttensioning), lift it to position, and

cast the remainder of the section in place. The precast and cast-in-place portions

thus act together (with stirrups if necessary) and form a composite section.
Members of composite sections laid side by side may be eventually connected
together by transverse prestressing, while such members laid end to end may be
further prestressed longitudinally in order to attain comtinuity. These points wiil
be discussed in later chapters. We shall describe here the basic method of
analysis commonly employed for such composite sections.

Figure 5-33 shows a composite section at the midspan of simply supported
beam, whose lower stem is precast and lifted into position with the top slab cast .

in place resting directly on the stem. If no temporary intermediate support is
furnished, the weight of both the slab and the stem will be carried by the stem
_acting alone. After the slab concrete has hardened, the composite section will

carry any live or dead load that may be added on to it.
In the same figure, stress distributions are shown for vanous stages of loading.

These are discussed as follows.

(a) Owning to the initial prestress and the weight of the stem, .thcr'c will be
heavy compression in the lower fibers and possibly some small tension in
the top fibers. The tensile force T in the steel and the compressive force C
in the concrete form a resisting couple with a small lever arm between

them.
(b) After losses have taken place in the" prestress, the effective prestress

together with the weight ‘of the stem will result in a slightly lower compres- -

sion in the bottom fibers and some small tension or compression in the top
fibers. The C-T couple will act with a slightly greater lever arm. :

‘Cas!-in-glace
7 llange

Beam (@) ' (b}
Sect:on Fot Wy Fr W LA S BT LS LA R R R A R

Fig. 5-33. Stress distribution for a composite section,
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{¢) - Owning to the addition of the slab, i1ts weight produbes additional moment
and stress as shown. _

(d) Owning to the effective prestress plus the weight of the stem and slab, we
can add (b) to (¢) and a somewhat smaller compression is found to exist at
the bottom fibers and some compression at the top fibers. The lever arm
for the C-T couple further increases. .

{(e) Stresses resulting from live load moment are shown, the moment bein
resisted by the composite section.

(f) Adding (d) to (&), we have stress block as in ( f), with slight tension or
compression in the bottom fibers, but with high compressive stresses in the
top fibers of the stem and the slab. The couple T and C now acts with an
appreciable lever arm. '

The above shows the stress distribution under working load conditions. For
overloads, the stress distributions are shown in Fig. 5-34. For the load producing
first cracks, it is assumed that the lower fibers reach a tensile stress equal to the
modulus of rupture. This is obtained when the live-load stresses shown in Fig.
5-33(e) are big enough to result in a stress distribution as shown in Fig. 5-34(a),
computed by the elastic theory.

Under the ultimate moment, however, the elastic theory is no longer valid. As
an approximation, the ultimate resisting moraent is best represented by a tensile
force 7" computed by the ACI equation for estimating f,, acting with a
compressive force C’ supplied by the concrete. If failure in bond and shear is
prevented, the ultimate strength of a composite section can be estimated by a
method similar to that previously described for a simple prestressed section. It
must be emphasized, however, that a composite section may fail in horizontal
shear between the precast and the cast-in-place portions, unless proper stirrups
or connectors are provided. '

The above describes a simple case of composite action; there are many
possible variations. First, the precast portion may be supported on falsework
while the casi-in-place slab is being poured or placed, the falsework being
removed only after the hardening of the slab concrete. This will permit the entire
composite section to resist the moment produced by the weight of the slab. It is

C'«-—E______
%

%——* T B i
Composite Sk (a) (o)

Beam Saction Ultimate Load
Fig. 5-34. Stress distributions for cracking and uitimate loads.

Cracking Load
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.Fig. 5-35. Stress distribution for a special composite section.

.als_o -possibic‘to prop up the falsework so that the stem will carry practically no

moment by itself. Then the moments due to the weight of the stem will also be
carried by the comiposite section. Since the composite section has a greater
section modulus than the stem alone, the resulting stresses will be more favora-

_ ble. The desirability of such methods depends on the cost of falsework for the

particular structure. _
Another variation happens when the cast-in-place slab overlaps with the
precast portion as shown in Fig. 5-35. Here, the stresses in the concrete between
levels M and N will follow two different variations, as shown in (¢); one for the
ﬁr:ca'st and another for the cast-in-place portion. At the ultimate range, how-
ever, they will all-be stressed to the maximum and the difference will be hardly
noticeable. Then the section can be analyzed as if it were a simple one, Fig.
5-35(d). . , . . ' ' :
~If the precast portion is only a small part of the whole section; it may be
prestressed for direct tension only, of with a slight eccentricity of prestress. One
method used in England (known as the Udall system), Fig. 5-36, employs both
prestressed and nonprestressed wires in the groove of precast blocks, with the

major top portion cast in place so as to be well borided to the wires. For such a,
construction, high tension may exist in the bottom fibers of the cast-in-place-

—
Cast-in- E CE . c
~ place _ Cast-in-
’ Precast place
Precast portion oction |
' S e
High tension/ ‘
te) 4 () - ()
'Composite- F ) we + wy F¥ow, + wy Ulhmgte .
Section Loa

Fig. 5-36. S'tréss distribution for a special (Udall) composite section.
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portion (¢), resulting in cracks under working load. But the ultimaté strength in
flexure is not affected by the tensile stresses (d).

In other instances, the section is prestressed in two stages. Only part of the
tendons are presiressed first in order to hold the stem together. The remaining
tendons are prestressed after the slab has been cast and has hardened; otherwise
the tendons may be partially prestressed first, to be fully prestressed later. If the
process of fetensioning is not too costly, this may resuit in an economical design,
The stress distribution must be studied for the various stages, but the allowable
Stresses need not be the same as for an ordinary simple section. In certain
instances, considerable tension may be permitted without adversely infl uencing
performance of the member.

When differential shrinkage and creep between the precast and the in-place
portions are considered, high stresses are obtained. The usual practice of
neglecting such stresses can be justified on the grounds that the ultimate strength
of the section is seldom affected by these stresses. However, the elastic behavior,
such as camber and deflection, may be seriously modified. In practice, the
in-place portion will have more shrinkage, since shrinkage of the precast portion
has mostly taken place; but the precast portion will have more creep because it
is usually under higher compression due to prestress. If the higher shrinkage in
the in-place portion is just about balanced by the higher creep in the precast
portion, it would be possible to neglect both. It often happens, however, that the

shrinkage of the in-place portion is more serious, especially when the concrete

has a high water-cement ratio. In this case the in-place concrete may crack, or
the entire composite member may be forced to deflect downward.

EXAMPLE 5-12

The midspan section of a composite beam is shown in Fig. 5-37. The precast stem 12 in.
by 36 in. (305 m by 915 mm) deep is posttensioned with an initial force of 550 kips
(2446 kN), Fig. 5-37(a). The effective prestress after losses is taken as 480 kips (2135 kIN).
Moment due to the weight of that precast section is 200 k-ft (271.2 kN-m} at midspan.
Alfter it is erected in place, the top slab of 6 in. by 36 in. (152 mm by 915 mm) wide is to
be cast in place producing a moment of 100 k-ft (135.6 kMN-m). After the slab concrete

—l00}  —1010]
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.
L BT =550k e g80h  Fl g3
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Flg. 5-37. Example 5-12.
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Fig. 5-40. Example 5-15.

EXAMPLE 5-15

Assuming the beam in example 5-15 is picked up suddenly at midspan so that an impact

factor of 100% is considered, compute the maximum stress: f; = 5000 psi (34 N /mm*).
Solution The external moment will be doubled as a result of 100% impact, thus,

- M=2x2.061in.=4.12 in. (104.6 mm)

or located 2,88 in. (73.2 mm) above the bottom fiber. A triangular stress Block will yield a
high maximum stress of 2 X 350,000/(8.64 % 12)=6750 psi (46.54 N/mm?). Assuming a
rectangular stress block, we bave, Fig. 5-40,

%%% = 5050 psi (34.82 N/mm?) > 0.85 X 5,000=4250 psi (29.30 N/mm’)
Thus the beam would fail when picked up suddenly by a midspan pickup point. Note
that trapezoidal stress block, using Jensen’s theory, will give a2 more accurate answer,"
but will ot be attempted bere as it is clear from the calculation above that the midspan
pickup point exceeds the stress which the conperete could carry with f/=5000 psi (34
N/mm?).

We would revise the pickup amrangement to use two points equidistant from midspan
to avoid any possibility of damage to the beam during handling. .

The taree foregoing examples illustrate stress distributions in beams at transfer before
cracking, after cracking, and at ultimate. The permissible stress values both in tension
and in compression will depend on many factors, such as the shape of the section,
the magnitude and location of the prestress, the chances of misplacement of the tendons,
the probability of adverse moments, and the serious ness of cracking. Values specified in
the ACI Code may be used as a reference.
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