Example 11.7a

Find an spectrum of M where

(a).
$$M = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -7 & 1 \\ 2 & 1 & 7 \end{pmatrix}$$
; (c). $M = \begin{pmatrix} -1 & 0 & 7 \\ -8 & 0 & -1 \\ -5 & 4 & -6 \end{pmatrix}$.

Solution(a):

Let 'M' have an eigenvalue λ .

 $= \mathbf{M} - \lambda \mathbf{I}_{n} = \begin{pmatrix} \mathbf{1} - \lambda & \mathbf{2} & \mathbf{0} \\ \mathbf{2} & -\mathbf{7} - \lambda & \mathbf{1} \\ \mathbf{2} & \mathbf{1} & \mathbf{7} - \lambda \end{pmatrix}.$ $= |\mathbf{M} - \lambda \mathbf{I}_{n}| = -\mathbf{74} + 54\lambda + \lambda^{2} - \lambda^{3}.$ characteristic matrix \Rightarrow characteristic polynomial \Rightarrow characteristic equation : $\lambda^3 - \lambda^2 - 54\lambda + 74 = 0$. \Rightarrow \Rightarrow eigenvalues : $\lambda \approx 1.384, 7.123, -7.51$ [programmed calculator] an spectrum : { 1.384, 7.123, -7.51 }. \Rightarrow Ο Solution(b): Let 'M' have eigenvalue λ . characteristic matrix = $M - \lambda I_n = \begin{pmatrix} -1 - \lambda & 0 & 7 \\ -8 & -\lambda & -1 \\ -5 & 4 & -6 - \lambda \end{pmatrix}$. characteristic polynomial = $|M - \lambda I_n| = -228 - 45\lambda - 7\lambda^2 - \lambda^3$. \Rightarrow

- \Rightarrow
- characteristic equation : $\lambda^3 + 7 \lambda^2 + 45 \lambda + 228 = 0$. \Rightarrow
- eigenvalues : $\lambda \approx -5.9118, -0.544 \pm 6.18634i$ [programmed calculator] \Rightarrow an spectrum : $\{-5.9118, -0.5443 + 6.18634i, -0.544 - 6.18634i\}$. \Rightarrow Ο

SO

- 2. A singular matrix must have 0 as the only eigenvalue: True or False ?
- 3. A nonsingular matrix must not have 0 as an eigenvalue: True or False ?

4. |M| = -5 $\lambda \neq 0$: True or False ? \Rightarrow

7. *M* has all nonzero characteristic roots. Is *M* nonsingular?

- 8. M is diagonal and $diag(M) = \{-4, 3, 0, -1\}$. What is the spectrum of M?
- 10. M is scalar and $diag(M) = \{1\}$. What is the spectrum of M?
- 14. M has a latent root 5. What will be a characteristic root of M^4 : 5^4 or 4^5 ?
- 15. If M is real & 2×2 , then λ is also real: True or False ?

1. Find all eigenvalues of the following matrices:

 $\begin{pmatrix} 3\\5 \end{pmatrix}$ (b). $\begin{pmatrix} 1&2\\3&2 \end{pmatrix}$ (c). $\binom{3}{1}$ $\binom{-1}{1}$ (d). $\begin{pmatrix} 0 & 4 \\ -5 & 0 \end{pmatrix}$ (e). $\begin{bmatrix} -4 & 3 \\ 2 & -5 \end{bmatrix}$ (f). $\begin{pmatrix} 1 & 4 \\ 9 & 1 \end{pmatrix}$. (a). $\binom{4}{2}$ [You are asked to answer in *real numbers* only.] ans: (a). $\lambda = 2, \lambda = 7$, (b). $\lambda = 4, \lambda = -1$, (c). $\lambda = 2,2$, (f). $\lambda = -5, \lambda = 7$, [2. A matrix *M* is mentioned below. Find : (ii). an spectrum of M^T , M^2 , M^5 ; (i). an spectrum of M; (iii). which matrices have inverses [answer with the help of eigenvalue]; (iv). an spectrum of (if possible) M^{-1} , M^{-5} ; 0) (c). -5 0 (b). 9 5 (d). 0 2 (a). $\begin{array}{c}
2 & 1 \\
0 & 4 \\
-1 & 2 \\
2 & 3 \\
0 & 1 \\
-1 & 0 \\
\end{array}$ $\begin{pmatrix} -1 \\ 2 \\ -2 \\ -1 \\ 3 \\ 2 \end{pmatrix}$ -1 8 3 (f). (g). 1 (h). 0 (e). 0 1 1-i5 5 1 0 (i). (j). (k). (1). 0 3

Answers: [only an spectrum of M is mentioned. Yes/Not refers to the case of invertibility.] (e). { 0, $\pm 6.48i$ }, Not; (f). {-2.023, 4.5115 \pm 0.949 i }, Yes; (g). {4.0514, -1.5341, 0.4827 }, Yes; (h). { 0, -0.62, 9.62 }, Not;

3. A matrix M is mentioned below.

Find all that mentioned in the sample of the PPP:

(a).
$$M = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
 ans: $\lambda = 2,2; \lambda = 6$
(b). $M = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$ ans: $\lambda = 0,0 \lambda = 5$
(c). $M = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ ans: $\lambda = 4, \lambda = 1 \lambda = -1, \lambda = -1, \lambda = -1, \lambda = -2, \lambda = 1, \lambda = -1, \lambda = -$