
Scikit-Learn

 i

Scikit-Learn

 ii

About the Tutorial

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python.

It provides a selection of efficient tools for machine learning and statistical modeling

including classification, regression, clustering and dimensionality reduction via a

consistence interface in Python. This library, which is largely written in Python, is built

upon NumPy, SciPy and Matplotlib.

Audience

This tutorial will be useful for graduates, postgraduates, and research students who either

have an interest in this Machine Learning subject or have this subject as a part of their

curriculum. The reader can be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about Machine Learning. He/she should also be

aware about Python, NumPy, Scipy, Matplotlib. If you are new to any of these concepts,

we recommend you take up tutorials concerning these topics, before you dig further into

this tutorial.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Scikit-Learn

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Scikit-Learn — Introduction .. 1

What is Scikit-Learn (Sklearn)? .. 1

Origin of Scikit-Learn ... 1

Community & contributors.. 1

Prerequisites .. 2

Installation ... 2

Features ... 3

2. Scikit-Learn ― Modelling Process ... 4

Dataset Loading ... 4

Splitting the dataset .. 6

Train the Model ... 7

Model Persistence ... 8

Preprocessing the Data ... 9

Binarisation .. 9

Mean Removal ... 9

Scaling .. 10

Normalisation .. 11

3. Scikit-Learn — Data Representation ... 13

Data as table .. 13

Data as Feature Matrix .. 13

Data as Target array .. 14

Scikit-Learn

 iv

4. Scikit-Learn ― Estimator API ... 16

What is Estimator API? .. 16

Use of Estimator API .. 16

Guiding Principles .. 17

Steps in using Estimator API .. 18

Supervised Learning Example .. 18

Unsupervised Learning Example ... 23

5. Scikit-Learn — Conventions .. 26

Purpose of Conventions .. 26

Various Conventions .. 26

6. Scikit-Learn ― Linear Modeling .. 31

Linear Regression .. 32

Logistic Regression .. 34

Ridge Regression ... 37

Bayesian Ridge Regression .. 40

LASSO (Least Absolute Shrinkage and Selection Operator)... 43

Multi-task LASSO ... 45

Elastic-Net.. 47

MultiTaskElasticNet ... 51

7. Scikit-Learn — Extended Linear Modeling ... 54

Introduction to Polynomial Features ... 54

Streamlining using Pipeline tools .. 55

8. Scikit-Learn ― Stochastic Gradient Descent .. 57

SGD Classifier ... 57

SGD Regressor ... 61

Pros and Cons of SGD .. 63

9. Scikit-Learn — Support Vector Machines (SVMs) .. 64

Introduction ... 64

Scikit-Learn

 v

Classification of SVM ... 65

SVC ... 65

NuSVC .. 69

LinearSVC ... 70

Regression with SVM ... 71

SVR ... 71

NuSVR .. 72

LinearSVR ... 73

10. Scikit-Learn ― Anomaly Detection .. 75

Methods .. 75

Sklearn algorithms for Outlier Detection .. 76

Fitting an elliptic envelop .. 76

Isolation Forest .. 78

Local Outlier Factor ... 80

One-Class SVM... 82

11. Scikit-Learn — K-Nearest Neighbors (KNN) ... 84

Types of algorithms ... 84

Choosing Nearest Neighbors Algorithm .. 85

12. Scikit-Learn ― KNN Learning ... 87

Unsupervised KNN Learning .. 87

Supervised KNN Learning .. 91

KNeighborsClassifier .. 91

RadiusNeighborsClassifier ... 97

Nearest Neighbor Regressor ... 99

KNeighborsRegressor .. 99

RadiusNeighborsRegressor .. 101

13. Scikit-Learn ― Classification with Naïve Bayes ... 104

Gaussian Naïve Bayes .. 105

Scikit-Learn

 vi

Multinomial Naïve Bayes ... 107

Bernoulli Naïve Bayes .. 108

Complement Naïve Bayes .. 110

Building Naïve Bayes Classifier .. 112

14. Scikit-Learn ― Decision Trees ... 114

Decision Tree Algorithms... 114

Classification with decision trees .. 115

Regression with decision trees .. 118

15. Scikit-Learn ― Randomized Decision Trees ... 120

Randomized Decision Tree algorithms .. 120

The Random Forest algorithm ... 120

Regression with Random Forest .. 122

Extra-Tree Methods ... 123

16. Scikit-Learn ― Boosting Methods ... 126

AdaBoost ... 126

Gradient Tree Boosting ... 128

17. Scikit-Learn ― Clustering Methods ... 131

KMeans .. 131

Affinity Propagation .. 131

Mean Shift ... 131

Spectral Clustering ... 131

Hierarchical Clustering... 132

DBSCAN ... 132

OPTICS ... 132

BIRCH ... 132

Comparing Clustering Algorithms .. 133

18. Scikit-Learn ― Clustering Performance Evaluation ... 137

Adjusted Rand Index .. 137

Scikit-Learn

 vii

Mutual Information Based Score ... 137

Fowlkes-Mallows Score ... 138

Silhouette Coefficient .. 139

Contingency Matrix ... 140

19. Scikit-Learn ― Dimensionality Reduction using PCA ... 141

Exact PCA ... 141

Incremental PCA .. 142

Kernel PCA ... 143

PCA using randomized SVD ... 143

Scikit-Learn

 1

In this chapter, we will understand what is Scikit-Learn or Sklearn, origin of Scikit-Learn

and some other related topics such as communities and contributors responsible for

development and maintenance of Scikit-Learn, its prerequisites, installation and its

features.

What is Scikit-Learn (Sklearn)?

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python.

It provides a selection of efficient tools for machine learning and statistical modeling

including classification, regression, clustering and dimensionality reduction via a

consistence interface in Python. This library, which is largely written in Python, is built

upon NumPy, SciPy and Matplotlib.

Origin of Scikit-Learn

It was originally called scikits.learn and was initially developed by David Cournapeau as

a Google summer of code project in 2007. Later, in 2010, Fabian Pedregosa, Gael

Varoquaux, Alexandre Gramfort, and Vincent Michel, from FIRCA (French Institute for

Research in Computer Science and Automation), took this project at another level and

made the first public release (v0.1 beta) on 1st Feb. 2010.

Let’s have a look at its version history:

 May 2019: scikit-learn 0.21.0

 March 2019: scikit-learn 0.20.3

 December 2018: scikit-learn 0.20.2

 November 2018: scikit-learn 0.20.1

 September 2018: scikit-learn 0.20.0

 July 2018: scikit-learn 0.19.2

 July 2017: scikit-learn 0.19.0

 September 2016. scikit-learn 0.18.0

 November 2015. scikit-learn 0.17.0

 March 2015. scikit-learn 0.16.0

 July 2014. scikit-learn 0.15.0

 August 2013. scikit-learn 0.14

Community & contributors

Scikit-learn is a community effort and anyone can contribute to it. This project is hosted

on https://github.com/scikit-learn/scikit-learn. Following people are currently the core

contributors to Sklearn’s development and maintenance:

1. Scikit-Learn — Introduction

https://github.com/scikit-learn/scikit-learn

Scikit-Learn

 2

 Joris Van den Bossche (Data Scientist)

 Thomas J Fan (Software Developer)

 Alexandre Gramfort (Machine Learning Researcher)

 Olivier Grisel (Machine Learning Expert)

 Nicolas Hug (Associate Research Scientist)

 Andreas Mueller (Machine Learning Scientist)

 Hanmin Qin (Software Engineer)

 Adrin Jalali (Open Source Developer)

 Nelle Varoquaux (Data Science Researcher)

 Roman Yurchak (Data Scientist)

Various organisations like Booking.com, JP Morgan, Evernote, Inria, AWeber, Spotify and

many more are using Sklearn.

Prerequisites

Before we start using scikit-learn latest release, we require the following:

 Python (>=3.5)

 NumPy (>= 1.11.0)

 Scipy (>= 0.17.0)

 Joblib (>= 0.11)

 Matplotlib (>= 1.5.1) is required for Sklearn plotting capabilities.

 Pandas (>= 0.18.0) is required for some of the scikit-learn examples using data

structure and analysis.

Installation

If you already installed NumPy and Scipy, following are the two easiest ways to install

scikit-learn:

Using pip

Following command can be used to install scikit-learn via pip:

pip install -U scikit-learn

Using conda

Following command can be used to install scikit-learn via conda:

conda install scikit-learn

On the other hand, if NumPy and Scipy is not yet installed on your Python workstation

then, you can install them by using either pip or conda.

Scikit-Learn

 3

Another option to use scikit-learn is to use Python distributions like Canopy and

Anaconda because they both ship the latest version of scikit-learn.

Features

Rather than focusing on loading, manipulating and summarising data, Scikit-learn library

is focused on modeling the data. Some of the most popular groups of models provided by

Sklearn are as follows:

Supervised Learning algorithms: Almost all the popular supervised learning

algorithms, like Linear Regression, Support Vector Machine (SVM), Decision Tree etc., are

the part of scikit-learn.

Unsupervised Learning algorithms: On the other hand, it also has all the popular

unsupervised learning algorithms from clustering, factor analysis, PCA (Principal

Component Analysis) to unsupervised neural networks.

Clustering: This model is used for grouping unlabeled data.

Cross Validation: It is used to check the accuracy of supervised models on unseen data.

Dimensionality Reduction: It is used for reducing the number of attributes in data which

can be further used for summarisation, visualisation and feature selection.

Ensemble methods: As name suggest, it is used for combining the predictions of multiple

supervised models.

Feature extraction: It is used to extract the features from data to define the attributes

in image and text data.

Feature selection: It is used to identify useful attributes to create supervised models.

Open Source: It is open source library and also commercially usable under BSD license.

Scikit-Learn

 4

This chapter deals with the modelling process involved in Sklearn. Let us understand about

the same in detail and begin with dataset loading.

Dataset Loading

A collection of data is called dataset. It is having the following two components:

Features: The variables of data are called its features. They are also known as predictors,

inputs or attributes.

 Feature matrix: It is the collection of features, in case there are more than one.

 Feature Names: It is the list of all the names of the features.

Response: It is the output variable that basically depends upon the feature variables.

They are also known as target, label or output.

 Response Vector: It is used to represent response column. Generally, we have

just one response column.

 Target Names: It represent the possible values taken by a response vector.

Scikit-learn have few example datasets like iris and digits for classification and the

Boston house prices for regression.

Following is an example to load iris dataset:

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data

y = iris.target

feature_names = iris.feature_names

target_names = iris.target_names

print("Feature names:", feature_names)

2. Scikit-Learn ― Modelling Process

Scikit-Learn

 5

print("Target names:", target_names)

print("\nFirst 10 rows of X:\n", X[:10])

Output

Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',

'petal width (cm)']

Target names: ['setosa' 'versicolor' 'virginica']

First 10 rows of X:

 [[5.1 3.5 1.4 0.2]

 [4.9 3. 1.4 0.2]

 [4.7 3.2 1.3 0.2]

 [4.6 3.1 1.5 0.2]

 [5. 3.6 1.4 0.2]

 [5.4 3.9 1.7 0.4]

 [4.6 3.4 1.4 0.3]

 [5. 3.4 1.5 0.2]

 [4.4 2.9 1.4 0.2]

 [4.9 3.1 1.5 0.1]]

Scikit-Learn

 6

Splitting the dataset

To check the accuracy of our model, we can split the dataset into two pieces-a training

set and a testing set. Use the training set to train the model and testing set to test the

model. After that, we can evaluate how well our model did.

The following example will split the data into 70:30 ratio, i.e. 70% data will be used as

training data and 30% will be used as testing data. The dataset is iris dataset as in above

example.

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1)

print(X_train.shape)

print(X_test.shape)

print(y_train.shape)

print(y_test.shape)

Output

(105, 4)

(45, 4)

(105,)

(45,)

Scikit-Learn

 7

As seen in the example above, it uses train_test_split() function of scikit-learn to split

the dataset. This function has the following arguments:

 X, y: Here, X is the feature matrix and y is the response vector, which need to

be split.

 test_size: This represents the ratio of test data to the total given data. As in the

above example, we are setting test_data = 0.3 for 150 rows of X. It will produce

test data of 150*0.3 = 45 rows.

 random_size: It is used to guarantee that the split will always be the same. This

is useful in the situations where you want reproducible results.

Train the Model

Next, we can use our dataset to train some prediction-model. As discussed, scikit-learn

has wide range of Machine Learning (ML) algorithms which have a consistent interface

for fitting, predicting accuracy, recall etc.

In the example below, we are going to use KNN (K nearest neighbors) classifier. Don’t go

into the details of KNN algorithms, as there will be a separate chapter for that. This

example is used to make you understand the implementation part only.

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,

random_state=1)

from sklearn.neighbors import KNeighborsClassifier

from sklearn import metrics

classifier_knn = KNeighborsClassifier(n_neighbors=3)

Scikit-Learn

 8

classifier_knn.fit(X_train, y_train)

y_pred = classifier_knn.predict(X_test)

Finding accuracy by comparing actual response values(y_test)with predicted

response value(y_pred)

print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

Providing sample data and the model will make prediction out of that data

sample = [[5, 5, 3, 2], [2, 4, 3, 5]]

preds = classifier_knn.predict(sample)

pred_species = [iris.target_names[p] for p in preds] print("Predictions:",

pred_species)

Output

Accuracy: 0.9833333333333333

Predictions: ['versicolor', 'virginica']

Model Persistence

Once you train the model, it is desirable that the model should be persist for future use so

that we do not need to retrain it again and again. It can be done with the help of dump

and load features of joblib package.

Consider the example below in which we will be saving the above trained model

(classifier_knn) for future use:

from sklearn.externals import joblib

joblib.dump(classifier_knn, 'iris_classifier_knn.joblib')

The above code will save the model into file named iris_classifier_knn.joblib. Now, the

object can be reloaded from the file with the help of following code:

joblib.load('iris_classifier_knn.joblib')

Scikit-Learn

 9

Preprocessing the Data

As we are dealing with lots of data and that data is in raw form, before inputting that data

to machine learning algorithms, we need to convert it into meaningful data. This process

is called preprocessing the data. Scikit-learn has package named preprocessing for this

purpose. The preprocessing package has the following techniques:

Binarisation

This preprocessing technique is used when we need to convert our numerical values into

Boolean values.

Example

import numpy as np

from sklearn import preprocessing

Input_data = np.array([2.1, -1.9, 5.5],

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

data_binarized = preprocessing.Binarizer(threshold=0.5).transform(input_data)

print("\nBinarized data:\n", data_binarized)

In the above example, we used threshold value = 0.5 and that is why, all the values

above 0.5 would be converted to 1, and all the values below 0.5 would be converted to 0.

Output

Binarized data:

 [[1. 0. 1.]

 [0. 1. 1.]

 [0. 0. 1.]

 [1. 1. 0.]]

Mean Removal

This technique is used to eliminate the mean from feature vector so that every feature

centered on zero.

Example

import numpy as np

from sklearn import preprocessing

Input_data = np.array([2.1, -1.9, 5.5],

Scikit-Learn

 10

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

#displaying the mean and the standard deviation of the input data

print("Mean =", input_data.mean(axis=0))

print("Stddeviation = ", input_data.std(axis=0))

#Removing the mean and the standard deviation of the input data

data_scaled = preprocessing.scale(input_data)

print("Mean_removed =", data_scaled.mean(axis=0))

print("Stddeviation_removed =", data_scaled.std(axis=0))

Output

Mean = [1.75 -1.275 2.2]

Stddeviation = [2.71431391 4.20022321 4.69414529]

Mean_removed = [1.11022302e-16 0.00000000e+00 0.00000000e+00]

Stddeviation_removed = [1. 1. 1.]

Scaling

We use this preprocessing technique for scaling the feature vectors. Scaling of feature

vectors is important, because the features should not be synthetically large or small.

Example

import numpy as np

from sklearn import preprocessing

Input_data = np.array([2.1, -1.9, 5.5],

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1))

data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)

Scikit-Learn

 11

print ("\nMin max scaled data:\n", data_scaled_minmax)

Output

Min max scaled data:

[[0.48648649 0.58252427 0.99122807]

[0. 1. 0.81578947]

[0.27027027 0. 1.]

[1. 0.99029126 0.]]

Normalisation

We use this preprocessing technique for modifying the feature vectors. Normalisation of

feature vectors is necessary so that the feature vectors can be measured at common scale.

There are two types of normalisation as follows:

L1 Normalisation

It is also called Least Absolute Deviations. It modifies the value in such a manner that the

sum of the absolute values remains always up to 1 in each row. Following example shows

the implementation of L1 normalisation on input data.

Example

import numpy as np

from sklearn import preprocessing

Input_data = np.array([2.1, -1.9, 5.5],

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')

print("\nL1 normalized data:\n", data_normalized_l1)

Output

L1 normalized data:

[[0.22105263 -0.2 0.57894737]

[-0.2027027 0.32432432 0.47297297]

[0.03571429 -0.56428571 0.4]

[0.42142857 0.16428571 -0.41428571]]

Scikit-Learn

 12

L2 Normalisation

Also called Least Squares. It modifies the value in such a manner that the sum of the

squares remains always up to 1 in each row. Following example shows the implementation

of L2 normalisation on input data.

Example

import numpy as np

from sklearn import preprocessing

Input_data = np.array([2.1, -1.9, 5.5],

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')

print("\nL1 normalized data:\n", data_normalized_l2)

Output

L2 normalized data:

[[0.33946114 -0.30713151 0.88906489]

[-0.33325106 0.53320169 0.7775858]

[0.05156558 -0.81473612 0.57753446]

[0.68706914 0.26784051 -0.6754239]]

Scikit-Learn

 13

As we know that machine learning is about to create model from data. For this purpose,

computer must understand the data first. Next, we are going to discuss various ways to

represent the data in order to be understood by computer:

Data as table

The best way to represent data in Scikit-learn is in the form of tables. A table represents

a 2-D grid of data where rows represent the individual elements of the dataset and the

columns represents the quantities related to those individual elements.

Example

With the example given below, we can download iris dataset in the form of a Pandas

DataFrame with the help of python seaborn library.

import seaborn as sns

iris = sns.load_dataset('iris')

iris.head()

Output

sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 setosa

1 4.9 3.0 1.4 0.2 setosa

2 4.7 3.2 1.3 0.2 setosa

3 4.6 3.1 1.5 0.2 setosa

4 5.0 3.6 1.4 0.2 setosa

From above output, we can see that each row of the data represents a single observed

flower and the number of rows represents the total number of flowers in the dataset.

Generally, we refer the rows of the matrix as samples.

On the other hand, each column of the data represents a quantitative information

describing each sample. Generally, we refer the columns of the matrix as features.

Data as Feature Matrix

Features matrix may be defined as the table layout where information can be thought of

as a 2-D matrix. It is stored in a variable named X and assumed to be two dimensional

3. Scikit-Learn — Data Representation

Scikit-Learn

 14

with shape [n_samples, n_features]. Mostly, it is contained in a NumPy array or a Pandas

DataFrame. As told earlier, the samples always represent the individual objects described

by the dataset and the features represents the distinct observations that describe each

sample in a quantitative manner.

Data as Target array

Along with Features matrix, denoted by X, we also have target array. It is also called label.

It is denoted by y. The label or target array is usually one-dimensional having length

n_samples. It is generally contained in NumPy array or Pandas Series. Target array may

have both the values, continuous numerical values and discrete values.

How target array differs from feature columns?

We can distinguish both by one point that the target array is usually the quantity we want

to predict from the data i.e. in statistical terms it is the dependent variable.

Example

In the example below, from iris dataset we predict the species of flower based on the other

measurements. In this case, the Species column would be considered as the feature.

import seaborn as sns

iris = sns.load_dataset('iris')

%matplotlib inline

import seaborn as sns; sns.set()

sns.pairplot(iris, hue='species', height=3);

Output

Scikit-Learn

 15

X_iris = iris.drop('species', axis=1)

X_iris.shape

y_iris = iris['species']

y_iris.shape

Output

(150,4)

(150,)

Scikit-Learn

 16

In this chapter, we will learn about Estimator API (application programming interface).

Let us begin by understanding what is an Estimator API.

What is Estimator API?

It is one of the main APIs implemented by Scikit-learn. It provides a consistent interface

for a wide range of ML applications that’s why all machine learning algorithms in Scikit-

Learn are implemented via Estimator API. The object that learns from the data (fitting the

data) is an estimator. It can be used with any of the algorithms like classification,

regression, clustering or even with a transformer, that extracts useful features from raw

data.

For fitting the data, all estimator objects expose a fit method that takes a dataset shown

as follows:

estimator.fit(data)

Next, all the parameters of an estimator can be set, as follows, when it is instantiated by

the corresponding attribute.

estimator = Estimator (param1=1, param2=2)

estimator.param1

The output of the above would be 1.

Once data is fitted with an estimator, parameters are estimated from the data at hand.

Now, all the estimated parameters will be the attributes of the estimator object ending by

an underscore as follows:

estimator.estimated_param_

Use of Estimator API

Main uses of estimators are as follows:

Estimation and decoding of a model

Estimator object is used for estimation and decoding of a model. Furthermore, the model

is estimated as a deterministic function of the following:

4. Scikit-Learn ― Estimator API

Scikit-Learn

 17

 The parameters which are provided in object construction.

 The global random state (numpy.random) if the estimator’s random_state

parameter is set to none.

 Any data passed to the most recent call to fit, fit_transform, or fit_predict.

 Any data passed in a sequence of calls to partial_fit.

Mapping non-rectangular data representation into rectangular data

It maps a non-rectangular data representation into rectangular data. In simple words, it

takes input where each sample is not represented as an array-like object of fixed length,

and producing an array-like object of features for each sample.

Distinction between core and outlying samples

It models the distinction between core and outlying samples by using following methods:

 fit

 fit_predict if transductive

 predict if inductive

Guiding Principles

While designing the Scikit-Learn API, following guiding principles kept in mind:

Consistency

This principle states that all the objects should share a common interface drawn from a

limited set of methods. The documentation should also be consistent.

Limited object hierarchy

This guiding principle says:

 Algorithms should be represented by Python classes

 Datasets should be represented in standard format like NumPy arrays, Pandas

DataFrames, SciPy sparse matrix.

 Parameters names should use standard Python strings.

Composition

As we know that, ML algorithms can be expressed as the sequence of many fundamental

algorithms. Scikit-learn makes use of these fundamental algorithms whenever needed.

Sensible defaults

According to this principle, the Scikit-learn library defines an appropriate default value

whenever ML models require user-specified parameters.

Inspection

Scikit-Learn

 18

As per this guiding principle, every specified parameter value is exposed as pubic

attributes.

Steps in using Estimator API

Followings are the steps in using the Scikit-Learn estimator API:

Step 1: Choose a class of model

In this first step, we need to choose a class of model. It can be done by importing the

appropriate Estimator class from Scikit-learn.

Step 2: Choose model hyperparameters

In this step, we need to choose class model hyperparameters. It can be done by

instantiating the class with desired values.

Step 3: Arranging the data

Next, we need to arrange the data into features matrix (X) and target vector(y).

Step 4: Model Fitting

Now, we need to fit the model to your data. It can be done by calling fit() method of the

model instance.

Step 5: Applying the model

After fitting the model, we can apply it to new data. For supervised learning, use predict()

method to predict the labels for unknown data. While for unsupervised learning, use

predict() or transform() to infer properties of the data.

Supervised Learning Example

Here, as an example of this process we are taking common case of fitting a line to (x,y)

data i.e. simple linear regression.

First, we need to load the dataset, we are using iris dataset:

import seaborn as sns

iris = sns.load_dataset('iris')

X_iris = iris.drop('species', axis = 1)

X_iris.shape

Output

Scikit-Learn

 19

(150, 4)

y_iris = iris['species']

y_iris.shape

Output

(150,)

Now, for this regression example, we are going to use the following sample data:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

rng = np.random.RandomState(35)

x = 10*rng.rand(40)

y = 2*x-1+rng.randn(40)

plt.scatter(x,y);

Output

So, we have the above data for our linear regression example.

Now, with this data, we can apply the above-mentioned steps.

Scikit-Learn

 20

Choose a class of model

Here, to compute a simple linear regression model, we need to import the linear regression

class as follows:

from sklearn.linear_model import LinearRegression

Choose model hyperparameters

Once we choose a class of model, we need to make some important choices which are

often represented as hyperparameters, or the parameters that must set before the model

is fit to data. Here, for this example of linear regression, we would like to fit the intercept

by using the fit_intercept hyperparameter as follows:

model = LinearRegression(fit_intercept=True)

model

Output

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

 normalize=False)

Arranging the data

Now, as we know that our target variable y is in correct form i.e. a length n_samples

array of 1-D. But, we need to reshape the feature matrix X to make it a matrix of size

[n_samples, n_features]. It can be done as follows:

X = x[:, np.newaxis]

X.shape

Output

(40, 1)

Model fitting

Once, we arrange the data, it is time to fit the model i.e. to apply our model to data. This

can be done with the help of fit() method as follows:

model.fit(X, y)

Output

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

Scikit-Learn

 21

 normalize=False)

In Scikit-learn, the fit() process have some trailing underscores.

For this example, the below parameter shows the slope of the simple linear fit of the data:

model.coef_

Output

array([1.99839352])

The below parameter represents the intercept of the simple linear fit to the data:

model.intercept_

Output

-0.9895459457775022

Applying the model to new data

After training the model, we can apply it to new data. As the main task of supervised

machine learning is to evaluate the model based on new data that is not the part of the

training set. It can be done with the help of predict() method as follows:

xfit = np.linspace(-1, 11)

Xfit = xfit[:, np.newaxis]

yfit = model.predict(Xfit)

plt.scatter(x, y)

plt.plot(xfit, yfit);

Output

Scikit-Learn

 22

Complete working/executable example

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

iris = sns.load_dataset('iris')

X_iris = iris.drop('species', axis = 1)

X_iris.shape

y_iris = iris['species']

y_iris.shape

rng = np.random.RandomState(35)

x = 10*rng.rand(40)

y = 2*x-1+rng.randn(40)

plt.scatter(x,y);

from sklearn.linear_model import LinearRegression

model = LinearRegression(fit_intercept=True)

model

X = x[:, np.newaxis]

X.shape

model.fit(X, y)

Scikit-Learn

 23

model.coef_

model.intercept_

xfit = np.linspace(-1, 11)

Xfit = xfit[:, np.newaxis]

yfit = model.predict(Xfit)

plt.scatter(x, y)

plt.plot(xfit, yfit);

Unsupervised Learning Example

Here, as an example of this process we are taking common case of reducing the

dimensionality of the Iris dataset so that we can visualize it more easily. For this example,

we are going to use principal component analysis (PCA), a fast-linear dimensionality

reduction technique.

Like the above given example, we can load and plot the random data from iris dataset.

After that we can follow the steps as below:

Choose a class of model

from sklearn.decomposition import PCA

Choose model hyperparameters

model = PCA(n_components=2)

model

Output

PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,

 svd_solver='auto', tol=0.0, whiten=False)

Model fitting

model.fit(X_iris)

Output

PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,

 svd_solver='auto', tol=0.0, whiten=False)

Scikit-Learn

 24

Transform the data to two-dimensional

X_2D = model.transform(X_iris)

Now, we can plot the result as follows:

iris['PCA1'] = X_2D[:, 0]

iris['PCA2'] = X_2D[:, 1]

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False);

Output

Complete working/executable example

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

iris = sns.load_dataset('iris')

Scikit-Learn

 25

X_iris = iris.drop('species', axis = 1)

X_iris.shape

y_iris = iris['species']

y_iris.shape

rng = np.random.RandomState(35)

x = 10*rng.rand(40)

y = 2*x-1+rng.randn(40)

plt.scatter(x,y);

from sklearn.decomposition import PCA

model = PCA(n_components=2)

model

model.fit(X_iris)

X_2D = model.transform(X_iris)

iris['PCA1'] = X_2D[:, 0]

iris['PCA2'] = X_2D[:, 1]

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False);

Scikit-Learn

 26

Scikit-learn’s objects share a uniform basic API that consists of the following three

complementary interfaces:

 Estimator interface: It is for building and fitting the models.

 Predictor interface: It is for making predictions.

 Transformer interface: It is for converting data.

The APIs adopt simple conventions and the design choices have been guided in a manner

to avoid the proliferation of framework code.

Purpose of Conventions

The purpose of conventions is to make sure that the API stick to the following broad

principles:

Consistency: All the objects whether they are basic, or composite must share a consistent

interface which further composed of a limited set of methods.

Inspection: Constructor parameters and parameters values determined by learning

algorithm should be stored and exposed as public attributes.

Non-proliferation of classes: Datasets should be represented as NumPy arrays or Scipy

sparse matrix whereas hyper-parameters names and values should be represented as

standard Python strings to avoid the proliferation of framework code.

Composition: The algorithms whether they are expressible as sequences or combinations

of transformations to the data or naturally viewed as meta-algorithms parameterized on

other algorithms, should be implemented and composed from existing building blocks.

Sensible defaults: In scikit-learn whenever an operation requires a user-defined

parameter, an appropriate default value is defined. This default value should cause the

operation to be performed in a sensible way, for example, giving a base-line solution for

the task at hand.

Various Conventions

The conventions available in Sklearn are explained below:

Type casting

It states that the input should be cast to float64. In the following example, in which

sklearn.random_projection module used to reduce the dimensionality of the data, will

explain it:

import numpy as np

5. Scikit-Learn — Conventions

Scikit-Learn

 27

from sklearn import random_projection

rannge = np.random.RandomState(0)

X = range.rand(10,2000)

X = np.array(X, dtype = 'float32')

X.dtype

Transformer_data = random_projection.GaussianRandomProjection()

X_new = transformer.fit_transform(X)

X_new.dtype

Output

dtype('float32')

dtype('float64')

In the above example, we can see that X is float32 which is cast to float64 by

fit_transform(X).

Refitting & Updating Parameters

Hyper-parameters of an estimator can be updated and refitted after it has been

constructed via the set_params() method. Let’s see the following example to understand

it:

import numpy as np

from sklearn.datasets import load_iris

from sklearn.svm import SVC

X, y = load_iris(return_X_y=True)

clf = SVC()

clf.set_params(kernel='linear').fit(X, y)

clf.predict(X[:5])

Output

Scikit-Learn

 28

array([0, 0, 0, 0, 0])

Once the estimator has been constructed, above code will change the default kernel rbf

to linear via SVC.set_params().

Now, the following code will change back the kernel to rbf to refit the estimator and to

make a second prediction.

clf.set_params(kernel='rbf', gamma='scale').fit(X, y)

clf.predict(X[:5])

Output

array([0, 0, 0, 0, 0])

Complete code

The following is the complete executable program:

import numpy as np

from sklearn.datasets import load_iris

from sklearn.svm import SVC

X, y = load_iris(return_X_y=True)

clf = SVC()

clf.set_params(kernel='linear').fit(X, y)

clf.predict(X[:5])

clf.set_params(kernel='rbf', gamma='scale').fit(X, y)

clf.predict(X[:5])

Multiclass & Multilabel fitting

In case of multiclass fitting, both learning and the prediction tasks are dependent on the

format of the target data fit upon. The module used is sklearn.multiclass. Check the

example below, where multiclass classifier is fit on a 1d array.

from sklearn.svm import SVC

from sklearn.multiclass import OneVsRestClassifier

from sklearn.preprocessing import LabelBinarizer

X = [[1, 2], [3, 4], [4, 5], [5, 2], [1, 1]]

Scikit-Learn

 29

y = [0, 0, 1, 1, 2]

classif = OneVsRestClassifier(estimator=SVC(gamma='scale',random_state=0))

classif.fit(X, y).predict(X)

Output

array([0, 0, 1, 1, 2])

In the above example, classifier is fit on one dimensional array of multiclass labels and the

predict() method hence provides corresponding multiclass prediction. But on the other

hand, it is also possible to fit upon a two-dimensional array of binary label indicators as

follows:

from sklearn.svm import SVC

from sklearn.multiclass import OneVsRestClassifier

from sklearn.preprocessing import LabelBinarizer

X = [[1, 2], [3, 4], [4, 5], [5, 2], [1, 1]]

y = LabelBinarizer().fit_transform(y)

classif.fit(X, y).predict(X)

Output

array([[0, 0, 0],

 [0, 0, 0],

 [0, 1, 0],

 [0, 1, 0],

 [0, 0, 0]])

Similarly, in case of multilabel fitting, an instance can be assigned multiple labels as

follows:

from sklearn.preprocessing import MultiLabelBinarizer

y = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]]

y = MultiLabelBinarizer().fit_transform(y)

classif.fit(X, y).predict(X)

Output

array([[1, 0, 1, 0, 0],

 [1, 0, 1, 0, 0],

 [1, 0, 1, 1, 0],

Scikit-Learn

 30

 [1, 0, 1, 1, 0],

 [1, 0, 1, 0, 0]])

In the above example, sklearn.MultiLabelBinarizer is used to binarize the two

dimensional array of multilabels to fit upon. That’s why predict() function gives a 2d array

as output with multiple labels for each instance.

Scikit-Learn

 31

This chapter will help you in learning about the linear modeling in Scikit-Learn. Let us

begin by understanding what is linear regression in Sklearn.

The following table lists out various linear models provided by Scikit-Learn:

Model Description

Linear Regression It is one of the best statistical models that

studies the relationship between a

dependent variable (Y) with a given set of

independent variables (X).

Logistic Regression Logistic regression, despite its name, is a

classification algorithm rather than

regression algorithm. Based on a given set

of independent variables, it is used to

estimate discrete value (0 or 1, yes/no,

true/false).

Ridge Regression Ridge regression or Tikhonov

regularization is the regularization

technique that performs L2 regularization.

It modifies the loss function by adding the

penalty (shrinkage quantity) equivalent to

the square of the magnitude of coefficients.

Bayesian Ridge Regression

Bayesian regression allows a natural

mechanism to survive insufficient data or

poorly distributed data by formulating

linear regression using probability

distributors rather than point estimates.

LASSO

LASSO is the regularisation technique that

performs L1 regularisation. It modifies the

loss function by adding the penalty

(shrinkage quantity) equivalent to the

summation of the absolute value of

coefficients.

Multi-task LASSO It allows to fit multiple regression problems

jointly enforcing the selected features to be

same for all the regression problems, also

called tasks. Sklearn provides a linear

model named MultiTaskLasso, trained

with a mixed L1, L2-norm for

regularisation, which estimates sparse

6. Scikit-Learn ― Linear Modeling

Scikit-Learn

 32

coefficients for multiple regression

problems jointly.

Elastic-Net

The Elastic-Net is a regularized regression

method that linearly combines both

penalties i.e. L1 and L2 of the Lasso and

Ridge regression methods. It is useful

when there are multiple correlated

features.

Multi-task Elastic-Net

It is an Elastic-Net model that allows to fit

multiple regression problems jointly

enforcing the selected features to be same

for all the regression problems, also called

tasks

Linear Regression

It is one of the best statistical models that studies the relationship between a dependent

variable (Y) with a given set of independent variables (X). The relationship can be

established with the help of fitting a best line.

sklearn.linear_model.LinearRegression is the module used to implement linear

regression.

Parameters

Following table consists the parameters used by Linear Regression module:

Parameter Description

fit_intercept: Boolean, optional, default

True

Used to calculate the intercept for the model. No

intercept will be used in the calculation if this set

to false.

normalize: Boolean, optional, default False If this parameter is set to True, the regressor X will

be normalized before regression. The

normalization will be done by subtracting the mean

and dividing it by L2 norm. If fit_intercept = False,

this parameter will be ignored.

copy_X: Boolean, optional, default True By default, it is true which means X will be copied.

But if it is set to false, X may be overwritten.

n_jobs: int or None,

optional(default=None)

It represents the number of jobs to use for the

computation.

Attributes

Following table consists the attributes used by Linear Regression module:

Attributes Description

Scikit-Learn

 33

coef_: array, shape(n_features,) or

(n_targets, n_features)

It is used to estimate the coefficients for the linear

regression problem. It would be a 2D array of

shape (n_targets, n_features) if multiple targets

are passed during fit. Ex. (y 2D). On the other

hand, it would be a 1D array of length (n_features)

if only one target is passed during fit.

Intercept_: array This is an independent term in this linear model.

Implementation Example

First, import the required packages:

import numpy as np

from sklearn.linear_model import LinearRegression

Now, provide the values for independent variable X:

X = np.array([[1,1],[1,2],[2,2],[2,3]])

Next, the value of dependent variable y can be calculated as follows:

y = np.dot(X, np.array([1,2])) + 3

Now, create a linear regression object as follows:

regr = LinearRegression(fit_intercept=True, normalize = True, copy_X=True,

n_jobs=2).fit(X,y)

Use predict() method to predict using this linear model as follows:

regr.predict(np.array([[3,5]]))

Output

array([16.])

To get the coefficient of determination of the prediction we can use Score() method as

follows:

regr.score(X,y)

Output

1.0

We can estimate the coefficients by using attribute named ‘coef’ as follows:

regr.coef_

Output

Scikit-Learn

 34

array([1., 2.])

We can calculate the intercept i.e. the expected mean value of Y when all X = 0 by using

attribute named ‘intercept’ as follows:

In [24]: regr.intercept_

Output

3.0000000000000018

Complete code of implementation example:

import numpy as np

from sklearn.linear_model import LinearRegression

X = np.array([[1,1],[1,2],[2,2],[2,3]])

y = np.dot(X, np.array([1,2])) + 3

regr = LinearRegression(fit_intercept=True, normalize = True, copy_X=True,

n_jobs=2).fit(X,y)

regr.predict(np.array([[3,5]]))

regr.score(X,y)

regr.coef_

regr.intercept_

Logistic Regression

Logistic regression, despite its name, is a classification algorithm rather than regression

algorithm. Based on a given set of independent variables, it is used to estimate discrete

value (0 or 1, yes/no, true/false). It is also called logit or MaxEnt Classifier.

Basically, it measures the relationship between the categorical dependent variable and one

or more independent variables by estimating the probability of occurrence of an event

using its logistics function.

sklearn.linear_model.LogisticRegression is the module used to implement logistic

regression.

Parameters

Following table lists the parameters used by Logistic Regression module:

Parameter Description

penalty: str, ‘L1’, ‘L2’, ‘elasticnet’ or none,

optional, default = ‘L2’

This parameter is used to specify the norm (L1 or

L2) used in penalization (regularization).

Scikit-Learn

 35

dual: Boolean, optional, default = False It is used for dual or primal formulation whereas

dual formulation is only implemented for L2

penalty.

tol: float, optional, default=1e-4 It represents the tolerance for stopping criteria.

C: float, optional, default=1.0 It represents the inverse of regularization

strength, which must always be a positive float.

fit_intercept: Boolean, optional, default =

True

This parameter specifies that a constant (bias or

intercept) should be added to the decision

function.

intercept_scaling: float, optional, default

= 1

This parameter is useful when

 the solver ‘liblinear’ is used

 fit_intercept is set to true

class_weight: dict or ‘balanced’ optional,

default = none

It represents the weights associated with classes.

If we use the default option, it means all the

classes are supposed to have weight one. On the

other hand, if you choose class_weight: balanced,

it will use the values of y to automatically adjust

weights.

random_state: int, RandomState instance

or None, optional, default = none

This parameter represents the seed of the pseudo

random number generated which is used while

shuffling the data. Followings are the options:

 int: in this case, random_state is the seed

used by random number generator.

 RandomState instance: in this case,

random_state is the random number

generator.

 None: in this case, the random number

generator is the RandonState instance used

by np.random.

solver: str, {‘newton-cg’, ‘lbfgs’, ‘liblinear’,

‘saag’, ‘saga’}, optional, default = ‘liblinear’

This parameter represents which algorithm to use

in the optimization problem. Followings are the

properties of options under this parameter:

 liblinear: It is a good choice for small

datasets. It also handles L1 penalty. For

multiclass problems, it is limited to one-

versus-rest schemes.

 newton-cg: It handles only L2 penalty.

Scikit-Learn

 36

 lbfgs: For multiclass problems, it handles

multinomial loss. It also handles only L2

penalty.

 saga: It is a good choice for large datasets.

For multiclass problems, it also handles

multinomial loss. Along with L1 penalty, it

also supports ‘elasticnet’ penalty.

 sag: It is also used for large datasets. For

multiclass problems, it also handles

multinomial loss.

max_iter: int, optional, default = 100 As name suggest, it represents the maximum

number of iterations taken for solvers to converge.

multi_class: str, {‘ovr’, ‘multinomial’,

‘auto’}, optional, default = ‘ovr’

 ovr: For this option, a binary problem is fit

for each label.

 multimonial: For this option, the loss

minimized is the multinomial loss fit across

the entire probability distribution. We can’t

use this option if solver = ‘liblinear’.

 auto: This option will select ‘ovr’ if solver =

‘liblinear’ or data is binary, else it will

choose ‘multinomial’.

verbose: int, optional, default = 0 By default, the value of this parameter is 0 but for

liblinear and lbfgs solver we should set verbose to

any positive number.

warm_start: bool, optional, default = false With this parameter set to True, we can reuse the

solution of the previous call to fit as initialization.

If we choose default i.e. false, it will erase the

previous solution.

n_jobs: int or None, optional, default =

None

If multi_class = ‘ovr’, this parameter represents

the number of CPU cores used when parallelizing

over classes. It is ignored when solver = ‘liblinear’.

l1_ratio: float or None, optional, default =

None

It is used in case when penalty = ‘elasticnet’. It is

basically the Elastic-Net mixing parameter with 0

< = l1_ratio < = 1.

Attributes

Followings table consist the attributes used by Logistic Regression module:

Attributes Description

Scikit-Learn

 37

coef_: array, shape(n_features,) or

(n_classes, n_features)

It is used to estimate the coefficients of the

features in the decision function. When the given

problem is binary, it is of the shape (1,

n_features).

Intercept_: array, shape(1) or (n_classes) It represents the constant, also known as bias,

added to the decision function.

classes_: array, shape(n_classes) It will provide a list of class labels known to the

classifier.

n_iter_: array, shape (n_classes) or (1) It returns the actual number of iterations for all the

classes.

Implementation Example

Following Python script provides a simple example of implementing logistic regression on

iris dataset of scikit-learn:

from sklearn import datasets

from sklearn import linear_model

from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)

LRG = linear_model.LogisticRegression(random_state=0,solver='liblinear',multi
class='auto').fit(X, y)

LRG.score(X, y)

Output

0.96

The output shows that the above Logistic Regression model gave the accuracy of 96

percent.

Ridge Regression

Ridge regression or Tikhonov regularization is the regularization technique that performs

L2 regularization. It modifies the loss function by adding the penalty (shrinkage quantity)

equivalent to the square of the magnitude of coefficients.

∑ (𝑌𝑖 − 𝑊0 − ∑ 𝑊𝑖𝑋𝑗𝑖

𝑛

𝑖=1

)

2

+

𝑚

𝑗=1

𝛼 ∑ 𝑊𝑖
2

𝑛

𝑖=1

= 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝛼 ∑ 𝑊𝑖
2

𝑛

𝑖=1

 sklearn.linear_model.Ridge is the module used to solve a regression model

where loss function is the linear least squares function and regularization is L2.

Parameters

Scikit-Learn

 38

Following table consists the parameters used by Ridge module:

Parameter Description

alpha: {float, array-like},

shape(n_targets)

Alpha is the tuning parameter that decides how

much we want to penalize the model.

fit_intercept: Boolean This parameter specifies that a constant (bias or

intercept) should be added to the decision

function. No intercept will be used in calculation, if

it will set to false.

tol: float, optional, default=1e-4 It represents the precision of the solution.

normalize: Boolean, optional, default =

False

If this parameter is set to True, the regressor X will

be normalized before regression. The

normalization will be done by subtracting the mean

and dividing it by L2 norm. If fit_intercept =

False, this parameter will be ignored.

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied.

But if it is set to false, X may be overwritten.

max_iter: int, optional As name suggest, it represents the maximum

number of iterations taken for conjugate gradient

solvers.

solver: str, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’,

‘sparse_cg’, ‘sag’, ‘saga’}’

This parameter represents which solver to use in

the computational routines. Following are the

properties of options under this parameter:

 auto: It let choose the solver automatically

based on the type of data.

 svd: In order to calculate the Ridge

coefficients, this parameter uses a Singular

Value Decomposition of X.

 cholesky: This parameter uses the

standard scipy.linalg.solve() function to

get a closed-form solution.

 Sparse_cg: It uses the conjugate gradient

solver which is more appropriate than

‘cholesky’ for large-scale data.

 lsqr: It is the fastest and uses the

dedicated regularized least-squares routine

scipy.sparse.linalg.lsqr.

 sag: It uses iterative process and a

Stochastic Average Gradient descent.

Scikit-Learn

 39

 saga: It also uses iterative process and an

improved Stochastic Average Gradient

descent.

random_state: int, RandomState instance

or None, optional, default = none

This parameter represents the seed of the pseudo

random number generated which is used while

shuffling the data. Following are the options:

 int: In this case, random_state is the

seed used by random number generator.

 RandomState instance: In this case,

random_state is the random number

generator.

 None: In this case, the random number

generator is the RandonState instance used

by np.random.

Attributes

Followings table consist the attributes used by Ridge module:

Attributes Description

coef_: array, shape(n_features,) or

(n_target, n_features)

This attribute provides the weight vectors.

intercept_: float | array, shape =

(n_targets)

It represents the independent term in decision

function.

n_iter_: array or None, shape (n_targets) Available for only ‘sag’ and ‘lsqr’ solver, returns the

actual number of iterations for each target.

Implementation Example

Following Python script provides a simple example of implementing Ridge Regression. We

are using 15 samples and 10 features. The value of alpha is 0.5 in our case. There are two

methods namely fit() and score() used to fit this model and calculate the score

respectively.

from sklearn.linear_model import Ridge

import numpy as np

n_samples, n_features = 15, 10

rng = np.random.RandomState(0)

y = rng.randn(n_samples)

Scikit-Learn

 40

X = rng.randn(n_samples, n_features)

rdg = Ridge(alpha=0.5)

rdg.fit(X, y)

rdg.score(X,y)

Output

0.76294987

The output shows that the above Ridge Regression model gave the score of around 76

percent. For more accuracy, we can increase the number of samples and features.

For the above example, we can get the weight vector with the help of following python

script:

rdg.coef_

Output

array([0.32720254, -0.34503436, -0.2913278 , 0.2693125 , -0.22832508,

 -0.8635094 , -0.17079403, -0.36288055, -0.17241081, -0.43136046])

Similarly, we can get the value of intercept with the help of following python script:

rdg.intercept_

Output

0.527486

Bayesian Ridge Regression

Bayesian regression allows a natural mechanism to survive insufficient data or poorly

distributed data by formulating linear regression using probability distributors rather than

point estimates. The output or response ‘y’ is assumed to drawn from a probability

distribution rather than estimated as a single value.

Mathematically, to obtain a fully probabilistic model the response y is assumed to be

Gaussian distributed around 𝑋𝑤 as follows:

𝑝(𝑦|𝑋, 𝑤, 𝛼) = 𝑁(𝑦|𝑋𝑤, 𝛼)

One of the most useful type of Bayesian regression is Bayesian Ridge regression which

estimates a probabilistic model of the regression problem. Here the prior for the coefficient

𝑤 is given by spherical Gaussian as follows:

𝑝(𝑤|𝜆) = 𝑁(𝑤|0, 𝜆−1𝐼𝑝)

This resulting model is called Bayesian Ridge Regression and in scikit-learn

sklearn.linear_model.BeyesianRidge module is used for Bayesian Ridge Regression.

Scikit-Learn

 41

Parameters

Followings table consist the parameters used by BayesianRidge module:

Parameter Description

n_iter: int, optional It represents the maximum number of iterations.

The default value is 300 but the user-defined value

must be greater than or equal to 1.

fit_intercept: Boolean, optional, default

True

It decides whether to calculate the intercept for

this model or not. No intercept will be used in

calculation, if it will set to false.

tol: float, optional, default=1.e-3 It represents the precision of the solution and will

stop the algorithm if w has converged.

alpha_1: float, optional, default=1.e-6 It is the 1st hyperparameter which is a shape

parameter for the Gamma distribution prior over

the alpha parameter.

alpha_2: float, optional, default=1.e-6 It is the 2nd hyperparameter which is an inverse

scale parameter for the Gamma distribution prior

over the alpha parameter.

lambda_1: float, optional, default=1.e-6 It is the 1st hyperparameter which is a shape

parameter for the Gamma distribution prior over

the lambda parameter.

lambda_2: float, optional, default=1.e-6 It is the 2nd hyperparameter which is an inverse

scale parameter for the Gamma distribution prior

over the lambda parameter.

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied.

But if it is set to false, X may be overwritten.

compute_score: boolean, optional,

default=False

If set to true, it computes the log marginal

likelihood at each iteration of the optimization.

verbose: Boolean, optional, default=False By default, it is false but if set true, verbose mode

will be enabled while fitting the model.

Attributes

Followings table consist the attributes used by BayesianRidge module:

Attributes Description

coef_: array, shape = n_features This attribute provides the weight vectors.

intercept_: float It represents the independent term in decision

function.

alpha_: float This attribute provides the estimated precision of

the noise.

Scikit-Learn

 42

lambda_: float This attribute provides the estimated precision of

the weight.

n_iter_: int It provides the actual number of iterations taken

by the algorithm to reach the stopping criterion.

sigma_: array, shape = (n_features,

n_features)

It provides the estimated variance-covariance

matrix of the weights.

scores_: array, shape = (n_iter_+1) It provides the value of the log marginal likelihood

at each iteration of the optimisation. In the

resulting score, the array starts with the value of

the log marginal likelihood obtained for the initial

values of 𝛼 𝑎𝑛𝑑 𝜆, and ends with the value obtained

for estimated 𝛼 𝑎𝑛𝑑 𝜆.

Implementation Example

Following Python script provides a simple example of fitting Bayesian Ridge Regression

model using sklearn BayesianRidge module.

from sklearn import linear_model

X = [[0, 0], [1, 1], [2, 2], [3, 3]]

Y = [0, 1, 2, 3]

BayReg = linear_model.BayesianRidge()

BayReg.fit(X, Y)

Output

BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,

 fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,

 normalize=False, tol=0.001, verbose=False)

From the above output, we can check model’s parameters used in the calculation.

Now, once fitted, the model can predict new values as follows:

BayReg.predict([[1,1]])

Output

array([1.00000007])

Similarly, we can access the coefficient w of the model as follows:

BayReg.coef_

Output

Scikit-Learn

 43

array([0.49999993, 0.49999993])

LASSO (Least Absolute Shrinkage and Selection Operator)

LASSO is the regularisation technique that performs L1 regularisation. It modifies the loss

function by adding the penalty (shrinkage quantity) equivalent to the summation of the

absolute value of coefficients.

∑ (𝑌𝑖 − 𝑊0 − ∑ 𝑊𝑖𝑋𝑗𝑖

𝑛

𝑖=1

)

2

+

𝑚

𝑗=1

𝛼 ∑|𝑊𝑖|

𝑛

𝑖=1

= 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝛼 ∑|𝑊𝑖|

𝑛

𝑖=1

sklearn.linear_model. Lasso is a linear model, with an added regularisation term, used

to estimate sparse coefficients.

Parameters

Followings table consist the parameters used by Lasso module:

Parameter Description

alpha: float, optional, default = 1.0 Alpha, the constant that multiplies the L1 term, is

the tuning parameter that decides how much we

want to penalize the model. The default value is

1.0.

fit_intercept: Boolean, optional.

Default=True

This parameter specifies that a constant (bias or

intercept) should be added to the decision

function. No intercept will be used in calculation, if

it will set to false.

tol: float, optional This parameter represents the tolerance for the

optimization. The tol value and updates would be

compared and if found updates smaller than tol,

the optimization checks the dual gap for optimality

and continues until it is smaller than tol.

normalize: Boolean, optional, default =

False

If this parameter is set to True, the regressor X will

be normalized before regression. The

normalization will be done by subtracting the mean

and dividing it by L2 norm. If fit_intercept =

False, this parameter will be ignored.

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied.

But if it is set to false, X may be overwritten.

max_iter: int, optional As name suggest, it represents the maximum

number of iterations taken for conjugate gradient

solvers.

precompute: True|False|array-like,

default=False

With this parameter we can decide whether to use

a precomputed Gram matrix to speed up the

calculation or not.

Scikit-Learn

 44

warm_start: bool, optional, default = false With this parameter set to True, we can reuse the

solution of the previous call to fit as initialization.

If we choose default i.e. false, it will erase the

previous solution.

random_state: int, RandomState instance

or None, optional, default = none

This parameter represents the seed of the pseudo

random number generated which is used while

shuffling the data. Followings are the options:

 int: In this case, random_state is the seed

used by random number generator.

 RandomState instance: In this case,

random_state is the random number

generator.

 None: In this case, the random number

generator is the RandonState instance used

by np.random.

selection: str, default=‘cyclic’ Cyclic: The default value is cyclic which

means the features will be looping over

sequentially by default.

 Random: If we set the selection to

random, a random coefficient will be

updated every iteration.

Attributes

Followings table consist the attributes used by Lasso module:

Attributes Description

coef_: array, shape(n_features,) or

(n_target, n_features)

This attribute provides the weight vectors.

intercept_: float | array, shape =

(n_targets)

It represents the independent term in decision

function.

n_iter_: int or array-like, shape

(n_targets)

It gives the number of iterations run by the

coordinate descent solver to reach the specified

tolerance.

Implementation Example

Following Python script uses Lasso model which further uses coordinate descent as the

algorithm to fit the coefficients:

Scikit-Learn

 45

from sklearn import linear_model

Lreg = linear_model.Lasso(alpha=0.5)

Lreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])

Output

Lasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000,

 normalize=False, positive=False, precompute=False, random_state=None,

 selection='cyclic', tol=0.0001, warm_start=False)

Now, once fitted, the model can predict new values as follows:

Lreg.predict([[0,1]])

Output

array([0.75])

For the above example, we can get the weight vector with the help of following python

script:

Lreg.coef_

Output

array([0.25, 0.])

Similarly, we can get the value of intercept with the help of following python script:

Lreg.intercept_

Output

0.75

We can get the total number of iterations to get the specified tolerance with the help of

following python script:

Lreg.n_iter_

Output

2

We can change the values of parameters to get the desired output from the model.

Multi-task LASSO

It allows to fit multiple regression problems jointly enforcing the selected features to be

same for all the regression problems, also called tasks. Sklearn provides a linear model

Scikit-Learn

 46

named MultiTaskLasso, trained with a mixed L1, L2-norm for regularisation, which

estimates sparse coefficients for multiple regression problems jointly. In this the response

y is a 2D array of shape (n_samples, n_tasks).

The parameters and the attributes for MultiTaskLasso are like that of Lasso. The only

difference is in the alpha parameter. In Lasso the alpha parameter is a constant that

multiplies L1 norm, whereas in Multi-task Lasso it is a constant that multiplies the L1/L2

terms.

And, opposite to Lasso, MultiTaskLasso doesn’t have precompute attribute.

Implementation Example

Following Python script uses MultiTaskLasso linear model which further uses coordinate

descent as the algorithm to fit the coefficients:

from sklearn import linear_model

MTLReg = linear_model.MultiTaskLasso(alpha=0.5)

MTLReg.fit([[0,0], [1, 1], [2, 2]], [[0, 0],[1,1],[2,2]])

Output

MultiTaskLasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000,

 normalize=False, random_state=None, selection='cyclic', tol=0.0001,

 warm_start=False)

Now, once fitted, the model can predict new values as follows:

MTLReg.predict([[0,1]])

Output

array([[0.53033009, 0.53033009]])

For the above example, we can get the weight vector with the help of following python

script:

MTLReg.coef_

Output

array([[0.46966991, 0.],

 [0.46966991, 0.]])

Similarly, we can get the value of intercept with the help of following python script:

MTLReg.intercept_

Output

array([0.53033009, 0.53033009])

Scikit-Learn

 47

We can get the total number of iterations to get the specified tolerance with the help of

following python script:

MTLReg.n_iter_

Output

2

We can change the values of parameters to get the desired output from the model.

Elastic-Net

The Elastic-Net is a regularised regression method that linearly combines both penalties

i.e. L1 and L2 of the Lasso and Ridge regression methods. It is useful when there are

multiple correlated features. The difference between Lass and Elastic-Net lies in the fact

that Lasso is likely to pick one of these features at random while elastic-net is likely to

pick both at once.

Sklearn provides a linear model named ElasticNet which is trained with both L1, L2-norm

for regularisation of the coefficients. The advantage of such combination is that it allows

for learning a sparse model where few of the weights are non-zero like Lasso regularisation

method, while still maintaining the regularization properties of Ridge regularisation

method.

Following is the objective function to minimise:

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||2

2 + 𝛼𝜌||𝑤||1 +
𝛼(1 − 𝜌)

2
||𝑤||2

2

Parameters

Following table consist the parameters used by ElasticNet module:

Parameter Description

alpha: float, optional, default = 1.0 Alpha, the constant that multiplies the L1/L2 term,

is the tuning parameter that decides how much we

want to penalize the model. The default value is

1.0.

l1_ratio: float This is called the ElasticNet mixing parameter. Its

range is 0 < = l1_ratio < = 1. If l1_ratio = 1, the

penalty would be L1 penalty. If l1_ratio = 0, the

penalty would be an L2 penalty. If the value of l1

ratio is between 0 and 1, the penalty would be the

combination of L1 and L2.

Scikit-Learn

 48

fit_intercept: Boolean, optional.

Default=True

This parameter specifies that a constant (bias or

intercept) should be added to the decision

function. No intercept will be used in calculation, if

it will set to false.

tol: float, optional This parameter represents the tolerance for the

optimization. The tol value and updates would be

compared and if found updates smaller than tol,

the optimization checks the dual gap for optimality

and continues until it is smaller than tol.

normalise: Boolean, optional, default =

False

If this parameter is set to True, the regressor X will

be normalised before regression. The

normalisation will be done by subtracting the mean

and dividing it by L2 norm. If fit_intercept =

False, this parameter will be ignored.

precompute: True|False|array-like,

default=False

With this parameter we can decide whether to use

a precomputed Gram matrix to speed up the

calculation or not. To preserve sparsity, it would

always be true for sparse input.

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied.

But if it is set to false, X may be overwritten.

max_iter: int, optional As name suggest, it represents the maximum

number of iterations taken for conjugate gradient

solvers.

warm_start: bool, optional, default = false With this parameter set to True, we can reuse the

solution of the previous call to fit as initialisation.

If we choose default i.e. false, it will erase the

previous solution.

Scikit-Learn

 49

random_state: int, RandomState instance

or None, optional, default = none

This parameter represents the seed of the pseudo

random number generated which is used while

shuffling the data. Following are the options:

 int: In this case, random_state is the seed

used by random number generator.

 RandomState instance: In this case,

random_state is the random number

generator.

 None: In this case, the random number

generator is the RandonState instance used

by np.random.

selection: str, default=‘cyclic’ Cyclic: The default value is cyclic which

means the features will be looping over

sequentially by default.

 Random: If we set the selection to random,

a random coefficient will be updated every

iteration.

Attributes

Followings table consist the attributes used by ElasticNet module:

Attributes Description

coef_: array, shape (n_tasks, n_features) This attribute provides the weight vectors.

intercept_: array, shape (n_tasks) It represents the independent term in decision

function.

n_iter_: int It gives the number of iterations run by the

coordinate descent solver to reach the specified

tolerance.

Implementation Example

Following Python script uses ElasticNet linear model which further uses coordinate

descent as the algorithm to fit the coefficients:

from sklearn import linear_model

ENreg = linear_model.ElasticNet(alpha=0.5,random_state=0)

Scikit-Learn

 50

ENreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])

Output

ElasticNet(alpha=0.5, copy_X=True, fit_intercept=True, l1_ratio=0.5,

 max_iter=1000, normalize=False, positive=False, precompute=False,

 random_state=0, selection='cyclic', tol=0.0001, warm_start=False)

Now, once fitted, the model can predict new values as follows:

ENregReg.predict([[0,1]])

Output

array([0.73686077])

For the above example, we can get the weight vector with the help of following python

script:

ENreg.coef_

Output

array([0.26318357, 0.26313923])

Similarly, we can get the value of intercept with the help of following python script:

ENreg.intercept_

Output

0.47367720941913904

We can get the total number of iterations to get the specified tolerance with the help of

following python script:

ENreg.n_iter_

Output

15

We can change the values of alpha (towards 1) to get better results from the model.

Let us see same example with alpha = 1.

from sklearn import linear_model

ENreg = linear_model.ElasticNet(alpha=1,random_state=0)

ENreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])

Scikit-Learn

 51

Output

ElasticNet(alpha=1, copy_X=True, fit_intercept=True, l1_ratio=0.5,

 max_iter=1000, normalize=False, positive=False, precompute=False,

 random_state=0, selection='cyclic', tol=0.0001, warm_start=False)

#Predicting new values

ENreg.predict([[1,0]])

Output

array([0.90909216])

#weight vectors

ENreg.coef_

Output

array([0.09091128, 0.09090784])

#Calculating intercept

ENreg.intercept_

Output

0.818180878658411

#Calculating number of iterations

ENreg.n_iter_

Output

10

From the above examples, we can see the difference in the outputs.

MultiTaskElasticNet

It is an Elastic-Net model that allows to fit multiple regression problems jointly enforcing

the selected features to be same for all the regression problems, also called tasks. Sklearn

provides a linear model named MultiTaskElasticNet, trained with a mixed L1, L2-norm

and L2 for regularisation, which estimates sparse coefficients for multiple regression

problems jointly. In this, the response y is a 2D array of shape (n_samples, n_tasks).

Scikit-Learn

 52

Following is the objective function to minimize:

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||𝐹𝑟𝑜

2 + 𝛼𝜌||𝑤||21 +
𝛼(1 − 𝜌)

2
||𝑤||𝐹𝑟𝑜

2

As in MultiTaskLasso, here also, Fro indicates the Frobenius norm:

||𝐴||𝐹𝑟𝑜 = √∑ 𝑎𝑖𝑗
2

𝑖𝑗

And L1L2 leads to the following:

||𝐴||21 = ∑ √∑ 𝑎𝑖𝑗
2

𝑗𝑖

The parameters and the attributes for MultiTaskElasticNet are like that of ElasticNet.

The only difference is in li_ratio i.e. ElasticNet mixing parameter. In MultiTaskElasticNet

its range is 0 < l1_ratio < = 1. If l1_ratio = 1, the penalty would be L1/L2 penalty. If

l1_ratio = 0, the penalty would be an L2 penalty. If the value of l1 ratio is between 0 and

1, the penalty would be the combination of L1/L2 and L2.

And, opposite to ElasticNet, MultiTaskElasticNet doesn’t have precompute attribute.

Implementation Example

To show the difference, we are implementing the same example as we did in Multi-task

Lasso:

from sklearn import linear_model

MTENReg = linear_model.MultiTaskElasticNet(alpha=0.5)

MTENReg.fit([[0,0], [1, 1], [2, 2]], [[0, 0],[1,1],[2,2]])

Output

MultiTaskElasticNet(alpha=0.5, copy_X=True, fit_intercept=True, l1_ratio=0.5,

 max_iter=1000, normalize=False, random_state=None,

 selection='cyclic', tol=0.0001, warm_start=False)

#Predicting new values

MTENReg.predict([[1,0]])

Output

array([[0.69056563, 0.69056563]])

#weight vectors

Scikit-Learn

 53

MTENReg.coef_

Output

array([[0.30943437, 0.30938224],

 [0.30943437, 0.30938224]])

#Calculating intercept

MTENReg.intercept_

Output

array([0.38118338, 0.38118338])

#Calculating number of iterations

MTENReg.n_iter_

Output

15

Scikit-Learn

 54

This chapter focusses on the polynomial features and pipelining tools in Sklearn.

Introduction to Polynomial Features

Linear models trained on non-linear functions of data generally maintains the fast

performance of linear methods. It also allows them to fit a much wider range of data.

That’s the reason in machine learning such linear models, that are trained on nonlinear

functions, are used.

One such example is that a simple linear regression can be extended by constructing

polynomial features from the coefficients.

Mathematically, suppose we have standard linear regression model then for 2-D data it

would look like this:

𝑌 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

Now, we can combine the features in second-order polynomials and our model will look

like as follows:

𝑌 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2 + 𝑤5𝑥2

2

The above is still a linear model. Here, we saw that the resulting polynomial regression is

in the same class of linear models and can be solved similarly.

To do so, scikit-learn provides a module named PolynomialFeatures. This module

transforms an input data matrix into a new data matrix of given degree.

Parameters

Followings table consist the parameters used by PolynomialFeatures module:

Parameter Description

degree: integer,

default = 2

It represents the degree of the polynomial features.

interaction_only:

Boolean, default =

false

By default, it is false but if set as true, the features that are products of

most degree distinct input features, are produced. Such features are

called interaction features.

include_bias:

Boolean, default =

true

It includes a bias column i.e. the feature in which all polynomials powers

are zero.

7. Scikit-Learn — Extended Linear Modeling

Scikit-Learn

 55

order: str in {‘C’,

‘F’}, default = ‘C’

This parameter represents the order of output array in the dense case.

‘F’ order means faster to compute but on the other hand, it may slow

down subsequent estimators.

Attributes

Followings table consist the attributes used by PolynomialFeatures module:

Attributes Description

powers_: array, shape

(n_output_features, n_input_features)

It shows powers_ [i,j] is the exponent of the jth

input in the ith output.

n_input_features _: int As name suggests, it gives the total number of

input features.

n_output_features _: int As name suggests, it gives the total number of

polynomial output features.

Implementation Example

Following Python script uses PolynomialFeatures transformer to transform array of 8

into shape (4,2):

from sklearn.preprocessing import PolynomialFeatures

import numpy as np

Y = np.arange(8).reshape(4, 2)

poly = PolynomialFeatures(degree=2)

poly.fit_transform(Y)

Output

array([[1., 0., 1., 0., 0., 1.],

 [1., 2., 3., 4., 6., 9.],

 [1., 4., 5., 16., 20., 25.],

 [1., 6., 7., 36., 42., 49.]])

Streamlining using Pipeline tools

The above sort of preprocessing i.e. transforming an input data matrix into a new data

matrix of a given degree, can be streamlined with the Pipeline tools, which are basically

used to chain multiple estimators into one.

Example

The below python scripts using Scikit-learn’s Pipeline tools to streamline the preprocessing

(will fit to an order-3 polynomial data).

#First, import the necessary packages.

Scikit-Learn

 56

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

from sklearn.pipeline import Pipeline

import numpy as np

#Next, create an object of Pipeline tool

Stream_model = Pipeline([('poly', PolynomialFeatures(degree=3)),

('linear', LinearRegression(fit_intercept=False))])

#Provide the size of array and order of polynomial data to fit the model.

x = np.arange(5)

y = 3 - 2 * x + x ** 2 - x ** 3

Stream_model = model.fit(x[:, np.newaxis], y)

#Calculate the input polynomial coefficients.

Stream_model.named_steps['linear'].coef_

Output

array([3., -2., 1., -1.])

The above output shows that the linear model trained on polynomial features is able to

recover the exact input polynomial coefficients.

Scikit-Learn

 57

Here, we will learn about an optimization algorithm in Sklearn, termed as Stochastic

Gradient Descent (SGD).

Stochastic Gradient Descent (SGD) is a simple yet efficient optimization algorithm used to

find the values of parameters/coefficients of functions that minimize a cost function. In

other words, it is used for discriminative learning of linear classifiers under convex loss

functions such as SVM and Logistic regression. It has been successfully applied to large-

scale datasets because the update to the coefficients is performed for each training

instance, rather than at the end of instances.

SGD Classifier

Stochastic Gradient Descent (SGD) classifier basically implements a plain SGD learning

routine supporting various loss functions and penalties for classification. Scikit-learn

provides SGDClassifier module to implement SGD classification.

Parameters

Followings table consist the parameters used by SGDClassifier module:

Parameter Description

loss: str, default =

‘hinge’

It represents the loss function to be used while implementing. The default

value is ‘hinge’ which will give us a linear SVM. The other options which

can be used are:

 log: This loss will give us logistic regression i.e. a probabilistic

classifier.

 modified_huber: a smooth loss that brings tolerance to outliers

along with probability estimates.

 squared_hinge: similar to ‘hinge’ loss but it is quadratically

penalized.

 perceptron: as the name suggests, it is a linear loss which is used

by the perceptron algorithm.

penalty: str, ‘none’,

‘l2’, ‘l1’, ‘elasticnet’

It is the regularization term used in the model. By default, it is L2. We can

use L1 or ‘elasticnet; as well but both might bring sparsity to the model,

hence not achievable with L2.

alpha: float, default

= 0.0001

Alpha, the constant that multiplies the regularization term, is the tuning

parameter that decides how much we want to penalize the model. The

default value is 0.0001.

8. Scikit-Learn ― Stochastic Gradient Descent

Scikit-Learn

 58

l1_ratio: float,

default = 0.15

This is called the ElasticNet mixing parameter. Its range is 0 < = l1_ratio

< = 1. If l1_ratio = 1, the penalty would be L1 penalty. If l1_ratio = 0,

the penalty would be an L2 penalty.

fit_intercept:

Boolean,

Default=True

This parameter specifies that a constant (bias or intercept) should be

added to the decision function. No intercept will be used in calculation and

data will be assumed already centered, if it will set to false.

tol: float or none,

optional, default =

1.e-3

This parameter represents the stopping criterion for iterations. Its default

value is False but if set to None, the iterations will stop when 𝒍𝒐𝒔𝒔 >

 𝒃𝒆𝒔𝒕_𝒍𝒐𝒔𝒔 − 𝒕𝒐𝒍 for 𝒏_𝒊𝒕𝒆𝒓_𝒏𝒐_𝒄𝒉𝒂𝒏𝒈𝒆 successive epochs.

shuffle: Boolean,

optional, default =

True

This parameter represents that whether we want our training data to be

shuffled after each epoch or not.

verbose: integer,

default = 0

It represents the verbosity level. Its default value is 0.

epsilon: float,

default = 0.1

This parameter specifies the width of the insensitive region. If loss =

‘epsilon-insensitive’, any difference, between current prediction and the

correct label, less than the threshold would be ignored.

max_iter: int,

optional, default =

1000

As name suggest, it represents the maximum number of passes over the

epochs i.e. training data.

warm_start: bool,

optional, default =

false

With this parameter set to True, we can reuse the solution of the previous

call to fit as initialization. If we choose default i.e. false, it will erase the

previous solution.

random_state: int,

RandomState

instance or None,

optional, default =

none

This parameter represents the seed of the pseudo random number

generated which is used while shuffling the data. Followings are the

options:

 int: In this case, random_state is the seed used by random

number generator.

 RandomState instance: In this case, random_state is the random

number generator.

 None: In this case, the random number generator is the

RandonState instance used by np.random.

n_jobs: int or none,

optional, Default =

None

It represents the number of CPUs to be used in OVA (One Versus All)

computation, for multi-class problems. The default value is none which

means 1.

Scikit-Learn

 59

learning_rate:

string, optional,

default = ‘optimal’

 If learning rate is ‘constant’, eta = eta0;

 If learning rate is ‘optimal’, eta = 1.0/(alpha*(t+t0)), where t0 is

chosen by Leon Bottou;

 If learning rate = ‘invscalling’, eta = eta0/pow(t, power_t).

 If learning rate = ‘adaptive’, eta = eta0.

eta0: double,

default = 0.0

It represents the initial learning rate for above mentioned learning rate

options i.e. ‘constant’, ‘invscalling’, or ‘adaptive’.

power_t : double,

default =0.5

It is the exponent for ‘incscalling’ learning rate.

early_stopping:

bool, default = False

This parameter represents the use of early stopping to terminate training

when validation score is not improving. Its default value is false but when

set to true, it automatically set aside a stratified fraction of training data

as validation and stop training when validation score is not improving.

validation_fractio

n: float, default =

0.1

It is only used when early_stopping is true. It represents the proportion

of training data to set asides as validation set for early termination of

training data.

n_iter_no_change

: int, default=5

It represents the number of iteration with no improvement should

algorithm run before early stopping.

classs_weight:

dict, {class_label:

weight} or

“balanced”, or

None, optional

This parameter represents the weights associated with classes. If not

provided, the classes are supposed to have weight 1.

warm_start: bool,

optional, default =

false

With this parameter set to True, we can reuse the solution of the previous

call to fit as initialization. If we choose default i.e. false, it will erase the

previous solution.

average: Boolean

or int, optional,

default = false

Its default value is False but when set to True, it calculates the averaged

Stochastic Gradient Descent weights and stores the result in the coef_

attribute. On the other hand, if its value set to an integer greater than 1,

the averaging will begin once the total number of samples seen reaches.

Attributes

Following table consist the attributes used by SGDClassifier module:

Scikit-Learn

 60

Attributes Description

coef_: array, shape (1, n_features) if

n_classes==2, else (n_classes, n_features)

This attribute provides the weight assigned to the

features.

intercept_: array, shape (1,) if

n_classes==2, else (n_classes,)

It represents the independent term in decision

function.

n_iter_: int It gives the number of iterations to reach the

stopping criterion.

Implementation Example

Like other classifiers, Stochastic Gradient Descent (SGD) has to be fitted with following

two arrays:

 An array X holding the training samples. It is of size [n_samples, n_features].

 An array Y holding the target values i.e. class labels for the training samples. It is

of size [n_samples].

Following Python script uses SGDClassifier linear model:

import numpy as np

from sklearn import linear_model

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])

Y = np.array([1, 1, 2, 2])

SGDClf = linear_model.SGDClassifier(max_iter=1000, tol=1e-

3,penalty="elasticnet")

SGDClf.fit(X, Y)

Output

SGDClassifier(alpha=0.0001, average=False, class_weight=None,

 early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,

 l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=1000,

 n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet',

 power_t=0.5, random_state=None, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Now, once fitted, the model can predict new values as follows:

SGDClf.predict([[2.,2.]])

Output

Scikit-Learn

 61

array([2])

For the above example, we can get the weight vector with the help of following python

script:

SGDClf.coef_

Output

array([[19.54811198, 9.77200712]])

Similarly, we can get the value of intercept with the help of following python script:

SGDClf.intercept_

Output

array([10.])

We can get the signed distance to the hyperplane by using

SGDClassifier.decision_function as used in the following python script:

SGDClf.decision_function([[2., 2.]])

Output

array([68.6402382])

SGD Regressor

Stochastic Gradient Descent (SGD) regressor basically implements a plain SGD learning

routine supporting various loss functions and penalties to fit linear regression models.

Scikit-learn provides SGDRegressor module to implement SGD regression.

Parameters

Parameters used by SGDRegressor are almost same as that were used in SGDClassifier

module. The difference lies in ‘loss’ parameter. For SGDRegressor modules’ loss

parameter the positives values are as follows:

 squared_loss: It refers to the ordinary least squares fit.

 huber: SGDRegressor correct the outliers by switching from squared to linear

loss past a distance of epsilon. The work of ‘huber’ is to modify ‘squared_loss’ so

that algorithm focus less on correcting outliers.

 epsilon_insensitive: Actually, it ignores the errors less than epsilon.

 squared_epsilon_insensitive: It is same as epsilon_insensitive. The only

difference is that it becomes squared loss past a tolerance of epsilon.

Scikit-Learn

 62

Another difference is that the parameter named ‘power_t’ has the default value of 0.25

rather than 0.5 as in SGDClassifier. Furthermore, it doesn’t have ‘class_weight’ and

‘n_jobs’ parameters.

Attributes

Attributes of SGDRegressor are also same as that were of SGDClassifier module.

Rather it has three extra attributes as follows:

 average_coef_: array, shape(n_features,)

As name suggest, it provides the average weights assigned to the features.

 average_intercept_: array, shape(1,)

As name suggest, it provides the averaged intercept term.

 t_: int

It provides the number of weight updates performed during the training phase.

Note: the attributes average_coef_ and average_intercept_ will work after enabling

parameter ‘average’ to True.

Implementation Example

Following Python script uses SGDRegressor linear model:

import numpy as np

from sklearn import linear_model

n_samples, n_features = 10, 5

rng = np.random.RandomState(0)

y = rng.randn(n_samples)

X = rng.randn(n_samples, n_features)

SGDReg

=linear_model.SGDRegressor(max_iter=1000,penalty="elasticnet",loss='huber',tol=

1e-3, average=True)

SGDReg.fit(X, y)

Output

SGDRegressor(alpha=0.0001, average=True, early_stopping=False, epsilon=0.1,

 eta0=0.01, fit_intercept=True, l1_ratio=0.15,

 learning_rate='invscaling', loss='huber', max_iter=1000,

 n_iter=None, n_iter_no_change=5, penalty='elasticnet', power_t=0.25,

 random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1,

Scikit-Learn

 63

 verbose=0, warm_start=False)

Now, once fitted, we can get the weight vector with the help of following python script:

SGDReg.coef_

Output

array([-0.00423314, 0.00362922, -0.00380136, 0.00585455, 0.00396787])

Similarly, we can get the value of intercept with the help of following python script:

SGReg.intercept_

Output

array([0.00678258])

We can get the number of weight updates during training phase with the help of the

following python script:

SGDReg.t_

Output

61.0

Pros and Cons of SGD

Following the pros of SGD:

 Stochastic Gradient Descent (SGD) is very efficient.

 It is very easy to implement as there are lots of opportunities for code tuning.

Following the cons of SGD:

 Stochastic Gradient Descent (SGD) requires several hyperparameters like

regularization parameters.

 It is sensitive to feature scaling.

Scikit-Learn

 64

This chapter deals with a machine learning method termed as Support Vector Machines

(SVMs).

Introduction

Support vector machines (SVMs) are powerful yet flexible supervised machine learning

methods used for classification, regression, and, outliers’ detection. SVMs are very efficient

in high dimensional spaces and generally are used in classification problems. SVMs are

popular and memory efficient because they use a subset of training points in the decision

function.

The main goal of SVMs is to divide the datasets into number of classes in order to find a

maximum marginal hyperplane (MMH) which can be done in the following two steps:

 Support Vector Machines will first generate hyperplanes iteratively that separates

the classes in the best way.

 After that it will choose the hyperplane that segregate the classes correctly.

 Some important concepts in SVM are as follows:

 Support Vectors: They may be defined as the datapoints which are closest to the

hyperplane. Support vectors help in deciding the separating line.

 Hyperplane: The decision plane or space that divides set of objects having

different classes.

 Margin: The gap between two lines on the closet data points of different classes is

called margin.

Following diagrams will give you an insight about these SVM concepts:

9. Scikit-Learn — Support Vector Machines
(SVMs)

Scikit-Learn

 65

SVM in Scikit-learn supports both sparse and dense sample vectors as input.

Classification of SVM

Scikit-learn provides three classes namely SVC, NuSVC and LinearSVC which can

perform multiclass-class classification.

SVC

It is C-support vector classification whose implementation is based on libsvm. The module

used by scikit-learn is sklearn.svm.SVC. This class handles the multiclass support

according to one-vs-one scheme.

Parameters

Followings table consist the parameters used by sklearn.svm.SVC class:

Parameter Description

C: float, optional,

default = 1.0

It is the penalty parameter of the error term.

kernel: string,

optional, default =

‘rbf’

This parameter specifies the type of kernel to be used in the algorithm.

we can choose any one among, ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’,

‘precomputed’. The default value of kernel would be ‘rbf’.

degree: int,

optional, default = 3

It represents the degree of the ‘poly’ kernel function and will be ignored

by all other kernels.

gamma: {‘scale’,

‘auto’} or float,

It is the kernel coefficient for kernels ‘rbf’, ‘poly’ and ‘sigmoid’.

Hyperplane

X-axis

Margin

Y-

axis

Support Vectors

Class A

Class B

Scikit-Learn

 66

optinal default =

‘scale’

If you choose default i.e. gamma = ‘scale’ then the value of gamma to be

used by SVC is 1/(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑋. 𝑣𝑎𝑟()).

On the other hand, if gamma= ‘auto’, it uses 1/𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.

coef0: float,

optional,

Default=0.0

An independent term in kernel function which is only significant in ‘poly’

and ‘sigmoid’.

tol: float, optional,

default = 1.e-3

This parameter represents the stopping criterion for iterations.

shrinking:

Boolean, optional,

default = True

This parameter represents that whether we want to use shrinking heuristic

or not.

verbose: Boolean,

default: false

It enables or disable verbose output. Its default value is false.

probability:

boolean, optional,

default = true

This parameter enables or disables probability estimates. The default

value is false, but it must be enabled before we call fit.

max_iter: int,

optional, default = -

1

As name suggest, it represents the maximum number of iterations within

the solver. Value -1 means there is no limit on the number of iterations.

cache_size: float,

optional

This parameter will specify the size of the kernel cache. The value will be

in MB(MegaBytes).

random_state: int,

RandomState

instance or None,

optional, default =

none

This parameter represents the seed of the pseudo random number

generated which is used while shuffling the data. Followings are the

options:

 int: In this case, random_state is the seed used by random number

generator.

 RandomState instance: In this case, random_state is the

random number generator.

 None: In this case, the random number generator is the

RandonState instance used by np.random.

class_weight:

{dict, ‘balanced’},

optional

This parameter will set the parameter C of class j to 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡[𝑗] ∗ 𝐶 for

SVC. If we use the default option, it means all the classes are supposed

to have weight one. On the other hand, if you choose class_weight:

balanced, it will use the values of y to automatically adjust weights.

Scikit-Learn

 67

decision_function

_shape: ‘ovo’,

‘ovr’, default = ‘ovr’

This parameter will decide whether the algorithm will return ‘ovr’ (one-

vs-rest) decision function of shape as all other classifiers, or the original

ovo(one-vs-one) decision function of libsvm.

break_ties:

boolean, optional,

default = false

True: The predict will break ties according to the confidence values of

decision_function

False: The predict will return the first class among the tied classes.

Attributes

Followings table consist the attributes used by sklearn.svm.SVC class:

Attributes Description

support_: array-like, shape = [n_SV] It returns the indices of support vectors.

support_vectors_: array-like, shape =

[n_SV, n_features]

It returns the support vectors.

n_support_: array-like, dtype=int32,

shape = [n_class]

It represents the number of support vectors for

each class.

dual_coef_: array, shape = [n_class-

1,n_SV]

These are the coefficient of the support vectors in

the decision function.

coef_: array, shape = [n_class * (n_class-

1)/2, n_features]

This attribute, only available in case of linear

kernel, provides the weight assigned to the

features.

intercept_: array, shape = [n_class *

(n_class-1)/2]

It represents the independent term (constant) in

decision function.

fit_status_: int The output would be 0 if it is correctly fitted. The

output would be 1 if it is incorrectly fitted.

classes_: array of shape = [n_classes] It gives the labels of the classes.

Implementation Example

Like other classifiers, SVC also has to be fitted with following two arrays:

 An array X holding the training samples. It is of size [n_samples, n_features].

 An array Y holding the target values i.e. class labels for the training samples. It is

of size [n_samples].

Following Python script uses sklearn.svm.SVC class:

Scikit-Learn

 68

import numpy as np

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])

y = np.array([1, 1, 2, 2])

from sklearn.svm import SVC

SVCClf = SVC(kernel='linear',gamma='scale', shrinking=False,)

SVCClf.fit(X, y)

Output

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',

 max_iter=-1, probability=False, random_state=None, shrinking=False,

 tol=0.001, verbose=False)

Now, once fitted, we can get the weight vector with the help of following python script

SVCClf.coef_

Output

array([[0.5, 0.5]])

Similarly, we can get the value of other attributes as follows:

SVCClf.predict([[-0.5,-0.8]])

Output

array([1])

SVCClf.n_support_

Output

array([1, 1])

SVCClf.support_vectors_

Output

array([[-1., -1.],

 [1., 1.]])

Scikit-Learn

 69

SVCClf.support_

Output

array([0, 2])

SVCClf.intercept_

Output

array([-0.])

SVCClf.fit_status_

Output

0

NuSVC

NuSVC is Nu Support Vector Classification. It is another class provided by scikit-learn

which can perform multi-class classification. It is like SVC but NuSVC accepts slightly

different sets of parameters. The parameter which is different from SVC is as follows:

 nu: float, optional, default = 0.5

It represents an upper bound on the fraction of training errors and a lower bound of the

fraction of support vectors. Its value should be in the interval of (o,1].

Rest of the parameters and attributes are same as of SVC.

Implementation Example

We can implement the same example using sklearn.svm.NuSVC class also.

import numpy as np

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])

y = np.array([1, 1, 2, 2])

from sklearn.svm import NuSVC

NuSVCClf = NuSVC(kernel='linear',gamma='scale', shrinking=False,)

NuSVCClf.fit(X, y)

Output

NuSVC(cache_size=200, class_weight=None, coef0=0.0,

Scikit-Learn

 70

 decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',

 max_iter=-1, nu=0.5, probability=False, random_state=None,

 shrinking=False, tol=0.001, verbose=False)

We can get the outputs of rest of the attributes as did in the case of SVC.

LinearSVC

It is Linear Support Vector Classification. It is similar to SVC having kernel = ‘linear’. The

difference between them is that LinearSVC implemented in terms of liblinear while SVC

is implemented in libsvm. That’s the reason LinearSVC has more flexibility in the choice

of penalties and loss functions. It also scales better to large number of samples.

If we talk about its parameters and attributes then it does not support ‘kernel’ because

it is assumed to be linear and it also lacks some of the attributes like support_,

support_vectors_, n_support_, fit_status_ and, dual_coef_.

However, it supports penalty and loss parameters as follows:

 penalty: string, L1 or L2(default = ‘L2’)

This parameter is used to specify the norm (L1 or L2) used in penalization

(regularization).

 loss: string, hinge, squared_hinge (default = squared_hinge)

It represents the loss function where ‘hinge’ is the standard SVM loss and

‘squared_hinge’ is the square of hinge loss.

Implementation Example

Following Python script uses sklearn.svm.LinearSVC class:

from sklearn.svm import LinearSVC

from sklearn.datasets import make_classification

X, y = make_classification(n_features=4, random_state=0)

LSVCClf = LinearSVC(dual = False, random_state=0, penalty='l1',tol=1e-5)

LSVCClf.fit(X, y)

Output

LinearSVC(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l1', random_state=0, tol=1e-05, verbose=0)

Now, once fitted, the model can predict new values as follows:

LSVCClf.predict([[0,0,0,0]])

Output

Scikit-Learn

 71

[1]

For the above example, we can get the weight vector with the help of following python

script:

LSVCClf.coef_

Output

[[0. 0. 0.91214955 0.22630686]]

Similarly, we can get the value of intercept with the help of following python script:

LSVCClf.intercept_

Output

[0.26860518]

Regression with SVM

As discussed earlier, SVM is used for both classification and regression problems. Scikit-

learn’s method of Support Vector Classification (SVC) can be extended to solve regression

problems as well. That extended method is called Support Vector Regression (SVR).

Basic similarity between SVM and SVR

The model created by SVC depends only on a subset of training data. Why? Because the

cost function for building the model doesn’t care about training data points that lie outside

the margin.

Whereas, the model produced by SVR (Support Vector Regression) also only depends on

a subset of the training data. Why? Because the cost function for building the model

ignores any training data points close to the model prediction.

Scikit-learn provides three classes namely SVR, NuSVR and LinearSVR as three

different implementations of SVR.

SVR

It is Epsilon-support vector regression whose implementation is based on libsvm. As

opposite to SVC There are two free parameters in the model namely ‘C’ and ‘epsilon’.

 epsilon: float, optional, default = 0.1

It represents the epsilon in the epsilon-SVR model, and specifies the epsilon-tube within

which no penalty is associated in the training loss function with points predicted within a

distance epsilon from the actual value.

Rest of the parameters and attributes are similar as we used in SVC.

Implementation Example

Scikit-Learn

 72

Following Python script uses sklearn.svm.SVR class:

from sklearn import svm

X = [[1, 1], [2, 2]]

y = [1, 2]

SVRReg = svm.SVR(kernel=’linear’, gamma=’auto’)

SVRReg.fit(X, y)

Output

SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',

 kernel='linear', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

Now, once fitted, we can get the weight vector with the help of following python script:

SVRReg.coef_

Output

array([[0.4, 0.4]])

Similarly, we can get the value of other attributes as follows:

SVRReg.predict([[1,1]])

Output

array([1.1])

Similarly, we can get the values of other attributes as well.

NuSVR

NuSVR is Nu Support Vector Regression. It is like NuSVC, but NuSVR uses a parameter nu

to control the number of support vectors. And moreover, unlike NuSVC where nu replaced

C parameter, here it replaces epsilon.

Implementation Example

Following Python script uses sklearn.svm.SVR class:

from sklearn.svm import NuSVR

import numpy as np

n_samples, n_features = 20, 15

np.random.seed(0)

y = np.random.randn(n_samples)

Scikit-Learn

 73

X = np.random.randn(n_samples, n_features)

NuSVRReg = NuSVR(kernel='linear', gamma='auto',C=1.0, nu=0.1)^M

NuSVRReg.fit(X, y)

Output

NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto',

 kernel='linear', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,

 verbose=False)

Now, once fitted, we can get the weight vector with the help of following python script:

NuSVRReg.coef_

Output

array([[-0.14904483, 0.04596145, 0.22605216, -0.08125403, 0.06564533,

 0.01104285, 0.04068767, 0.2918337 , -0.13473211, 0.36006765,

 -0.2185713 , -0.31836476, -0.03048429, 0.16102126, -0.29317051]])

Similarly, we can get the value of other attributes as well.

LinearSVR

 It is Linear Support Vector Regression. It is similar to SVR having kernel = ‘linear’. The

difference between them is that LinearSVR implemented in terms of liblinear, while SVC

implemented in libsvm. That’s the reason LinearSVR has more flexibility in the choice of

penalties and loss functions. It also scales better to large number of samples.

If we talk about its parameters and attributes then it does not support ‘kernel’ because

it is assumed to be linear and it also lacks some of the attributes like support_,

support_vectors_, n_support_, fit_status_ and, dual_coef_.

However, it supports ‘loss’ parameters as follows:

 loss: string, optional, default = ‘epsilon_insensitive’

It represents the loss function where epsilon_insensitive loss is the L1 loss and the squared

epsilon-insensitive loss is the L2 loss.

Implementation Example

Following Python script uses sklearn.svm.LinearSVR class:

from sklearn.svm import LinearSVR

from sklearn.datasets import make_regression

X, y = make_regression(n_features=4, random_state=0)

LSVRReg = LinearSVR(dual = False, random_state=0,

loss='squared_epsilon_insensitive',tol=1e-5)

Scikit-Learn

 74

LSVRReg.fit(X, y)

Output

LinearSVR(C=1.0, dual=False, epsilon=0.0, fit_intercept=True,

 intercept_scaling=1.0, loss='squared_epsilon_insensitive',

 max_iter=1000, random_state=0, tol=1e-05, verbose=0)

Now, once fitted, the model can predict new values as follows:

LSRReg.predict([[0,0,0,0]])

Output

array([-0.01041416])

For the above example, we can get the weight vector with the help of following python

script:

LSRReg.coef_

Output

array([20.47354746, 34.08619401, 67.23189022, 87.47017787])

Similarly, we can get the value of intercept with the help of following python script:

LSRReg.intercept_

Output

array([-0.01041416])

Scikit-Learn

 75

Here, we will learn about what is anomaly detection in Sklearn and how it is used in

identification of the data points.

Anomaly detection is a technique used to identify data points in dataset that does not fit

well with the rest of the data. It has many applications in business such as fraud detection,

intrusion detection, system health monitoring, surveillance, and predictive maintenance.

Anomalies, which are also called outlier, can be divided into following three categories:

 Point anomalies: It occurs when an individual data instance is considered as

anomalous w.r.t the rest of the data.

 Contextual anomalies: Such kind of anomaly is context specific. It occurs if a

data instance is anomalous in a specific context.

 Collective anomalies: It occurs when a collection of related data instances is

anomalous w.r.t entire dataset rather than individual values.

Methods

Two methods namely outlier detection and novelty detection can be used for anomaly

detection. It’s necessary to see the distinction between them.

Outlier detection

The training data contains outliers that are far from the rest of the data. Such outliers are

defined as observations. That’s the reason, outlier detection estimators always try to fit

the region having most concentrated training data while ignoring the deviant observations.

It is also known as unsupervised anomaly detection.

Novelty detection

It is concerned with detecting an unobserved pattern in new observations which is not

included in training data. Here, the training data is not polluted by the outliers. It is also

known as semi-supervised anomaly detection.

There are set of ML tools, provided by scikit-learn, which can be used for both outlier

detection as well novelty detection. These tools first implementing object learning from

the data in an unsupervised by using fit () method as follows:

estimator.fit(X_train)

Now, the new observations would be sorted as inliers (labeled 1) or outliers (labeled

-1) by using predict() method as follows:

estimator.fit(X_test)

The estimator will first compute the raw scoring function and then predict method will

make use of threshold on that raw scoring function. We can access this raw scoring

10. Scikit-Learn ― Anomaly Detection

Scikit-Learn

 76

function with the help of score_sample method and can control the threshold by

contamination parameter.

We can also define decision_function method that defines outliers as negative value and

inliers as non-negative value.

estimator.decision_function(X_test)

Sklearn algorithms for Outlier Detection

Let us begin by understanding what an elliptic envelop is.

Fitting an elliptic envelop

This algorithm assume that regular data comes from a known distribution such as Gaussian

distribution. For outlier detection, Scikit-learn provides an object named

covariance.EllipticEnvelop.

This object fits a robust covariance estimate to the data, and thus, fits an ellipse to the

central data points. It ignores the points outside the central mode.

Parameters

Following table consist the parameters used by sklearn. covariance.EllipticEnvelop

method:

Parameter Description

store_precision:

Boolean, optional,

default = True

We can specify it if the estimated precision is stored.

assume_centered

: Boolean, optional,

default = False

If we set it False, it will compute the robust location and

covariance directly with the help of FastMCD algorithm. On the

other hand, if set True, it will compute the support of robust

location and covariance estimates and then recompute the

covariance estimate.

support_fraction:

float in (0., 1.),

optional, default =

None

This parameter tells the method that how much proportion of

points to be included in the support of the raw MCD estimates.

contamination:

float in (0., 1.),

optional, default =

0.1

It provides the proportion of the outliers in the data set.

Scikit-Learn

 77

random_state: int,

RandomState

instance or None,

optional, default =

none

This parameter represents the seed of the pseudo random number

generated which is used while shuffling the data. Followings are

the options:

 int: In this case, random_state is the seed used by

random number generator.

 RandomState instance: In this case, random_state is

the random number generator.

 None: In this case, the random number generator is the

RandonState instance used by np.random.

Attributes

Following table consist the attributes used by sklearn. covariance.EllipticEnvelop

method:

Attributes Description

support_: array-like, shape(n_samples,) It represents the mask of the observations

used to compute robust estimates of

location and shape.

location_: array-like, shape (n_features) It returns the estimated robust location.

covariance_: array-like, shape

(n_features, n_features)

It returns the estimated robust covariance

matrix.

precision_: array-like, shape (n_features,

n_features)

It returns the estimated pseudo inverse

matrix.

offset_: float It is used to define the decision function

from the raw scores. decision_function

= score_samples -offset_

Implementation Example

import numpy as np^M

from sklearn.covariance import EllipticEnvelope^M

true_cov = np.array([[.5, .6],[.6, .4]])

X = np.random.RandomState(0).multivariate_normal(mean=[0, 0],

cov=true_cov,size=500)

cov = EllipticEnvelope(random_state=0).fit(X)^M

Scikit-Learn

 78

Now we can use predict method. It will return 1 for an inlier and -1 for an

outlier.

cov.predict([[0, 0],[2, 2]])

Output

array([1, -1])

Isolation Forest

In case of high-dimensional dataset, one efficient way for outlier detection is to use random

forests. The scikit-learn provides ensemble.IsolationForest method that isolates the

observations by randomly selecting a feature. Afterwards, it randomly selects a value

between the maximum and minimum values of the selected features.

Here, the number of splitting needed to isolate a sample is equivalent to path length from

the root node to the terminating node.

Parameters

Followings table consist the parameters used by sklearn. ensemble.IsolationForest

method:

Parameter Description

n_estimators: int,

optional, default =

100

It represents the number of base estimators in the ensemble.

max_samples : int

or float, optional,

default = “auto”

It represents the number of samples to be drawn from X to train

each base estimator. If we choose int as its value, it will draw

𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 samples. If we choose float as its value, it will draw

𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 𝑋. 𝑠ℎ𝑎𝑝𝑒[0] samples. And, if we choose auto as its

value, it will draw 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑚𝑖𝑛(256, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠).

support_fraction:

float in (0., 1.),

optional, default =

None

This parameter tells the method that how much proportion of

points to be included in the support of the raw MCD estimates.

contamination:

auto or float,

optional, default =

auto

It provides the proportion of the outliers in the data set. If we set

it default i.e. auto, it will determine the threshold as in the original

paper. If set to float, the range of contamination will be in the

range of [0,0.5].

Scikit-Learn

 79

random_state: int,

RandomState

instance or None,

optional, default =

none

This parameter represents the seed of the pseudo random number

generated which is used while shuffling the data. Followings are

the options:

 int: In this case, random_state is the seed used by random

number generator.

 RandomState instance: In this case, random_state is

the random number generator.

 None: In this case, the random number generator is the

RandonState instance used by np.random.

max_features: int

or float, optional

(default = 1.0)

It represents the number of features to be drawn from X to train

each base estimator. If we choose int as its value, it will draw

𝒎𝒂𝒙_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 features. If we choose float as its value, it will draw

𝒎𝒂𝒙_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 ∗ 𝑿. 𝒔𝒉𝒂𝒑𝒆[𝟏] samples.

bootstrap:

Boolean, optional

(default = False)

Its default option is False which means the sampling would be

performed without replacement. And on the other hand, if set to

True, means individual trees are fit on a random subset of the

training data sampled with replacement.

n_jobs: int or

None, optional

(default = None)

It represents the number of jobs to be run in parallel for fit() and

predict() methods both.

verbose: int,

optional (default =

0)

This parameter controls the verbosity of the tree building process.

warm_start: Bool,

optional

(default=False)

If warm_start = true, we can reuse previous call’s solution to fit

and can add more estimators to the ensemble. But if is set to

false, we need to fit a whole new forest.

Attributes

Following table consist the attributes used by sklearn. ensemble.IsolationForest

method:

Attributes Description

estimators_: list of DecisionTreeClassifier Providing the collection of all fitted sub-

estimators.

Scikit-Learn

 80

max_samples_: integer It provides the actual number of samples

used.

offset_: float It is used to define the decision function

from the raw scores. decision_function

= score_samples -offset_

Implementation Example

The Python script below will use sklearn. ensemble.IsolationForest method to fit 10

trees on given data:

from sklearn.ensemble import IsolationForest

import numpy as np

X = np.array([[-1, -2], [-3, -3], [-3, -4], [0, 0], [-50, 60]])

OUTDClf = IsolationForest(n_estimators=10)

OUTDclf.fit(X)

Output

IsolationForest(behaviour='old', bootstrap=False, contamination='legacy',

 max_features=1.0, max_samples='auto', n_estimators=10, n_jobs=None,

 random_state=None, verbose=0)

Local Outlier Factor

Local Outlier Factor (LOF) algorithm is another efficient algorithm to perform outlier

detection on high dimension data. The scikit-learn provides

neighbors.LocalOutlierFactor method that computes a score, called local outlier factor,

reflecting the degree of anomality of the observations. The main logic of this algorithm is

to detect the samples that have a substantially lower density than its neighbors. That’s

why it measures the local density deviation of given data points w.r.t. their neighbors.

Parameters

Followings table consist the parameters used by sklearn. neighbors.LocalOutlierFactor

method:

Parameter Description

n_neighbors: int,

optional, default =

20

It represents the number of neighbors use by default for

kneighbors query. All samples would be used if 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 >

 𝑔𝑖𝑣𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠.

algorithm: {‘auto’,

‘ball_tree’,

Which algorithm to be used for computing nearest neighbors.

Scikit-Learn

 81

‘kd_tree’, ‘brute’},

optional

 If you choose ball_tree, it will use BallTree algorithm.

 If you choose kd_tree, it will use KDTree algorithm.

 If you choose brute, it will use brute-force search

algorithm.

 If you choose auto, it will decide the most appropriate

algorithm on the basis of the value we passed to fit()

method.

leaf_size: int,

optional, default =

30

The value of this parameter can affect the speed of the

construction and query. It also affects the memory required to

store the tree. This parameter is passed to BallTree or KdTree

algorithms.

contamination:

auto or float,

optional, default =

auto

It provides the proportion of the outliers in the data set. If we set

it default i.e. auto, it will determine the threshold as in the original

paper. If set to float, the range of contamination will be in the

range of [0,0.5].

metric: string or

callable, default

‘Minkowski’

It represents the metric used for distance computation.

P: int, optional

(default = 2)

It is the parameter for the Minkowski metric. P=1 is equivalent to

using manhattan_distance i.e. L1, whereas P=2 is equivalent to

using euclidean_distance i.e. L2.

novelty: Boolean,

(default = False)

By default, LOF algorithm is used for outlier detection but it can

be used for novelty detection if we set novelty = true.

n_jobs: int or

None, optional

(default = None)

It represents the number of jobs to be run in parallel for fit() and

predict() methods both.

Attributes

Following table consist the attributes used by sklearn.neighbors.LocalOutlierFactor

method:

Attributes Description

negative_outlier_factor_: numpy array,

shape(n_samples,)

Providing opposite LOF of the training

samples.

Scikit-Learn

 82

n_neighbors_: integer It provides the actual number of neighbors

used for neighbors queries.

offset_: float It is used to define the binary labels from

the raw scores.

Implementation Example

The Python script given below will use sklearn.neighbors.LocalOutlierFactor method

to construct NeighborsClassifier class from any array corresponding our data set:

from sklearn.neighbors import NearestNeighbors

samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]

LOFneigh = NearestNeighbors(n_neighbors=1, algorithm="ball_tree",p=1)

LOFneigh.fit(samples)

Output

NearestNeighbors(algorithm='ball_tree', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=1, p=1, radius=1.0)

Now, we can ask from this constructed classifier who’s is the closet point to [0.5, 1., 1.5]

by using the following python script:

print(neigh.kneighbors([[.5, 1., 1.5]])

Output

(array([[1.7]]), array([[1]], dtype=int64))

One-Class SVM

The One-Class SVM, introduced by Schölkopf et al., is the unsupervised Outlier Detection.

It is also very efficient in high-dimensional data and estimates the support of a high-

dimensional distribution. It is implemented in the Support Vector Machines module in

the Sklearn.svm.OneClassSVM object. For defining a frontier, it requires a kernel

(mostly used is RBF) and a scalar parameter.

For better understanding let’s fit our data with svm.OneClassSVM object:

from sklearn.svm import OneClassSVM

X = [[0], [0.89], [0.90], [0.91], [1]]

OSVMclf = OneClassSVM(gamma='scale').fit(X)

Scikit-Learn

 83

Now, we can get the score_samples for input data as follows:

OSVMclf.score_samples(X)

Output

array([1.12218594, 1.58645126, 1.58673086, 1.58645127, 1.55713767])

Scikit-Learn

 84

This chapter will help you in understanding the nearest neighbor methods in Sklearn.

Neighbor based learning method are of both types namely supervised and

unsupervised. Supervised neighbors-based learning can be used for both classification

as well as regression predictive problems but, it is mainly used for classification predictive

problems in industry.

Neighbors based learning methods do not have a specialised training phase and uses all

the data for training while classification. It also does not assume anything about the

underlying data. That’s the reason they are lazy and non-parametric in nature.

The main principle behind nearest neighbor methods is:

 To find a predefined number of training samples closet in distance to the new data

point

 Predict the label from these number of training samples.

Here, the number of samples can be a user-defined constant like in K-nearest neighbor

learning or vary based on the local density of point like in radius-based neighbor learning.

sklearn.neighbors Module

Scikit-learn have sklearn.neighbors module that provides functionality for both

unsupervised and supervised neighbors-based learning methods. As input, the classes in

this module can handle either NumPy arrays or scipy.sparse matrices.

Types of algorithms

Different types of algorithms which can be used in neighbor-based methods’

implementation are as follows:

Brute Force

The brute-force computation of distances between all pairs of points in the dataset

provides the most naïve neighbor search implementation. Mathematically, for N samples

in D dimensions, brute-force approach scales as 𝑶[𝑫𝑵𝟐].

For small data samples, this algorithm can be very useful, but it becomes infeasible as and

when number of samples grows. Brute force neighbor search can be enabled by writing

the keyword algorithm=’brute’.

K-D Tree

One of the tree-based data structures that have been invented to address the

computational inefficiencies of the brute-force approach, is KD tree data structure.

Basically, the KD tree is a binary tree structure which is called K-dimensional tree. It

recursively partitions the parameters space along the data axes by dividing it into nested

orthographic regions into which the data points are filled.

11. Scikit-Learn — K-Nearest Neighbors (KNN)

Scikit-Learn

 85

Advantages

Following are some advantages of K-D tree algorithm:

Construction is fast: As the partitioning is performed only along the data axes, K-D tree’s

construction is very fast.

Less distance computations: This algorithm takes very less distance computations to

determine the nearest neighbor of a query point. It only takes 𝑶[𝐥𝐨𝐠 (𝑵)] distance

computations.

Disadvantages

Fast for only low-dimensional neighbor searches: It is very fast for low-dimensional

(D < 20) neighbor searches but as and when D grow it becomes inefficient. As the

partitioning is performed only along the data axes,

K-D tree neighbor searches can be enabled by writing the keyword algorithm=’kd_tree’.

Ball Tree

As we know that KD Tree is inefficient in higher dimensions, hence, to address this

inefficiency of KD Tree, Ball tree data structure was developed. Mathematically, it

recursively divides the data, into nodes defined by a centroid C and radius r, in such a way

that each point in the node lies within the hyper-sphere defined by centroid C and radius

r. It uses triangle inequality, given below, which reduces the number of candidate points

for a neighbor search:

|𝑿 + 𝒀| ≤ |𝑿| + |𝒀|

Advantages

Following are some advantages of Ball Tree algorithm:

Efficient on highly structured data: As ball tree partition the data in a series of nesting

hyper-spheres, it is efficient on highly structured data.

Out-performs KD-tree: Ball tree out-performs KD tree in high dimensions because it has

spherical geometry of the ball tree nodes.

Disadvantages

Costly: Partition the data in a series of nesting hyper-spheres makes its construction very

costly

Ball tree neighbor searches can be enabled by writing the keyword

algorithm=’ball_tree’.

Choosing Nearest Neighbors Algorithm

The choice of an optimal algorithm for a given dataset depends upon the following factors:

Scikit-Learn

 86

Number of samples (N) and Dimensionality (D)

These are the most important factors to be considered while choosing Nearest Neighbor

algorithm. It is because of the reasons given below:

 The query time of Brute Force algorithm grows as O[DN].

 The query time of Ball tree algorithm grows as O[D log(N)].

 The query time of KD tree algorithm changes with D in a strange manner that is

very difficult to characterize. When D < 20, the cost is O[D log(N)] and this

algorithm is very efficient. On the other hand, it is inefficient in case when D > 20

because the cost increases to nearly O[DN].

Data Structure

Another factor that affect the performance of these algorithms is intrinsic dimensionality

of the data or sparsity of the data. It is because the query times of Ball tree and KD tree

algorithms can be greatly influenced by it. Whereas, the query time of Brute Force

algorithm is unchanged by data structure. Generally, Ball tree and KD tree algorithms

produces faster query time when implanted on sparser data with smaller intrinsic

dimensionality.

Number of Neighbors (k)

The number of neighbors (k) requested for a query point affects the query time of Ball

tree and KD tree algorithms. Their query time becomes slower as number of neighbors (k)

increases. Whereas the query time of Brute Force will remain unaffected by the value of

k.

Number of query points

Because, they need construction phase, both KD tree and Ball tree algorithms will be

effective if there are large number of query points. On the other hand, if there are a smaller

number of query points, Brute Force algorithm performs better than KD tree and Ball tree

algorithms.

Scikit-Learn

 87

k-NN (k-Nearest Neighbor), one of the simplest machine learning algorithms, is non-

parametric and lazy in nature. Non-parametric means that there is no assumption for the

underlying data distribution i.e. the model structure is determined from the dataset. Lazy

or instance-based learning means that for the purpose of model generation, it does not

require any training data points and whole training data is used in the testing phase.

The k-NN algorithm consist of the following two steps:

Step 1

In this step, it computes and stores the k nearest neighbors for each sample in the training

set.

Step 2

In this step, for an unlabeled sample, it retrieves the k nearest neighbors from dataset.

Then among these k-nearest neighbors, it predicts the class through voting (class with

majority votes wins).

The module, sklearn.neighbors that implements the k-nearest neighbors algorithm,

provides the functionality for unsupervised as well as supervised neighbors-based

learning methods.

The unsupervised nearest neighbors implement different algorithms (BallTree, KDTree or

Brute Force) to find the nearest neighbor(s) for each sample. This unsupervised version is

basically only step 1, which is discussed above, and the foundation of many algorithms

(KNN and K-means being the famous one) which require the neighbor search. In simple

words, it is Unsupervised learner for implementing neighbor searches.

On the other hand, the supervised neighbors-based learning is used for classification as

well as regression.

Unsupervised KNN Learning

As discussed, there exist many algorithms like KNN and K-Means that requires nearest

neighbor searches. That is why Scikit-learn decided to implement the neighbor search part

as its own “learner”. The reason behind making neighbor search as a separate learner is

that computing all pairwise distance for finding a nearest neighbor is obviously not very

efficient. Let’s see the module used by Sklearn to implement unsupervised nearest

neighbor learning along with example.

Scikit-learn module

sklearn.neighbors.NearestNeighbors is the module used to implement unsupervised

nearest neighbor learning. It uses specific nearest neighbor algorithms named BallTree,

KDTree or Brute Force. In other words, it acts as a uniform interface to these three

algorithms.

12. Scikit-Learn ― KNN Learning

Scikit-Learn

 88

Parameters

Followings table consist the parameters used by NearestNeighbors module:

Parameter Description

n_neighbors: int, optional The number of neighbors to get. The default value is

5.

radius: float, optional It limits the distance of neighbors to returns. The

default value is 1.0.

algorithm: {‘auto’, ‘ball_tree’,

‘kd_tree’, ‘brute’}, optional

This parameter will take the algorithm (BallTree,

KDTree or Brute-force) you want to use to compute

the nearest neighbors. If you will provide ‘auto’, it will

attempt to decide the most appropriate algorithm

based on the values passed to fit method.

leaf_size: int, optional It can affect the speed of the construction & query as

well as the memory required to store the tree. It is

passed to BallTree or KDTree. Although the optimal

value depends on the nature of the problem, its default

value is 30.

metric: string or callable It is the metric to use for distance computation

between points. We can pass it as a string or callable

function. In case of callable function, the metric is

called on each pair of rows and the resulting value is

recorded. It is less efficient than passing the metric

name as a string.

We can choose from metric from scikit-learn or

scipy.spatial.distance. the valid values are as follows:

Scikit-learn: [‘cosine’,’manhattan’,‘Euclidean’, ‘l1’,’l2’,

‘cityblock’]

Scipy.spatial.distance:

[‘braycurtis’,‘canberra’,‘chebyshev’,‘dice’,‘hamming’,‘j

accard’,

‘correlation’,‘kulsinski’,‘mahalanobis’,‘minkowski’,‘rog

erstanimoto’,‘russellrao’,

‘sokalmicheme’,’sokalsneath’, ‘seuclidean’,

‘sqeuclidean’, ‘yule’].

The default metric is ‘Minkowski’.

p: integer, optional It is the parameter for the Minkowski metric. The

default value is 2 which is equivalent to using

Euclidean_distance(l2).

metric_params: dict, optional This is the additional keyword arguments for the

metric function. The default value is None.

Scikit-Learn

 89

N_jobs: int or None, optional It reprsetst the numer of parallel jobs to run for

neighbor search. The default value is None.

Implementation Example

The example below will find the nearest neighbors between two sets of data by using the

sklearn.neighbors.NearestNeighbors module.

First, we need to import the required module and packages:

from sklearn.neighbors import NearestNeighbors

import numpy as np

Now, after importing the packages, define the sets of data in between we want to find the

nearest neighbors:

Input_data = np.array([[-1, 1], [-2, 2], [-3, 3], [1, 2], [2, 3], [3, 4],[4,

5]])

Next, apply the unsupervised learning algorithm, as follows:

nrst_neigh = NearestNeighbors(n_neighbors = 3, algorithm='ball_tree')

Next, fit the model with input data set.

nrst_neigh.fit(Input_data)

Now, find the K-neighbors of data set. It will return the indices and distances of the

neighbors of each point.

distances, indices = nbrs.kneighbors(Input_data)

indices

Output

array([[0, 1, 3],

 [1, 2, 0],

 [2, 1, 0],

 [3, 4, 0],

 [4, 5, 3],

 [5, 6, 4],

 [6, 5, 4]], dtype=int64)

distances

Output

array([[0. , 1.41421356, 2.23606798],

Scikit-Learn

 90

 [0. , 1.41421356, 1.41421356],

 [0. , 1.41421356, 2.82842712],

 [0. , 1.41421356, 2.23606798],

 [0. , 1.41421356, 1.41421356],

 [0. , 1.41421356, 1.41421356],

 [0. , 1.41421356, 2.82842712]])

The above output shows that the nearest neighbor of each point is the point itself i.e. at

zero. It is because the query set matches the training set.

We can also show a connection between neighboring points by producing a sparse graph

as follows:

nrst_neigh.kneighbors_graph(Input_data).toarray()

Output

array([[1., 1., 0., 1., 0., 0., 0.],

 [1., 1., 1., 0., 0., 0., 0.],

 [1., 1., 1., 0., 0., 0., 0.],

 [1., 0., 0., 1., 1., 0., 0.],

 [0., 0., 0., 1., 1., 1., 0.],

 [0., 0., 0., 0., 1., 1., 1.],

 [0., 0., 0., 0., 1., 1., 1.]])

Once we fit the unsupervised NearestNeighbors model, the data will be stored in a data

structure based on the value set for the argument ‘algorithm’. After that we can use this

unsupervised learner’s kneighbors in a model which requires neighbor searches.

Complete working/executable program

from sklearn.neighbors import NearestNeighbors

 import numpy as np

Input_data = np.array([[-1, 1], [-2, 2], [-3, 3], [1, 2], [2, 3], [3, 4],[4,

5]])

nrst_neigh = NearestNeighbors(n_neighbors = 3, algorithm='ball_tree')

nrst_neigh.fit(Input_data)

distances, indices = nbrs.kneighbors(Input_data)

indices

distances

nrst_neigh.kneighbors_graph(Input_data).toarray()

Scikit-Learn

 91

Supervised KNN Learning

The supervised neighbors-based learning is used for following:

 Classification, for the data with discrete labels

 Regression, for the data with continuous labels.

Nearest Neighbor Classifier

We can understand Neighbors-based classification with the help of following two

characteristics:

 It is computed from a simple majority vote of the nearest neighbors of each point.

 It simply stores instances of the training data, that’s why it is a type of non-

generalizing learning.

Scikit-learn modules

Followings are the two different types of nearest neighbor classifiers used by scikit-learn:

KNeighborsClassifier

The K in the name of this classifier represents the k nearest neighbors, where k is an

integer value specified by the user. Hence as the name suggests, this classifier implements

learning based on the k nearest neighbors. The choice of the value of k is dependent on

data. Let’s understand it more with the help if an implementation example:

Implementation Example

In this example, we will be implementing KNN on data set named Iris Flower data set by

using scikit-learn KneighborsClassifer.

 This data set has 50 samples for each different species (setosa, versicolor,

virginica) of iris flower i.e. total of 150 samples.

 For each sample, we have 4 features named sepal length, sepal width, petal length,

petal width)

First, import the dataset and print the features names as follows:

from sklearn.datasets import load_iris

iris = load_iris()

print(iris.feature_names)

Output

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width

(cm)']

Now we can print target i.e the integers representing the different species. Here 0 =

setos, 1 = versicolor and 2 = virginica.

Scikit-Learn

 92

print(iris.target)

Output

[0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 1 2 2 2 2 2 2 2 2 2 2 2

 2

 2 2]

Following line of code will show the names of the target:

print(iris.target_names)

Output

['setosa' 'versicolor' 'virginica']

We can check the number of observations and features with the help of following line of

code (iris data set has 150 observations and 4 features)

print(iris.data.shape)

Output

(150, 4)

Now, we need to split the data into training and testing data. We will be using Sklearn

train_test_split function to split the data into the ratio of 70 (training data) and 30

(testing data):

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

Next, we will be doing data scaling with the help of Sklearn preprocessing module as

follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Following line of codes will give you the shape of train and test objects:

Scikit-Learn

 93

print(X_train.shape)

print(X_test.shape)

Output

(105, 4)

(45, 4)

Following line of codes will give you the shape of new y object:

print(y_train.shape)

print(y_test.shape)

Output

(105,)

(45,)

Next, import the KneighborsClassifier class from Sklearn as follows:

from sklearn.neighbors import KNeighborsClassifier

To check accuracy, we need to import Metrics model as follows;

from sklearn import metrics

We are going to run it for k = 1 to 15 and will be recording testing accuracy,

plotting it, showing confusion matrix and classification report:

Range_k = range(1,15)

scores = {}

scores_list = []

for k in range_k:

 classifier = KNeighborsClassifier(n_neighbors=k)

 classifier.fit(X_train, y_train)

 y_pred = classifier.predict(X_test)

 scores[k] = metrics.accuracy_score(y_test,y_pred)

 scores_list.append(metrics.accuracy_score(y_test,y_pred))

result = metrics.confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

result1 = metrics.classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

Scikit-Learn

 94

Now, we will be plotting the relationship between the values of K and the corresponding

testing accuracy. It will be done using matplotlib library.

%matplotlib inline

import matplotlib.pyplot as plt

plt.plot(k_range,scores_list)

plt.xlabel("Value of K")

plt.ylabel("Accuracy")

Output

Confusion Matrix:

[[15 0 0]

 [0 15 0]

 [0 1 14]]

Classification Report:

 precision recall f1-score support

 0 1.00 1.00 1.00 15

 1 0.94 1.00 0.97 15

 2 1.00 0.93 0.97 15

 micro avg 0.98 0.98 0.98 45

 macro avg 0.98 0.98 0.98 45

weighted avg 0.98 0.98 0.98 45

Text(0, 0.5, 'Accuracy')

Scikit-Learn

 95

For the above model, we can choose the optimal value of K (any value between 6 to 14,

as the accuracy is highest for this range) as 8 and retrain the model as follows:

classifier = KNeighborsClassifier(n_neighbors=8)

classifier.fit(X_train, y_train)

Output

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=8, p=2,

 weights='uniform')

classes = {0:'setosa',1:'versicolor',2:'virginicia'}

x_new = [[1,1,1,1],[4,3,1.3,0.2]]

y_predict = rnc.predict(x_new)

print(classes[y_predict[0]])

print(classes[y_predict[1]])

Output

virginicia

virginicia

Scikit-Learn

 96

Complete working/executable program

from sklearn.datasets import load_iris

iris = load_iris()

print(iris.target_names)

print(iris.data.shape)

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

print(X_train.shape)

print(X_test.shape)

from sklearn.neighbors import KNeighborsClassifier

from sklearn import metrics

Range_k = range(1,15)

scores = {}

scores_list = []

for k in range_k:

 classifier = KNeighborsClassifier(n_neighbors=k)

 classifier.fit(X_train, y_train)

 y_pred = classifier.predict(X_test)

 scores[k] = metrics.accuracy_score(y_test,y_pred)

 scores_list.append(metrics.accuracy_score(y_test,y_pred))

result = metrics.confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

Scikit-Learn

 97

result1 = metrics.classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

%matplotlib inline

import matplotlib.pyplot as plt

plt.plot(k_range,scores_list)

plt.xlabel("Value of K")

plt.ylabel("Accuracy")

classifier = KNeighborsClassifier(n_neighbors=8)

classifier.fit(X_train, y_train)

classes = {0:'setosa',1:'versicolor',2:'virginicia'}

x_new = [[1,1,1,1],[4,3,1.3,0.2]]

y_predict = rnc.predict(x_new)

print(classes[y_predict[0]])

print(classes[y_predict[1]])

RadiusNeighborsClassifier

The Radius in the name of this classifier represents the nearest neighbors within a specified

radius r, where r is a floating-point value specified by the user. Hence as the name

suggests, this classifier implements learning based on the number neighbors within a fixed

radius r of each training point. Let’s understand it more with the help if an implementation

example:

Implementation Example

In this example, we will be implementing KNN on data set named Iris Flower data set by

using scikit-learn RadiusNeighborsClassifer:

First, import the iris dataset as follows:

from sklearn.datasets import load_iris

iris = load_iris()

Now, we need to split the data into training and testing data. We will be using Sklearn

train_test_split function to split the data into the ratio of 70 (training data) and 20

(testing data):

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

Scikit-Learn

 98

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

Next, we will be doing data scaling with the help of Sklearn preprocessing module as

follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Next, import the RadiusneighborsClassifier class from Sklearn and provide the value

of radius as follows:

from sklearn.neighbors import RadiusNeighborsClassifier

rnc = RadiusNeighborsClassifier(radius=5)

rnc.fit(X_train, y_train)

Now, create and predict the class of two observations as follows:

classes = {0:'setosa',1:'versicolor',2:'virginicia'}

x_new = [[1,1,1,1]]

y_predict = rnc.predict(x_new)

print(classes[y_predict[0]])

Output

versicolor

Complete working/executable program

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

Scikit-Learn

 99

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

from sklearn.neighbors import RadiusNeighborsClassifier

rnc = RadiusNeighborsClassifier(radius=5)

rnc.fit(X_train, y_train)

classes = {0:'setosa',1:'versicolor',2:'virginicia'}

x_new = [[1,1,1,1]]

y_predict = rnc.predict(x_new)

print(classes[y_predict[0]])

Nearest Neighbor Regressor

 It is used in the cases where data labels are continuous in nature. The assigned data

labels are computed on the basis on the mean of the labels of its nearest neighbors.

Followings are the two different types of nearest neighbor regressors used by scikit-learn:

KNeighborsRegressor

The K in the name of this regressor represents the k nearest neighbors, where k is an

integer value specified by the user. Hence, as the name suggests, this regressor

implements learning based on the k nearest neighbors. The choice of the value of k is

dependent on data. Let’s understand it more with the help of an implementation example:

Implementation Example

In this example, we will be implementing KNN on data set named Iris Flower data set by

using scikit-learn KNeighborsRegressor.

First, import the iris dataset as follows:

from sklearn.datasets import load_iris

iris = load_iris()

Now, we need to split the data into training and testing data. We will be using Sklearn

train_test_split function to split the data into the ratio of 70 (training data) and 20

(testing data):

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

Scikit-Learn

 100

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

Next, we will be doing data scaling with the help of Sklearn preprocessing module as

follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Next, import the KNeighborsRegressor class from Sklearn and provide the value of

neighbors as follows:

import numpy as np

from sklearn.neighbors import KNeighborsRegressor

knnr = KNeighborsRegressor(n_neighbors=8)

knnr.fit(X_train, y_train)

Output

KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=8, p=2,

 weights='uniform')

Now, we can find the MSE (Mean Squared Error) as follows:

print ("The MSE is:",format(np.power(y-knnr.predict(X),4).mean()))

Output

The MSE is: 4.4333349609375

Now, use it to predict the value as follows:

X = [[0], [1], [2], [3]]

y = [0, 0, 1, 1]

from sklearn.neighbors import KNeighborsRegressor

knnr = KNeighborsRegressor(n_neighbors=3)

knnr.fit(X, y)

print(knnr.predict([[2.5]]))

Output

Scikit-Learn

 101

[0.66666667]

Complete working/executable program

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

import numpy as np

from sklearn.neighbors import KNeighborsRegressor

knnr = KNeighborsRegressor(n_neighbors=8)

knnr.fit(X_train, y_train)

print ("The MSE is:",format(np.power(y-knnr.predict(X),4).mean()))

X = [[0], [1], [2], [3]]

y = [0, 0, 1, 1]

from sklearn.neighbors import KNeighborsRegressor

knnr = KNeighborsRegressor(n_neighbors=3)

knnr.fit(X, y)

print(knnr.predict([[2.5]]))

RadiusNeighborsRegressor

The Radius in the name of this regressor represents the nearest neighbors within a

specified radius r, where r is a floating-point value specified by the user. Hence as the

name suggests, this regressor implements learning based on the number neighbors within

a fixed radius r of each training point. Let’s understand it more with the help if an

implementation example:

Scikit-Learn

 102

Implementation Example

In this example, we will be implementing KNN on data set named Iris Flower data set by

using scikit-learn RadiusNeighborsRegressor:

First, import the iris dataset as follows:

from sklearn.datasets import load_iris

iris = load_iris()

Now, we need to split the data into training and testing data. We will be using Sklearn

train_test_split function to split the data into the ratio of 70 (training data) and 20

(testing data):

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

Next, we will be doing data scaling with the help of Sklearn preprocessing module as

follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Next, import the RadiusneighborsRegressor class from Sklearn and provide the value

of radius as follows:

import numpy as np

from sklearn.neighbors import RadiusNeighborsRegressor

knnr_r = RadiusNeighborsRegressor(radius=1)

knnr_r.fit(X_train, y_train)

Now, we can find the MSE (Mean Squared Error) as follows:

print ("The MSE is:",format(np.power(y-knnr_r.predict(X),4).mean()))

Output

The MSE is: The MSE is: 5.666666666666667

Now, use it to predict the value as follows:

X = [[0], [1], [2], [3]]

y = [0, 0, 1, 1]

Scikit-Learn

 103

from sklearn.neighbors import RadiusNeighborsRegressor

knnr_r = RadiusNeighborsRegressor(radius=1)

knnr_r.fit(X, y)

print(knnr_r.predict([[2.5]]))

Output

[1.]

Complete working/executable program

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data[:, :4]

y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

import numpy as np

from sklearn.neighbors import RadiusNeighborsRegressor

knnr_r = RadiusNeighborsRegressor(radius=1)

knnr_r.fit(X_train, y_train)

print ("The MSE is:",format(np.power(y-knnr_r.predict(X),4).mean()))

X = [[0], [1], [2], [3]]

y = [0, 0, 1, 1]

from sklearn.neighbors import RadiusNeighborsRegressor

knnr_r = RadiusNeighborsRegressor(radius=1)

knnr_r.fit(X, y)

print(knnr_r.predict([[2.5]]))

Scikit-Learn

 104

Naïve Bayes methods are a set of supervised learning algorithms based on applying Bayes’

theorem with a strong assumption that all the predictors are independent to each other

i.e. the presence of a feature in a class is independent to the presence of any other feature

in the same class. This is naïve assumption that is why these methods are called Naïve

Bayes methods.

Bayes theorem states the following relationship in order to find the posterior probability

of class i.e. the probability of a label and some observed features, 𝑷(𝒀 | 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔).

𝑃(𝑌 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =
𝑃(𝑌)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝑌)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Here, 𝑷(𝒀| 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) is the posterior probability of class.

𝑷(𝒀) is the prior probability of class.

𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀) is the likelihood which is the probability of predictor given class.

𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) is the prior probability of predictor.

The Scikit-learn provides different naïve Bayes classifiers models namely Gaussian,

Multinomial, Complement and Bernoulli. All of them differ mainly by the assumption they

make regarding the distribution of 𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀) i.e. the probability of predictor given

class.

Model Description

Gaussian Naïve Bayes

Gaussian Naïve Bayes classifier assumes

that the data from each label is drawn

from a simple Gaussian distribution.

Multinomial Naïve Bayes

It assumes that the features are drawn

from a simple Multinomial distribution.

Bernoulli Naïve Bayes

The assumption in this model is that the

features binary (0s and 1s) in nature. An

application of Bernoulli Naïve Bayes

classification is Text classification with

‘bag of words’ model

Complement Naïve Bayes

It was designed to correct the severe

assumptions made by Multinomial Bayes

classifier. This kind of NB classifier is

suitable for imbalanced data sets

13. Scikit-Learn ― Classification with Naïve Bayes

Scikit-Learn

 105

Gaussian Naïve Bayes

As the name suggest, Gaussian Naïve Bayes classifier assumes that the data from each

label is drawn from a simple Gaussian distribution. The Scikit-learn provides

sklearn.naive_bayes.GaussianNB to implement the Gaussian Naïve Bayes algorithm

for classification.

Parameters: Following table consist the parameters used by

sklearn.naive_bayes.GaussianNB method:

Parameter Description

priors: arrray-like,

shape(n_classes)

It represents the prior probabilities of the classes. If we specify this

parameter while fitting the data, then the prior probabilities will not be

justified according to the data.

Var_smoothing:

float, optional,

default = 1e-9

This parameter gives the portion of the largest variance of the features

that is added to variance in order to stabilize calculation.

Attributes

Following table consist the attributes used by sklearn.naive_bayes.GaussianNB

method:

Attributes Description

class_prior_: array, shape(n_classes,) It provides the probability of every class.

class_count_: array, shape(n_classes,) It provides the actual number of training samples

observed in every class.

theta_: array, shape (n_classes,

n_features)

It gives the mean of each feature per class.

sigma_: array, shape (n_classes,

n_features)

It gives the variance of each feature per class.

epsilon_: float These are the absolute additive value to variance.

Methods

Following table consist the methods used by sklearn.naive_bayes.GaussianNB

method:

Method Description

Scikit-Learn

 106

fit (self, X, y[, sample_weight])
This method will Fit Gaussian Naive Bayes classifier

according to X and y.

get_params (self[, deep])
With the help of this method we can get the parameters

for this estimator.

partial_fit

(self, X, y[,classes, sample_weight])

This method allows the incremental fit on a batch of

samples.

predict (self, X)
This method will perform classification on an array of test

vectors X.

predict_log_proba(self, X)
This method will return the log-probability estimates for

the test vector X.

predict_proba(self, X)
This method will return the probability estimates for the

test vector X.

score(self, X, y[, sample_weight])
With this method we can get the mean accuracy on the

given test data and labels.

set_params(self, **params)
This method allows us to set the parameters of this

estimator.

Implementation Example

The Python script below will use sklearn.naive_bayes.GaussianNB method to construct

Gaussian Naïve Bayes Classifier from our data set:

import numpy as np

X = np.array([[-1, -1], [-2, -4], [-4, -6], [1, 2]])

Y = np.array([1, 1, 2, 2])

from sklearn.naive_bayes import GaussianNB

GNBclf = GaussianNB()

GNBclf.fit(X, Y)

Output

GaussianNB(priors=None, var_smoothing=1e-09)

Now, once fitted we can predict the new value by using predict() method as follows:

print((GNBclf.predict([[-0.5, 2]]))

Output

[2]

Scikit-Learn

 107

Multinomial Naïve Bayes

It is another useful Naïve Bayes classifier. It assumes that the features are drawn from a

simple Multinomial distribution. The Scikit-learn provides

sklearn.naive_bayes.MultinomialNB to implement the Multinomial Naïve Bayes

algorithm for classification.

Parameters

Following table consist the parameters used by sklearn.naive_bayes.MultinomialNB

method:

Parameter Description

alpha: float,

optional, default =

1.0

It represents the additive smoothing parameter. If you choose 0 as its

value, then there will be no smoothing.

fit_prior: Boolean,

optional, default =

true

It tells the model that whether to learn class prior probabilities or not. The

default value is True but if set to False, the algorithms will use a uniform

prior.

class_prior: array-

like,

size(n_classes,),

optional, Default =

None

This parameter represents the prior probabilities of each class.

Attributes

Following table consist the attributes used by sklearn.naive_bayes.MultinomialNB

method:

Attributes Description

class_log_prior_: array,

shape(n_classes,)

It provides the smoothed log probability for every

class.

class_count_: array, shape(n_classes,) It provides the actual number of training samples

encountered for each class.

intercept_: array, shape (n_classes,) These are the Mirrors class_log_prior_ for

interpreting MultinomilaNB model as a linear

model.

feature_log_prob_: array, shape

(n_classes, n_features)

It gives the empirical log probability of features

given a class 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝑌).

Scikit-Learn

 108

coef_: array, shape (n_classes,

n_features)

These are the Mirrors feature_log_prior_ for

interpreting MultinomilaNB model as a linear

model.

feature_count_: array, shape (n_classes,

n_features)

It provides the actual number of training samples

encountered for each (class,feature).

The methods of sklearn.naive_bayes. MultinomialNB are same as we have used in

sklearn.naive_bayes.GaussianNB.

Implementation Example

The Python script below will use sklearn.naive_bayes.GaussianNB method to construct

Gaussian Naïve Bayes Classifier from our data set:

import numpy as np

X = np.random.randint(8, size=(8, 100))

y = np.array([1, 2, 3, 4, 5, 6, 7, 8])

from sklearn.naive_bayes import MultinomialNB

MNBclf = MultinomialNB()

MNBclf.fit(X, y)

Output

MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

Now, once fitted we can predict the new value aby using predict() method as follows:

print((MNBclf.predict(X[4:5]))

Output

[5]

Bernoulli Naïve Bayes

Bernoulli Naïve Bayes is another useful naïve Bayes model. The assumption in this model

is that the features binary (0s and 1s) in nature. An application of Bernoulli Naïve Bayes

classification is Text classification with ‘bag of words’ model. The Scikit-learn provides

sklearn.naive_bayes.BernoulliNB to implement the Gaussian Naïve Bayes algorithm

for classification.

Parameters

Following table consist the parameters used by sklearn.naive_bayes.BernoulliNB

method:

Scikit-Learn

 109

Parameter Description

alpha: float,

optional, default =

1.0

It represents the additive smoothing parameter. If you choose 0 as its

value, then there will be no smoothing.

binarize: float or

None, optional,

default = 0.0

With this parameter we can set the threshold for binarizing of sample

features. Binarization here means mapping to the Booleans. If you choose

its value to be None it means input consists of binary vectors.

fit_prior: Boolean,

optional, default =

true

It tells the model that whether to learn class prior probabilities or not. The

default value is True but if set to False, the algorithms will use a uniform

prior.

class_prior: array-

like,

size(n_classes,),

optional, Default =

None

This parameter represents the prior probabilities of each class.

Attributes

Following table consist the attributes used by sklearn.naive_bayes.BernoulliNB

method:

Attributes Description

class_log_prior_: array,

shape(n_classes,)

It provides the smoothed log probability for every

class.

class_count_: array, shape(n_classes,) It provides the actual number of training samples

encountered for each class.

feature_log_prob_: array, shape

(n_classes, n_features)

It gives the empirical log probability of features

given a class 𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀).

feature_count_: array, shape (n_classes,

n_features)

It provides the actual number of training samples

encountered for each (class,feature).

The methods of sklearn.naive_bayes.BernoulliNB are same as we have used in

sklearn.naive_bayes.GaussianNB.

Scikit-Learn

 110

Implementation Example

The Python script below will use sklearn.naive_bayes.BernoulliNB method to construct

Bernoulli Naïve Bayes Classifier from our data set:

import numpy as np

X = np.random.randint(10, size=(10, 1000))

y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

from sklearn.naive_bayes import BernoulliNB

BNBclf = BernoulliNB()

BNBclf.fit(X, y)

Output

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)

Now, once fitted we can predict the new value by using predict() method as follows:

print((BNBclf.predict(X[0:5]))

Output

[1 2 3 4 5]

Complement Naïve Bayes

Another useful naïve Bayes model which was designed to correct the severe assumptions

made by Multinomial Bayes classifier. This kind of NB classifier is suitable for imbalanced

data sets. The Scikit-learn provides sklearn.naive_bayes.ComplementNB to

implement the Gaussian Naïve Bayes algorithm for classification.

Parameters

Followings table consist the parameters used by sklearn.naive_bayes.ComplementNB

method:

Parameter Description

alpha: float,

optional, default =

1.0

It represents the additive smoothing parameter. If you choose 0 as its

value, then there will be no smoothing.

fit_prior: Boolean,

optional, default =

true

It tells the model that whether to learn class prior probabilities or not. The

default value is True but if set to False, the algorithms will use a uniform

prior. This parameter is only used in edge case with a single class in the

training data set.

class_prior: array-

like,

This parameter represents the prior probabilities of each class.

Scikit-Learn

 111

size(n_classes,),

optional, Default =

None

norm: Boolean,

optional, default =

False

It tells the model that whether to perform second normalization of the

weights or not.

Attributes

Following table consist the attributes used by sklearn.naive_bayes.ComplementNB

method:

Attributes Description

class_log_prior_: array,

shape(n_classes,)

It provides the smoothed empirical log probability

for every class. This attribute is only used in edge

case with a single class in the training data set.

class_count_: array, shape(n_classes,) It provides the actual number of training samples

encountered for each class.

feature_log_prob_: array, shape

(n_classes, n_features)

It gives the empirical weights for class

components.

feature_count_: array, shape (n_classes,

n_features)

It provides the actual number of training samples

encountered for each (class,feature).

feature_all_: array, shape(n_features,) It provides the actual number of training samples

encountered for each feature.

The methods of sklearn.naive_bayes.ComplementNB are same as we have used in

sklearn.naive_bayes.GaussianNB.

Implementation Example

The Python script below will use sklearn.naive_bayes.BernoulliNB method to construct

Bernoulli Naïve Bayes Classifier from our data set:

import numpy as np

X = np.random.randint(15, size=(15, 1000))

y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

from sklearn.naive_bayes import ComplementNB

CNBclf = ComplementNB()

CNBclf.fit(X, y)

Output

Scikit-Learn

 112

ComplementNB(alpha=1.0, class_prior=None, fit_prior=True, norm=False)

Now, once fitted we can predict the new value aby using predict() method as follows:

print((CNBclf.predict(X[10:15]))

Output

[11 12 13 14 15]

Building Naïve Bayes Classifier

We can also apply Naïve Bayes classifier on Scikit-learn dataset. In the example below,

we are applying GaussianNB and fitting the breast_cancer dataset of Scikit-leran.

Import Sklearn

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

data = load_breast_cancer()

label_names = data['target_names']

labels = data['target']

feature_names = data['feature_names']

features = data['data']

 print(label_names)

 print(labels[0])

 print(feature_names[0])

 print(features[0])

train, test, train_labels, test_labels =

train_test_split(features,labels,test_size = 0.40, random_state = 42)

from sklearn.naive_bayes import GaussianNB

GNBclf = GaussianNB()

model = GNBclf.fit(train, train_labels)

preds = GNBclf.predict(test)

print(preds)

Output

[1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1

1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0

1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1]

Scikit-Learn

 113

The above output consists of a series of 0s and 1s which are basically the predicted values

from tumor classes namely malignant and benign.

Scikit-Learn

 114

In this chapter, we will learn about learning method in Sklearn which is termed as decision

trees.

Decisions tress (DTs) are the most powerful non-parametric supervised learning method.

They can be used for the classification and regression tasks. The main goal of DTs is to

create a model predicting target variable value by learning simple decision rules deduced

from the data features. Decision trees have two main entities; one is root node, where the

data splits, and other is decision nodes or leaves, where we got final output.

Decision Tree Algorithms

Different Decision Tree algorithms are explained below:

ID3

It was developed by Ross Quinlan in 1986. It is also called Iterative Dichotomiser 3. The

main goal of this algorithm is to find those categorical features, for every node, that will

yield the largest information gain for categorical targets.

It lets the tree to be grown to their maximum size and then to improve the tree’s ability

on unseen data, applies a pruning step. The output of this algorithm would be a multiway

tree.

C4.5

It is the successor to ID3 and dynamically defines a discrete attribute that partition the

continuous attribute value into a discrete set of intervals. That’s the reason it removed the

restriction of categorical features. It converts the ID3 trained tree into sets of ‘IF-THEN’

rules.

In order to determine the sequence in which these rules should applied, the accuracy of

each rule will be evaluated first.

C5.0

It works similar as C4.5 but it uses less memory and build smaller rulesets. It is more

accurate than C4.5.

CART

It is called Classification and Regression Trees alsgorithm. It basically generates binary

splits by using the features and threshold yielding the largest information gain at each

node (called the Gini index).

Homogeneity depends upon Gini index, higher the value of Gini index, higher would be the

homogeneity. It is like C4.5 algorithm, but, the difference is that it does not compute rule

sets and does not support numerical target variables (regression) as well.

14. Scikit-Learn ― Decision Trees

Scikit-Learn

 115

Classification with decision trees

In this case, the decision variables are categorical.

Sklearn Module: The Scikit-learn library provides the module name

DecisionTreeClassifier for performing multiclass classification on dataset.

Parameters

Following table consist the parameters used by sklearn.tree.DecisionTreeClassifier

module:

Parameter Description

criterion: string,

optional default= “gini”

It represents the function to measure the quality of a split. Supported

criteria are “gini” and “entropy”. The default is gini which is for Gini

impurity while entropy is for the information gain.

splitter: string, optional

default= “best”

It tells the model, which strategy from “best” or “random” to choose

the split at each node.

max_depth : int or

None, optional

default=None

This parameter decides the maximum depth of the tree. The default

value is None which means the nodes will expand until all leaves are

pure or until all leaves contain less than min_smaples_split samples.

min_samples_split: int

, float, optional default=2

This parameter provides the minimum number of samples required

to split an internal node.

min_samples_leaf: int,

float, optional default=1

This parameter provides the minimum number of samples required

to be at a leaf node.

min_weight_fraction_l

eaf: float, optional

default=0.

With this parameter, the model will get the minimum weighted

fraction of the sum of weights required to be at a leaf node.

max_features: int,

float, string or None,

optional default=None

It gives the model the number of features to be considered when

looking for the best split.

random_state: int,

RandomState instance or

None, optional, default =

none

This parameter represents the seed of the pseudo random number

generated which is used while shuffling the data. Followings are the

options:

 int: In this case, random_state is the seed used by random

number generator.

 RandomState instance: In this case, random_state is the

random number generator.

 None: In this case, the random number generator is the

RandonState instance used by np.random.

Scikit-Learn

 116

max_leaf_nodes: int or

None, optional

default=None

This parameter will let grow a tree with max_leaf_nodes in best-first

fashion. The default is none which means there would be unlimited

number of leaf nodes.

min_impurity_decreas

e: float, optional

default=0.

This value works as a criterion for a node to split because the model

will split a node if this split induces a decrease of the impurity greater

than or equal to min_impurity_decrease value.

min_impurity_split: flo

at, default=1e-7

It represents the threshold for early stopping in tree growth.

class_weight: dict, list

of dicts, “balanced” or

None, default=None

It represents the weights associated with classes. The form is

{class_label: weight}. If we use the default option, it means all the

classes are supposed to have weight one. On the other hand, if you

choose class_weight: balanced, it will use the values of y to

automatically adjust weights.

presort: bool, optional

default=False

It tells the model whether to presort the data to speed up the finding

of best splits in fitting. The default is false but of set to true, it may

slow down the training process.

Attributes

Following table consist the attributes used by sklearn.tree.DecisionTreeClassifier

module:

Attributes Description

feature_importances_: array of shape

=[n_features]

This attribute will return the feature importance.

classes_: array of shape = [n_classes] or

a list of such arrays

It represents the classes labels i.e. the single

output problem, or a list of arrays of class labels

i.e. multi-output problem.

max_features_: int It represents the deduced value of max_features

parameter.

n_classes_: int or list It represents the number of classes i.e. the single

output problem, or a list of number of classes for

every output i.e. multi-output problem.

n_features_: int It gives the number of features when fit() method

is performed.

n_outputs_: int It gives the number of outputs when fit() method

is performed.

Methods

Following table consist the methods used by sklearn.tree.DecisionTreeClassifier

module:

Scikit-Learn

 117

Implementation Example

The Python script below will use sklearn.tree.DecisionTreeClassifier module to

construct a classifier for predicting male or female from our data set having 25 samples

and two features namely ‘height’ and ‘length of hair’:

from sklearn import tree

from sklearn.model_selection import train_test_split

X=[[165,19],[175,32],[136,35],[174,65],[141,28],[176,15],[131,32],[166,6],[128,

32],[179,10],[136,34],[186,2],[126,25],[176,28],[112,38],[169,9],[171,36],[116,

25],[196,25], [196,38], [126,40], [197,20], [150,25], [140,32],[136,35]]

Method Description

apply(self, X[, check_input]) This method will return the index of the leaf.

decision_path(self, X[, check_inpu

t])

As name suggests, this method will return the

decision path in the tree

fit(self, X, y[, sample_weight, …])
fit() method will build a decision tree classifier from

given training set (X, y).

get_depth(self)
As name suggests, this method will return the

depth of the decision tree

get_n_leaves(self)
As name suggests, this method will return the

number of leaves of the decision tree.

get_params(self[, deep])
We can use this method to get the parameters for

estimator.

predict(self, X[, check_input]) It will predict class value for X.

predict_log_proba(self, X)
It will predict class log-probabilities of the input

samples provided by us, X.

predict_proba(self, X[, check_inpu

t])

It will predict class probabilities of the input

samples provided by us, X.

score(self, X, y[, sample_weight])

As the name implies, the score() method will

return the mean accuracy on the given test data

and labels.

set_params(self, **params)
We can set the parameters of estimator with this

method.

Scikit-Learn

 118

Y=['Man','Woman','Woman','Man','Woman','Man','Woman','Man','Woman','Man','Woman

','Man','Woman','Woman','Woman','Man','Woman','Woman','Man', 'Woman', 'Woman',

'Man', 'Man', 'Woman', 'Woman']

data_feature_names = ['height','length of hair']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,

random_state=1)

DTclf = tree.DecisionTreeClassifier()

DTclf = clf.fit(X,Y)

prediction = DTclf.predict([[135,29]])

print(prediction)

Output

['Woman']

We can also predict the probability of each class by using following python predict_proba()

method as follows:

prediction = DTclf.predict_proba([[135,29]])

print(prediction)

Output

[[0. 1.]]

Regression with decision trees

In this case the decision variables are continuous.

Sklearn Module: The Scikit-learn library provides the module name

DecisionTreeRegressor for applying decision trees on regression problems.

Parameters

Parameters used by DecisionTreeRegressor are almost same as that were used in

DecisionTreeClassifier module. The difference lies in ‘criterion’ parameter. For

DecisionTreeRegressor modules ‘criterion: string, optional default= “mse”’ parameter

have the following values:

 mse: It stands for the mean squared error. It is equal to variance reduction as

feature selectin criterion. It minimises the L2 loss using the mean of each terminal

node.

 freidman_mse: It also uses mean squared error but with Friedman’s improvement

score.

 mae: It stands for the mean absolute error. It minimizes the L1 loss using the

median of each terminal node.

Scikit-Learn

 119

Another difference is that it does not have ‘class_weight’ parameter.

Attributes

Attributes of DecisionTreeRegressor are also same as that were of

DecisionTreeClassifier module. The difference is that it does not have ‘classes_’ and

‘n_classes_’ attributes.

Methods

Methods of DecisionTreeRegressor are also same as that were of

DecisionTreeClassifier module. The difference is that it does not have

‘predict_log_proba()’ and ‘predict_proba()’ methods.

Implementation Example

The fit() method in Decision tree regression model will take floating point values of y. let’s

see a simple implementation example by using Sklearn.tree.DecisionTreeRegressor:

from sklearn import tree

X = [[1, 1], [5, 5]]

y = [0.1, 1.5]

DTreg = tree.DecisionTreeRegressor()

DTreg = clf.fit(X, y)

Once fitted, we can use this regression model to make prediction as follows:

DTreg.predict([[4, 5]])

Output

array([1.5])

Scikit-Learn

 120

This chapter will help you in understanding randomized decision trees in Sklearn.

Randomized Decision Tree algorithms

As we know that a DT is usually trained by recursively splitting the data, but being prone

to overfit, they have been transformed to random forests by training many trees over

various subsamples of the data. The sklearn.ensemble module is having following two

algorithms based on randomized decision trees:

The Random Forest algorithm

For each feature under consideration, it computes the locally optimal feature/split

combination. In Random forest, each decision tree in the ensemble is built from a sample

drawn with replacement from the training set and then gets the prediction from each of

them and finally selects the best solution by means of voting. It can be used for both

classification as well as regression tasks.

Classification with Random Forest

For creating a random forest classifier, the Scikit-learn module provides

sklearn.ensemble.RandomForestClassifier. While building random forest classifier,

the main parameters this module uses are ‘max_features’ and ‘n_estimators’.

Here, ‘max_features’ is the size of the random subsets of features to consider when

splitting a node. If we choose this parameter’s value to none then it will consider all the

features rather than a random subset. On the other hand, n_estimators are the number

of trees in the forest. The higher the number of trees, the better the result will be. But it

will take longer to compute also.

Implementation example

In the following example, we are building a random forest classifier by using

sklearn.ensemble.RandomForestClassifier and also checking its accuracy also by

using cross_val_score module.

from sklearn.model_selection import cross_val_score

from sklearn.datasets import make_blobs

from sklearn.ensemble import RandomForestClassifier

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

RFclf =

RandomForestClassifier(n_estimators=10,max_depth=None,min_samples_split=2,

random_state=0)

scores = cross_val_score(RFclf, X, y, cv=5)

scores.mean()

15. Scikit-Learn ― Randomized Decision Trees

Scikit-Learn

 121

Output

0.9997

We can also use the sklearn dataset to build Random Forest classifier. As in the following

example we are using iris dataset. We will also find its accuracy score and confusion

matrix.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width',

'Class']

dataset = pd.read_csv(path, names=headernames)

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, 4].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

RFclf = RandomForestClassifier(n_estimators=50)

RFclf.fit(X_train, y_train)

y_pred = RFclf.predict(X_test)

result = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

result1 = classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

result2 = accuracy_score(y_test,y_pred)

print("Accuracy:",result2)

Output

Confusion Matrix:

[[14 0 0]

 [0 18 1]

 [0 0 12]]

Scikit-Learn

 122

Classification Report:

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 14

Iris-versicolor 1.00 0.95 0.97 19

 Iris-virginica 0.92 1.00 0.96 12

 micro avg 0.98 0.98 0.98 45

 macro avg 0.97 0.98 0.98 45

 weighted avg 0.98 0.98 0.98 45

Accuracy: 0.9777777777777777

Regression with Random Forest

For creating a random forest regression, the Scikit-learn module provides

sklearn.ensemble.RandomForestRegressor. While building random forest regressor,

it will use the same parameters as used by

sklearn.ensemble.RandomForestClassifier.

Implementation example

In the following example, we are building a random forest regressor by using

sklearn.ensemble.RandomForestregressor and also predicting for new values by

using predict() method.

from sklearn.ensemble import RandomForestRegressor

from sklearn.datasets import make_regression

X, y = make_regression(n_features=10, n_informative=2,random_state=0,

shuffle=False)

RFregr = RandomForestRegressor(max_depth=10,random_state=0,n_estimators=100)

RFregr.fit(X, y)

Output

RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=10,

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,

 oob_score=False, random_state=0, verbose=0, warm_start=False)

Scikit-Learn

 123

Once fitted we can predict from regression model as follows:

print(RFregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))

Output

[98.47729198]

Extra-Tree Methods

For each feature under consideration, it selects a random value for the split. The benefit

of using extra tree methods is that it allows to reduce the variance of the model a bit

more. The disadvantage of using these methods is that it slightly increases the bias.

Classification with Extra-Tree Method

For creating a classifier using Extra-tree method, the Scikit-learn module provides

sklearn.ensemble.ExtraTreesClassifier. It uses the same parameters as used by

sklearn.ensemble.RandomForestClassifier. The only difference is in the way,

discussed above, they build trees.

Implementation example

In the following example, we are building a random forest classifier by using

sklearn.ensemble.ExtraTreeClassifier and also checking its accuracy by using

cross_val_score module.

from sklearn.model_selection import cross_val_score

from sklearn.datasets import make_blobs

from sklearn.ensemble import ExtraTreesClassifier

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

ETclf =

ExtraTreesClassifier(n_estimators=10,max_depth=None,min_samples_split=10,

random_state=0)

scores = cross_val_score(ETclf, X, y, cv=5)

scores.mean()

Output

1.0

We can also use the sklearn dataset to build classifier using Extra-Tree method. As in the

following example we are using Pima-Indian dataset.

from pandas import read_csv

Scikit-Learn

 124

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import ExtraTreesClassifier

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

seed = 7

kfold = KFold(n_splits=10, random_state=seed)

num_trees = 150

max_features = 5

ETclf = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features)

results = cross_val_score(ETclf, X, Y, cv=kfold)

print(results.mean())

Output

 0.7551435406698566

Regression with Extra-Tree Method

For creating a Extra-Tree regression, the Scikit-learn module provides

sklearn.ensemble.ExtraTreesRegressor. While building random forest regressor, it

will use the same parameters as used by sklearn.ensemble.ExtraTreesClassifier.

Implementation example

In the following example, we are applying sklearn.ensemble.ExtraTreesregressor and

on the same data as we used while creating random forest regressor. Let’s see the

difference in the Output

from sklearn.ensemble import ExtraTreesRegressor

from sklearn.datasets import make_regression

X, y = make_regression(n_features=10, n_informative=2,random_state=0,

shuffle=False)

ETregr = ExtraTreesRegressor(max_depth=10,random_state=0,n_estimators=100)

ETregr.fit(X, y)

Output

ExtraTreesRegressor(bootstrap=False, criterion='mse', max_depth=10,

Scikit-Learn

 125

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,

 oob_score=False, random_state=0, verbose=0, warm_start=False)

Once fitted we can predict from regression model as follows:

print(ETregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))

Output

[85.50955817]

Scikit-Learn

 126

In this chapter, we will learn about the boosting methods in Sklearn, which enables

building an ensemble model.

Boosting methods build ensemble model in an increment way. The main principle is to

build the model incrementally by training each base model estimator sequentially. In order

to build powerful ensemble, these methods basically combine several week learners which

are sequentially trained over multiple iterations of training data. The sklearn.ensemble
module is having following two boosting methods.

AdaBoost

 It is one of the most successful boosting ensemble method whose main key is in the way

they give weights to the instances in dataset. That’s why the algorithm needs to pay less

attention to the instances while constructing subsequent models.

Classification with AdaBoost

For creating a AdaBoost classifier, the Scikit-learn module provides

sklearn.ensemble.AdaBoostClassifier. While building this classifier, the main

parameter this module use is base_estimator. Here, base_estimator is the value of the

base estimator from which the boosted ensemble is built. If we choose this parameter’s

value to none then, the base estimator would be

DecisionTreeClassifier(max_depth=1).

Implementation example

In the following example, we are building a AdaBoost classifier by using

sklearn.ensemble.AdaBoostClassifier and also predicting and checking its score.

from sklearn.ensemble import AdaBoostClassifier

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_features=10,n_informative=2,

n_redundant=0,random_state=0, shuffle=False)

ADBclf = AdaBoostClassifier(n_estimators=100, random_state=0)

ADBclf.fit(X, y)

Output

AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,

 learning_rate=1.0, n_estimators=100, random_state=0)

Once fitted, we can predict for new values as follows:

16. Scikit-Learn ― Boosting Methods

Scikit-Learn

 127

print(ADBclf.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))

Output

[1]

Now we can check the score as follows:

ADBclf.score(X, y)

Output

0.995

We can also use the sklearn dataset to build classifier using Extra-Tree method. For

example, in an example given below, we are using Pima-Indian dataset.

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import AdaBoostClassifier

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

seed = 5

kfold = KFold(n_splits=10, random_state=seed)

num_trees = 100

max_features = 5

ADBclf = AdaBoostClassifier(n_estimators=num_trees, max_features=max_features)

results = cross_val_score(ADBclf, X, Y, cv=kfold)

print(results.mean())

Output

 0.7851435406698566

Regression with AdaBoost

For creating a regressor with Ada Boost method, the Scikit-learn library provides

sklearn.ensemble.AdaBoostRegressor. While building regressor, it will use the same

parameters as used by sklearn.ensemble.AdaBoostClassifier.

Scikit-Learn

 128

Implementation example

In the following example, we are building a AdaBoost regressor by using

sklearn.ensemble.AdaBoostregressor and also predicting for new values by using

predict() method.

from sklearn.ensemble import AdaBoostRegressor

from sklearn.datasets import make_regression

X, y = make_regression(n_features=10, n_informative=2,random_state=0,

shuffle=False)

ADBregr = RandomForestRegressor(random_state=0,n_estimators=100)

ADBregr.fit(X, y)

Output

AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear',

 n_estimators=100, random_state=0)

Once fitted we can predict from regression model as follows:

print(ADBregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))

Output

[85.50955817]

Gradient Tree Boosting

It is also called Gradient Boosted Regression Trees (GRBT). It is basically a

generalization of boosting to arbitrary differentiable loss functions. It produces a prediction

model in the form of an ensemble of week prediction models. It can be used for the

regression and classification problems. Their main advantage lies in the fact that they

naturally handle the mixed type data.

Classification with Gradient Tree Boost

For creating a Gradient Tree Boost classifier, the Scikit-learn module provides

sklearn.ensemble.GradientBoostingClassifier. While building this classifier, the main

parameter this module use is ‘loss’. Here, ‘loss’ is the value of loss function to be

optimized. If we choose loss = deviance, it refers to deviance for classification with

probabilistic outputs.

On the other hand, if we choose this parameter’s value to exponential then it recovers the

AdaBoost algorithm. The parameter n_estimators will control the number of week

learners. A hyper-parameter named learning_rate (in the range of (0.0, 1.0]) will control

overfitting via shrinkage.

Implementation example

Scikit-Learn

 129

In the following example, we are building a Gradient Boosting classifier by using

sklearn.ensemble.GradientBoostingClassifier. We are fitting this classifier with 50

week learners.

from sklearn.datasets import make_hastie_10_2

from sklearn.ensemble import GradientBoostingClassifier

X, y = make_hastie_10_2(random_state=0)

X_train, X_test = X[:5000], X[5000:]

y_train, y_test = y[:5000], y[5000:]

GDBclf = GradientBoostingClassifier(n_estimators=50,

learning_rate=1.0,max_depth=1, random_state=0).fit(X_train, y_train)

GDBclf.score(X_test, y_test)

Output

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import GradientBoostingClassifier

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

seed = 5

kfold = KFold(n_splits=10, random_state=seed)

num_trees = 100

max_features = 5

ADBclf = GradientBoostingClassifier(n_estimators=num_trees,

max_features=max_features)

results = cross_val_score(ADBclf, X, Y, cv=kfold)

print(results.mean())

0.8724285714285714

We can also use the sklearn dataset to build classifier using Gradient Boosting Classifier.

As in the following example we are using Pima-Indian dataset.

Scikit-Learn

 130

Output

 0.7946582356674234

Regression with Gradient Tree Boost

For creating a regressor with Gradient Tree Boost method, the Scikit-learn library provides

sklearn.ensemble.GradientBoostingRegressor. It can specify the loss function for

regression via the parameter name loss. The default value for loss is ‘ls’.

Implementation example

In the following example, we are building a Gradient Boosting regressor by using

sklearn.ensemble.GradientBoostingregressor and also finding the mean squared

error by using mean_squared_error() method.

import numpy as np

from sklearn.metrics import mean_squared_error

from sklearn.datasets import make_friedman1

from sklearn.ensemble import GradientBoostingRegressor

X, y = make_friedman1(n_samples=2000, random_state=0, noise=1.0)

X_train, X_test = X[:1000], X[1000:]

y_train, y_test = y[:1000], y[1000:]

GDBreg = GradientBoostingRegressor(n_estimators=80, learning_rate=0.1,

max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)

Once fitted we can find the mean squared error as follows:

mean_squared_error(y_test, GDBreg.predict(X_test))

Output

5.391246106657164

Scikit-Learn

 131

Here, we will study about the clustering methods in Sklearn which will help in identification

of any similarity in the data samples.

Clustering methods, one of the most useful unsupervised ML methods, used to find

similarity & relationship patterns among data samples. After that, they cluster those

samples into groups having similarity based on features. Clustering determines the

intrinsic grouping among the present unlabeled data, that’s why it is important.

The Scikit-learn library have sklearn.cluster to perform clustering of unlabeled data.

Under this module scikit-leran have the following clustering methods:

KMeans

This algorithm computes the centroids and iterates until it finds optimal centroid. It

requires the number of clusters to be specified that’s why it assumes that they are already

known. The main logic of this algorithm is to cluster the data separating samples in n

number of groups of equal variances by minimizing the criteria known as the inertia. The

number of clusters identified by algorithm is represented by ‘K.

Scikit-learn have sklearn.cluster.KMeans module to perform K-Means clustering. While

computing cluster centers and value of inertia, the parameter named sample_weight

allows sklearn.cluster.KMeans module to assign more weight to some samples.

Affinity Propagation

This algorithm is based on the concept of ‘message passing’ between different pairs of

samples until convergence. It does not require the number of clusters to be specified

before running the algorithm. The algorithm has a time complexity of the order 𝑂(𝑁2𝑇),

which is the biggest disadvantage of it.

Scikit-learn have sklearn.cluster.AffinityPropagation module to perform Affinity

Propagation clustering.

Mean Shift

This algorithm mainly discovers blobs in a smooth density of samples. It assigns the

datapoints to the clusters iteratively by shifting points towards the highest density of

datapoints. Instead of relying on a parameter named bandwidth dictating the size of the

region to search through, it automatically sets the number of clusters.

Scikit-learn have sklearn.cluster.MeanShift module to perform Mean Shift clustering.

Spectral Clustering

Before clustering, this algorithm basically uses the eigenvalues i.e. spectrum of the

similarity matrix of the data to perform dimensionality reduction in fewer dimensions. The

use of this algorithm is not advisable when there are large number of clusters.

17. Scikit-Learn ― Clustering Methods

Scikit-Learn

 132

Scikit-learn have sklearn.cluster.SpectralClustering module to perform Spectral

clustering.

Hierarchical Clustering

This algorithm builds nested clusters by merging or splitting the clusters successively. This

cluster hierarchy is represented as dendrogram i.e. tree. It falls into following two

categories:

Agglomerative hierarchical algorithms: In this kind of hierarchical algorithm, every

data point is treated like a single cluster. It then successively agglomerates the pairs of

clusters. This uses the bottom-up approach.

Divisive hierarchical algorithms: In this hierarchical algorithm, all data points are

treated as one big cluster. In this the process of clustering involves dividing, by using top-

down approach, the one big cluster into various small clusters.

Scikit-learn have sklearn.cluster.AgglomerativeClustering module to perform

Agglomerative Hierarchical clustering.

DBSCAN

It stands for “Density-based spatial clustering of applications with noise”. This

algorithm is based on the intuitive notion of “clusters” & “noise” that clusters are dense

regions of the lower density in the data space, separated by lower density regions of data

points.

Scikit-learn have sklearn.cluster.DBSCAN module to perform DBSCAN clustering. There

are two important parameters namely min_samples and eps used by this algorithm to

define dense.

Higher value of parameter min_samples or lower value of the parameter eps will give

an indication about the higher density of data points which is necessary to form a cluster.

OPTICS

It stands for “Ordering points to identify the clustering structure”. This algorithm

also finds density-based clusters in spatial data. It’s basic working logic is like DBSCAN.

It addresses a major weakness of DBSCAN algorithm-the problem of detecting meaningful

clusters in data of varying density-by ordering the points of the database in such a way

that spatially closest points become neighbors in the ordering.

Scikit-learn have sklearn.cluster.OPTICS module to perform OPTICS clustering.

BIRCH

It stands for Balanced iterative reducing and clustering using hierarchies. It is used to

perform hierarchical clustering over large data sets. It builds a tree named CFT i.e.

Characteristics Feature Tree, for the given data.

The advantage of CFT is that the data nodes called CF (Characteristics Feature) nodes

holds the necessary information for clustering which further prevents the need to hold the

entire input data in memory.

Scikit-Learn

 133

Scikit-learn have sklearn.cluster.Birch module to perform BIRCH clustering.

Comparing Clustering Algorithms

Following table will give a comparison (based on parameters, scalability and metric) of the

clustering algorithms in scikit-learn.

Sr.

No.

Algorithm

Name

Parameters Scalability Metric Used

1. K-Means No. of clusters Very large

n_samples

The distance

between points.

2. Affinity

Propagation

Damping It’s not scalable with

n_samples

Graph Distance

3. Mean-Shift Bandwidth It’s not scalable with

n_samples.

The distance

between points.

4. Spectral

Clustering

No. of clusters Medium level of

scalability with

n_samples.

Small level of

scalability with

n_clusters.

Graph Distance

5. Hierarchical

Clustering

Distance

threshold or No.

of clusters

Large n_samples

Large n_clusters

The distance

between points.

6. DBSCAN Size of

neighborhood

Very large

n_samples and

medium n_clusters.

Nearest point

distance

7. OPTICS Minimum cluster

membership

Very large

n_samples and large

n_clusters.

The distance

between points.

8. BIRCH Threshold,

Branching factor

Large n_samples

Large n_clusters

The Euclidean

distance

between points.

K-Means Clustering on Scikit-learn Digit dataset

In this example, we will apply K-means clustering on digits dataset. This algorithm will

identify similar digits without using the original label information. Implementation is done

on Jupyter notebook.

%matplotlib inline

import matplotlib.pyplot as plt

Scikit-Learn

 134

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

from sklearn.datasets import load_digits

digits = load_digits()

digits.data.shape

Output

1797, 64)

This output shows that digit dataset is having 1797 samples with 64 features.

Now, perform the K-Means clustering as follows:

kmeans = KMeans(n_clusters=10, random_state=0)

clusters = kmeans.fit_predict(digits.data)

kmeans.cluster_centers_.shape

Output

(10, 64)

This output shows that K-means clustering created 10 clusters with 64 features.

fig, ax = plt.subplots(2, 5, figsize=(8, 3))

centers = kmeans.cluster_centers_.reshape(10, 8, 8)

for axi, center in zip(ax.flat, centers):

 axi.set(xticks=[], yticks=[])

 axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)

Output

The below output has images showing clusters centers learned by K-Means Clustering.

Next, the Python script below will match the learned cluster labels (by K-Means) with the

true labels found in them:

Scikit-Learn

 135

from scipy.stats import mode

labels = np.zeros_like(clusters)

for i in range(10):

 mask = (clusters == i)

 labels[mask] = mode(digits.target[mask])[0]

We can also check the accuracy with the help of the below mentioned command.

from sklearn.metrics import accuracy_score

accuracy_score(digits.target, labels)

Output

0.7935447968836951

Complete Implementation Example

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

from sklearn.datasets import load_digits

digits = load_digits()

digits.data.shape

kmeans = KMeans(n_clusters=10, random_state=0)

clusters = kmeans.fit_predict(digits.data)

kmeans.cluster_centers_.shape

fig, ax = plt.subplots(2, 5, figsize=(8, 3))

centers = kmeans.cluster_centers_.reshape(10, 8, 8)

for axi, center in zip(ax.flat, centers):

 axi.set(xticks=[], yticks=[])

 axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)

from scipy.stats import mode

labels = np.zeros_like(clusters)

for i in range(10):

 mask = (clusters == i)

 labels[mask] = mode(digits.target[mask])[0]

from sklearn.metrics import accuracy_score

Scikit-Learn

 136

accuracy_score(digits.target, labels)

Scikit-Learn

 137

There are various functions with the help of which we can evaluate the performance of

clustering algorithms.

Following are some important and mostly used functions given by the Scikit-learn for

evaluating clustering performance:

Adjusted Rand Index

Rand Index is a function that computes a similarity measure between two clustering. For

this computation rand index considers all pairs of samples and counting pairs that are

assigned in the similar or different clusters in the predicted and true clustering. Afterwards,

the raw Rand Index score is ‘adjusted for chance’ into the Adjusted Rand Index score by

using the following formula:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝐼 = (𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼)/(𝑚𝑎𝑥(𝑅𝐼) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼)

It has two parameters namely labels_true, which is ground truth class labels, and

labels_pred, which are clusters label to evaluate.

Example

from sklearn.metrics.cluster import adjusted_rand_score

 labels_true = [0, 0, 1, 1, 1, 1]

 labels_pred = [0, 0, 2, 2, 3, 3]

adjusted_rand_score(labels_true, labels_pred)

Output

0.4444444444444445

Perfect labeling would be scored 1 and bad labelling or independent labelling is scored 0

or negative.

Mutual Information Based Score

Mutual Information is a function that computes the agreement of the two assignments. It

ignores the permutations. There are following versions available:

Normalized Mutual Information (NMI)

Scikit learn have sklearn.metrics.normalized_mutual_info_score module.

Example

18. Scikit-Learn ― Clustering Performance
Evaluation

Scikit-Learn

 138

from sklearn.metrics.cluster import normalized_mutual_info_score

 labels_true = [0, 0, 1, 1, 1, 1]

 labels_pred = [0, 0, 2, 2, 3, 3]

normalized_mutual_info_score (labels_true, labels_pred)

 Output

0.7611702597222881

Adjusted Mutual Information (AMI)

Scikit learn have sklearn.metrics.adjusted_mutual_info_score module.

Example

from sklearn.metrics.cluster import adjusted_mutual_info_score

 labels_true = [0, 0, 1, 1, 1, 1]

 labels_pred = [0, 0, 2, 2, 3, 3]

adjusted_mutual_info_score (labels_true, labels_pred)

Output

0.4444444444444448

Fowlkes-Mallows Score

The Fowlkes-Mallows function measures the similarity of two clustering of a set of points.

It may be defined as the geometric mean of the pairwise precision and recall.

Mathematically,

𝐹𝑀𝑆 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)

Here, TP = True Positive; number of pair of points belonging to the same clusters in true

as well as predicted labels both.

FP = False Positive; number of pair of points belonging to the same clusters in true

labels but not in the predicted labels.

FN = False Negative; number of pair of points belonging to the same clusters in the

predicted labels but not in the true labels.

The Scikit learn has sklearn.metrics.fowlkes_mallows_score module:

Scikit-Learn

 139

Example

from sklearn.metrics.cluster import fowlkes_mallows_score

 labels_true = [0, 0, 1, 1, 1, 1]

 labels_pred = [0, 0, 2, 2, 3, 3]

fowlkes_mallows__score (labels_true, labels_pred)

Output

0.6546536707079771

Silhouette Coefficient

The Silhouette function will compute the mean Silhouette Coefficient of all samples using

the mean intra-cluster distance and the mean nearest-cluster distance for each sample.

Mathematically,

 𝑆 = (𝑏 − 𝑎)/𝑚𝑎𝑥(𝑎, 𝑏)

Here, a is intra-cluster distance.

and, b is mean nearest-cluster distance.

The Scikit learn have sklearn.metrics.silhouette_score module:

Example

from sklearn import metrics.silhouette_score

from sklearn.metrics import pairwise_distances

from sklearn import datasets

import numpy as np

from sklearn.cluster import KMeans

dataset = datasets.load_iris()

X = dataset.data

y = dataset.target

kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)

labels = kmeans_model.labels_

silhouette_score(X, labels, metric='euclidean')

Output

0.5528190123564091

Scikit-Learn

 140

Contingency Matrix

This matrix will report the intersection cardinality for every trusted pair of (true,

predicted). Confusion matrix for classification problems is a square contingency matrix.

The Scikit learn have sklearn.metrics.contingency_matrix module.

Example

from sklearn.metrics.cluster import contingency_matrix

x = ["a", "a", "a", "b", "b", "b"]

y = [1, 1, 2, 0, 1, 2]

contingency_matrix(x, y)

Output

array([[0, 2, 1],

 [1, 1, 1]])

The first row of above output shows that among three samples whose true cluster is “a”,

none of them is in 0, two of the are in 1 and 1 is in 2. On the other hand, second row

shows that among three samples whose true cluster is “b”, 1 is in 0, 1 is in 1 and 1 is in

2.

Scikit-Learn

 141

Dimensionality reduction, an unsupervised machine learning method is used to reduce the

number of feature variables for each data sample selecting set of principal features.

Principal Component Analysis (PCA) is one of the popular algorithms for dimensionality

reduction.

Exact PCA

Principal Component Analysis (PCA) is used for linear dimensionality reduction using

Singular Value Decomposition (SVD) of the data to project it to a lower dimensional

space. While decomposition using PCA, input data is centered but not scaled for each

feature before applying the SVD.

The Scikit-learn ML library provides sklearn.decomposition.PCA module that is

implemented as a transformer object which learns n components in its fit() method. It

can also be used on new data to project it on these components.

Example

The below example will use sklearn.decomposition.PCA module to find best 5 Principal

components from Pima Indians Diabetes dataset.

 from pandas import read_csv

from sklearn.decomposition import PCA

path = r'C:\Users\Leekha\Desktop\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

‘class']

dataframe = read_csv(path, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

pca = PCA(n_components=5)

fit = pca.fit(X)

print(("Explained Variance: %s") % (fit.explained_variance_ratio_))

print(fit.components_)

Output

Explained Variance: [0.88854663 0.06159078 0.02579012 0.01308614 0.00744094]

[[-2.02176587e-03 9.78115765e-02 1.60930503e-02 6.07566861e-02

19. Scikit-Learn ― Dimensionality Reduction using
PCA

Scikit-Learn

 142

 9.93110844e-01 1.40108085e-02 5.37167919e-04 -3.56474430e-03]

 [-2.26488861e-02 -9.72210040e-01 -1.41909330e-01 5.78614699e-02

 9.46266913e-02 -4.69729766e-02 -8.16804621e-04 -1.40168181e-01]

 [-2.24649003e-02 1.43428710e-01 -9.22467192e-01 -3.07013055e-01

 2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01]

 [-4.90459604e-02 1.19830016e-01 -2.62742788e-01 8.84369380e-01

 -6.55503615e-02 1.92801728e-01 2.69908637e-03 -3.01024330e-01]

 [1.51612874e-01 -8.79407680e-02 -2.32165009e-01 2.59973487e-01

 -1.72312241e-04 2.14744823e-02 1.64080684e-03 9.20504903e-01]]

Incremental PCA

Incremental Principal Component Analysis (IPCA) is used to address the biggest

limitation of Principal Component Analysis (PCA) and that is PCA only supports batch

processing, means all the input data to be processed should fit in the memory.

The Scikit-learn ML library provides sklearn.decomposition.IPCA module that makes it

possible to implement Out-of-Core PCA either by using its partial_fit method on

sequentially fetched chunks of data or by enabling use of np.memmap, a memory

mapped file, without loading the entire file into memory.

Same as PCA, while decomposition using IPCA, input data is centered but not scaled for

each feature before applying the SVD.

Example

The below example will use sklearn.decomposition.IPCA module on Sklearn digit

dataset.

from sklearn.datasets import load_digits

from sklearn.decomposition import IncrementalPCA

X, _ = load_digits(return_X_y=True)

transformer = IncrementalPCA(n_components=10, batch_size=100)

transformer.partial_fit(X[:100, :])

X_transformed = transformer.fit_transform(X)

X_transformed.shape

Output

(1797, 10)

Here, we can partially fit on smaller batches of data (as we did on 100 per batch) or you

can let the fit() function to divide the data into batches.

Scikit-Learn

 143

Kernel PCA

Kernel Principal Component Analysis, an extension of PCA, achieves non-linear

dimensionality reduction using kernels. It supports both transform and

inverse_transform.

The Scikit-learn ML library provides sklearn.decomposition.KernelPCA module.

Example

The below example will use sklearn.decomposition.KernelPCA module on Sklearn digit

dataset. We are using sigmoid kernel.

from sklearn.datasets import load_digits

from sklearn.decomposition import KernelPCA

X, _ = load_digits(return_X_y=True)

transformer = KernelPCA(n_components=10, kernel='sigmoid')

X_transformed = transformer.fit_transform(X)

X_transformed.shape

Output

(1797, 10)

PCA using randomized SVD

Principal Component Analysis (PCA) using randomized SVD is used to project data to a

lower-dimensional space preserving most of the variance by dropping the singular vector

of components associated with lower singular values. Here, the

sklearn.decomposition.PCA module with the optional parameter

svd_solver=’randomized’ is going to be very useful.

Example

The below example will use sklearn.decomposition.PCA module with the optional

parameter svd_solver=’randomized’ to find best 7 Principal components from Pima Indians

Diabetes dataset.

from pandas import read_csv

from sklearn.decomposition import PCA

path = r'C:\Users\Leekha\Desktop\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

 dataframe = read_csv(path, names=names)

 array = dataframe.values

 X = array[:,0:8]

Scikit-Learn

 144

 Y = array[:,8]

 pca = PCA(n_components=7,svd_solver= 'randomized')

 fit = pca.fit(X)

 print(("Explained Variance: %s") % (fit.explained_variance_ratio_))

 print(fit.components_)

Output

Explained Variance: [8.88546635e-01 6.15907837e-02 2.57901189e-02 1.30861374e-

02

 7.44093864e-03 3.02614919e-03 5.12444875e-04]

[[-2.02176587e-03 9.78115765e-02 1.60930503e-02 6.07566861e-02

 9.93110844e-01 1.40108085e-02 5.37167919e-04 -3.56474430e-03]

 [-2.26488861e-02 -9.72210040e-01 -1.41909330e-01 5.78614699e-02

 9.46266913e-02 -4.69729766e-02 -8.16804621e-04 -1.40168181e-01]

 [-2.24649003e-02 1.43428710e-01 -9.22467192e-01 -3.07013055e-01

 2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01]

 [-4.90459604e-02 1.19830016e-01 -2.62742788e-01 8.84369380e-01

 -6.55503615e-02 1.92801728e-01 2.69908637e-03 -3.01024330e-01]

 [1.51612874e-01 -8.79407680e-02 -2.32165009e-01 2.59973487e-01

 -1.72312241e-04 2.14744823e-02 1.64080684e-03 9.20504903e-01]

 [-5.04730888e-03 5.07391813e-02 7.56365525e-02 2.21363068e-01

 -6.13326472e-03 -9.70776708e-01 -2.02903702e-03 -1.51133239e-02]

 [9.86672995e-01 8.83426114e-04 -1.22975947e-03 -3.76444746e-04

 1.42307394e-03 -2.73046214e-03 -6.34402965e-03 -1.62555343e-01]]

