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About the Tutorial 

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. 

It provides a selection of efficient tools for machine learning and statistical modeling 

including classification, regression, clustering and dimensionality reduction via a 

consistence interface in Python. This library, which is largely written in Python, is built 

upon NumPy, SciPy and Matplotlib. 

Audience 

This tutorial will be useful for graduates, postgraduates, and research students who either 

have an interest in this Machine Learning subject or have this subject as a part of their 

curriculum. The reader can be a beginner or an advanced learner. 

Prerequisites 

The reader must have basic knowledge about Machine Learning. He/she should also be 

aware about Python, NumPy, Scipy, Matplotlib. If you are new to any of these concepts, 

we recommend you take up tutorials concerning these topics, before you dig further into 

this tutorial. 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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In this chapter, we will understand what is Scikit-Learn or Sklearn, origin of Scikit-Learn 

and some other related topics such as communities and contributors responsible for 

development and maintenance of Scikit-Learn, its prerequisites, installation and its 

features.  

What is Scikit-Learn (Sklearn)? 

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. 

It provides a selection of efficient tools for machine learning and statistical modeling 

including classification, regression, clustering and dimensionality reduction via a 

consistence interface in Python. This library, which is largely written in Python, is built 

upon NumPy, SciPy and Matplotlib. 

Origin of Scikit-Learn 

It was originally called scikits.learn and was initially developed by David Cournapeau as 

a Google summer of code project in 2007. Later, in 2010, Fabian Pedregosa, Gael 

Varoquaux, Alexandre Gramfort, and Vincent Michel, from FIRCA (French Institute for 

Research in Computer Science and Automation), took this project at another level and 

made the first public release (v0.1 beta) on 1st Feb. 2010.     

Let’s have a look at its version history: 

 May 2019: scikit-learn 0.21.0 

 March 2019: scikit-learn 0.20.3 

 December 2018: scikit-learn 0.20.2 

 November 2018: scikit-learn 0.20.1 

 September 2018: scikit-learn 0.20.0 

 July 2018: scikit-learn 0.19.2 

 July 2017: scikit-learn 0.19.0 

 September 2016. scikit-learn 0.18.0 

 November 2015. scikit-learn 0.17.0 

 March 2015. scikit-learn 0.16.0 

 July 2014. scikit-learn 0.15.0 

 August 2013. scikit-learn 0.14 

Community & contributors 

Scikit-learn is a community effort and anyone can contribute to it. This project is hosted 

on https://github.com/scikit-learn/scikit-learn. Following people are currently the core 

contributors to Sklearn’s development and maintenance: 

1. Scikit-Learn — Introduction 

https://github.com/scikit-learn/scikit-learn
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 Joris Van den Bossche (Data Scientist) 

 Thomas J Fan (Software Developer) 

 Alexandre Gramfort (Machine Learning Researcher) 

 Olivier Grisel (Machine Learning Expert) 

 Nicolas Hug (Associate Research Scientist) 

 Andreas Mueller (Machine Learning Scientist) 

 Hanmin Qin (Software Engineer) 

 Adrin Jalali (Open Source Developer) 

 Nelle Varoquaux (Data Science Researcher) 

 Roman Yurchak (Data Scientist) 

Various organisations like Booking.com, JP Morgan, Evernote, Inria, AWeber, Spotify and 

many more are using Sklearn.  

Prerequisites 

Before we start using scikit-learn latest release, we require the following: 

 Python (>=3.5) 

 NumPy (>= 1.11.0) 

 Scipy (>= 0.17.0) 

 Joblib (>= 0.11) 

 Matplotlib (>= 1.5.1) is required for Sklearn plotting capabilities. 

 Pandas (>= 0.18.0) is required for some of the scikit-learn examples using data 

structure and analysis. 

Installation 

If you already installed NumPy and Scipy, following are the two easiest ways to install 

scikit-learn: 

Using pip 

Following command can be used to install scikit-learn via pip: 

pip install -U scikit-learn 

Using conda 

Following command can be used to install scikit-learn via conda: 

conda install scikit-learn 

On the other hand, if NumPy and Scipy is not yet installed on your Python workstation 

then, you can install them by using either pip or conda. 
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Another option to use scikit-learn is to use Python distributions like Canopy and 

Anaconda because they both ship the latest version of scikit-learn. 

Features 

Rather than focusing on loading, manipulating and summarising data, Scikit-learn library 

is focused on modeling the data. Some of the most popular groups of models provided by 

Sklearn are as follows: 

 

Supervised Learning algorithms: Almost all the popular supervised learning 

algorithms, like Linear Regression, Support Vector Machine (SVM), Decision Tree etc., are 

the part of scikit-learn. 

 

Unsupervised Learning algorithms: On the other hand, it also has all the popular 

unsupervised learning algorithms from clustering, factor analysis, PCA (Principal 

Component Analysis) to unsupervised neural networks.    

 

Clustering: This model is used for grouping unlabeled data. 

 

Cross Validation: It is used to check the accuracy of supervised models on unseen data. 

 

Dimensionality Reduction: It is used for reducing the number of attributes in data which 

can be further used for summarisation, visualisation and feature selection. 

 

Ensemble methods: As name suggest, it is used for combining the predictions of multiple 

supervised models. 

 

Feature extraction: It is used to extract the features from data to define the attributes 

in image and text data. 

 

Feature selection: It is used to identify useful attributes to create supervised models. 

Open Source: It is open source library and also commercially usable under BSD license. 
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This chapter deals with the modelling process involved in Sklearn. Let us understand about 

the same in detail and begin with dataset loading. 

Dataset Loading 

A collection of data is called dataset. It is having the following two components: 

Features: The variables of data are called its features. They are also known as predictors, 

inputs or attributes.  

 Feature matrix: It is the collection of features, in case there are more than one. 

 Feature Names: It is the list of all the names of the features. 

Response: It is the output variable that basically depends upon the feature variables. 

They are also known as target, label or output.   

 Response Vector: It is used to represent response column. Generally, we have 

just one response column. 

 Target Names: It represent the possible values taken by a response vector. 

Scikit-learn have few example datasets like iris and digits for classification and the 

Boston house prices for regression. 

Following is an example to load iris dataset: 

from sklearn.datasets import load_iris 

 

iris = load_iris() 

 

X = iris.data 

 

y = iris.target 

 

feature_names = iris.feature_names 

 

target_names = iris.target_names 

 

 

print("Feature names:", feature_names)  

2. Scikit-Learn ― Modelling Process 
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print("Target names:", target_names)  

 

print("\nFirst 10 rows of X:\n", X[:10]) 

Output 

Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 

'petal width (cm)'] 

 

Target names: ['setosa' 'versicolor' 'virginica'] 

 

First 10 rows of X: 

 [[5.1 3.5 1.4 0.2] 

 [4.9 3.  1.4 0.2] 

 [4.7 3.2 1.3 0.2] 

 [4.6 3.1 1.5 0.2] 

 [5.  3.6 1.4 0.2] 

 [5.4 3.9 1.7 0.4] 

 [4.6 3.4 1.4 0.3] 

 [5.  3.4 1.5 0.2] 

 [4.4 2.9 1.4 0.2] 

 [4.9 3.1 1.5 0.1]] 
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Splitting the dataset 

To check the accuracy of our model, we can split the dataset into two pieces-a training 

set and a testing set. Use the training set to train the model and testing set to test the 

model. After that, we can evaluate how well our model did. 

The following example will split the data into 70:30 ratio, i.e. 70% data will be used as 

training data and 30% will be used as testing data. The dataset is iris dataset as in above 

example. 

from sklearn.datasets import load_iris 

iris = load_iris() 

 

X = iris.data 

y = iris.target 

 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=1) 

 

print(X_train.shape) 

print(X_test.shape) 

 

print(y_train.shape) 

print(y_test.shape) 

Output 

(105, 4) 

(45, 4) 

 

(105,) 

(45,) 
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As seen in the example above, it uses train_test_split() function of scikit-learn to split 

the dataset. This function has the following arguments: 

 X, y: Here, X is the feature matrix and y is the response vector, which need to 

be split. 

 test_size: This represents the ratio of test data to the total given data. As in the 

above example, we are setting test_data = 0.3 for 150 rows of X. It will produce 

test data of 150*0.3 = 45 rows.   

 random_size: It is used to guarantee that the split will always be the same. This 

is useful in the situations where you want reproducible results.  

Train the Model 

Next, we can use our dataset to train some prediction-model. As discussed, scikit-learn 

has wide range of Machine Learning (ML) algorithms which have a consistent interface 

for fitting, predicting accuracy, recall etc. 

In the example below, we are going to use KNN (K nearest neighbors) classifier. Don’t go 

into the details of KNN algorithms, as there will be a separate chapter for that. This 

example is used to make you understand the implementation part only. 

from sklearn.datasets import load_iris 

 

iris = load_iris() 

 

X = iris.data 

 

y = iris.target 

 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, 

random_state=1) 

 

from sklearn.neighbors import KNeighborsClassifier 

 

from sklearn import metrics 

 

classifier_knn = KNeighborsClassifier(n_neighbors=3) 
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classifier_knn.fit(X_train, y_train) 

 

y_pred = classifier_knn.predict(X_test) 

 

# Finding accuracy by comparing actual response values(y_test)with predicted 

response value(y_pred) 

  

print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) 

 

# Providing sample data and the model will make prediction out of that data 

 

sample = [[5, 5, 3, 2], [2, 4, 3, 5]] 

preds = classifier_knn.predict(sample) 

pred_species = [iris.target_names[p] for p in preds] print("Predictions:", 

pred_species) 

Output 

Accuracy: 0.9833333333333333 

 

Predictions: ['versicolor', 'virginica'] 

Model Persistence 

Once you train the model, it is desirable that the model should be persist for future use so 

that we do not need to retrain it again and again. It can be done with the help of dump 

and load features of joblib package.  

Consider the example below in which we will be saving the above trained model 

(classifier_knn) for future use: 

from sklearn.externals import joblib 

 

joblib.dump(classifier_knn, 'iris_classifier_knn.joblib') 

The above code will save the model into file named iris_classifier_knn.joblib. Now, the 

object can be reloaded from the file with the help of following code: 

joblib.load('iris_classifier_knn.joblib') 
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Preprocessing the Data 

As we are dealing with lots of data and that data is in raw form, before inputting that data 

to machine learning algorithms, we need to convert it into meaningful data. This process 

is called preprocessing the data. Scikit-learn has package named preprocessing for this 

purpose. The preprocessing package has the following techniques: 

Binarisation 

This preprocessing technique is used when we need to convert our numerical values into 

Boolean values.  

Example 

import numpy as np 

from sklearn import preprocessing  

Input_data = np.array([2.1, -1.9, 5.5], 

     [-1.5, 2.4, 3.5], 

     [0.5, -7.9, 5.6], 

     [5.9, 2.3, -5.8]]) 

 

data_binarized = preprocessing.Binarizer(threshold=0.5).transform(input_data) 

print("\nBinarized data:\n", data_binarized) 

In the above example, we used threshold value = 0.5 and that is why, all the values 

above 0.5 would be converted to 1, and all the values below 0.5 would be converted to 0. 

Output 

Binarized data: 

 [[ 1.  0.  1.] 

 [ 0.  1.  1.] 

 [ 0.  0.  1.] 

 [ 1.  1.  0.]] 

Mean Removal 

This technique is used to eliminate the mean from feature vector so that every feature 

centered on zero.  

Example 

import numpy as np 

from sklearn import preprocessing  

Input_data = np.array([2.1, -1.9, 5.5], 
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     [-1.5, 2.4, 3.5], 

     [0.5, -7.9, 5.6], 

     [5.9, 2.3, -5.8]]) 

 

#displaying the mean and the standard deviation of the input data 

print("Mean =", input_data.mean(axis=0)) 

print("Stddeviation = ", input_data.std(axis=0)) 

 

#Removing the mean and the standard deviation of the input data 

 

data_scaled = preprocessing.scale(input_data) 

print("Mean_removed =", data_scaled.mean(axis=0)) 

print("Stddeviation_removed =", data_scaled.std(axis=0)) 

Output 

Mean = [ 1.75  -1.275  2.2  ] 

Stddeviation =  [ 2.71431391  4.20022321  4.69414529] 

 

Mean_removed = [  1.11022302e-16   0.00000000e+00 0.00000000e+00] 

Stddeviation_removed = [ 1.  1.  1.] 

Scaling  

We use this preprocessing technique for scaling the feature vectors. Scaling of feature 

vectors is important, because the features should not be synthetically large or small.  

Example 

import numpy as np 

from sklearn import preprocessing  

 

Input_data = np.array([2.1, -1.9, 5.5], 

      

                      [-1.5, 2.4, 3.5], 

 

          [0.5, -7.9, 5.6], 

          [5.9, 2.3, -5.8]]) 

data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1)) 

data_scaled_minmax = data_scaler_minmax.fit_transform(input_data) 
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print ("\nMin max scaled data:\n", data_scaled_minmax) 

Output 

Min max scaled data: 

[[ 0.48648649  0.58252427  0.99122807] 

[ 0.          1.          0.81578947] 

[ 0.27027027  0.          1.        ] 

[ 1.          0.99029126  0.        ]] 

Normalisation 

We use this preprocessing technique for modifying the feature vectors. Normalisation of 

feature vectors is necessary so that the feature vectors can be measured at common scale. 

There are two types of normalisation as follows: 

L1 Normalisation 

It is also called Least Absolute Deviations. It modifies the value in such a manner that the 

sum of the absolute values remains always up to 1 in each row. Following example shows 

the implementation of L1 normalisation on input data. 

Example 

import numpy as np 

from sklearn import preprocessing  

Input_data = np.array([2.1, -1.9, 5.5], 

     [-1.5, 2.4, 3.5], 

     [0.5, -7.9, 5.6], 

     [5.9, 2.3, -5.8]]) 

data_normalized_l1 = preprocessing.normalize(input_data, norm='l1') 

print("\nL1 normalized data:\n", data_normalized_l1) 

Output 

L1 normalized data: 

 

[[ 0.22105263 -0.2         0.57894737] 

 

[-0.2027027   0.32432432  0.47297297] 

[ 0.03571429 -0.56428571  0.4       ] 

[ 0.42142857  0.16428571 -0.41428571]] 
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L2 Normalisation 

Also called Least Squares. It modifies the value in such a manner that the sum of the 

squares remains always up to 1 in each row. Following example shows the implementation 

of L2 normalisation on input data. 

Example 

import numpy as np 

from sklearn import preprocessing  

Input_data = np.array([2.1, -1.9, 5.5], 

     [-1.5, 2.4, 3.5], 

     [0.5, -7.9, 5.6], 

     [5.9, 2.3, -5.8]]) 

data_normalized_l2 = preprocessing.normalize(input_data, norm='l2') 

print("\nL1 normalized data:\n", data_normalized_l2) 

Output 

L2 normalized data: 

[[ 0.33946114 -0.30713151  0.88906489] 

[-0.33325106  0.53320169  0.7775858 ] 

[ 0.05156558 -0.81473612  0.57753446] 

[ 0.68706914  0.26784051 -0.6754239 ]] 
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As we know that machine learning is about to create model from data. For this purpose, 

computer must understand the data first. Next, we are going to discuss various ways to 

represent the data in order to be understood by computer: 

Data as table 

The best way to represent data in Scikit-learn is in the form of tables. A table represents 

a 2-D grid of data where rows represent the individual elements of the dataset and the 

columns represents the quantities related to those individual elements.  

Example 

With the example given below, we can download iris dataset in the form of a Pandas 

DataFrame with the help of python seaborn library.  

import seaborn as sns 

iris = sns.load_dataset('iris') 

iris.head() 

Output 

sepal_length  sepal_width  petal_length  petal_width  species 

0       5.1          3.5            1.4          0.2   setosa 

1       4.9          3.0            1.4          0.2  setosa 

2       4.7          3.2            1.3          0.2   setosa 

3       4.6          3.1            1.5          0.2      setosa 

4       5.0          3.6            1.4          0.2      setosa 

From above output, we can see that each row of the data represents a single observed 

flower and the number of rows represents the total number of flowers in the dataset. 

Generally, we refer the rows of the matrix as samples. 

On the other hand, each column of the data represents a quantitative information 

describing each sample. Generally, we refer the columns of the matrix as features. 

Data as Feature Matrix 

Features matrix may be defined as the table layout where information can be thought of 

as a 2-D matrix. It is stored in a variable named X and assumed to be two dimensional 

3. Scikit-Learn — Data Representation  
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with shape [n_samples, n_features]. Mostly, it is contained in a NumPy array or a Pandas 

DataFrame. As told earlier, the samples always represent the individual objects described 

by the dataset and the features represents the distinct observations that describe each 

sample in a quantitative manner. 

Data as Target array 

Along with Features matrix, denoted by X, we also have target array. It is also called label. 

It is denoted by y. The label or target array is usually one-dimensional having length 

n_samples. It is generally contained in NumPy array or Pandas Series. Target array may 

have both the values, continuous numerical values and discrete values.  

How target array differs from feature columns? 

We can distinguish both by one point that the target array is usually the quantity we want 

to predict from the data i.e. in statistical terms it is the dependent variable.  

Example 

In the example below, from iris dataset we predict the species of flower based on the other 

measurements. In this case, the Species column would be considered as the feature.  

import seaborn as sns 

iris = sns.load_dataset('iris') 

%matplotlib inline 

import seaborn as sns; sns.set() 

sns.pairplot(iris, hue='species', height=3); 

 

Output 
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X_iris = iris.drop('species', axis=1) 

X_iris.shape 

y_iris = iris['species'] 

y_iris.shape 

Output 

(150,4) 

(150,) 
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In this chapter, we will learn about Estimator API (application programming interface). 

Let us begin by understanding what is an Estimator API. 

What is Estimator API? 

It is one of the main APIs implemented by Scikit-learn. It provides a consistent interface 

for a wide range of ML applications that’s why all machine learning algorithms in Scikit-

Learn are implemented via Estimator API. The object that learns from the data (fitting the 

data) is an estimator. It can be used with any of the algorithms like classification, 

regression, clustering or even with a transformer, that extracts useful features from raw 

data. 

For fitting the data, all estimator objects expose a fit method that takes a dataset shown 

as follows: 

estimator.fit(data) 

Next, all the parameters of an estimator can be set, as follows, when it is instantiated by 

the corresponding attribute. 

estimator = Estimator (param1=1, param2=2) 

estimator.param1 

The output of the above would be 1. 

Once data is fitted with an estimator, parameters are estimated from the data at hand. 

Now, all the estimated parameters will be the attributes of the estimator object ending by 

an underscore as follows: 

estimator.estimated_param_ 

Use of Estimator API 

Main uses of estimators are as follows: 

Estimation and decoding of a model 

Estimator object is used for estimation and decoding of a model. Furthermore, the model 

is estimated as a deterministic function of the following: 

4. Scikit-Learn ― Estimator API  
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 The parameters which are provided in object construction. 

 The global random state (numpy.random) if the estimator’s random_state 

parameter is set to none. 

 Any data passed to the most recent call to fit, fit_transform, or fit_predict. 

 Any data passed in a sequence of calls to partial_fit. 

Mapping non-rectangular data representation into rectangular data 

It maps a non-rectangular data representation into rectangular data. In simple words, it 

takes input where each sample is not represented as an array-like object of fixed length, 

and producing an array-like object of features for each sample. 

Distinction between core and outlying samples 

It models the distinction between core and outlying samples by using following methods: 

 fit 

 fit_predict if transductive 

 predict if inductive 

Guiding Principles 

While designing the Scikit-Learn API, following guiding principles kept in mind: 

Consistency 

This principle states that all the objects should share a common interface drawn from a 

limited set of methods. The documentation should also be consistent.  

Limited object hierarchy 

This guiding principle says: 

 Algorithms should be represented by Python classes  

 Datasets should be represented in standard format like NumPy arrays, Pandas 

DataFrames, SciPy sparse matrix. 

 Parameters names should use standard Python strings. 

Composition 

As we know that, ML algorithms can be expressed as the sequence of many fundamental 

algorithms. Scikit-learn makes use of these fundamental algorithms whenever needed. 

Sensible defaults 

According to this principle, the Scikit-learn library defines an appropriate default value 

whenever ML models require user-specified parameters. 

Inspection 
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As per this guiding principle, every specified parameter value is exposed as pubic 

attributes.  

Steps in using Estimator API 

Followings are the steps in using the Scikit-Learn estimator API: 

Step 1: Choose a class of model 

In this first step, we need to choose a class of model. It can be done by importing the 

appropriate Estimator class from Scikit-learn. 

Step 2: Choose model hyperparameters 

In this step, we need to choose class model hyperparameters. It can be done by 

instantiating the class with desired values. 

Step 3: Arranging the data 

Next, we need to arrange the data into features matrix (X) and target vector(y). 

Step 4: Model Fitting 

Now, we need to fit the model to your data. It can be done by calling fit() method of the 

model instance. 

Step 5: Applying the model 

After fitting the model, we can apply it to new data. For supervised learning, use predict() 

method to predict the labels for unknown data. While for unsupervised learning, use 

predict() or transform() to infer properties of the data. 

Supervised Learning Example 

Here, as an example of this process we are taking common case of fitting a line to (x,y) 

data i.e. simple linear regression.  

First, we need to load the dataset, we are using iris dataset: 

import seaborn as sns 

iris = sns.load_dataset('iris') 

 

X_iris = iris.drop('species', axis = 1) 

X_iris.shape 

Output 
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(150, 4) 

 

y_iris = iris['species'] 

y_iris.shape 

Output  

(150,) 

Now, for this regression example, we are going to use the following sample data: 

%matplotlib inline 

import matplotlib.pyplot as plt 

 

import numpy as np 

rng = np.random.RandomState(35) 

x = 10*rng.rand(40) 

y = 2*x-1+rng.randn(40) 

plt.scatter(x,y); 

Output 

 

So, we have the above data for our linear regression example. 

Now, with this data, we can apply the above-mentioned steps. 
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Choose a class of model 

Here, to compute a simple linear regression model, we need to import the linear regression 

class as follows: 

from sklearn.linear_model import LinearRegression 

Choose model hyperparameters 

Once we choose a class of model, we need to make some important choices which are 

often represented as hyperparameters, or the parameters that must set before the model 

is fit to data. Here, for this example of linear regression, we would like to fit the intercept 

by using the fit_intercept hyperparameter as follows: 

model = LinearRegression(fit_intercept=True) 

model 

Output 

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, 

         normalize=False) 

Arranging the data 

Now, as we know that our target variable y is in correct form i.e. a length n_samples 

array of 1-D. But, we need to reshape the feature matrix X to make it a matrix of size 

[n_samples, n_features]. It can be done as follows: 

X = x[:, np.newaxis] 

X.shape 

Output 

(40, 1) 

Model fitting 

Once, we arrange the data, it is time to fit the model i.e. to apply our model to data. This 

can be done with the help of fit() method as follows: 

model.fit(X, y) 

Output 

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, 
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         normalize=False) 

In Scikit-learn, the fit() process have some trailing underscores.  

For this example, the below parameter shows the slope of the simple linear fit of the data: 

model.coef_  

Output 

array([1.99839352]) 

The below parameter represents the intercept of the simple linear fit to the data: 

model.intercept_ 

Output 

-0.9895459457775022 

Applying the model to new data 

After training the model, we can apply it to new data. As the main task of supervised 

machine learning is to evaluate the model based on new data that is not the part of the 

training set. It can be done with the help of predict() method as follows: 

xfit = np.linspace(-1, 11) 

Xfit = xfit[:, np.newaxis] 

yfit = model.predict(Xfit) 

plt.scatter(x, y) 

plt.plot(xfit, yfit); 

Output 
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Complete working/executable example 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

import seaborn as sns 

 

iris = sns.load_dataset('iris') 

X_iris = iris.drop('species', axis = 1) 

X_iris.shape 

y_iris = iris['species'] 

y_iris.shape 

rng = np.random.RandomState(35) 

x = 10*rng.rand(40) 

 

y = 2*x-1+rng.randn(40) 

plt.scatter(x,y); 

from sklearn.linear_model import LinearRegression 

model = LinearRegression(fit_intercept=True) 

model 

X = x[:, np.newaxis] 

X.shape 

model.fit(X, y) 
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model.coef_  

model.intercept_ 

xfit = np.linspace(-1, 11) 

Xfit = xfit[:, np.newaxis] 

yfit = model.predict(Xfit) 

plt.scatter(x, y) 

plt.plot(xfit, yfit); 

 

Unsupervised Learning Example 

Here, as an example of this process we are taking common case of reducing the 

dimensionality of the Iris dataset so that we can visualize it more easily. For this example, 

we are going to use principal component analysis (PCA), a fast-linear dimensionality 

reduction technique. 

Like the above given example, we can load and plot the random data from iris dataset. 

After that we can follow the steps as below: 

Choose a class of model  

from sklearn.decomposition import PCA 

Choose model hyperparameters 

model = PCA(n_components=2) 

model 

Output 

PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, 

  svd_solver='auto', tol=0.0, whiten=False) 

Model fitting 

model.fit(X_iris) 

Output 

PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, 

  svd_solver='auto', tol=0.0, whiten=False) 
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Transform the data to two-dimensional 

X_2D = model.transform(X_iris) 

Now, we can plot the result as follows: 

iris['PCA1'] = X_2D[:, 0] 

iris['PCA2'] = X_2D[:, 1] 

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False); 

Output 

 

Complete working/executable example 

%matplotlib inline 

import matplotlib.pyplot as plt 

 

import numpy as np 

import seaborn as sns 

iris = sns.load_dataset('iris') 
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X_iris = iris.drop('species', axis = 1) 

X_iris.shape 

y_iris = iris['species'] 

y_iris.shape 

rng = np.random.RandomState(35) 

x = 10*rng.rand(40) 

y = 2*x-1+rng.randn(40) 

plt.scatter(x,y); 

from sklearn.decomposition import PCA 

model = PCA(n_components=2) 

model 

model.fit(X_iris) 

X_2D = model.transform(X_iris) 

iris['PCA1'] = X_2D[:, 0] 

iris['PCA2'] = X_2D[:, 1] 

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False); 
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Scikit-learn’s objects share a uniform basic API that consists of the following three 

complementary interfaces: 

 Estimator interface: It is for building and fitting the models. 

 Predictor interface: It is for making predictions. 

 Transformer interface: It is for converting data. 

The APIs adopt simple conventions and the design choices have been guided in a manner 

to avoid the proliferation of framework code. 

Purpose of Conventions 

The purpose of conventions is to make sure that the API stick to the following broad 

principles: 

Consistency: All the objects whether they are basic, or composite must share a consistent 

interface which further composed of a limited set of methods.  

 

Inspection: Constructor parameters and parameters values determined by learning 

algorithm should be stored and exposed as public attributes. 

 

Non-proliferation of classes: Datasets should be represented as NumPy arrays or Scipy 

sparse matrix whereas hyper-parameters names and values should be represented as 

standard Python strings to avoid the proliferation of framework code. 

 

Composition:  The algorithms whether they are expressible as sequences or combinations 

of transformations to the data or naturally viewed as meta-algorithms parameterized on 

other algorithms, should be implemented and composed from existing building blocks. 

 

Sensible defaults: In scikit-learn whenever an operation requires a user-defined 

parameter, an appropriate default value is defined. This default value should cause the 

operation to be performed in a sensible way, for example, giving a base-line solution for 

the task at hand.    

Various Conventions 

The conventions available in Sklearn are explained below: 

Type casting 

It states that the input should be cast to float64. In the following example, in which 

sklearn.random_projection module used to reduce the dimensionality of the data, will 

explain it: 

import numpy as np 

 

5. Scikit-Learn — Conventions  
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from sklearn import random_projection 

 

rannge = np.random.RandomState(0) 

 

X = range.rand(10,2000) 

 

X = np.array(X, dtype = 'float32') 

 

X.dtype 

 

 

Transformer_data = random_projection.GaussianRandomProjection() 

 

X_new = transformer.fit_transform(X) 

 

X_new.dtype 

Output 

dtype('float32') 

dtype('float64')  

In the above example, we can see that X is float32 which is cast to float64 by 

fit_transform(X). 

Refitting & Updating Parameters 

Hyper-parameters of an estimator can be updated and refitted after it has been 

constructed via the set_params() method. Let’s see the following example to understand 

it: 

import numpy as np 

from sklearn.datasets import load_iris 

from sklearn.svm import SVC 

X, y = load_iris(return_X_y=True) 

 

clf = SVC() 

clf.set_params(kernel='linear').fit(X, y)   

clf.predict(X[:5]) 

 

Output 
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array([0, 0, 0, 0, 0]) 

Once the estimator has been constructed, above code will change the default kernel rbf 

to linear via SVC.set_params().  

Now, the following code will change back the kernel to rbf to refit the estimator and to 

make a second prediction. 

clf.set_params(kernel='rbf', gamma='scale').fit(X, y)   

 

clf.predict(X[:5]) 

Output 

array([0, 0, 0, 0, 0]) 

Complete code 

The following is the complete executable program: 

import numpy as np 

from sklearn.datasets import load_iris 

from sklearn.svm import SVC 

X, y = load_iris(return_X_y=True) 

 

clf = SVC() 

clf.set_params(kernel='linear').fit(X, y)   

clf.predict(X[:5]) 

 

clf.set_params(kernel='rbf', gamma='scale').fit(X, y)   

clf.predict(X[:5]) 

Multiclass & Multilabel fitting 

In case of multiclass fitting, both learning and the prediction tasks are dependent on the 

format of the target data fit upon. The module used is sklearn.multiclass. Check the 

example below, where multiclass classifier is fit on a 1d array. 

from sklearn.svm import SVC 

from sklearn.multiclass import OneVsRestClassifier 

from sklearn.preprocessing import LabelBinarizer 

 

X = [[1, 2], [3, 4], [4, 5], [5, 2], [1, 1]] 
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y = [0, 0, 1, 1, 2] 

 

classif = OneVsRestClassifier(estimator=SVC(gamma='scale',random_state=0)) 

classif.fit(X, y).predict(X) 

Output 

array([0, 0, 1, 1, 2]) 

In the above example, classifier is fit on one dimensional array of multiclass labels and the 

predict() method hence provides corresponding multiclass prediction. But on the other 

hand, it is also possible to fit upon a two-dimensional array of binary label indicators as 

follows: 

from sklearn.svm import SVC 

from sklearn.multiclass import OneVsRestClassifier 

from sklearn.preprocessing import LabelBinarizer 

 

X = [[1, 2], [3, 4], [4, 5], [5, 2], [1, 1]] 

y = LabelBinarizer().fit_transform(y) 

classif.fit(X, y).predict(X) 

Output 

array([[0, 0, 0], 

       [0, 0, 0], 

       [0, 1, 0], 

       [0, 1, 0], 

       [0, 0, 0]]) 

 

Similarly, in case of multilabel fitting, an instance can be assigned multiple labels as 

follows: 

from sklearn.preprocessing import MultiLabelBinarizer 

y = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]] 

y = MultiLabelBinarizer().fit_transform(y) 

classif.fit(X, y).predict(X) 

Output 

array([[1, 0, 1, 0, 0], 

       [1, 0, 1, 0, 0], 

       [1, 0, 1, 1, 0], 
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       [1, 0, 1, 1, 0], 

       [1, 0, 1, 0, 0]]) 

In the above example, sklearn.MultiLabelBinarizer is used to binarize the two 

dimensional array of multilabels to fit upon. That’s why predict() function gives a 2d array 

as output with multiple labels for each instance. 
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This chapter will help you in learning about the linear modeling in Scikit-Learn. Let us 

begin by understanding what is linear regression in Sklearn. 

The following table lists out various linear models provided by Scikit-Learn:  

Model Description 

Linear Regression It is one of the best statistical models that 

studies the relationship between a 

dependent variable (Y) with a given set of 

independent variables (X). 

Logistic Regression Logistic regression, despite its name, is a 

classification algorithm rather than 

regression algorithm. Based on a given set 

of independent variables, it is used to 

estimate discrete value (0 or 1, yes/no, 

true/false). 

Ridge Regression Ridge regression or Tikhonov 

regularization is the regularization 

technique that performs L2 regularization. 

It modifies the loss function by adding the 

penalty (shrinkage quantity) equivalent to 

the square of the magnitude of coefficients.  

 

Bayesian Ridge Regression 

             

Bayesian regression allows a natural 

mechanism to survive insufficient data or 

poorly distributed data by formulating 

linear regression using probability 

distributors rather than point estimates. 

LASSO 

 

LASSO is the regularisation technique that 

performs L1 regularisation. It modifies the 

loss function by adding the penalty 

(shrinkage quantity) equivalent to the 

summation of the absolute value of 

coefficients. 

 

Multi-task LASSO It allows to fit multiple regression problems 

jointly enforcing the selected features to be 

same for all the regression problems, also 

called tasks. Sklearn provides a linear 

model named MultiTaskLasso, trained 

with a mixed L1, L2-norm for 

regularisation, which estimates sparse 

6. Scikit-Learn ― Linear Modeling  
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coefficients for multiple regression 

problems jointly. 

Elastic-Net 

 

The Elastic-Net is a regularized regression 

method that linearly combines both 

penalties i.e. L1 and L2 of the Lasso and 

Ridge regression methods. It is useful 

when there are multiple correlated 

features. 

Multi-task Elastic-Net 

 

It is an Elastic-Net model that allows to fit 

multiple regression problems jointly 

enforcing the selected features to be same 

for all the regression problems, also called 

tasks 

Linear Regression 

It is one of the best statistical models that studies the relationship between a dependent 

variable (Y) with a given set of independent variables (X). The relationship can be 

established with the help of fitting a best line. 

sklearn.linear_model.LinearRegression is the module used to implement linear 

regression. 

Parameters 

Following table consists the parameters used by Linear Regression module: 

Parameter Description 

fit_intercept: Boolean, optional, default 

True 

Used to calculate the intercept for the model. No 

intercept will be used in the calculation if this set 

to false. 

normalize: Boolean, optional, default False If this parameter is set to True, the regressor X will 

be normalized before regression. The 

normalization will be done by subtracting the mean 

and dividing it by L2 norm. If fit_intercept = False, 

this parameter will be ignored. 

copy_X: Boolean, optional, default True By default, it is true which means X will be copied. 

But if it is set to false, X may be overwritten.  

n_jobs: int or None, 

optional(default=None) 

It represents the number of jobs to use for the 

computation.  

Attributes 

Following table consists the attributes used by Linear Regression module: 

Attributes Description 
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coef_: array, shape(n_features,) or 

(n_targets, n_features) 

It is used to estimate the coefficients for the linear 

regression problem. It would be a 2D array of 

shape (n_targets, n_features) if multiple targets 

are passed during fit. Ex. (y 2D). On the other 

hand, it would be a 1D array of length (n_features) 

if only one target is passed during fit. 

Intercept_: array This is an independent term in this linear model. 

Implementation Example 

First, import the required packages: 

import numpy as np 

from sklearn.linear_model import LinearRegression 

Now, provide the values for independent variable X: 

X = np.array([[1,1],[1,2],[2,2],[2,3]]) 

Next, the value of dependent variable y can be calculated as follows:  

y = np.dot(X, np.array([1,2])) + 3 

Now, create a linear regression object as follows:   

regr = LinearRegression(fit_intercept=True, normalize = True, copy_X=True, 

n_jobs=2).fit(X,y) 

Use predict() method to predict using this linear model as follows: 

regr.predict(np.array([[3,5]])) 

Output 

array([16.]) 

To get the coefficient of determination of the prediction we can use Score() method as 

follows: 

regr.score(X,y) 

Output 

1.0 

We can estimate the coefficients by using attribute named ‘coef’ as follows: 

regr.coef_ 

Output 
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array([1., 2.]) 

We can calculate the intercept i.e. the expected mean value of Y when all X = 0 by using 

attribute named ‘intercept’ as follows: 

In [24]: regr.intercept_ 

 

Output 

3.0000000000000018 

Complete code of implementation example: 

import numpy as np 

from sklearn.linear_model import LinearRegression 

X = np.array([[1,1],[1,2],[2,2],[2,3]]) 

y = np.dot(X, np.array([1,2])) + 3 

regr = LinearRegression(fit_intercept=True, normalize = True, copy_X=True, 

n_jobs=2).fit(X,y) 

regr.predict(np.array([[3,5]])) 

regr.score(X,y) 

regr.coef_ 

regr.intercept_ 

Logistic Regression 

Logistic regression, despite its name, is a classification algorithm rather than regression 

algorithm. Based on a given set of independent variables, it is used to estimate discrete 

value (0 or 1, yes/no, true/false). It is also called logit or MaxEnt Classifier.  

Basically, it measures the relationship between the categorical dependent variable and one 

or more independent variables by estimating the probability of occurrence of an event 

using its logistics function.  

sklearn.linear_model.LogisticRegression is the module used to implement logistic 

regression. 

Parameters 

Following table lists the parameters used by Logistic Regression module: 

Parameter Description 

penalty: str, ‘L1’, ‘L2’, ‘elasticnet’ or none, 

optional, default = ‘L2’ 

This parameter is used to specify the norm (L1 or 

L2) used in penalization (regularization). 
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dual: Boolean, optional, default = False It is used for dual or primal formulation whereas 

dual formulation is only implemented for L2 

penalty. 

tol: float, optional, default=1e-4 It represents the tolerance for stopping criteria.  

C: float, optional, default=1.0 It represents the inverse of regularization 

strength, which must always be a positive float.  

fit_intercept: Boolean, optional, default = 

True 

This parameter specifies that a constant (bias or 

intercept) should be added to the decision 

function.  

intercept_scaling: float, optional, default 

= 1 

This parameter is useful when  

 the solver ‘liblinear’ is used 

 fit_intercept is set to true  

class_weight: dict or ‘balanced’ optional, 

default = none 

It represents the weights associated with classes. 

If we use the default option, it means all the 

classes are supposed to have weight one. On the 

other hand, if you choose class_weight: balanced, 

it will use the values of y to automatically adjust 

weights. 

random_state: int, RandomState instance 

or None, optional, default = none 

This parameter represents the seed of the pseudo 

random number generated which is used while 

shuffling the data. Followings are the options: 

 int: in this case, random_state is the seed 

used by random number generator. 

 RandomState instance: in this case, 

random_state is the random number 

generator.  

 None: in this case, the random number 

generator is the RandonState instance used 

by np.random.  

 

solver: str, {‘newton-cg’, ‘lbfgs’, ‘liblinear’, 

‘saag’, ‘saga’}, optional, default = ‘liblinear’ 

This parameter represents which algorithm to use 

in the optimization problem. Followings are the 

properties of options under this parameter: 

 liblinear: It is a good choice for small 

datasets. It also handles L1 penalty. For 

multiclass problems, it is limited to one-

versus-rest schemes. 

 newton-cg: It handles only L2 penalty. 
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 lbfgs:  For multiclass problems, it handles 

multinomial loss. It also handles only L2 

penalty. 

 saga: It is a good choice for large datasets. 

For multiclass problems, it also handles 

multinomial loss. Along with L1 penalty, it 

also supports ‘elasticnet’ penalty. 

 sag: It is also used for large datasets. For 

multiclass problems, it also handles 

multinomial loss. 

max_iter: int, optional, default = 100 As name suggest, it represents the maximum 

number of iterations taken for solvers to converge. 

multi_class: str, {‘ovr’, ‘multinomial’, 

‘auto’}, optional, default = ‘ovr’ 

 ovr: For this option, a binary problem is fit 

for each label. 

 multimonial: For this option, the loss 

minimized is the multinomial loss fit across 

the entire probability distribution. We can’t 

use this option if solver = ‘liblinear’. 

 auto: This option will select ‘ovr’ if solver = 

‘liblinear’ or data is binary, else it will 

choose ‘multinomial’.    

verbose: int, optional, default = 0  By default, the value of this parameter is 0 but for 

liblinear and lbfgs solver we should set verbose to 

any positive number. 

warm_start: bool, optional, default = false With this parameter set to True, we can reuse the 

solution of the previous call to fit as initialization. 

If we choose default i.e. false, it will erase the 

previous solution.  

n_jobs: int or None, optional, default = 

None 

If multi_class = ‘ovr’, this parameter represents 

the number of CPU cores used when parallelizing 

over classes. It is ignored when solver = ‘liblinear’.  

l1_ratio: float or None, optional, default = 

None 

It is used in case when penalty = ‘elasticnet’. It is 

basically the Elastic-Net mixing parameter with 0 

< = l1_ratio  < = 1. 

Attributes 

Followings table consist the attributes used by Logistic Regression module: 

Attributes Description 



Scikit-Learn        

   37 

 

coef_: array, shape(n_features,) or 

(n_classes, n_features) 

It is used to estimate the coefficients of the 

features in the decision function. When the given 

problem is binary, it is of the shape (1, 

n_features). 

Intercept_: array, shape(1) or (n_classes) It represents the constant, also known as bias, 

added to the decision function. 

classes_: array, shape(n_classes)  It will provide a list of class labels known to the 

classifier. 

n_iter_: array, shape (n_classes) or (1) It returns the actual number of iterations for all the 

classes.  

Implementation Example 

Following Python script provides a simple example of implementing logistic regression on 

iris dataset of scikit-learn: 

from sklearn import datasets 

from sklearn import linear_model 

from sklearn.datasets import load_iris 

X, y = load_iris(return_X_y=True) 

LRG = linear_model.LogisticRegression(random_state=0,solver='liblinear',multi 
class='auto').fit(X, y) 

LRG.score(X, y) 

Output 

0.96 

The output shows that the above Logistic Regression model gave the accuracy of 96 

percent. 

Ridge Regression 

Ridge regression or Tikhonov regularization is the regularization technique that performs 

L2 regularization. It modifies the loss function by adding the penalty (shrinkage quantity) 

equivalent to the square of the magnitude of coefficients.  

∑ (𝑌𝑖 − 𝑊0 − ∑ 𝑊𝑖𝑋𝑗𝑖

𝑛

𝑖=1

)

2

+ 

𝑚

𝑗=1

𝛼 ∑ 𝑊𝑖
2

𝑛

𝑖=1

= 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +  𝛼 ∑ 𝑊𝑖
2

𝑛

𝑖=1

 

 sklearn.linear_model.Ridge is the module used to solve a regression model 

where loss function is the linear least squares function and regularization is L2. 

Parameters 
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Following table consists the parameters used by Ridge module: 

Parameter Description 

alpha: {float, array-like}, 

shape(n_targets) 

Alpha is the tuning parameter that decides how 

much we want to penalize the model.  

fit_intercept: Boolean This parameter specifies that a constant (bias or 

intercept) should be added to the decision 

function. No intercept will be used in calculation, if 

it will set to false.  

tol: float, optional, default=1e-4 It represents the precision of the solution.  

normalize: Boolean, optional, default = 

False  

If this parameter is set to True, the regressor X will 

be normalized before regression. The 

normalization will be done by subtracting the mean 

and dividing it by L2 norm. If fit_intercept = 

False, this parameter will be ignored. 

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied. 

But if it is set to false, X may be overwritten. 

max_iter: int, optional As name suggest, it represents the maximum 

number of iterations taken for conjugate gradient 

solvers. 

solver: str, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, 

‘sparse_cg’, ‘sag’, ‘saga’}’ 

This parameter represents which solver to use in 

the computational routines. Following are the 

properties of options under this parameter: 

 auto: It let choose the solver automatically 

based on the type of data. 

 svd: In order to calculate the Ridge 

coefficients, this parameter uses a Singular 

Value Decomposition of X. 

 cholesky:  This parameter uses the 

standard scipy.linalg.solve() function to 

get a closed-form solution. 

 Sparse_cg: It uses the conjugate gradient 

solver which is more appropriate than 

‘cholesky’ for large-scale data. 

 lsqr: It is the fastest and uses the 

dedicated regularized least-squares routine 

scipy.sparse.linalg.lsqr.  

 sag: It uses iterative process and a 

Stochastic Average Gradient descent. 
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 saga: It also uses iterative process and an 

improved Stochastic Average Gradient 

descent. 

random_state: int, RandomState instance 

or None, optional, default = none 

This parameter represents the seed of the pseudo 

random number generated which is used while 

shuffling the data. Following are the options: 

 int: In this case, random_state is the 

seed used by random number generator. 

 RandomState instance: In this case, 

random_state is the random number 

generator.  

 None: In this case, the random number 

generator is the RandonState instance used 

by np.random.  

 

Attributes 

Followings table consist the attributes used by Ridge module: 

Attributes Description 

coef_: array, shape(n_features,) or 

(n_target, n_features) 

This attribute provides the weight vectors.  

intercept_: float | array, shape = 

(n_targets) 

It represents the independent term in decision 

function. 

  

n_iter_: array or None, shape (n_targets) Available for only ‘sag’ and ‘lsqr’ solver, returns the 

actual number of iterations for each target.  

Implementation Example 

Following Python script provides a simple example of implementing Ridge Regression. We 

are using 15 samples and 10 features. The value of alpha is 0.5 in our case. There are two 

methods namely fit() and score() used to fit this model and calculate the score 

respectively. 

from sklearn.linear_model import Ridge 

import numpy as np 

n_samples, n_features = 15, 10 

rng = np.random.RandomState(0) 

y = rng.randn(n_samples) 



Scikit-Learn        

   40 

 

X = rng.randn(n_samples, n_features) 

rdg = Ridge(alpha=0.5) 

rdg.fit(X, y)  

rdg.score(X,y) 

Output 

0.76294987 

The output shows that the above Ridge Regression model gave the score of around 76 

percent. For more accuracy, we can increase the number of samples and features. 

For the above example, we can get the weight vector with the help of following python 

script: 

rdg.coef_ 

Output 

array([ 0.32720254, -0.34503436, -0.2913278 ,  0.2693125 , -0.22832508, 

       -0.8635094 , -0.17079403, -0.36288055, -0.17241081, -0.43136046]) 

Similarly, we can get the value of intercept with the help of following python script: 

rdg.intercept_ 

Output 

0.527486 

Bayesian Ridge Regression 

Bayesian regression allows a natural mechanism to survive insufficient data or poorly 

distributed data by formulating linear regression using probability distributors rather than 

point estimates. The output or response ‘y’ is assumed to drawn from a probability 

distribution rather than estimated as a single value. 

Mathematically, to obtain a fully probabilistic model the response y is assumed to be 

Gaussian distributed around 𝑋𝑤 as follows: 

𝑝(𝑦|𝑋, 𝑤, 𝛼) = 𝑁(𝑦|𝑋𝑤, 𝛼) 

One of the most useful type of Bayesian regression is Bayesian Ridge regression which 

estimates a probabilistic model of the regression problem. Here the prior for the coefficient 

𝑤 is given by spherical Gaussian as follows: 

𝑝(𝑤|𝜆) = 𝑁(𝑤|0, 𝜆−1𝐼𝑝) 

This resulting model is called Bayesian Ridge Regression and in scikit-learn 

sklearn.linear_model.BeyesianRidge module is used for Bayesian Ridge Regression. 
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Parameters 

Followings table consist the parameters used by BayesianRidge module: 

Parameter Description 

n_iter: int, optional  It represents the maximum number of iterations. 

The default value is 300 but the user-defined value 

must be greater than or equal to 1.   

fit_intercept: Boolean, optional, default 

True 

It decides whether to calculate the intercept for 

this model or not. No intercept will be used in 

calculation, if it will set to false.  

tol: float, optional, default=1.e-3 It represents the precision of the solution and will 

stop the algorithm if w has converged.  

alpha_1: float, optional, default=1.e-6 It is the 1st hyperparameter which is a shape 

parameter for the Gamma distribution prior over 

the alpha parameter.  

alpha_2: float, optional, default=1.e-6 It is the 2nd hyperparameter which is an inverse 

scale parameter for the Gamma distribution prior 

over the alpha parameter.  

lambda_1: float, optional, default=1.e-6 It is the 1st hyperparameter which is a shape 

parameter for the Gamma distribution prior over 

the lambda parameter.  

lambda_2: float, optional, default=1.e-6 It is the 2nd hyperparameter which is an inverse 

scale parameter for the Gamma distribution prior 

over the lambda parameter.  

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied. 

But if it is set to false, X may be overwritten. 

compute_score: boolean, optional, 

default=False 

If set to true, it computes the log marginal 

likelihood at each iteration of the optimization. 

verbose: Boolean, optional, default=False   By default, it is false but if set true, verbose mode 

will be enabled while fitting the model. 

Attributes 

Followings table consist the attributes used by BayesianRidge module: 

Attributes Description 

coef_: array, shape = n_features This attribute provides the weight vectors.  

intercept_: float  It represents the independent term in decision 

function. 

alpha_: float This attribute provides the estimated precision of 

the noise. 
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lambda_: float This attribute provides the estimated precision of 

the weight. 

n_iter_: int It provides the actual number of iterations taken 

by the algorithm to reach the stopping criterion. 

sigma_: array, shape = (n_features, 

n_features) 

It provides the estimated variance-covariance 

matrix of the weights. 

scores_: array, shape = (n_iter_+1) It provides the value of the log marginal likelihood 

at each iteration of the optimisation. In the 

resulting score, the array starts with the value of 

the log marginal likelihood obtained for the initial 

values of 𝛼 𝑎𝑛𝑑 𝜆, and ends with the value obtained 

for estimated 𝛼 𝑎𝑛𝑑 𝜆. 

Implementation Example 

Following Python script provides a simple example of fitting Bayesian Ridge Regression 

model using sklearn BayesianRidge module. 

from sklearn import linear_model 

X = [[0, 0], [1, 1], [2, 2], [3, 3]] 

Y = [0, 1, 2, 3] 

BayReg = linear_model.BayesianRidge() 

BayReg.fit(X, Y) 

Output 

BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, 

       fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, 

       normalize=False, tol=0.001, verbose=False) 

From the above output, we can check model’s parameters used in the calculation.  

Now, once fitted, the model can predict new values as follows: 

BayReg.predict([[1,1]]) 

Output 

array([1.00000007]) 

Similarly, we can access the coefficient w of the model as follows: 

BayReg.coef_ 

Output 
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array([0.49999993, 0.49999993]) 

LASSO (Least Absolute Shrinkage and Selection Operator) 

LASSO is the regularisation technique that performs L1 regularisation. It modifies the loss 

function by adding the penalty (shrinkage quantity) equivalent to the summation of the 

absolute value of coefficients. 
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sklearn.linear_model. Lasso is a linear model, with an added regularisation term, used 

to estimate sparse coefficients. 

Parameters 

Followings table consist the parameters used by Lasso module: 

Parameter Description 

alpha: float, optional, default = 1.0 Alpha, the constant that multiplies the L1 term, is 

the tuning parameter that decides how much we 

want to penalize the model. The default value is 

1.0. 

fit_intercept: Boolean, optional. 

Default=True 

This parameter specifies that a constant (bias or 

intercept) should be added to the decision 

function. No intercept will be used in calculation, if 

it will set to false.  

tol: float, optional This parameter represents the tolerance for the 

optimization. The tol value and updates would be 

compared and if found updates smaller than tol, 

the optimization checks the dual gap for optimality 

and continues until it is smaller than tol. 

normalize: Boolean, optional, default = 

False  

If this parameter is set to True, the regressor X will 

be normalized before regression. The 

normalization will be done by subtracting the mean 

and dividing it by L2 norm. If fit_intercept = 

False, this parameter will be ignored. 

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied. 

But if it is set to false, X may be overwritten. 

max_iter: int, optional As name suggest, it represents the maximum 

number of iterations taken for conjugate gradient 

solvers. 

precompute: True|False|array-like, 

default=False 

With this parameter we can decide whether to use 

a precomputed Gram matrix to speed up the 

calculation or not.  
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warm_start: bool, optional, default = false With this parameter set to True, we can reuse the 

solution of the previous call to fit as initialization. 

If we choose default i.e. false, it will erase the 

previous solution.  

random_state: int, RandomState instance 

or None, optional, default = none 

This parameter represents the seed of the pseudo 

random number generated which is used while 

shuffling the data. Followings are the options: 

 int: In this case, random_state is the seed 

used by random number generator. 

 RandomState instance: In this case, 

random_state is the random number 

generator.  

 None: In this case, the random number 

generator is the RandonState instance used 

by np.random.  

 

selection: str, default=‘cyclic’   Cyclic: The default value is cyclic which 

means the features will be looping over 

sequentially by default. 

 Random: If we set the selection to 

random, a random coefficient will be 

updated every iteration. 

Attributes 

Followings table consist the attributes used by Lasso module: 

Attributes Description 

coef_: array, shape(n_features,) or 

(n_target, n_features) 

This attribute provides the weight vectors.  

intercept_: float | array, shape = 

(n_targets) 

It represents the independent term in decision 

function. 

n_iter_: int or array-like, shape 

(n_targets) 

It gives the number of iterations run by the 

coordinate descent solver to reach the specified 

tolerance.  

Implementation Example 

Following Python script uses Lasso model which further uses coordinate descent as the 

algorithm to fit the coefficients: 
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from sklearn import linear_model 

Lreg = linear_model.Lasso(alpha=0.5) 

Lreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) 

Output 

Lasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000, 

   normalize=False, positive=False, precompute=False, random_state=None, 

   selection='cyclic', tol=0.0001, warm_start=False) 

Now, once fitted, the model can predict new values as follows: 

Lreg.predict([[0,1]]) 

Output 

array([0.75]) 

For the above example, we can get the weight vector with the help of following python 

script: 

Lreg.coef_ 

Output 

array([0.25, 0.  ]) 

Similarly, we can get the value of intercept with the help of following python script: 

Lreg.intercept_ 

Output 

0.75 

We can get the total number of iterations to get the specified tolerance with the help of 

following python script: 

Lreg.n_iter_ 

Output 

2 

We can change the values of parameters to get the desired output from the model. 

Multi-task LASSO 

It allows to fit multiple regression problems jointly enforcing the selected features to be 

same for all the regression problems, also called tasks. Sklearn provides a linear model 
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named MultiTaskLasso, trained with a mixed L1, L2-norm for regularisation, which 

estimates sparse coefficients for multiple regression problems jointly. In this the response 

y is a 2D array of shape (n_samples, n_tasks). 

The parameters and the attributes for MultiTaskLasso are like that of Lasso. The only 

difference is in the alpha parameter. In Lasso the alpha parameter is a constant that 

multiplies L1 norm, whereas in Multi-task Lasso it is a constant that multiplies the L1/L2 

terms. 

And, opposite to Lasso, MultiTaskLasso doesn’t have precompute attribute.  

Implementation Example 

Following Python script uses MultiTaskLasso linear model which further uses coordinate 

descent as the algorithm to fit the coefficients: 

from sklearn import linear_model 

MTLReg = linear_model.MultiTaskLasso(alpha=0.5) 

MTLReg.fit([[0,0], [1, 1], [2, 2]], [[0, 0],[1,1],[2,2]]) 

Output 

MultiTaskLasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000, 

        normalize=False, random_state=None, selection='cyclic', tol=0.0001, 

        warm_start=False) 

Now, once fitted, the model can predict new values as follows: 

MTLReg.predict([[0,1]])  

Output 

array([[0.53033009, 0.53033009]]) 

For the above example, we can get the weight vector with the help of following python 

script: 

MTLReg.coef_ 

Output 

array([[0.46966991, 0.        ], 

       [0.46966991, 0.        ]]) 

Similarly, we can get the value of intercept with the help of following python script: 

MTLReg.intercept_ 

Output 

array([0.53033009, 0.53033009]) 
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We can get the total number of iterations to get the specified tolerance with the help of 

following python script: 

MTLReg.n_iter_ 

Output 

2 

We can change the values of parameters to get the desired output from the model. 

Elastic-Net 

The Elastic-Net is a regularised regression method that linearly combines both penalties 

i.e. L1 and L2 of the Lasso and Ridge regression methods. It is useful when there are 

multiple correlated features. The difference between Lass and Elastic-Net lies in the fact 

that Lasso is likely to pick one of these features at random while elastic-net is likely to 

pick both at once. 

Sklearn provides a linear model named ElasticNet which is trained with both L1, L2-norm 

for regularisation of the coefficients. The advantage of such combination is that it allows 

for learning a sparse model where few of the weights are non-zero like Lasso regularisation 

method, while still maintaining the regularization properties of Ridge regularisation 

method. 

Following is the objective function to minimise: 

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||2

2 + 𝛼𝜌||𝑤||1 +
𝛼(1 − 𝜌)

2
||𝑤||2

2 

Parameters 

Following table consist the parameters used by ElasticNet module: 

Parameter Description 

alpha: float, optional, default = 1.0 Alpha, the constant that multiplies the L1/L2 term, 

is the tuning parameter that decides how much we 

want to penalize the model. The default value is 

1.0. 

l1_ratio: float This is called the ElasticNet mixing parameter. Its 

range is 0 < = l1_ratio < = 1. If l1_ratio = 1, the 

penalty would be L1 penalty. If l1_ratio = 0, the 

penalty would be an L2 penalty. If the value of l1 

ratio is between 0 and 1, the penalty would be the 

combination of L1 and L2. 
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fit_intercept: Boolean, optional. 

Default=True 

This parameter specifies that a constant (bias or 

intercept) should be added to the decision 

function. No intercept will be used in calculation, if 

it will set to false.  

tol: float, optional This parameter represents the tolerance for the 

optimization. The tol value and updates would be 

compared and if found updates smaller than tol, 

the optimization checks the dual gap for optimality 

and continues until it is smaller than tol. 

normalise: Boolean, optional, default = 

False  

If this parameter is set to True, the regressor X will 

be normalised before regression. The 

normalisation will be done by subtracting the mean 

and dividing it by L2 norm. If fit_intercept = 

False, this parameter will be ignored. 

precompute: True|False|array-like, 

default=False 

With this parameter we can decide whether to use 

a precomputed Gram matrix to speed up the 

calculation or not. To preserve sparsity, it would 

always be true for sparse input. 

copy_X: Boolean, optional, default = True By default, it is true which means X will be copied. 

But if it is set to false, X may be overwritten. 

max_iter: int, optional As name suggest, it represents the maximum 

number of iterations taken for conjugate gradient 

solvers. 

warm_start: bool, optional, default = false With this parameter set to True, we can reuse the 

solution of the previous call to fit as initialisation. 

If we choose default i.e. false, it will erase the 

previous solution.  
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random_state: int, RandomState instance 

or None, optional, default = none 

This parameter represents the seed of the pseudo 

random number generated which is used while 

shuffling the data. Following are the options: 

 int: In this case, random_state is the seed 

used by random number generator. 

 RandomState instance: In this case, 

random_state is the random number 

generator. 

 None: In this case, the random number 

generator is the RandonState instance used 

by np.random. 

 

selection: str, default=‘cyclic’   Cyclic: The default value is cyclic which 

means the features will be looping over 

sequentially by default. 

 Random: If we set the selection to random, 

a random coefficient will be updated every 

iteration. 

Attributes 

Followings table consist the attributes used by ElasticNet module: 

Attributes Description 

coef_: array, shape (n_tasks, n_features) This attribute provides the weight vectors.  

intercept_: array, shape (n_tasks) It represents the independent term in decision 

function. 

n_iter_: int  It gives the number of iterations run by the 

coordinate descent solver to reach the specified 

tolerance.  

Implementation Example 

Following Python script uses ElasticNet linear model which further uses coordinate 

descent as the algorithm to fit the coefficients: 

from sklearn import linear_model 

ENreg = linear_model.ElasticNet(alpha=0.5,random_state=0) 
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ENreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) 

Output 

ElasticNet(alpha=0.5, copy_X=True, fit_intercept=True, l1_ratio=0.5, 

      max_iter=1000, normalize=False, positive=False, precompute=False, 

      random_state=0, selection='cyclic', tol=0.0001, warm_start=False) 

Now, once fitted, the model can predict new values as follows: 

ENregReg.predict([[0,1]])  

Output 

array([0.73686077]) 

For the above example, we can get the weight vector with the help of following python 

script: 

ENreg.coef_ 

Output 

array([0.26318357, 0.26313923]) 

Similarly, we can get the value of intercept with the help of following python script: 

ENreg.intercept_ 

Output 

0.47367720941913904 

We can get the total number of iterations to get the specified tolerance with the help of 

following python script: 

ENreg.n_iter_ 

Output 

15 

We can change the values of alpha (towards 1) to get better results from the model.  

Let us see same example with alpha = 1. 

from sklearn import linear_model 

ENreg = linear_model.ElasticNet(alpha=1,random_state=0) 

ENreg.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) 
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Output 

ElasticNet(alpha=1, copy_X=True, fit_intercept=True, l1_ratio=0.5, 

      max_iter=1000, normalize=False, positive=False, precompute=False, 

      random_state=0, selection='cyclic', tol=0.0001, warm_start=False) 

 

#Predicting new values 

ENreg.predict([[1,0]]) 

 

Output 

array([0.90909216]) 

 

#weight vectors 

ENreg.coef_ 

 

Output 

array([0.09091128, 0.09090784]) 

 

#Calculating intercept 

ENreg.intercept_ 

 

Output 

0.818180878658411 

 

#Calculating number of iterations 

 

ENreg.n_iter_ 

 

Output 

10 

From the above examples, we can see the difference in the outputs. 

MultiTaskElasticNet 

It is an Elastic-Net model that allows to fit multiple regression problems jointly enforcing 

the selected features to be same for all the regression problems, also called tasks. Sklearn 

provides a linear model named MultiTaskElasticNet, trained with a mixed L1, L2-norm 

and L2 for regularisation, which estimates sparse coefficients for multiple regression 

problems jointly. In this, the response y is a 2D array of shape (n_samples, n_tasks). 
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Following is the objective function to minimize: 

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||𝐹𝑟𝑜

2 + 𝛼𝜌||𝑤||21 +
𝛼(1 − 𝜌)

2
||𝑤||𝐹𝑟𝑜

2  

As in MultiTaskLasso, here also, Fro indicates the Frobenius norm: 

||𝐴||𝐹𝑟𝑜 =  √∑ 𝑎𝑖𝑗
2

𝑖𝑗

 

And L1L2 leads to the following: 

||𝐴||21 =  ∑ √∑ 𝑎𝑖𝑗
2

𝑗𝑖

 

The parameters and the attributes for MultiTaskElasticNet are like that of ElasticNet. 

The only difference is in li_ratio i.e. ElasticNet mixing parameter. In MultiTaskElasticNet 

its range is 0 < l1_ratio < = 1. If l1_ratio = 1, the penalty would be L1/L2 penalty. If 

l1_ratio = 0, the penalty would be an L2 penalty. If the value of l1 ratio is between 0 and 

1, the penalty would be the combination of L1/L2 and L2. 

And, opposite to ElasticNet, MultiTaskElasticNet doesn’t have precompute attribute.  

Implementation Example 

To show the difference, we are implementing the same example as we did in Multi-task 

Lasso: 

from sklearn import linear_model 

MTENReg = linear_model.MultiTaskElasticNet(alpha=0.5) 

MTENReg.fit([[0,0], [1, 1], [2, 2]], [[0, 0],[1,1],[2,2]]) 

 

Output 

MultiTaskElasticNet(alpha=0.5, copy_X=True, fit_intercept=True, l1_ratio=0.5, 

          max_iter=1000, normalize=False, random_state=None, 

          selection='cyclic', tol=0.0001, warm_start=False) 

 

#Predicting new values 

MTENReg.predict([[1,0]]) 

 

Output 

array([[0.69056563, 0.69056563]]) 

 

#weight vectors 
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MTENReg.coef_ 

 

Output 

array([[0.30943437, 0.30938224], 

       [0.30943437, 0.30938224]]) 

 

#Calculating intercept 

MTENReg.intercept_ 

 

 

Output 

array([0.38118338, 0.38118338]) 

 

#Calculating number of iterations 

 

MTENReg.n_iter_ 

 

Output 

15 
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This chapter focusses on the polynomial features and pipelining tools in Sklearn. 

Introduction to Polynomial Features 

Linear models trained on non-linear functions of data generally maintains the fast 

performance of linear methods. It also allows them to fit a much wider range of data. 

That’s the reason in machine learning such linear models, that are trained on nonlinear 

functions, are used.  

One such example is that a simple linear regression can be extended by constructing 

polynomial features from the coefficients.  

Mathematically, suppose we have standard linear regression model then for 2-D data it 

would look like this: 

𝑌 =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 

Now, we can combine the features in second-order polynomials and our model will look 

like as follows: 

     

𝑌 =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2  +  𝑤5𝑥2

2 

The above is still a linear model. Here, we saw that the resulting polynomial regression is 

in the same class of linear models and can be solved similarly.  

To do so, scikit-learn provides a module named PolynomialFeatures. This module 

transforms an input data matrix into a new data matrix of given degree.  

Parameters 

Followings table consist the parameters used by PolynomialFeatures module: 

Parameter Description 

degree: integer, 

default = 2 

It represents the degree of the polynomial features. 

interaction_only: 

Boolean, default = 

false 

By default, it is false but if set as true, the features that are products of 

most degree distinct input features, are produced. Such features are 

called interaction features. 

include_bias: 

Boolean, default = 

true 

It includes a bias column i.e. the feature in which all polynomials powers 

are zero.  

7. Scikit-Learn — Extended Linear Modeling 
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order: str in {‘C’, 

‘F’}, default = ‘C’ 

This parameter represents the order of output array in the dense case. 

‘F’ order means faster to compute but on the other hand, it may slow 

down subsequent estimators. 

Attributes 

Followings table consist the attributes used by PolynomialFeatures module: 

Attributes Description 

powers_: array, shape 

(n_output_features, n_input_features) 

It shows powers_ [i,j] is the exponent of the jth 

input in the ith output. 

n_input_features _: int As name suggests, it gives the total number of 

input features. 

n_output_features _: int As name suggests, it gives the total number of 

polynomial output features.  

Implementation Example 

Following Python script uses PolynomialFeatures transformer to transform array of 8 

into shape (4,2): 

from sklearn.preprocessing import PolynomialFeatures 

import numpy as np 

Y = np.arange(8).reshape(4, 2) 

poly = PolynomialFeatures(degree=2) 

poly.fit_transform(Y) 

Output 

array([[ 1.,  0.,  1.,  0.,  0.,  1.], 

       [ 1.,  2.,  3.,  4.,  6.,  9.], 

       [ 1.,  4.,  5., 16., 20., 25.], 

       [ 1.,  6.,  7., 36., 42., 49.]]) 

Streamlining using Pipeline tools 

The above sort of preprocessing i.e. transforming an input data matrix into a new data 

matrix of a given degree, can be streamlined with the Pipeline tools, which are basically 

used to chain multiple estimators into one. 

Example 

The below python scripts using Scikit-learn’s Pipeline tools to streamline the preprocessing 

(will fit to an order-3 polynomial data). 

#First, import the necessary packages. 
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from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.pipeline import Pipeline 

import numpy as np 

 

#Next, create an object of Pipeline tool 

 

Stream_model = Pipeline([('poly', PolynomialFeatures(degree=3)),         

('linear', LinearRegression(fit_intercept=False))]) 

 

#Provide the size of array and order of polynomial data to fit the model. 

 

x = np.arange(5) 

y = 3 - 2 * x + x ** 2 - x ** 3 

Stream_model = model.fit(x[:, np.newaxis], y) 

 

#Calculate the input polynomial coefficients. 

 

Stream_model.named_steps['linear'].coef_ 

Output 

array([ 3., -2.,  1., -1.])  

The above output shows that the linear model trained on polynomial features is able to 

recover the exact input polynomial coefficients. 
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Here, we will learn about an optimization algorithm in Sklearn, termed as Stochastic 

Gradient Descent (SGD). 

Stochastic Gradient Descent (SGD) is a simple yet efficient optimization algorithm used to 

find the values of parameters/coefficients of functions that minimize a cost function. In 

other words, it is used for discriminative learning of linear classifiers under convex loss 

functions such as SVM and Logistic regression. It has been successfully applied to large-

scale datasets because the update to the coefficients is performed for each training 

instance, rather than at the end of instances. 

SGD Classifier 

Stochastic Gradient Descent (SGD) classifier basically implements a plain SGD learning 

routine supporting various loss functions and penalties for classification. Scikit-learn 

provides SGDClassifier module to implement SGD classification.  

Parameters 

Followings table consist the parameters used by SGDClassifier module: 

Parameter Description 

loss: str, default = 

‘hinge’ 

It represents the loss function to be used while implementing. The default 

value is ‘hinge’ which will give us a linear SVM. The other options which 

can be used are: 

 log: This loss will give us logistic regression i.e. a probabilistic 

classifier. 

 modified_huber: a smooth loss that brings tolerance to outliers 

along with probability estimates. 

 squared_hinge: similar to ‘hinge’ loss but it is quadratically 

penalized. 

 perceptron: as the name suggests, it is a linear loss which is used 

by the perceptron algorithm.   

penalty: str, ‘none’, 

‘l2’, ‘l1’, ‘elasticnet’ 

It is the regularization term used in the model. By default, it is L2. We can 

use L1 or ‘elasticnet; as well but both might bring sparsity to the model, 

hence not achievable with L2. 

alpha: float, default 

= 0.0001 

Alpha, the constant that multiplies the regularization term, is the tuning 

parameter that decides how much we want to penalize the model. The 

default value is 0.0001. 

8. Scikit-Learn ― Stochastic Gradient Descent 
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l1_ratio: float, 

default = 0.15 

This is called the ElasticNet mixing parameter. Its range is 0 < = l1_ratio 

< = 1. If l1_ratio = 1, the penalty would be L1 penalty. If l1_ratio = 0, 

the penalty would be an L2 penalty.  

fit_intercept: 

Boolean, 

Default=True 

This parameter specifies that a constant (bias or intercept) should be 

added to the decision function. No intercept will be used in calculation and 

data will be assumed already centered, if it will set to false.  

tol: float or none, 

optional, default = 

1.e-3 

This parameter represents the stopping criterion for iterations. Its default 

value is False but if set to None, the iterations will stop when 𝒍𝒐𝒔𝒔 >

 𝒃𝒆𝒔𝒕_𝒍𝒐𝒔𝒔 − 𝒕𝒐𝒍 for 𝒏_𝒊𝒕𝒆𝒓_𝒏𝒐_𝒄𝒉𝒂𝒏𝒈𝒆 successive epochs.  

shuffle: Boolean, 

optional, default = 

True  

This parameter represents that whether we want our training data to be 

shuffled after each epoch or not. 

verbose: integer, 

default = 0 

It represents the verbosity level. Its default value is 0. 

epsilon: float, 

default = 0.1  

This parameter specifies the width of the insensitive region. If loss = 

‘epsilon-insensitive’, any difference, between current prediction and the 

correct label, less than the threshold would be ignored.  

max_iter: int, 

optional, default = 

1000 

As name suggest, it represents the maximum number of passes over the 

epochs i.e. training data. 

warm_start: bool, 

optional, default = 

false 

With this parameter set to True, we can reuse the solution of the previous 

call to fit as initialization. If we choose default i.e. false, it will erase the 

previous solution.  

random_state: int, 

RandomState 

instance or None, 

optional, default = 

none 

This parameter represents the seed of the pseudo random number 

generated which is used while shuffling the data. Followings are the 

options: 

 int: In this case, random_state is the seed used by random 

number generator. 

 RandomState instance: In this case, random_state is the random 

number generator.  

 None: In this case, the random number generator is the 

RandonState instance used by np.random.  

 

n_jobs: int or none, 

optional, Default = 

None 

It represents the number of CPUs to be used in OVA (One Versus All) 

computation, for multi-class problems. The default value is none which 

means 1. 
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learning_rate: 

string, optional, 

default = ‘optimal’ 

 If learning rate is ‘constant’, eta = eta0; 

 If learning rate is ‘optimal’, eta = 1.0/(alpha*(t+t0)), where t0 is 

chosen by Leon Bottou; 

 If learning rate = ‘invscalling’, eta = eta0/pow(t, power_t). 

 If learning rate = ‘adaptive’, eta = eta0. 

 

eta0: double, 

default = 0.0 

It represents the initial learning rate for above mentioned learning rate 

options i.e. ‘constant’, ‘invscalling’, or ‘adaptive’.   

power_t : double, 

default =0.5 

It is the exponent for ‘incscalling’ learning rate. 

early_stopping: 

bool, default = False 

This parameter represents the use of early stopping to terminate training 

when validation score is not improving. Its default value is false but when 

set to true, it automatically set aside a stratified fraction of training data 

as validation and stop training when validation score is not improving. 

validation_fractio

n: float, default = 

0.1 

It is only used when early_stopping is true. It represents the proportion 

of training data to set asides as validation set for early termination of 

training data. 

n_iter_no_change

: int, default=5 

It represents the number of iteration with no improvement should 

algorithm run before early stopping. 

classs_weight: 

dict, {class_label: 

weight} or 

“balanced”, or 

None, optional 

This parameter represents the weights associated with classes. If not 

provided, the classes are supposed to have weight 1. 

warm_start: bool, 

optional, default = 

false 

With this parameter set to True, we can reuse the solution of the previous 

call to fit as initialization. If we choose default i.e. false, it will erase the 

previous solution.  

average: Boolean 

or int, optional, 

default = false 

Its default value is False but when set to True, it calculates the averaged 

Stochastic Gradient Descent weights and stores the result in the coef_ 

attribute. On the other hand, if its value set to an integer greater than 1, 

the averaging will begin once the total number of samples seen reaches. 

Attributes 

Following table consist the attributes used by SGDClassifier module: 
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Attributes Description 

coef_: array, shape (1, n_features) if 

n_classes==2, else (n_classes, n_features) 

This attribute provides the weight assigned to the 

features.  

intercept_: array, shape (1,) if 

n_classes==2, else (n_classes,) 

It represents the independent term in decision 

function. 

n_iter_: int  It gives the number of iterations to reach the 

stopping criterion.  

Implementation Example 

Like other classifiers, Stochastic Gradient Descent (SGD) has to be fitted with following 

two arrays: 

 An array X holding the training samples. It is of size [n_samples, n_features]. 

 An array Y holding the target values i.e. class labels for the training samples. It is 

of size [n_samples].  

Following Python script uses SGDClassifier linear model: 

import numpy as np 

from sklearn import linear_model 

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) 

Y = np.array([1, 1, 2, 2]) 

SGDClf = linear_model.SGDClassifier(max_iter=1000, tol=1e-

3,penalty="elasticnet") 

SGDClf.fit(X, Y) 

Output 

SGDClassifier(alpha=0.0001, average=False, class_weight=None, 

       early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, 

       l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=1000, 

       n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet', 

       power_t=0.5, random_state=None, shuffle=True, tol=0.001, 

       validation_fraction=0.1, verbose=0, warm_start=False) 

Now, once fitted, the model can predict new values as follows: 

SGDClf.predict([[2.,2.]])  

 

Output 
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array([2]) 

For the above example, we can get the weight vector with the help of following python 

script: 

SGDClf.coef_ 

Output 

array([[19.54811198,  9.77200712]]) 

Similarly, we can get the value of intercept with the help of following python script: 

SGDClf.intercept_ 

Output 

array([10.]) 

We can get the signed distance to the hyperplane by using 

SGDClassifier.decision_function as used in the following python script: 

SGDClf.decision_function([[2., 2.]]) 

Output 

array([68.6402382]) 

SGD Regressor 

Stochastic Gradient Descent (SGD) regressor basically implements a plain SGD learning 

routine supporting various loss functions and penalties to fit linear regression models. 

Scikit-learn provides SGDRegressor module to implement SGD regression.  

Parameters 

Parameters used by SGDRegressor are almost same as that were used in SGDClassifier 

module. The difference lies in ‘loss’ parameter. For SGDRegressor modules’ loss 

parameter the positives values are as follows: 

 squared_loss: It refers to the ordinary least squares fit. 

 huber: SGDRegressor correct the outliers by switching from squared to linear 

loss past a distance of epsilon. The work of ‘huber’ is to modify ‘squared_loss’ so 

that algorithm focus less on correcting outliers.  

 epsilon_insensitive: Actually, it ignores the errors less than epsilon. 

 squared_epsilon_insensitive: It is same as epsilon_insensitive. The only 

difference is that it becomes squared loss past a tolerance of epsilon. 
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Another difference is that the parameter named ‘power_t’ has the default value of 0.25 

rather than 0.5 as in SGDClassifier. Furthermore, it doesn’t have ‘class_weight’ and 

‘n_jobs’ parameters. 

Attributes  

Attributes of SGDRegressor are also same as that were of SGDClassifier module.  

Rather it has three extra attributes as follows: 

 average_coef_: array, shape(n_features,) 

As name suggest, it provides the average weights assigned to the features.  

 average_intercept_: array, shape(1,) 

As name suggest, it provides the averaged intercept term. 

 t_: int  

It provides the number of weight updates performed during the training phase. 

Note: the attributes average_coef_ and average_intercept_ will work after enabling 

parameter ‘average’ to True. 

Implementation Example 

Following Python script uses SGDRegressor linear model: 

import numpy as np 

from sklearn import linear_model 

n_samples, n_features = 10, 5 

rng = np.random.RandomState(0) 

y = rng.randn(n_samples) 

 

X = rng.randn(n_samples, n_features) 

SGDReg 

=linear_model.SGDRegressor(max_iter=1000,penalty="elasticnet",loss='huber',tol=

1e-3, average=True) 

SGDReg.fit(X, y) 

Output 

SGDRegressor(alpha=0.0001, average=True, early_stopping=False, epsilon=0.1, 

       eta0=0.01, fit_intercept=True, l1_ratio=0.15, 

       learning_rate='invscaling', loss='huber', max_iter=1000, 

       n_iter=None, n_iter_no_change=5, penalty='elasticnet', power_t=0.25, 

 

       random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1, 
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       verbose=0, warm_start=False) 

Now, once fitted, we can get the weight vector with the help of following python script: 

SGDReg.coef_ 

Output 

array([-0.00423314,  0.00362922, -0.00380136,  0.00585455,  0.00396787]) 

Similarly, we can get the value of intercept with the help of following python script: 

SGReg.intercept_ 

Output 

array([0.00678258]) 

We can get the number of weight updates during training phase with the help of the 

following python script: 

SGDReg.t_ 

Output 

61.0 

Pros and Cons of SGD 

Following the pros of SGD: 

 Stochastic Gradient Descent (SGD) is very efficient. 

 It is very easy to implement as there are lots of opportunities for code tuning. 

Following the cons of SGD: 

 Stochastic Gradient Descent (SGD) requires several hyperparameters like 

regularization parameters.  

 It is sensitive to feature scaling. 
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This chapter deals with a machine learning method termed as Support Vector Machines 

(SVMs). 

Introduction 

Support vector machines (SVMs) are powerful yet flexible supervised machine learning 

methods used for classification, regression, and, outliers’ detection. SVMs are very efficient 

in high dimensional spaces and generally are used in classification problems. SVMs are 

popular and memory efficient because they use a subset of training points in the decision 

function. 

The main goal of SVMs is to divide the datasets into number of classes in order to find a 

maximum marginal hyperplane (MMH) which can be done in the following two steps: 

 Support Vector Machines will first generate hyperplanes iteratively that separates 

the classes in the best way.  

 After that it will choose the hyperplane that segregate the classes correctly. 

 Some important concepts in SVM are as follows: 

 Support Vectors: They may be defined as the datapoints which are closest to the 

hyperplane. Support vectors help in deciding the separating line. 

 Hyperplane: The decision plane or space that divides set of objects having 

different classes. 

 Margin: The gap between two lines on the closet data points of different classes is 

called margin.  

Following diagrams will give you an insight about these SVM concepts: 

 

 

 

 

 

 

 

9. Scikit-Learn — Support Vector Machines 
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SVM in Scikit-learn supports both sparse and dense sample vectors as input.  

Classification of SVM 

Scikit-learn provides three classes namely SVC, NuSVC and LinearSVC which can 

perform multiclass-class classification.  

SVC 

It is C-support vector classification whose implementation is based on libsvm. The module 

used by scikit-learn is sklearn.svm.SVC. This class handles the multiclass support 

according to one-vs-one scheme.  

Parameters 

Followings table consist the parameters used by sklearn.svm.SVC class: 

Parameter Description 

C: float, optional, 

default = 1.0 

It is the penalty parameter of the error term. 

kernel: string, 

optional, default = 

‘rbf’ 

This parameter specifies the type of kernel to be used in the algorithm. 

we can choose any one among, ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, 

‘precomputed’. The default value of kernel would be ‘rbf’.  

degree: int, 

optional, default = 3 

It represents the degree of the ‘poly’ kernel function and will be ignored 

by all other kernels. 

gamma: {‘scale’, 

‘auto’} or float, 

It is the kernel coefficient for kernels ‘rbf’, ‘poly’ and ‘sigmoid’.  

Hyperplane 

X-axis 

Margin 

Y-

axis 

Support Vectors 

Class A 

Class B 
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optinal default = 

‘scale’ 

If you choose default i.e. gamma = ‘scale’ then the value of gamma to be 

used by SVC is 1/(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑋. 𝑣𝑎𝑟()). 

On the other hand, if gamma= ‘auto’, it uses 1/𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 

coef0: float, 

optional, 

Default=0.0 

An independent term in kernel function which is only significant in ‘poly’ 

and ‘sigmoid’. 

tol: float, optional, 

default = 1.e-3 

This parameter represents the stopping criterion for iterations.  

shrinking: 

Boolean, optional, 

default = True  

This parameter represents that whether we want to use shrinking heuristic 

or not. 

verbose: Boolean, 

default: false 

It enables or disable verbose output. Its default value is false. 

probability: 

boolean, optional, 

default = true 

This parameter enables or disables probability estimates. The default 

value is false, but it must be enabled before we call fit. 

max_iter: int, 

optional, default = -

1 

As name suggest, it represents the maximum number of iterations within 

the solver. Value -1 means there is no limit on the number of iterations.  

cache_size: float, 

optional 

This parameter will specify the size of the kernel cache. The value will be 

in MB(MegaBytes). 

random_state: int, 

RandomState 

instance or None, 

optional, default = 

none 

This parameter represents the seed of the pseudo random number 

generated which is used while shuffling the data. Followings are the 

options: 

 int: In this case, random_state is the seed used by random number 

generator. 

 RandomState instance: In this case, random_state is the 

random number generator.  

 None: In this case, the random number generator is the 

RandonState instance used by np.random.  

 

class_weight: 

{dict, ‘balanced’}, 

optional 

This parameter will set the parameter C of class j to 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡[𝑗] ∗ 𝐶 for 

SVC. If we use the default option, it means all the classes are supposed 

to have weight one. On the other hand, if you choose class_weight: 

balanced, it will use the values of y to automatically adjust weights. 
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decision_function

_shape: ‘ovo’, 

‘ovr’, default = ‘ovr’ 

This parameter will decide whether the algorithm will return ‘ovr’ (one-

vs-rest) decision function of shape as all other classifiers, or the original 

ovo(one-vs-one) decision function of libsvm.  

break_ties: 

boolean, optional, 

default = false 

True: The predict will break ties according to the confidence values of 

decision_function  

False: The predict will return the first class among the tied classes.     

Attributes 

Followings table consist the attributes used by sklearn.svm.SVC class: 

Attributes Description 

support_: array-like, shape = [n_SV] It returns the indices of support vectors. 

 

support_vectors_: array-like, shape = 

[n_SV, n_features] 

It returns the support vectors. 

 

n_support_: array-like, dtype=int32, 

shape = [n_class] 

It represents the number of support vectors for 

each class. 

 

dual_coef_: array, shape = [n_class-

1,n_SV] 

These are the coefficient of the support vectors in 

the decision function. 

coef_: array, shape = [n_class * (n_class-

1)/2, n_features] 

This attribute, only available in case of linear 

kernel, provides the weight assigned to the 

features.  

intercept_: array, shape = [n_class * 

(n_class-1)/2] 

It represents the independent term (constant) in 

decision function. 

fit_status_: int  The output would be 0 if it is correctly fitted. The 

output would be 1 if it is incorrectly fitted.  

classes_: array of shape = [n_classes] It gives the labels of the classes. 

Implementation Example 

Like other classifiers, SVC also has to be fitted with following two arrays: 

 An array X holding the training samples. It is of size [n_samples, n_features]. 

 An array Y holding the target values i.e. class labels for the training samples. It is 

of size [n_samples].  

Following Python script uses sklearn.svm.SVC class: 
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import numpy as np 

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) 

y = np.array([1, 1, 2, 2]) 

from sklearn.svm import SVC 

SVCClf = SVC(kernel='linear',gamma='scale', shrinking=False,) 

SVCClf.fit(X, y) 

Output 

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 

  decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear', 

  max_iter=-1, probability=False, random_state=None, shrinking=False, 

  tol=0.001, verbose=False) 

Now, once fitted, we can get the weight vector with the help of following python script 

SVCClf.coef_ 

Output 

array([[0.5, 0.5]]) 

Similarly, we can get the value of other attributes as follows: 

SVCClf.predict([[-0.5,-0.8]]) 

Output 

array([1]) 

 

SVCClf.n_support_ 

Output 

array([1, 1]) 

 

SVCClf.support_vectors_ 

Output 

array([[-1., -1.], 

       [ 1.,  1.]]) 
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SVCClf.support_ 

Output 

array([0, 2]) 

 

SVCClf.intercept_ 

Output 

array([-0.]) 

 

SVCClf.fit_status_ 

Output 

0 

NuSVC 

NuSVC is Nu Support Vector Classification. It is another class provided by scikit-learn 

which can perform multi-class classification. It is like SVC but NuSVC accepts slightly 

different sets of parameters. The parameter which is different from SVC is as follows: 

 nu: float, optional, default = 0.5 

It represents an upper bound on the fraction of training errors and a lower bound of the 

fraction of support vectors. Its value should be in the interval of (o,1]. 

Rest of the parameters and attributes are same as of SVC. 

Implementation Example 

We can implement the same example using sklearn.svm.NuSVC class also.  

import numpy as np 

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) 

y = np.array([1, 1, 2, 2]) 

from sklearn.svm import NuSVC 

NuSVCClf = NuSVC(kernel='linear',gamma='scale', shrinking=False,) 

NuSVCClf.fit(X, y) 

 

Output 

NuSVC(cache_size=200, class_weight=None, coef0=0.0, 
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   decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear', 

   max_iter=-1, nu=0.5, probability=False, random_state=None, 

   shrinking=False, tol=0.001, verbose=False) 

We can get the outputs of rest of the attributes as did in the case of SVC. 

LinearSVC 

It is Linear Support Vector Classification. It is similar to SVC having kernel = ‘linear’.  The 

difference between them is that LinearSVC implemented in terms of liblinear while SVC 

is implemented in libsvm. That’s the reason LinearSVC has more flexibility in the choice 

of penalties and loss functions. It also scales better to large number of samples.    

If we talk about its parameters and attributes then it does not support ‘kernel’ because 

it is assumed to be linear and it also lacks some of the attributes like support_, 

support_vectors_, n_support_, fit_status_ and, dual_coef_.  

However, it supports penalty and loss parameters as follows: 

 penalty: string, L1 or L2(default = ‘L2’) 

This parameter is used to specify the norm (L1 or L2) used in penalization 

(regularization). 

 loss: string, hinge, squared_hinge (default = squared_hinge) 

It represents the loss function where ‘hinge’ is the standard SVM loss and 

‘squared_hinge’ is the square of hinge loss. 

Implementation Example 

Following Python script uses sklearn.svm.LinearSVC class: 

from sklearn.svm import LinearSVC 

from sklearn.datasets import make_classification 

X, y = make_classification(n_features=4, random_state=0) 

LSVCClf = LinearSVC(dual = False, random_state=0, penalty='l1',tol=1e-5) 

LSVCClf.fit(X, y) 

Output 

LinearSVC(C=1.0, class_weight=None, dual=False, fit_intercept=True, 

     intercept_scaling=1, loss='squared_hinge', max_iter=1000, 

     multi_class='ovr', penalty='l1', random_state=0, tol=1e-05, verbose=0) 

Now, once fitted, the model can predict new values as follows: 

LSVCClf.predict([[0,0,0,0]]) 

Output 
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[1] 

For the above example, we can get the weight vector with the help of following python 

script: 

LSVCClf.coef_ 

Output 

[[0.         0.         0.91214955 0.22630686]] 

Similarly, we can get the value of intercept with the help of following python script: 

LSVCClf.intercept_ 

Output 

[0.26860518] 

Regression with SVM 

As discussed earlier, SVM is used for both classification and regression problems. Scikit-

learn’s method of Support Vector Classification (SVC) can be extended to solve regression 

problems as well. That extended method is called Support Vector Regression (SVR).    

Basic similarity between SVM and SVR 

The model created by SVC depends only on a subset of training data. Why? Because the 

cost function for building the model doesn’t care about training data points that lie outside 

the margin. 

Whereas, the model produced by SVR (Support Vector Regression) also only depends on 

a subset of the training data. Why? Because the cost function for building the model 

ignores any training data points close to the model prediction. 

Scikit-learn provides three classes namely SVR, NuSVR and LinearSVR as three 

different implementations of SVR.  

SVR 

It is Epsilon-support vector regression whose implementation is based on libsvm. As 

opposite to SVC There are two free parameters in the model namely ‘C’ and ‘epsilon’. 

 epsilon: float, optional, default = 0.1 

It represents the epsilon in the epsilon-SVR model, and specifies the epsilon-tube within 

which no penalty is associated in the training loss function with points predicted within a 

distance epsilon from the actual value.   

Rest of the parameters and attributes are similar as we used in SVC. 

Implementation Example 
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Following Python script uses sklearn.svm.SVR class: 

from sklearn import svm 

X = [[1, 1], [2, 2]] 

y = [1, 2] 

SVRReg = svm.SVR(kernel=’linear’, gamma=’auto’) 

SVRReg.fit(X, y) 

Output 

SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto', 

  kernel='linear', max_iter=-1, shrinking=True, tol=0.001, verbose=False) 

 

Now, once fitted, we can get the weight vector with the help of following python script: 

SVRReg.coef_ 

Output 

array([[0.4, 0.4]]) 

Similarly, we can get the value of other attributes as follows: 

SVRReg.predict([[1,1]]) 

Output 

array([1.1]) 

Similarly, we can get the values of other attributes as well.  

NuSVR 

NuSVR is Nu Support Vector Regression. It is like NuSVC, but NuSVR uses a parameter nu 

to control the number of support vectors. And moreover, unlike NuSVC where nu replaced 

C parameter, here it replaces epsilon.  

Implementation Example 

Following Python script uses sklearn.svm.SVR class: 

from sklearn.svm import NuSVR 

import numpy as np 

n_samples, n_features = 20, 15 

np.random.seed(0) 

y = np.random.randn(n_samples) 
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X = np.random.randn(n_samples, n_features) 

NuSVRReg = NuSVR(kernel='linear', gamma='auto',C=1.0, nu=0.1)^M 

NuSVRReg.fit(X, y) 

Output 

NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', 

   kernel='linear', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, 

   verbose=False) 

Now, once fitted, we can get the weight vector with the help of following python script: 

NuSVRReg.coef_ 

Output 

array([[-0.14904483,  0.04596145,  0.22605216, -0.08125403,  0.06564533, 

         0.01104285,  0.04068767,  0.2918337 , -0.13473211,  0.36006765, 

        -0.2185713 , -0.31836476, -0.03048429,  0.16102126, -0.29317051]]) 

Similarly, we can get the value of other attributes as well. 

LinearSVR 

 It is Linear Support Vector Regression. It is similar to SVR having kernel = ‘linear’.  The 

difference between them is that LinearSVR implemented in terms of liblinear, while SVC 

implemented in libsvm. That’s the reason LinearSVR has more flexibility in the choice of 

penalties and loss functions. It also scales better to large number of samples.    

If we talk about its parameters and attributes then it does not support ‘kernel’ because 

it is assumed to be linear and it also lacks some of the attributes like support_, 

support_vectors_, n_support_, fit_status_ and, dual_coef_.  

However, it supports ‘loss’ parameters as follows: 

 loss: string, optional, default = ‘epsilon_insensitive’ 

It represents the loss function where epsilon_insensitive loss is the L1 loss and the squared 

epsilon-insensitive loss is the L2 loss. 

Implementation Example 

Following Python script uses sklearn.svm.LinearSVR class: 

from sklearn.svm import LinearSVR 

from sklearn.datasets import make_regression 

X, y = make_regression(n_features=4, random_state=0) 

LSVRReg = LinearSVR(dual = False, random_state=0,  

loss='squared_epsilon_insensitive',tol=1e-5) 
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LSVRReg.fit(X, y) 

Output 

LinearSVR(C=1.0, dual=False, epsilon=0.0, fit_intercept=True, 

     intercept_scaling=1.0, loss='squared_epsilon_insensitive', 

     max_iter=1000, random_state=0, tol=1e-05, verbose=0) 

Now, once fitted, the model can predict new values as follows: 

LSRReg.predict([[0,0,0,0]]) 

Output 

array([-0.01041416]) 

For the above example, we can get the weight vector with the help of following python 

script: 

LSRReg.coef_ 

Output 

array([20.47354746, 34.08619401, 67.23189022, 87.47017787]) 

Similarly, we can get the value of intercept with the help of following python script: 

LSRReg.intercept_ 

Output 

array([-0.01041416]) 
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Here, we will learn about what is anomaly detection in Sklearn and how it is used in 

identification of the data points. 

Anomaly detection is a technique used to identify data points in dataset that does not fit 

well with the rest of the data. It has many applications in business such as fraud detection, 

intrusion detection, system health monitoring, surveillance, and predictive maintenance. 

Anomalies, which are also called outlier, can be divided into following three categories: 

 Point anomalies: It occurs when an individual data instance is considered as 

anomalous w.r.t the rest of the data. 

 Contextual anomalies: Such kind of anomaly is context specific. It occurs if a 

data instance is anomalous in a specific context. 

 Collective anomalies: It occurs when a collection of related data instances is 

anomalous w.r.t entire dataset rather than individual values. 

Methods 

Two methods namely outlier detection and novelty detection can be used for anomaly 

detection. It’s necessary to see the distinction between them. 

Outlier detection 

The training data contains outliers that are far from the rest of the data. Such outliers are 

defined as observations. That’s the reason, outlier detection estimators always try to fit 

the region having most concentrated training data while ignoring the deviant observations. 

It is also known as unsupervised anomaly detection. 

Novelty detection 

It is concerned with detecting an unobserved pattern in new observations which is not 

included in training data. Here, the training data is not polluted by the outliers. It is also 

known as semi-supervised anomaly detection. 

There are set of ML tools, provided by scikit-learn, which can be used for both outlier 

detection as well novelty detection. These tools first implementing object learning from 

the data in an unsupervised by using fit () method as follows: 

estimator.fit(X_train) 

Now, the new observations would be sorted as inliers (labeled 1) or outliers (labeled 

-1) by using predict() method as follows: 

estimator.fit(X_test) 

The estimator will first compute the raw scoring function and then predict method will 

make use of threshold on that raw scoring function. We can access this raw scoring 

10. Scikit-Learn ― Anomaly Detection 
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function with the help of score_sample method and can control the threshold by 

contamination parameter. 

We can also define decision_function method that defines outliers as negative value and 

inliers as non-negative value.  

estimator.decision_function(X_test) 

Sklearn algorithms for Outlier Detection 

Let us begin by understanding what an elliptic envelop is. 

Fitting an elliptic envelop 

This algorithm assume that regular data comes from a known distribution such as Gaussian 

distribution. For outlier detection, Scikit-learn provides an object named 

covariance.EllipticEnvelop. 

This object fits a robust covariance estimate to the data, and thus, fits an ellipse to the 

central data points. It ignores the points outside the central mode.  

Parameters 

Following table consist the parameters used by sklearn. covariance.EllipticEnvelop 

method: 

Parameter Description 

store_precision: 

Boolean, optional, 

default = True 

We can specify it if the estimated precision is stored. 

assume_centered 

: Boolean, optional, 

default = False 

If we set it False, it will compute the robust location and 

covariance directly with the help of FastMCD algorithm. On the 

other hand, if set True, it will compute the support of robust 

location and covariance estimates and then recompute the 

covariance estimate.  

support_fraction: 

float in (0., 1.), 

optional, default = 

None 

This parameter tells the method that how much proportion of 

points to be included in the support of the raw MCD estimates.  

contamination: 

float in (0., 1.), 

optional, default = 

0.1 

It provides the proportion of the outliers in the data set. 
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random_state: int, 

RandomState 

instance or None, 

optional, default = 

none 

This parameter represents the seed of the pseudo random number 

generated which is used while shuffling the data. Followings are 

the options: 

 int: In this case, random_state is the seed used by 

random number generator. 

 RandomState instance: In this case, random_state is 

the random number generator.  

 None: In this case, the random number generator is the 

RandonState instance used by np.random.  

 

Attributes 

Following table consist the attributes used by sklearn. covariance.EllipticEnvelop 

method: 

Attributes Description 

support_: array-like, shape(n_samples,) It represents the mask of the observations 

used to compute robust estimates of 

location and shape. 

 

location_: array-like, shape (n_features) It returns the estimated robust location. 

 

covariance_: array-like, shape 

(n_features, n_features) 

It returns the estimated robust covariance 

matrix. 

 

precision_: array-like, shape (n_features, 

n_features) 

It returns the estimated pseudo inverse 

matrix. 

 

offset_: float It is used to define the decision function 

from the raw scores. decision_function 

= score_samples -offset_  

Implementation Example 

import numpy as np^M 

from sklearn.covariance import EllipticEnvelope^M 

true_cov = np.array([[.5, .6],[.6, .4]]) 

X = np.random.RandomState(0).multivariate_normal(mean=[0, 0],                                                

cov=true_cov,size=500) 

cov = EllipticEnvelope(random_state=0).fit(X)^M 
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# Now we can use predict method. It will return 1 for an inlier and -1 for an 

outlier. 

cov.predict([[0, 0],[2, 2]]) 

Output 

array([ 1, -1]) 

Isolation Forest 

In case of high-dimensional dataset, one efficient way for outlier detection is to use random 

forests. The scikit-learn provides ensemble.IsolationForest method that isolates the 

observations by randomly selecting a feature. Afterwards, it randomly selects a value 

between the maximum and minimum values of the selected features.  

Here, the number of splitting needed to isolate a sample is equivalent to path length from 

the root node to the terminating node.  

Parameters 

Followings table consist the parameters used by sklearn. ensemble.IsolationForest 

method: 

Parameter Description 

n_estimators: int, 

optional, default = 

100 

It represents the number of base estimators in the ensemble. 

max_samples : int 

or float, optional, 

default = “auto” 

It represents the number of samples to be drawn from X to train 

each base estimator. If we choose int as its value, it will draw 

𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 samples. If we choose float as its value, it will draw 

𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗  𝑋. 𝑠ℎ𝑎𝑝𝑒[0] samples. And, if we choose auto as its 

value, it will draw 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =  𝑚𝑖𝑛(256, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠).   

support_fraction: 

float in (0., 1.), 

optional, default = 

None 

This parameter tells the method that how much proportion of 

points to be included in the support of the raw MCD estimates.  

contamination: 

auto or float, 

optional, default = 

auto 

It provides the proportion of the outliers in the data set. If we set 

it default i.e. auto, it will determine the threshold as in the original 

paper. If set to float, the range of contamination will be in the 

range of [0,0.5]. 
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random_state: int, 

RandomState 

instance or None, 

optional, default = 

none 

This parameter represents the seed of the pseudo random number 

generated which is used while shuffling the data. Followings are 

the options: 

 int: In this case, random_state is the seed used by random 

number generator. 

 RandomState instance: In this case, random_state is 

the random number generator.  

 None: In this case, the random number generator is the 

RandonState instance used by np.random.  

 

max_features: int 

or float, optional 

(default = 1.0) 

It represents the number of features to be drawn from X to train 

each base estimator. If we choose int as its value, it will draw 

𝒎𝒂𝒙_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 features. If we choose float as its value, it will draw 

𝒎𝒂𝒙_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 ∗  𝑿. 𝒔𝒉𝒂𝒑𝒆[𝟏] samples.   

bootstrap: 

Boolean, optional 

(default = False) 

Its default option is False which means the sampling would be 

performed without replacement. And on the other hand, if set to 

True, means individual trees are fit on a random subset of the 

training data sampled with replacement. 

n_jobs: int or 

None, optional 

(default = None) 

It represents the number of jobs to be run in parallel for fit() and 

predict() methods both.  

verbose: int, 

optional (default = 

0)  

This parameter controls the verbosity of the tree building process. 

warm_start: Bool, 

optional 

(default=False) 

If warm_start = true, we can reuse previous call’s solution to fit 

and can add more estimators to the ensemble. But if is set to 

false, we need to fit a whole new forest. 

Attributes 

Following table consist the attributes used by sklearn. ensemble.IsolationForest 

method: 

Attributes Description 

estimators_: list of DecisionTreeClassifier Providing the collection of all fitted sub-

estimators. 
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max_samples_: integer It provides the actual number of samples 

used. 

 

offset_: float It is used to define the decision function 

from the raw scores. decision_function 

= score_samples -offset_  

Implementation Example  

The Python script below will use sklearn. ensemble.IsolationForest method to fit 10 

trees on given data: 

from sklearn.ensemble import IsolationForest 

import numpy as np 

X = np.array([[-1, -2], [-3, -3], [-3, -4], [0, 0], [-50, 60]]) 

OUTDClf = IsolationForest(n_estimators=10) 

OUTDclf.fit(X)   

Output 

IsolationForest(behaviour='old', bootstrap=False, contamination='legacy', 

        max_features=1.0, max_samples='auto', n_estimators=10, n_jobs=None, 

        random_state=None, verbose=0) 

Local Outlier Factor 

Local Outlier Factor (LOF) algorithm is another efficient algorithm to perform outlier 

detection on high dimension data. The scikit-learn provides 

neighbors.LocalOutlierFactor method that computes a score, called local outlier factor, 

reflecting the degree of anomality of the observations. The main logic of this algorithm is 

to detect the samples that have a substantially lower density than its neighbors. That’s 

why it measures the local density deviation of given data points w.r.t. their neighbors. 

Parameters 

Followings table consist the parameters used by sklearn. neighbors.LocalOutlierFactor 

method: 

Parameter Description 

n_neighbors: int, 

optional, default = 

20 

It represents the number of neighbors use by default for 

kneighbors query. All samples would be used if 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 >

 𝑔𝑖𝑣𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

algorithm: {‘auto’, 

‘ball_tree’, 

Which algorithm to be used for computing nearest neighbors.  
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‘kd_tree’, ‘brute’}, 

optional 

 If you choose ball_tree, it will use BallTree algorithm.  

 If you choose kd_tree, it will use KDTree algorithm. 

 If you choose brute, it will use brute-force search 

algorithm. 

 If you choose auto, it will decide the most appropriate 

algorithm on the basis of the value we passed to fit() 

method. 

leaf_size: int, 

optional, default = 

30 

The value of this parameter can affect the speed of the 

construction and query. It also affects the memory required to 

store the tree. This parameter is passed to BallTree or KdTree 

algorithms. 

contamination: 

auto or float, 

optional, default = 

auto 

It provides the proportion of the outliers in the data set. If we set 

it default i.e. auto, it will determine the threshold as in the original 

paper. If set to float, the range of contamination will be in the 

range of [0,0.5]. 

metric: string or 

callable, default 

‘Minkowski’ 

It represents the metric used for distance computation. 

 

P: int, optional 

(default = 2) 

It is the parameter for the Minkowski metric. P=1 is equivalent to 

using manhattan_distance i.e. L1, whereas P=2 is equivalent to 

using euclidean_distance i.e. L2.      

novelty: Boolean, 

(default = False) 

By default, LOF algorithm is used for outlier detection but it can 

be used for novelty detection if we set novelty = true.  

n_jobs: int or 

None, optional 

(default = None) 

It represents the number of jobs to be run in parallel for fit() and 

predict() methods both.  

Attributes 

Following table consist the attributes used by sklearn.neighbors.LocalOutlierFactor 

method: 

Attributes Description 

negative_outlier_factor_: numpy array, 

shape(n_samples,) 

Providing opposite LOF of the training 

samples.  
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n_neighbors_: integer It provides the actual number of neighbors 

used for neighbors queries. 

 

offset_: float It is used to define the binary labels from 

the raw scores.   

Implementation Example 

The Python script given below will use sklearn.neighbors.LocalOutlierFactor method 

to construct NeighborsClassifier class from any array corresponding our data set: 

from sklearn.neighbors import NearestNeighbors 

samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] 

LOFneigh = NearestNeighbors(n_neighbors=1, algorithm="ball_tree",p=1) 

LOFneigh.fit(samples) 

Output 

NearestNeighbors(algorithm='ball_tree', leaf_size=30, metric='minkowski', 

         metric_params=None, n_jobs=None, n_neighbors=1, p=1, radius=1.0) 

Now, we can ask from this constructed classifier who’s is the closet point to [0.5, 1., 1.5] 

by using the following python script: 

print(neigh.kneighbors([[.5, 1., 1.5]]) 

Output 

(array([[1.7]]), array([[1]], dtype=int64)) 

One-Class SVM 

The One-Class SVM, introduced by Schölkopf et al., is the unsupervised Outlier Detection. 

It is also very efficient in high-dimensional data and estimates the support of a high-

dimensional distribution. It is implemented in the Support Vector Machines module in 

the Sklearn.svm.OneClassSVM object. For defining a frontier, it requires a kernel 

(mostly used is RBF) and a scalar parameter.  

For better understanding let’s fit our data with svm.OneClassSVM object: 

from sklearn.svm import OneClassSVM 

X = [[0], [0.89], [0.90], [0.91], [1]] 

OSVMclf = OneClassSVM(gamma='scale').fit(X) 
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Now, we can get the score_samples for input data as follows: 

OSVMclf.score_samples(X) 

Output 

array([1.12218594, 1.58645126, 1.58673086, 1.58645127, 1.55713767]) 
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This chapter will help you in understanding the nearest neighbor methods in Sklearn. 

Neighbor based learning method are of both types namely supervised and 

unsupervised. Supervised neighbors-based learning can be used for both classification 

as well as regression predictive problems but, it is mainly used for classification predictive 

problems in industry.  

Neighbors based learning methods do not have a specialised training phase and uses all 

the data for training while classification. It also does not assume anything about the 

underlying data. That’s the reason they are lazy and non-parametric in nature.  

The main principle behind nearest neighbor methods is: 

 To find a predefined number of training samples closet in distance to the new data 

point 

 Predict the label from these number of training samples. 

Here, the number of samples can be a user-defined constant like in K-nearest neighbor 

learning or vary based on the local density of point like in radius-based neighbor learning. 

sklearn.neighbors Module 

Scikit-learn have sklearn.neighbors module that provides functionality for both 

unsupervised and supervised neighbors-based learning methods. As input, the classes in 

this module can handle either NumPy arrays or scipy.sparse matrices.  

Types of algorithms  

Different types of algorithms which can be used in neighbor-based methods’ 

implementation are as follows: 

Brute Force 

The brute-force computation of distances between all pairs of points in the dataset 

provides the most naïve neighbor search implementation. Mathematically, for N samples 

in D dimensions, brute-force approach scales as 𝑶[𝑫𝑵𝟐].  

For small data samples, this algorithm can be very useful, but it becomes infeasible as and 

when number of samples grows. Brute force neighbor search can be enabled by writing 

the keyword algorithm=’brute’.  

K-D Tree 

One of the tree-based data structures that have been invented to address the 

computational inefficiencies of the brute-force approach, is KD tree data structure. 

Basically, the KD tree is a binary tree structure which is called K-dimensional tree. It 

recursively partitions the parameters space along the data axes by dividing it into nested 

orthographic regions into which the data points are filled.  

11. Scikit-Learn — K-Nearest Neighbors (KNN) 
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Advantages 

Following are some advantages of K-D tree algorithm: 

Construction is fast: As the partitioning is performed only along the data axes, K-D tree’s 

construction is very fast. 

Less distance computations: This algorithm takes very less distance computations to 

determine the nearest neighbor of a query point. It only takes 𝑶[𝐥𝐨𝐠 (𝑵)] distance 

computations. 

Disadvantages 

Fast for only low-dimensional neighbor searches: It is very fast for low-dimensional 

(D < 20) neighbor searches but as and when D grow it becomes inefficient. As the 

partitioning is performed only along the data axes, 

K-D tree neighbor searches can be enabled by writing the keyword algorithm=’kd_tree’.  

Ball Tree 

As we know that KD Tree is inefficient in higher dimensions, hence, to address this 

inefficiency of KD Tree, Ball tree data structure was developed. Mathematically, it 

recursively divides the data, into nodes defined by a centroid C and radius r, in such a way 

that each point in the node lies within the hyper-sphere defined by centroid C and radius 

r. It uses triangle inequality, given below, which reduces the number of candidate points 

for a neighbor search:   

|𝑿 + 𝒀| ≤ |𝑿| + |𝒀| 

Advantages 

Following are some advantages of Ball Tree algorithm: 

Efficient on highly structured data: As ball tree partition the data in a series of nesting 

hyper-spheres, it is efficient on highly structured data. 

Out-performs KD-tree: Ball tree out-performs KD tree in high dimensions because it has 

spherical geometry of the ball tree nodes. 

Disadvantages 

Costly: Partition the data in a series of nesting hyper-spheres makes its construction very 

costly 

Ball tree neighbor searches can be enabled by writing the keyword 

algorithm=’ball_tree’.  

Choosing Nearest Neighbors Algorithm 

The choice of an optimal algorithm for a given dataset depends upon the following factors: 
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Number of samples (N) and Dimensionality (D) 

These are the most important factors to be considered while choosing Nearest Neighbor 

algorithm. It is because of the reasons given below:  

 The query time of Brute Force algorithm grows as O[DN]. 

 The query time of Ball tree algorithm grows as O[D log(N)]. 

 The query time of KD tree algorithm changes with D in a strange manner that is 

very difficult to characterize. When D < 20, the cost is O[D log(N)] and this 

algorithm is very efficient. On the other hand, it is inefficient in case when D > 20 

because the cost increases to nearly O[DN]. 

Data Structure 

Another factor that affect the performance of these algorithms is intrinsic dimensionality 

of the data or sparsity of the data. It is because the query times of Ball tree and KD tree 

algorithms can be greatly influenced by it. Whereas, the query time of Brute Force 

algorithm is unchanged by data structure. Generally, Ball tree and KD tree algorithms 

produces faster query time when implanted on sparser data with smaller intrinsic 

dimensionality.  

Number of Neighbors (k) 

The number of neighbors (k) requested for a query point affects the query time of Ball 

tree and KD tree algorithms. Their query time becomes slower as number of neighbors (k) 

increases. Whereas the query time of Brute Force will remain unaffected by the value of 

k. 

Number of query points 

Because, they need construction phase, both KD tree and Ball tree algorithms will be 

effective if there are large number of query points. On the other hand, if there are a smaller 

number of query points, Brute Force algorithm performs better than KD tree and Ball tree 

algorithms.  
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k-NN (k-Nearest Neighbor), one of the simplest machine learning algorithms, is non-

parametric and lazy in nature. Non-parametric means that there is no assumption for the 

underlying data distribution i.e. the model structure is determined from the dataset. Lazy 

or instance-based learning means that for the purpose of model generation, it does not 

require any training data points and whole training data is used in the testing phase. 

The k-NN algorithm consist of the following two steps: 

Step 1 

In this step, it computes and stores the k nearest neighbors for each sample in the training 

set.  

Step 2 

In this step, for an unlabeled sample, it retrieves the k nearest neighbors from dataset. 

Then among these k-nearest neighbors, it predicts the class through voting (class with 

majority votes wins).  

The module, sklearn.neighbors that implements the k-nearest neighbors algorithm, 

provides the functionality for unsupervised as well as supervised neighbors-based 

learning methods. 

The unsupervised nearest neighbors implement different algorithms (BallTree, KDTree or 

Brute Force) to find the nearest neighbor(s) for each sample. This unsupervised version is 

basically only step 1, which is discussed above, and the foundation of many algorithms 

(KNN and K-means being the famous one) which require the neighbor search. In simple 

words, it is Unsupervised learner for implementing neighbor searches. 

On the other hand, the supervised neighbors-based learning is used for classification as 

well as regression.     

Unsupervised KNN Learning 

As discussed, there exist many algorithms like KNN and K-Means that requires nearest 

neighbor searches. That is why Scikit-learn decided to implement the neighbor search part 

as its own “learner”.  The reason behind making neighbor search as a separate learner is 

that computing all pairwise distance for finding a nearest neighbor is obviously not very 

efficient. Let’s see the module used by Sklearn to implement unsupervised nearest 

neighbor learning along with example. 

Scikit-learn module 

sklearn.neighbors.NearestNeighbors is the module used to implement unsupervised 

nearest neighbor learning.  It uses specific nearest neighbor algorithms named BallTree, 

KDTree or Brute Force. In other words, it acts as a uniform interface to these three 

algorithms.  

12. Scikit-Learn ― KNN Learning 
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Parameters 

Followings table consist the parameters used by NearestNeighbors module: 

 

Parameter Description 

n_neighbors: int, optional The number of neighbors to get. The default value is 

5. 

radius: float, optional It limits the distance of neighbors to returns. The 

default value is 1.0. 

algorithm: {‘auto’, ‘ball_tree’, 

‘kd_tree’, ‘brute’}, optional 

This parameter will take the algorithm (BallTree, 

KDTree or Brute-force) you want to use to compute 

the nearest neighbors. If you will provide ‘auto’, it will 

attempt to decide the most appropriate algorithm 

based on the values passed to fit method.   

leaf_size: int, optional It can affect the speed of the construction & query as 

well as the memory required to store the tree. It is 

passed to BallTree or KDTree. Although the optimal 

value depends on the nature of the problem, its default 

value is 30.  

metric: string or callable It is the metric to use for distance computation 

between points. We can pass it as a string or callable 

function. In case of callable function, the metric is 

called on each pair of rows and the resulting value is 

recorded. It is less efficient than passing the metric 

name as a string. 

We can choose from metric from scikit-learn or 

scipy.spatial.distance. the valid values are as follows: 

Scikit-learn: [‘cosine’,’manhattan’,‘Euclidean’, ‘l1’,’l2’, 

‘cityblock’]  

Scipy.spatial.distance: 

[‘braycurtis’,‘canberra’,‘chebyshev’,‘dice’,‘hamming’,‘j

accard’, 

‘correlation’,‘kulsinski’,‘mahalanobis’,‘minkowski’,‘rog

erstanimoto’,‘russellrao’, 

‘sokalmicheme’,’sokalsneath’, ‘seuclidean’, 

‘sqeuclidean’, ‘yule’]. 

The default metric is ‘Minkowski’.  

p: integer, optional It is the parameter for the Minkowski metric. The 

default value is 2 which is equivalent to using 

Euclidean_distance(l2). 

metric_params: dict, optional This is the additional keyword arguments for the 

metric function. The default value is None. 
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N_jobs: int or None, optional It reprsetst the numer of parallel jobs to run for 

neighbor search. The default value is None. 

Implementation Example 

The example below will find the nearest neighbors between two sets of data by using the 

sklearn.neighbors.NearestNeighbors module.  

First, we need to import the required module and packages: 

from sklearn.neighbors import NearestNeighbors 

import numpy as np 

Now, after importing the packages, define the sets of data in between we want to find the 

nearest neighbors: 

Input_data = np.array([[-1, 1], [-2, 2], [-3, 3], [1, 2], [2, 3], [3, 4],[4, 

5]])  

Next, apply the unsupervised learning algorithm, as follows: 

nrst_neigh = NearestNeighbors(n_neighbors = 3, algorithm='ball_tree')  

Next, fit the model with input data set. 

nrst_neigh.fit(Input_data) 

Now, find the K-neighbors of data set. It will return the indices and distances of the 

neighbors of each point. 

distances, indices = nbrs.kneighbors(Input_data) 

indices    

Output 

array([[0, 1, 3], 

       [1, 2, 0], 

       [2, 1, 0], 

       [3, 4, 0], 

       [4, 5, 3], 

       [5, 6, 4], 

       [6, 5, 4]], dtype=int64) 

 

distances 

Output 

array([[0.        , 1.41421356, 2.23606798], 



Scikit-Learn        

   90 

 

       [0.        , 1.41421356, 1.41421356], 

       [0.        , 1.41421356, 2.82842712], 

       [0.        , 1.41421356, 2.23606798], 

       [0.        , 1.41421356, 1.41421356], 

       [0.        , 1.41421356, 1.41421356], 

       [0.        , 1.41421356, 2.82842712]]) 

The above output shows that the nearest neighbor of each point is the point itself i.e. at 

zero. It is because the query set matches the training set. 

We can also show a connection between neighboring points by producing a sparse graph 

as follows: 

nrst_neigh.kneighbors_graph(Input_data).toarray() 

Output 

array([[1., 1., 0., 1., 0., 0., 0.], 

       [1., 1., 1., 0., 0., 0., 0.], 

       [1., 1., 1., 0., 0., 0., 0.], 

       [1., 0., 0., 1., 1., 0., 0.], 

       [0., 0., 0., 1., 1., 1., 0.], 

       [0., 0., 0., 0., 1., 1., 1.], 

       [0., 0., 0., 0., 1., 1., 1.]]) 

Once we fit the unsupervised NearestNeighbors model, the data will be stored in a data 

structure based on the value set for the argument ‘algorithm’. After that we can use this 

unsupervised learner’s kneighbors in a model which requires neighbor searches. 

Complete working/executable program 

from sklearn.neighbors import NearestNeighbors 

 import numpy as np 

Input_data = np.array([[-1, 1], [-2, 2], [-3, 3], [1, 2], [2, 3], [3, 4],[4, 

5]])  

nrst_neigh = NearestNeighbors(n_neighbors = 3, algorithm='ball_tree')  

nrst_neigh.fit(Input_data) 

distances, indices = nbrs.kneighbors(Input_data) 

indices    

distances 

nrst_neigh.kneighbors_graph(Input_data).toarray() 
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Supervised KNN Learning 

The supervised neighbors-based learning is used for following: 

 Classification, for the data with discrete labels  

 Regression, for the data with continuous labels.     

Nearest Neighbor Classifier 

We can understand Neighbors-based classification with the help of following two 

characteristics: 

 It is computed from a simple majority vote of the nearest neighbors of each point. 

 It simply stores instances of the training data, that’s why it is a type of non-

generalizing learning.  

Scikit-learn modules 

Followings are the two different types of nearest neighbor classifiers used by scikit-learn: 

KNeighborsClassifier 

The K in the name of this classifier represents the k nearest neighbors, where k is an 

integer value specified by the user. Hence as the name suggests, this classifier implements 

learning based on the k nearest neighbors. The choice of the value of k is dependent on 

data. Let’s understand it more with the help if an implementation example: 

Implementation Example 

In this example, we will be implementing KNN on data set named Iris Flower data set by 

using scikit-learn KneighborsClassifer.  

 This data set has 50 samples for each different species (setosa, versicolor, 

virginica) of iris flower i.e. total of 150 samples. 

 For each sample, we have 4 features named sepal length, sepal width, petal length, 

petal width)  

First, import the dataset and print the features names as follows: 

from sklearn.datasets import load_iris 

iris = load_iris() 

print(iris.feature_names) 

Output 

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width 

(cm)'] 

Now we can print target i.e the integers representing the different species. Here 0 = 

setos, 1 = versicolor and 2 = virginica. 
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print(iris.target) 

Output 

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 2 2] 

Following line of code will show the names of the target: 

print(iris.target_names) 

Output 

['setosa' 'versicolor' 'virginica'] 

We can check the number of observations and features with the help of following line of 

code (iris data set has 150 observations and 4 features) 

print(iris.data.shape) 

Output 

(150, 4) 

Now, we need to split the data into training and testing data. We will be using Sklearn 

train_test_split function to split the data into the ratio of 70 (training data) and 30 

(testing data): 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) 

Next, we will be doing data scaling with the help of Sklearn preprocessing module as 

follows:  

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

Following line of codes will give you the shape of train and test objects:  
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print(X_train.shape) 

print(X_test.shape) 

Output 

(105, 4) 

(45, 4) 

Following line of codes will give you the shape of new y object: 

print(y_train.shape) 

print(y_test.shape) 

Output 

(105,) 

(45,) 

Next, import the KneighborsClassifier class from Sklearn as follows: 

from sklearn.neighbors import KNeighborsClassifier 

To check accuracy, we need to import Metrics model as follows; 

from sklearn import metrics 

We are going to run it for k = 1 to 15 and will be recording testing accuracy, 

plotting it, showing confusion matrix and classification report: 

Range_k = range(1,15) 

scores = {} 

scores_list = [] 

for k in range_k: 

    classifier = KNeighborsClassifier(n_neighbors=k) 

    classifier.fit(X_train, y_train) 

    y_pred = classifier.predict(X_test) 

    scores[k] = metrics.accuracy_score(y_test,y_pred) 

    scores_list.append(metrics.accuracy_score(y_test,y_pred)) 

 

result = metrics.confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 

result1 = metrics.classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1)  
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Now, we will be plotting the relationship between the values of K and the corresponding 

testing accuracy. It will be done using matplotlib library.  

%matplotlib inline 

import matplotlib.pyplot as plt   

plt.plot(k_range,scores_list) 

plt.xlabel("Value of K") 

plt.ylabel("Accuracy") 

Output 

Confusion Matrix: 

[[15  0  0] 

 [ 0 15  0] 

 [ 0  1 14]] 

Classification Report: 

              precision    recall  f1-score   support 

 

           0       1.00      1.00      1.00        15 

           1       0.94      1.00      0.97        15 

           2       1.00      0.93      0.97        15 

 

   micro avg       0.98      0.98      0.98        45 

   macro avg       0.98      0.98      0.98        45 

weighted avg       0.98      0.98      0.98        45 

 

Text(0, 0.5, 'Accuracy') 



Scikit-Learn        

   95 

 

 

 

 

For the above model, we can choose the optimal value of K (any value between 6 to 14, 

as the accuracy is highest for this range) as 8 and retrain the model as follows: 

classifier = KNeighborsClassifier(n_neighbors=8)   

classifier.fit(X_train, y_train)   

Output 

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 

           metric_params=None, n_jobs=None, n_neighbors=8, p=2, 

           weights='uniform') 

 

classes = {0:'setosa',1:'versicolor',2:'virginicia'} 

x_new = [[1,1,1,1],[4,3,1.3,0.2]] 

y_predict = rnc.predict(x_new) 

print(classes[y_predict[0]]) 

print(classes[y_predict[1]]) 

Output 

virginicia 

virginicia 
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Complete working/executable program 

from sklearn.datasets import load_iris 

iris = load_iris() 

print(iris.target_names) 

print(iris.data.shape) 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) 

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

 

 

print(X_train.shape) 

print(X_test.shape) 

 

from sklearn.neighbors import KNeighborsClassifier 

 

from sklearn import metrics 

 

Range_k = range(1,15) 

scores = {} 

scores_list = [] 

for k in range_k: 

    classifier = KNeighborsClassifier(n_neighbors=k) 

    classifier.fit(X_train, y_train) 

    y_pred = classifier.predict(X_test) 

    scores[k] = metrics.accuracy_score(y_test,y_pred) 

    scores_list.append(metrics.accuracy_score(y_test,y_pred)) 

 

result = metrics.confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 



Scikit-Learn        

   97 

 

result1 = metrics.classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1)  

%matplotlib inline 

import matplotlib.pyplot as plt   

plt.plot(k_range,scores_list) 

plt.xlabel("Value of K") 

plt.ylabel("Accuracy") 

 

classifier = KNeighborsClassifier(n_neighbors=8)   

classifier.fit(X_train, y_train)   

 

classes = {0:'setosa',1:'versicolor',2:'virginicia'} 

x_new = [[1,1,1,1],[4,3,1.3,0.2]] 

y_predict = rnc.predict(x_new) 

print(classes[y_predict[0]]) 

print(classes[y_predict[1]]) 

RadiusNeighborsClassifier 

The Radius in the name of this classifier represents the nearest neighbors within a specified 

radius r, where r is a floating-point value specified by the user. Hence as the name 

suggests, this classifier implements learning based on the number neighbors within a fixed 

radius r of each training point. Let’s understand it more with the help if an implementation 

example: 

Implementation Example 

In this example, we will be implementing KNN on data set named Iris Flower data set by 

using scikit-learn RadiusNeighborsClassifer:  

First, import the iris dataset as follows: 

from sklearn.datasets import load_iris 

iris = load_iris() 

Now, we need to split the data into training and testing data. We will be using Sklearn 

train_test_split function to split the data into the ratio of 70 (training data) and 20 

(testing data): 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

Next, we will be doing data scaling with the help of Sklearn preprocessing module as 

follows:  

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

Next, import the RadiusneighborsClassifier class from Sklearn and provide the value 

of radius as follows: 

from sklearn.neighbors import RadiusNeighborsClassifier 

rnc = RadiusNeighborsClassifier(radius=5)   

rnc.fit(X_train, y_train) 

Now, create and predict the class of two observations as follows: 

classes = {0:'setosa',1:'versicolor',2:'virginicia'} 

 

x_new = [[1,1,1,1]] 

y_predict = rnc.predict(x_new) 

print(classes[y_predict[0]])   

Output 

versicolor 

Complete working/executable program 

from sklearn.datasets import load_iris 

iris = load_iris() 

 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

 

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 
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X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

 

 

from sklearn.neighbors import RadiusNeighborsClassifier 

rnc = RadiusNeighborsClassifier(radius=5)   

rnc.fit(X_train, y_train) 

 

 

classes = {0:'setosa',1:'versicolor',2:'virginicia'} 

x_new = [[1,1,1,1]] 

y_predict = rnc.predict(x_new) 

print(classes[y_predict[0]])   

Nearest Neighbor Regressor 

 It is used in the cases where data labels are continuous in nature. The assigned data 

labels are computed on the basis on the mean of the labels of its nearest neighbors. 

Followings are the two different types of nearest neighbor regressors used by scikit-learn: 

KNeighborsRegressor 

The K in the name of this regressor represents the k nearest neighbors, where k is an 

integer value specified by the user. Hence, as the name suggests, this regressor 

implements learning based on the k nearest neighbors. The choice of the value of k is 

dependent on data. Let’s understand it more with the help of an implementation example: 

Implementation Example 

In this example, we will be implementing KNN on data set named Iris Flower data set by 

using scikit-learn KNeighborsRegressor.  

First, import the iris dataset as follows: 

from sklearn.datasets import load_iris 

iris = load_iris() 

Now, we need to split the data into training and testing data. We will be using Sklearn 

train_test_split function to split the data into the ratio of 70 (training data) and 20 

(testing data): 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

Next, we will be doing data scaling with the help of Sklearn preprocessing module as 

follows:  

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

Next, import the KNeighborsRegressor class from Sklearn and provide the value of 

neighbors as follows: 

 

import numpy as np 

from sklearn.neighbors import KNeighborsRegressor 

knnr = KNeighborsRegressor(n_neighbors=8)   

knnr.fit(X_train, y_train)   

Output 

KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski', 

          metric_params=None, n_jobs=None, n_neighbors=8, p=2, 

          weights='uniform') 

Now, we can find the MSE (Mean Squared Error) as follows: 

print ("The MSE is:",format(np.power(y-knnr.predict(X),4).mean())) 

Output 

The MSE is: 4.4333349609375 

Now, use it to predict the value as follows: 

X = [[0], [1], [2], [3]] 

y = [0, 0, 1, 1] 

from sklearn.neighbors import KNeighborsRegressor 

knnr = KNeighborsRegressor(n_neighbors=3) 

knnr.fit(X, y)  

print(knnr.predict([[2.5]])) 

Output 
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[0.66666667] 

Complete working/executable program 

from sklearn.datasets import load_iris 

iris = load_iris() 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

 

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

 

import numpy as np 

from sklearn.neighbors import KNeighborsRegressor 

knnr = KNeighborsRegressor(n_neighbors=8)   

knnr.fit(X_train, y_train)   

 

print ("The MSE is:",format(np.power(y-knnr.predict(X),4).mean())) 

 

X = [[0], [1], [2], [3]] 

y = [0, 0, 1, 1] 

from sklearn.neighbors import KNeighborsRegressor 

knnr = KNeighborsRegressor(n_neighbors=3) 

knnr.fit(X, y)  

print(knnr.predict([[2.5]])) 

RadiusNeighborsRegressor 

The Radius in the name of this regressor represents the nearest neighbors within a 

specified radius r, where r is a floating-point value specified by the user. Hence as the 

name suggests, this regressor implements learning based on the number neighbors within 

a fixed radius r of each training point. Let’s understand it more with the help if an 

implementation example: 
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Implementation Example 

In this example, we will be implementing KNN on data set named Iris Flower data set by 

using scikit-learn RadiusNeighborsRegressor:  

First, import the iris dataset as follows: 

from sklearn.datasets import load_iris 

iris = load_iris() 

Now, we need to split the data into training and testing data. We will be using Sklearn 

train_test_split function to split the data into the ratio of 70 (training data) and 20 

(testing data): 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

Next, we will be doing data scaling with the help of Sklearn preprocessing module as 

follows:  

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

Next, import the RadiusneighborsRegressor class from Sklearn and provide the value 

of radius as follows: 

import numpy as np 

from sklearn.neighbors import RadiusNeighborsRegressor 

knnr_r = RadiusNeighborsRegressor(radius=1)   

knnr_r.fit(X_train, y_train) 

Now, we can find the MSE (Mean Squared Error) as follows: 

print ("The MSE is:",format(np.power(y-knnr_r.predict(X),4).mean())) 

Output 

The MSE is: The MSE is: 5.666666666666667 

Now, use it to predict the value as follows: 

X = [[0], [1], [2], [3]] 

y = [0, 0, 1, 1] 
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from sklearn.neighbors import RadiusNeighborsRegressor 

knnr_r = RadiusNeighborsRegressor(radius=1) 

knnr_r.fit(X, y)  

print(knnr_r.predict([[2.5]])) 

Output 

[1.] 

Complete working/executable program 

from sklearn.datasets import load_iris 

 

iris = load_iris() 

 

X = iris.data[:, :4]   

y = iris.target 

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   

X_test = scaler.transform(X_test) 

import numpy as np 

from sklearn.neighbors import RadiusNeighborsRegressor 

knnr_r = RadiusNeighborsRegressor(radius=1)   

knnr_r.fit(X_train, y_train) 

print ("The MSE is:",format(np.power(y-knnr_r.predict(X),4).mean())) 

X = [[0], [1], [2], [3]] 

y = [0, 0, 1, 1] 

from sklearn.neighbors import RadiusNeighborsRegressor 

knnr_r = RadiusNeighborsRegressor(radius=1) 

knnr_r.fit(X, y)  

print(knnr_r.predict([[2.5]])) 
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Naïve Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with a strong assumption that all the predictors are independent to each other 

i.e. the presence of a feature in a class is independent to the presence of any other feature 

in the same class. This is naïve assumption that is why these methods are called Naïve 

Bayes methods. 

Bayes theorem states the following relationship in order to find the posterior probability 

of class i.e. the probability of a label and some observed features, 𝑷(𝒀 | 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔).  

𝑃(𝑌 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =  
𝑃(𝑌)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝑌)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
 

Here, 𝑷(𝒀| 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) is the posterior probability of class. 

𝑷(𝒀) is the prior probability of class. 

𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀) is the likelihood which is the probability of predictor given class. 

𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) is the prior probability of predictor. 

The Scikit-learn provides different naïve Bayes classifiers models namely Gaussian, 

Multinomial, Complement and Bernoulli. All of them differ mainly by the assumption they 

make regarding the distribution of 𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀) i.e. the probability of predictor given 

class.     

Model Description 

Gaussian Naïve Bayes 

 

Gaussian Naïve Bayes classifier assumes 

that the data from each label is drawn 

from a simple Gaussian distribution. 

Multinomial Naïve Bayes 

 

It assumes that the features are drawn 

from a simple Multinomial distribution. 

Bernoulli Naïve Bayes 

 

The assumption in this model is that the 

features binary (0s and 1s) in nature. An 

application of Bernoulli Naïve Bayes 

classification is Text classification with 

‘bag of words’ model 

Complement Naïve Bayes 

 

It was designed to correct the severe 

assumptions made by Multinomial Bayes 

classifier. This kind of NB classifier is 

suitable for imbalanced data sets 

 

13. Scikit-Learn ― Classification with Naïve Bayes  
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Gaussian Naïve Bayes 

As the name suggest, Gaussian Naïve Bayes classifier assumes that the data from each 

label is drawn from a simple Gaussian distribution. The Scikit-learn provides 

sklearn.naive_bayes.GaussianNB to implement the Gaussian Naïve Bayes algorithm 

for classification. 

Parameters: Following table consist the parameters used by 

sklearn.naive_bayes.GaussianNB method: 

Parameter Description 

priors: arrray-like, 

shape(n_classes) 

It represents the prior probabilities of the classes. If we specify this 

parameter while fitting the data, then the prior probabilities will not be 

justified according to the data. 

Var_smoothing: 

float, optional, 

default = 1e-9 

This parameter gives the portion of the largest variance of the features 

that is added to variance in order to stabilize calculation. 

Attributes 

Following table consist the attributes used by sklearn.naive_bayes.GaussianNB 

method: 

Attributes Description 

class_prior_: array, shape(n_classes,) It provides the probability of every class.  

 

class_count_: array, shape(n_classes,) It provides the actual number of training samples 

observed in every class. 

 

theta_: array, shape (n_classes, 

n_features) 

It gives the mean of each feature per class. 

sigma_: array, shape (n_classes, 

n_features) 

It gives the variance of each feature per class. 

epsilon_: float These are the absolute additive value to variance. 

Methods 

Following table consist the methods used by sklearn.naive_bayes.GaussianNB 

method: 

Method Description 
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fit (self, X, y[, sample_weight]) 
This method will Fit Gaussian Naive Bayes classifier 

according to X and y. 

get_params (self[, deep]) 
With the help of this method we can get the parameters 

for this estimator. 

partial_fit 

(self, X, y[,classes, sample_weight]) 

This method allows the incremental fit on a batch of 

samples. 

predict (self, X) 
This method will perform classification on an array of test 

vectors X. 

predict_log_proba(self, X) 
This method will return the log-probability estimates for 

the test vector X. 

predict_proba(self, X) 
This method will return the probability estimates for the 

test vector X. 

score(self, X, y[, sample_weight]) 
With this method we can get the mean accuracy on the 

given test data and labels. 

set_params(self, \*\*params) 
This method allows us to set the parameters of this 

estimator. 

Implementation Example 

The Python script below will use sklearn.naive_bayes.GaussianNB method to construct 

Gaussian Naïve Bayes Classifier from our data set: 

import numpy as np 

X = np.array([[-1, -1], [-2, -4], [-4, -6], [1, 2]]) 

Y = np.array([1, 1, 2, 2]) 

from sklearn.naive_bayes import GaussianNB 

GNBclf = GaussianNB() 

GNBclf.fit(X, Y) 

Output 

GaussianNB(priors=None, var_smoothing=1e-09) 

Now, once fitted we can predict the new value by using predict() method as follows: 

print((GNBclf.predict([[-0.5, 2]])) 

Output 

[2]  
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Multinomial Naïve Bayes 

It is another useful Naïve Bayes classifier. It assumes that the features are drawn from a 

simple Multinomial distribution. The Scikit-learn provides 

sklearn.naive_bayes.MultinomialNB to implement the Multinomial Naïve Bayes 

algorithm for classification. 

Parameters 

Following table consist the parameters used by sklearn.naive_bayes.MultinomialNB 

method: 

Parameter Description 

alpha: float, 

optional, default = 

1.0 

It represents the additive smoothing parameter. If you choose 0 as its 

value, then there will be no smoothing. 

fit_prior: Boolean, 

optional, default = 

true 

It tells the model that whether to learn class prior probabilities or not. The 

default value is True but if set to False, the algorithms will use a uniform 

prior.  

class_prior: array-

like, 

size(n_classes,), 

optional, Default = 

None 

This parameter represents the prior probabilities of each class.  

Attributes 

Following table consist the attributes used by sklearn.naive_bayes.MultinomialNB 

method: 

Attributes Description 

class_log_prior_: array, 

shape(n_classes,) 

It provides the smoothed log probability for every 

class.  

 

class_count_: array, shape(n_classes,) It provides the actual number of training samples 

encountered for each class.  

intercept_: array, shape (n_classes,) These are the Mirrors class_log_prior_ for 

interpreting MultinomilaNB model as a linear 

model. 

feature_log_prob_: array, shape 

(n_classes, n_features) 

It gives the empirical log probability of features 

given a class 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝑌). 
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coef_: array, shape (n_classes, 

n_features) 

These are the Mirrors feature_log_prior_ for 

interpreting MultinomilaNB model as a linear 

model. 

feature_count_: array, shape (n_classes, 

n_features) 

It provides the actual number of training samples 

encountered for each (class,feature). 

 

The methods of sklearn.naive_bayes. MultinomialNB are same as we have used in 

sklearn.naive_bayes.GaussianNB. 

Implementation Example 

The Python script below will use sklearn.naive_bayes.GaussianNB method to construct 

Gaussian Naïve Bayes Classifier from our data set: 

import numpy as np 

X = np.random.randint(8, size=(8, 100)) 

y = np.array([1, 2, 3, 4, 5, 6, 7, 8]) 

 

from sklearn.naive_bayes import MultinomialNB 

MNBclf = MultinomialNB() 

MNBclf.fit(X, y) 

Output 

MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) 

Now, once fitted we can predict the new value aby using predict() method as follows: 

print((MNBclf.predict(X[4:5])) 

Output 

[5]  

Bernoulli Naïve Bayes 

Bernoulli Naïve Bayes is another useful naïve Bayes model. The assumption in this model 

is that the features binary (0s and 1s) in nature. An application of Bernoulli Naïve Bayes 

classification is Text classification with ‘bag of words’ model. The Scikit-learn provides 

sklearn.naive_bayes.BernoulliNB to implement the Gaussian Naïve Bayes algorithm 

for classification. 

Parameters 

Following table consist the parameters used by sklearn.naive_bayes.BernoulliNB 

method: 
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Parameter Description 

alpha: float, 

optional, default = 

1.0 

 

It represents the additive smoothing parameter. If you choose 0 as its 

value, then there will be no smoothing. 

 

binarize: float or 

None, optional, 

default = 0.0 

 

With this parameter we can set the threshold for binarizing of sample 

features. Binarization here means mapping to the Booleans. If you choose 

its value to be None it means input consists of binary vectors.   

fit_prior: Boolean, 

optional, default = 

true 

It tells the model that whether to learn class prior probabilities or not. The 

default value is True but if set to False, the algorithms will use a uniform 

prior.  

class_prior: array-

like, 

size(n_classes,), 

optional, Default = 

None 

This parameter represents the prior probabilities of each class.  

Attributes 

Following table consist the attributes used by sklearn.naive_bayes.BernoulliNB 

method: 

Attributes Description 

class_log_prior_: array, 

shape(n_classes,) 

It provides the smoothed log probability for every 

class.  

 

class_count_: array, shape(n_classes,) It provides the actual number of training samples 

encountered for each class.  

feature_log_prob_: array, shape 

(n_classes, n_features) 

It gives the empirical log probability of features 

given a class 𝑷(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 | 𝒀). 

feature_count_: array, shape (n_classes, 

n_features) 

It provides the actual number of training samples 

encountered for each (class,feature). 

The methods of sklearn.naive_bayes.BernoulliNB are same as we have used in 

sklearn.naive_bayes.GaussianNB. 
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Implementation Example 

The Python script below will use sklearn.naive_bayes.BernoulliNB method to construct 

Bernoulli Naïve Bayes Classifier from our data set: 

import numpy as np 

X = np.random.randint(10, size=(10, 1000)) 

y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 

from sklearn.naive_bayes import BernoulliNB 

BNBclf = BernoulliNB() 

BNBclf.fit(X, y) 

Output 

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) 

Now, once fitted we can predict the new value by using predict() method as follows: 

print((BNBclf.predict(X[0:5])) 

Output 

[1 2 3 4 5]  

Complement Naïve Bayes 

Another useful naïve Bayes model which was designed to correct the severe assumptions 

made by Multinomial Bayes classifier. This kind of NB classifier is suitable for imbalanced 

data sets. The Scikit-learn provides sklearn.naive_bayes.ComplementNB to 

implement the Gaussian Naïve Bayes algorithm for classification. 

Parameters 

Followings table consist the parameters used by sklearn.naive_bayes.ComplementNB 

method: 

Parameter Description 

alpha: float, 

optional, default = 

1.0 

 

It represents the additive smoothing parameter. If you choose 0 as its 

value, then there will be no smoothing. 

 

fit_prior: Boolean, 

optional, default = 

true 

It tells the model that whether to learn class prior probabilities or not. The 

default value is True but if set to False, the algorithms will use a uniform 

prior. This parameter is only used in edge case with a single class in the 

training data set.  

class_prior: array-

like, 

This parameter represents the prior probabilities of each class.  
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size(n_classes,), 

optional, Default = 

None 

norm: Boolean, 

optional, default = 

False 

It tells the model that whether to perform second normalization of the 

weights or not. 

Attributes 

Following table consist the attributes used by sklearn.naive_bayes.ComplementNB 

method: 

Attributes Description 

class_log_prior_: array, 

shape(n_classes,) 

It provides the smoothed empirical log probability 

for every class. This attribute is only used in edge 

case with a single class in the training data set. 

 

class_count_: array, shape(n_classes,) It provides the actual number of training samples 

encountered for each class.  

feature_log_prob_: array, shape 

(n_classes, n_features) 

It gives the empirical weights for class 

components. 

feature_count_: array, shape (n_classes, 

n_features) 

It provides the actual number of training samples 

encountered for each (class,feature). 

feature_all_: array, shape(n_features,) It provides the actual number of training samples 

encountered for each feature. 

The methods of sklearn.naive_bayes.ComplementNB are same as we have used in 

sklearn.naive_bayes.GaussianNB. 

Implementation Example 

The Python script below will use sklearn.naive_bayes.BernoulliNB method to construct 

Bernoulli Naïve Bayes Classifier from our data set: 

import numpy as np 

X = np.random.randint(15, size=(15, 1000)) 

y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) 

from sklearn.naive_bayes import ComplementNB 

CNBclf = ComplementNB() 

CNBclf.fit(X, y) 

Output 
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ComplementNB(alpha=1.0, class_prior=None, fit_prior=True, norm=False) 

Now, once fitted we can predict the new value aby using predict() method as follows: 

print((CNBclf.predict(X[10:15])) 

Output 

[11 12 13 14 15]  

Building Naïve Bayes Classifier  

We can also apply Naïve Bayes classifier on Scikit-learn dataset. In the example below, 

we are applying GaussianNB and fitting the breast_cancer dataset of Scikit-leran. 

Import Sklearn  

from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

data = load_breast_cancer() 

label_names = data['target_names'] 

labels = data['target'] 

feature_names = data['feature_names'] 

features = data['data'] 

 print(label_names) 

 print(labels[0]) 

 print(feature_names[0]) 

 print(features[0]) 

train, test, train_labels, test_labels = 

train_test_split(features,labels,test_size = 0.40, random_state  = 42) 

from sklearn.naive_bayes import GaussianNB 

GNBclf = GaussianNB() 

model = GNBclf.fit(train, train_labels) 

preds = GNBclf.predict(test) 

print(preds) 

Output 

[1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1  1 1 1 1 

0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1  1 1 0 0 1 1 0 0 1 0 1 

1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1  0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 

0 0 0 1 1 1 0 0 1 1 0 1 0 0 1  1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 

1 1 1 0 0 1 1 1  1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 

1  1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0  1 1 0 1] 
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The above output consists of a series of 0s and 1s which are basically the predicted values 

from tumor classes namely malignant and benign. 
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In this chapter, we will learn about learning method in Sklearn which is termed as decision 

trees. 

Decisions tress (DTs) are the most powerful non-parametric supervised learning method. 

They can be used for the classification and regression tasks. The main goal of DTs is to 

create a model predicting target variable value by learning simple decision rules deduced 

from the data features. Decision trees have two main entities; one is root node, where the 

data splits, and other is decision nodes or leaves, where we got final output. 

Decision Tree Algorithms  

Different Decision Tree algorithms are explained below: 

ID3 

It was developed by Ross Quinlan in 1986. It is also called Iterative Dichotomiser 3. The 

main goal of this algorithm is to find those categorical features, for every node, that will 

yield the largest information gain for categorical targets.  

It lets the tree to be grown to their maximum size and then to improve the tree’s ability 

on unseen data, applies a pruning step. The output of this algorithm would be a multiway 

tree. 

C4.5  

It is the successor to ID3 and dynamically defines a discrete attribute that partition the 

continuous attribute value into a discrete set of intervals. That’s the reason it removed the 

restriction of categorical features. It converts the ID3 trained tree into sets of ‘IF-THEN’ 

rules.  

In order to determine the sequence in which these rules should applied, the accuracy of 

each rule will be evaluated first. 

C5.0 

It works similar as C4.5 but it uses less memory and build smaller rulesets. It is more 

accurate than C4.5. 

CART 

It is called Classification and Regression Trees alsgorithm. It basically generates binary 

splits by using the features and threshold yielding the largest information gain at each 

node (called the Gini index).  

Homogeneity depends upon Gini index, higher the value of Gini index, higher would be the 

homogeneity. It is like C4.5 algorithm, but, the difference is that it does not compute rule 

sets and does not support numerical target variables (regression) as well.    

14. Scikit-Learn ― Decision Trees 
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Classification with decision trees  

In this case, the decision variables are categorical. 

Sklearn Module: The Scikit-learn library provides the module name 

DecisionTreeClassifier for performing multiclass classification on dataset. 

Parameters 

Following table consist the parameters used by sklearn.tree.DecisionTreeClassifier 

module: 

Parameter Description 

criterion: string, 

optional default= “gini” 

It represents the function to measure the quality of a split. Supported 

criteria are “gini” and “entropy”. The default is gini which is for Gini 

impurity while entropy is for the information gain.  

splitter: string, optional 

default= “best” 

It tells the model, which strategy from “best” or “random” to choose 

the split at each node. 

max_depth : int or 

None, optional 

default=None 

This parameter decides the maximum depth of the tree. The default 

value is None which means the nodes will expand until all leaves are 

pure or until all leaves contain less than min_smaples_split samples.  

min_samples_split: int

, float, optional default=2 

This parameter provides the minimum number of samples required 

to split an internal node.  

min_samples_leaf: int, 

float, optional default=1 

This parameter provides the minimum number of samples required 

to be at a leaf node. 

min_weight_fraction_l

eaf: float, optional 

default=0. 

With this parameter, the model will get the minimum weighted 

fraction of the sum of weights required to be at a leaf node. 

max_features: int, 

float, string or None, 

optional default=None 

It gives the model the number of features to be considered when 

looking for the best split. 

random_state: int, 

RandomState instance or 

None, optional, default = 

none 

This parameter represents the seed of the pseudo random number 

generated which is used while shuffling the data. Followings are the 

options: 

 int: In this case, random_state is the seed used by random 

number generator. 

 RandomState instance: In this case, random_state is the 

random number generator.  

 None: In this case, the random number generator is the 

RandonState instance used by np.random.  
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max_leaf_nodes: int or 

None, optional 

default=None 

This parameter will let grow a tree with max_leaf_nodes in best-first 

fashion. The default is none which means there would be unlimited 

number of leaf nodes. 

min_impurity_decreas

e: float, optional 

default=0. 

This value works as a criterion for a node to split because the model 

will split a node if this split induces a decrease of the impurity greater 

than or equal to min_impurity_decrease value. 

min_impurity_split: flo

at, default=1e-7 

It represents the threshold for early stopping in tree growth. 

class_weight: dict, list 

of dicts, “balanced” or 

None, default=None 

It represents the weights associated with classes. The form is 

{class_label: weight}. If we use the default option, it means all the 

classes are supposed to have weight one. On the other hand, if you 

choose class_weight: balanced, it will use the values of y to 

automatically adjust weights. 

presort: bool, optional 

default=False 

It tells the model whether to presort the data to speed up the finding 

of best splits in fitting. The default is false but of set to true, it may 

slow down the training process. 

Attributes 

Following table consist the attributes used by sklearn.tree.DecisionTreeClassifier 

module: 

Attributes Description 

feature_importances_: array of shape 

=[n_features] 

This attribute will return the feature importance. 

 

classes_: array of shape = [n_classes] or 

a list of such arrays 

It represents the classes labels i.e. the single 

output problem, or a list of arrays of class labels 

i.e. multi-output problem. 

max_features_: int It represents the deduced value of max_features 

parameter. 

n_classes_: int or list It represents the number of classes i.e. the single 

output problem, or a list of number of classes for 

every output i.e. multi-output problem. 

n_features_: int It gives the number of features when fit() method 

is performed. 

n_outputs_: int It gives the number of outputs when fit() method 

is performed. 

Methods 

Following table consist the methods used by sklearn.tree.DecisionTreeClassifier 

module: 
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Implementation Example 

The Python script below will use sklearn.tree.DecisionTreeClassifier module to 

construct a classifier for predicting male or female from our data set having 25 samples 

and two features namely ‘height’ and ‘length of hair’: 

from sklearn import tree 

from sklearn.model_selection import train_test_split 

X=[[165,19],[175,32],[136,35],[174,65],[141,28],[176,15],[131,32],[166,6],[128,

32],[179,10],[136,34],[186,2],[126,25],[176,28],[112,38],[169,9],[171,36],[116,

25],[196,25], [196,38], [126,40], [197,20], [150,25], [140,32],[136,35]] 

Method Description 

apply(self, X[, check_input]) This method will return the index of the leaf. 

decision_path(self, X[, check_inpu

t]) 

As name suggests, this method will return the 

decision path in the tree 

fit(self, X, y[, sample_weight, …]) 
fit() method will build a decision tree classifier from 

given training set (X, y). 

get_depth(self) 
As name suggests, this method will return the 

depth of the decision tree 

get_n_leaves(self) 
As name suggests, this method will return the 

number of leaves of the decision tree. 

get_params(self[, deep]) 
We can use this method to get the parameters for 

estimator. 

predict(self, X[, check_input]) It will predict class value for X. 

predict_log_proba(self, X) 
It will predict class log-probabilities of the input 

samples provided by us, X. 

predict_proba(self, X[, check_inpu

t]) 

It will predict class probabilities of the input 

samples provided by us, X. 

score(self, X, y[, sample_weight]) 

As the name implies, the score() method will 

return the mean accuracy on the given test data 

and labels. 

set_params(self, \*\*params) 
We can set the parameters of estimator with this 

method. 
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Y=['Man','Woman','Woman','Man','Woman','Man','Woman','Man','Woman','Man','Woman

','Man','Woman','Woman','Woman','Man','Woman','Woman','Man', 'Woman', 'Woman', 

'Man', 'Man', 'Woman', 'Woman'] 

data_feature_names = ['height','length of hair'] 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, 

random_state=1) 

DTclf = tree.DecisionTreeClassifier() 

DTclf = clf.fit(X,Y) 

prediction = DTclf.predict([[135,29]]) 

print(prediction) 

Output 

['Woman'] 

We can also predict the probability of each class by using following python predict_proba() 

method as follows: 

prediction = DTclf.predict_proba([[135,29]]) 

print(prediction)  

Output 

[[0. 1.]] 

Regression with decision trees  

In this case the decision variables are continuous. 

Sklearn Module: The Scikit-learn library provides the module name 

DecisionTreeRegressor for applying decision trees on regression problems. 

Parameters 

Parameters used by DecisionTreeRegressor are almost same as that were used in 

DecisionTreeClassifier module. The difference lies in ‘criterion’ parameter. For 

DecisionTreeRegressor modules ‘criterion: string, optional default= “mse”’ parameter 

have the following values: 

 mse: It stands for the mean squared error. It is equal to variance reduction as 

feature selectin criterion. It minimises the L2 loss using the mean of each terminal 

node. 

 freidman_mse: It also uses mean squared error but with Friedman’s improvement 

score. 

 mae: It stands for the mean absolute error. It minimizes the L1 loss using the 

median of each terminal node. 
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Another difference is that it does not have ‘class_weight’ parameter. 

Attributes 

Attributes of DecisionTreeRegressor are also same as that were of 

DecisionTreeClassifier module.  The difference is that it does not have ‘classes_’ and 

‘n_classes_’ attributes.  

Methods 

Methods of DecisionTreeRegressor are also same as that were of 

DecisionTreeClassifier module.  The difference is that it does not have 

‘predict_log_proba()’ and ‘predict_proba()’ methods.  

Implementation Example 

The fit() method in Decision tree regression model will take floating point values of y. let’s 

see a simple implementation example by using  Sklearn.tree.DecisionTreeRegressor: 

from sklearn import tree 

X = [[1, 1], [5, 5]] 

y = [0.1, 1.5] 

DTreg = tree.DecisionTreeRegressor() 

DTreg = clf.fit(X, y) 

Once fitted, we can use this regression model to make prediction as follows: 

DTreg.predict([[4, 5]]) 

Output 

array([1.5]) 
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This chapter will help you in understanding randomized decision trees in Sklearn. 

Randomized Decision Tree algorithms 

As we know that a DT is usually trained by recursively splitting the data, but being prone 

to overfit, they have been transformed to random forests by training many trees over 

various subsamples of the data.  The sklearn.ensemble module is having following two 

algorithms based on randomized decision trees: 

The Random Forest algorithm 

For each feature under consideration, it computes the locally optimal feature/split 

combination. In Random forest, each decision tree in the ensemble is built from a sample 

drawn with replacement from the training set and then gets the prediction from each of 

them and finally selects the best solution by means of voting. It can be used for both 

classification as well as regression tasks. 

Classification with Random Forest 

For creating a random forest classifier, the Scikit-learn module provides 

sklearn.ensemble.RandomForestClassifier. While building random forest classifier, 

the main parameters this module uses are ‘max_features’ and ‘n_estimators’.  

Here, ‘max_features’ is the size of the random subsets of features to consider when 

splitting a node. If we choose this parameter’s value to none then it will consider all the 

features rather than a random subset. On the other hand, n_estimators are the number 

of trees in the forest. The higher the number of trees, the better the result will be. But it 

will take longer to compute also.  

Implementation example 

In the following example, we are building a random forest classifier by using 

sklearn.ensemble.RandomForestClassifier and also checking its accuracy also by 

using cross_val_score module. 

from sklearn.model_selection import cross_val_score 

from sklearn.datasets import make_blobs 

from sklearn.ensemble import RandomForestClassifier 

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0) 

RFclf = 

RandomForestClassifier(n_estimators=10,max_depth=None,min_samples_split=2, 

random_state=0) 

scores = cross_val_score(RFclf, X, y, cv=5) 

scores.mean()                             

15. Scikit-Learn ― Randomized Decision Trees 
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Output 

0.9997 

We can also use the sklearn dataset to build Random Forest classifier. As in the following 

example we are using iris dataset. We will also find its accuracy score and confusion 

matrix. 

import numpy as np   

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier   

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

 

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data" 

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 

'Class'] 

dataset = pd.read_csv(path, names=headernames) 

X = dataset.iloc[:, :-1].values   

y = dataset.iloc[:, 4].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) 

RFclf = RandomForestClassifier(n_estimators=50)   

RFclf.fit(X_train, y_train)   

y_pred = RFclf.predict(X_test)   

result = confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 

result1 = classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1) 

result2 = accuracy_score(y_test,y_pred)  

print("Accuracy:",result2) 

Output 

Confusion Matrix: 

[[14  0  0] 

 [ 0 18  1] 

 [ 0  0 12]] 
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Classification Report: 

                 precision    recall  f1-score   support 

 

    Iris-setosa       1.00      1.00      1.00        14 

Iris-versicolor       1.00      0.95      0.97        19 

 Iris-virginica       0.92      1.00      0.96        12 

 

      micro avg       0.98      0.98      0.98        45 

      macro avg       0.97      0.98      0.98        45 

   weighted avg       0.98      0.98      0.98        45 

 

Accuracy: 0.9777777777777777 

Regression with Random Forest 

For creating a random forest regression, the Scikit-learn module provides 

sklearn.ensemble.RandomForestRegressor. While building random forest regressor, 

it will use the same parameters as used by 

sklearn.ensemble.RandomForestClassifier. 

Implementation example 

In the following example, we are building a random forest regressor by using 

sklearn.ensemble.RandomForestregressor and also predicting for new values by 

using predict() method. 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import make_regression 

X, y = make_regression(n_features=10, n_informative=2,random_state=0, 

shuffle=False) 

RFregr = RandomForestRegressor(max_depth=10,random_state=0,n_estimators=100) 

RFregr.fit(X, y) 

Output 

RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=10, 

           max_features='auto', max_leaf_nodes=None, 

           min_impurity_decrease=0.0, min_impurity_split=None, 

           min_samples_leaf=1, min_samples_split=2, 

 

           min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, 

           oob_score=False, random_state=0, verbose=0, warm_start=False) 



Scikit-Learn        

   123 

 

 

Once fitted we can predict from regression model as follows: 

print(RFregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]])) 

Output 

[98.47729198] 

Extra-Tree Methods 

For each feature under consideration, it selects a random value for the split. The benefit 

of using extra tree methods is that it allows to reduce the variance of the model a bit 

more. The disadvantage of using these methods is that it slightly increases the bias. 

Classification with Extra-Tree Method  

For creating a classifier using Extra-tree method, the Scikit-learn module provides 

sklearn.ensemble.ExtraTreesClassifier. It uses the same parameters as used by 

sklearn.ensemble.RandomForestClassifier. The only difference is in the way, 

discussed above, they build trees.  

Implementation example 

In the following example, we are building a random forest classifier by using 

sklearn.ensemble.ExtraTreeClassifier and also checking its accuracy by using 

cross_val_score module. 

from sklearn.model_selection import cross_val_score 

from sklearn.datasets import make_blobs 

from sklearn.ensemble import ExtraTreesClassifier 

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)  

ETclf = 

ExtraTreesClassifier(n_estimators=10,max_depth=None,min_samples_split=10, 

random_state=0) 

scores = cross_val_score(ETclf, X, y, cv=5) 

scores.mean()  

Output 

1.0 

We can also use the sklearn dataset to build classifier using Extra-Tree method. As in the 

following example we are using Pima-Indian dataset.  

from pandas import read_csv 
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from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import ExtraTreesClassifier 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

seed = 7 

kfold = KFold(n_splits=10, random_state=seed) 

num_trees = 150 

max_features = 5 

ETclf = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features) 

results = cross_val_score(ETclf, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7551435406698566 

Regression with Extra-Tree Method 

For creating a Extra-Tree regression, the Scikit-learn module provides 

sklearn.ensemble.ExtraTreesRegressor. While building random forest regressor, it 

will use the same parameters as used by sklearn.ensemble.ExtraTreesClassifier. 

Implementation example 

In the following example, we are applying sklearn.ensemble.ExtraTreesregressor and 

on the same data as we used while creating random forest regressor. Let’s see the 

difference in the Output 

from sklearn.ensemble import ExtraTreesRegressor 

from sklearn.datasets import make_regression 

X, y = make_regression(n_features=10, n_informative=2,random_state=0, 

shuffle=False) 

ETregr = ExtraTreesRegressor(max_depth=10,random_state=0,n_estimators=100) 

ETregr.fit(X, y) 

Output 

ExtraTreesRegressor(bootstrap=False, criterion='mse', max_depth=10, 
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          max_features='auto', max_leaf_nodes=None, 

          min_impurity_decrease=0.0, min_impurity_split=None, 

          min_samples_leaf=1, min_samples_split=2, 

          min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, 

          oob_score=False, random_state=0, verbose=0, warm_start=False) 

 

Once fitted we can predict from regression model as follows: 

print(ETregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]])) 

Output 

[85.50955817] 
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In this chapter, we will learn about the boosting methods in Sklearn, which enables 

building an ensemble model. 

Boosting methods build ensemble model in an increment way. The main principle is to 

build the model incrementally by training each base model estimator sequentially. In order 

to build powerful ensemble, these methods basically combine several week learners which 

are sequentially trained over multiple iterations of training data. The sklearn.ensemble 
module is having following two boosting methods. 

AdaBoost 

 It is one of the most successful boosting ensemble method whose main key is in the way 

they give weights to the instances in dataset. That’s why the algorithm needs to pay less 

attention to the instances while constructing subsequent models.    

Classification with AdaBoost  

For creating a AdaBoost classifier, the Scikit-learn module provides 

sklearn.ensemble.AdaBoostClassifier. While building this classifier, the main 

parameter this module use is base_estimator. Here, base_estimator is the value of the 

base estimator from which the boosted ensemble is built. If we choose this parameter’s 

value to none then, the base estimator would be 

DecisionTreeClassifier(max_depth=1).  

Implementation example 

In the following example, we are building a AdaBoost classifier by using 

sklearn.ensemble.AdaBoostClassifier and also predicting and checking its score. 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.datasets import make_classification 

X, y = make_classification(n_samples=1000, n_features=10,n_informative=2, 

n_redundant=0,random_state=0, shuffle=False) 

ADBclf = AdaBoostClassifier(n_estimators=100, random_state=0) 

ADBclf.fit(X, y) 

Output 

AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, 

          learning_rate=1.0, n_estimators=100, random_state=0) 

 

Once fitted, we can predict for new values as follows: 

16. Scikit-Learn ― Boosting Methods 
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print(ADBclf.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]])) 

Output 

[1] 

Now we can check the score as follows: 

ADBclf.score(X, y) 

Output 

0.995 

We can also use the sklearn dataset to build classifier using Extra-Tree method. For 

example, in an example given below, we are using Pima-Indian dataset.  

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import AdaBoostClassifier 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

seed = 5 

kfold = KFold(n_splits=10, random_state=seed) 

num_trees = 100 

max_features = 5 

ADBclf = AdaBoostClassifier(n_estimators=num_trees, max_features=max_features) 

results = cross_val_score(ADBclf, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7851435406698566 

Regression with AdaBoost  

For creating a regressor with Ada Boost method, the Scikit-learn library provides 

sklearn.ensemble.AdaBoostRegressor. While building regressor, it will use the same 

parameters as used by sklearn.ensemble.AdaBoostClassifier. 
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Implementation example 

In the following example, we are building a AdaBoost regressor by using 

sklearn.ensemble.AdaBoostregressor and also predicting for new values by using 

predict() method. 

from sklearn.ensemble import AdaBoostRegressor 

from sklearn.datasets import make_regression 

X, y = make_regression(n_features=10, n_informative=2,random_state=0, 

shuffle=False) 

ADBregr = RandomForestRegressor(random_state=0,n_estimators=100) 

ADBregr.fit(X, y) 

Output 

AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss='linear', 

         n_estimators=100, random_state=0) 

Once fitted we can predict from regression model as follows: 

print(ADBregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]])) 

Output 

[85.50955817] 

Gradient Tree Boosting 

It is also called Gradient Boosted Regression Trees (GRBT). It is basically a 

generalization of boosting to arbitrary differentiable loss functions. It produces a prediction 

model in the form of an ensemble of week prediction models. It can be used for the 

regression and classification problems. Their main advantage lies in the fact that they 

naturally handle the mixed type data.    

Classification with Gradient Tree Boost 

For creating a Gradient Tree Boost classifier, the Scikit-learn module provides 

sklearn.ensemble.GradientBoostingClassifier. While building this classifier, the main 

parameter this module use is ‘loss’. Here, ‘loss’ is the value of loss function to be 

optimized. If we choose loss = deviance, it refers to deviance for classification with 

probabilistic outputs.  

On the other hand, if we choose this parameter’s value to exponential then it recovers the 

AdaBoost algorithm. The parameter n_estimators will control the number of week 

learners. A hyper-parameter named learning_rate (in the range of (0.0, 1.0]) will control 

overfitting via shrinkage.  

Implementation example 
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In the following example, we are building a Gradient Boosting classifier by using 

sklearn.ensemble.GradientBoostingClassifier. We are fitting this classifier with 50 

week learners.  

from sklearn.datasets import make_hastie_10_2 

from sklearn.ensemble import GradientBoostingClassifier 

X, y = make_hastie_10_2(random_state=0) 

X_train, X_test = X[:5000], X[5000:] 

y_train, y_test = y[:5000], y[5000:] 

 

GDBclf = GradientBoostingClassifier(n_estimators=50, 

learning_rate=1.0,max_depth=1, random_state=0).fit(X_train, y_train) 

GDBclf.score(X_test, y_test) 

Output 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import GradientBoostingClassifier 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

seed = 5 

kfold = KFold(n_splits=10, random_state=seed) 

num_trees = 100 

max_features = 5 

ADBclf = GradientBoostingClassifier(n_estimators=num_trees, 

max_features=max_features) 

results = cross_val_score(ADBclf, X, Y, cv=kfold) 

print(results.mean()) 

 

0.8724285714285714 

We can also use the sklearn dataset to build classifier using Gradient Boosting Classifier. 

As in the following example we are using Pima-Indian dataset.  
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Output 

 0.7946582356674234 

Regression with Gradient Tree Boost  

For creating a regressor with Gradient Tree Boost method, the Scikit-learn library provides 

sklearn.ensemble.GradientBoostingRegressor. It can specify the loss function for 

regression via the parameter name loss. The default value for loss is ‘ls’.  

Implementation example 

In the following example, we are building a Gradient Boosting regressor by using 

sklearn.ensemble.GradientBoostingregressor and also finding the mean squared 

error by using mean_squared_error() method. 

import numpy as np 

from sklearn.metrics import mean_squared_error 

from sklearn.datasets import make_friedman1 

from sklearn.ensemble import GradientBoostingRegressor 

X, y = make_friedman1(n_samples=2000, random_state=0, noise=1.0) 

X_train, X_test = X[:1000], X[1000:] 

y_train, y_test = y[:1000], y[1000:] 

GDBreg = GradientBoostingRegressor(n_estimators=80, learning_rate=0.1, 

max_depth=1, random_state=0, loss='ls').fit(X_train, y_train) 

Once fitted we can find the mean squared error as follows: 

mean_squared_error(y_test, GDBreg.predict(X_test)) 

Output 

5.391246106657164 
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Here, we will study about the clustering methods in Sklearn which will help in identification 

of any similarity in the data samples. 

Clustering methods, one of the most useful unsupervised ML methods, used to find 

similarity & relationship patterns among data samples. After that, they cluster those 

samples into groups having similarity based on features. Clustering determines the 

intrinsic grouping among the present unlabeled data, that’s why it is important.  

The Scikit-learn library have sklearn.cluster to perform clustering of unlabeled data. 

Under this module scikit-leran have the following clustering methods:  

KMeans 

This algorithm computes the centroids and iterates until it finds optimal centroid. It 

requires the number of clusters to be specified that’s why it assumes that they are already 

known. The main logic of this algorithm is to cluster the data separating samples in n 

number of groups of equal variances by minimizing the criteria known as the inertia. The 

number of clusters identified by algorithm is represented by ‘K.  

Scikit-learn have sklearn.cluster.KMeans module to perform K-Means clustering. While 

computing cluster centers and value of inertia, the parameter named sample_weight 

allows sklearn.cluster.KMeans module to assign more weight to some samples. 

Affinity Propagation 

This algorithm is based on the concept of ‘message passing’ between different pairs of 

samples until convergence. It does not require the number of clusters to be specified 

before running the algorithm. The algorithm has a time complexity of the order 𝑂(𝑁2𝑇), 

which is the biggest disadvantage of it. 

Scikit-learn have sklearn.cluster.AffinityPropagation module to perform Affinity 

Propagation clustering. 

Mean Shift 

This algorithm mainly discovers blobs in a smooth density of samples. It assigns the 

datapoints to the clusters iteratively by shifting points towards the highest density of 

datapoints. Instead of relying on a parameter named bandwidth dictating the size of the 

region to search through, it automatically sets the number of clusters. 

Scikit-learn have sklearn.cluster.MeanShift module to perform Mean Shift clustering. 

Spectral Clustering 

Before clustering, this algorithm basically uses the eigenvalues i.e. spectrum of the 

similarity matrix of the data to perform dimensionality reduction in fewer dimensions. The 

use of this algorithm is not advisable when there are large number of clusters. 

17. Scikit-Learn ― Clustering Methods 
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Scikit-learn have sklearn.cluster.SpectralClustering module to perform Spectral 

clustering. 

Hierarchical Clustering 

This algorithm builds nested clusters by merging or splitting the clusters successively. This 

cluster hierarchy is represented as dendrogram i.e. tree. It falls into following two 

categories: 

Agglomerative hierarchical algorithms: In this kind of hierarchical algorithm, every 

data point is treated like a single cluster. It then successively agglomerates the pairs of 

clusters. This uses the bottom-up approach.  

Divisive hierarchical algorithms: In this hierarchical algorithm, all data points are 

treated as one big cluster. In this the process of clustering involves dividing, by using top-

down approach, the one big cluster into various small clusters.   

Scikit-learn have sklearn.cluster.AgglomerativeClustering module to perform 

Agglomerative Hierarchical clustering. 

DBSCAN 

It stands for “Density-based spatial clustering of applications with noise”. This 

algorithm is based on the intuitive notion of “clusters” & “noise” that clusters are dense 

regions of the lower density in the data space, separated by lower density regions of data 

points.  

Scikit-learn have sklearn.cluster.DBSCAN module to perform DBSCAN clustering. There 

are two important parameters namely min_samples and eps used by this algorithm to 

define dense.  

Higher value of parameter min_samples or lower value of the parameter eps will give 

an indication about the higher density of data points which is necessary to form a cluster.  

OPTICS  

It stands for “Ordering points to identify the clustering structure”. This algorithm 

also finds density-based clusters in spatial data. It’s basic working logic is like DBSCAN.  

It addresses a major weakness of DBSCAN algorithm-the problem of detecting meaningful 

clusters in data of varying density-by ordering the points of the database in such a way 

that spatially closest points become neighbors in the ordering.  

Scikit-learn have sklearn.cluster.OPTICS module to perform OPTICS clustering. 

BIRCH 

It stands for Balanced iterative reducing and clustering using hierarchies. It is used to 

perform hierarchical clustering over large data sets. It builds a tree named CFT i.e. 

Characteristics Feature Tree, for the given data.  

The advantage of CFT is that the data nodes called CF (Characteristics Feature) nodes 

holds the necessary information for clustering which further prevents the need to hold the 

entire input data in memory.   
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Scikit-learn have sklearn.cluster.Birch module to perform BIRCH clustering. 

Comparing Clustering Algorithms 

Following table will give a comparison (based on parameters, scalability and metric) of the 

clustering algorithms in scikit-learn. 

Sr. 

No. 

Algorithm 

Name 

Parameters Scalability Metric Used 

1. K-Means No. of clusters Very large 

n_samples 

The distance 

between points. 

2. Affinity 

Propagation 

Damping It’s not scalable with 

n_samples 

Graph Distance 

3. Mean-Shift Bandwidth It’s not scalable with 

n_samples. 

The distance 

between points. 

4. Spectral 

Clustering 

No. of clusters Medium level of 

scalability with 

n_samples. 

Small level of 

scalability with 

n_clusters. 

 

Graph Distance 

5. Hierarchical 

Clustering 

Distance 

threshold or No. 

of clusters 

Large n_samples 

Large n_clusters 

The distance 

between points. 

6. DBSCAN Size of 

neighborhood 

Very large 

n_samples and 

medium n_clusters. 

Nearest point 

distance 

7. OPTICS Minimum cluster 

membership 

Very large 

n_samples and large 

n_clusters. 

The distance 

between points. 

8. BIRCH Threshold, 

Branching factor 

Large n_samples 

Large n_clusters 

The Euclidean 

distance 

between points. 

K-Means Clustering on Scikit-learn Digit dataset 

In this example, we will apply K-means clustering on digits dataset. This algorithm will 

identify similar digits without using the original label information. Implementation is done 

on Jupyter notebook.  

%matplotlib inline 

import matplotlib.pyplot as plt 
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import seaborn as sns; sns.set()   

import numpy as np 

from sklearn.cluster import KMeans 

from sklearn.datasets import load_digits 

digits = load_digits() 

digits.data.shape 

Output 

1797, 64) 

This output shows that digit dataset is having 1797 samples with 64 features. 

Now, perform the K-Means clustering as follows: 

kmeans = KMeans(n_clusters=10, random_state=0) 

clusters = kmeans.fit_predict(digits.data) 

kmeans.cluster_centers_.shape 

Output 

(10, 64) 

This output shows that K-means clustering created 10 clusters with 64 features. 

fig, ax = plt.subplots(2, 5, figsize=(8, 3)) 

centers = kmeans.cluster_centers_.reshape(10, 8, 8) 

for axi, center in zip(ax.flat, centers): 

    axi.set(xticks=[], yticks=[]) 

    axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary) 

Output 

The below output has images showing clusters centers learned by K-Means Clustering. 

 

Next, the Python script below will match the learned cluster labels (by K-Means) with the 

true labels found in them: 
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from scipy.stats import mode 

labels = np.zeros_like(clusters) 

for i in range(10): 

    mask = (clusters == i) 

    labels[mask] = mode(digits.target[mask])[0] 

We can also check the accuracy with the help of the below mentioned command. 

from sklearn.metrics import accuracy_score 

accuracy_score(digits.target, labels) 

Output 

0.7935447968836951 

Complete Implementation Example 

%matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set()   

import numpy as np 

 

from sklearn.cluster import KMeans 

from sklearn.datasets import load_digits 

digits = load_digits() 

digits.data.shape 

kmeans = KMeans(n_clusters=10, random_state=0) 

clusters = kmeans.fit_predict(digits.data) 

kmeans.cluster_centers_.shape 

fig, ax = plt.subplots(2, 5, figsize=(8, 3)) 

centers = kmeans.cluster_centers_.reshape(10, 8, 8) 

for axi, center in zip(ax.flat, centers): 

    axi.set(xticks=[], yticks=[]) 

    axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary) 

from scipy.stats import mode 

labels = np.zeros_like(clusters) 

for i in range(10): 

    mask = (clusters == i) 

    labels[mask] = mode(digits.target[mask])[0] 

from sklearn.metrics import accuracy_score 
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accuracy_score(digits.target, labels) 
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There are various functions with the help of which we can evaluate the performance of 

clustering algorithms.  

Following are some important and mostly used functions given by the Scikit-learn for 

evaluating clustering performance: 

Adjusted Rand Index 

Rand Index is a function that computes a similarity measure between two clustering. For 

this computation rand index considers all pairs of samples and counting pairs that are 

assigned in the similar or different clusters in the predicted and true clustering. Afterwards, 

the raw Rand Index score is ‘adjusted for chance’ into the Adjusted Rand Index score by 

using the following formula:  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝐼 =  (𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼)/(𝑚𝑎𝑥(𝑅𝐼) −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑅𝐼)   

It has two parameters namely labels_true, which is ground truth class labels, and 

labels_pred, which are clusters label to evaluate. 

Example 

from sklearn.metrics.cluster import adjusted_rand_score 

 

 labels_true = [0, 0, 1, 1, 1, 1] 

 labels_pred = [0, 0, 2, 2, 3, 3] 

 

adjusted_rand_score(labels_true, labels_pred) 

Output 

0.4444444444444445 

Perfect labeling would be scored 1 and bad labelling or independent labelling is scored 0 

or negative. 

Mutual Information Based Score 

Mutual Information is a function that computes the agreement of the two assignments. It 

ignores the permutations. There are following versions available:  

Normalized Mutual Information (NMI) 

Scikit learn have sklearn.metrics.normalized_mutual_info_score module. 

Example 

18. Scikit-Learn ― Clustering Performance 
Evaluation 
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from sklearn.metrics.cluster import normalized_mutual_info_score 

 

 labels_true = [0, 0, 1, 1, 1, 1] 

 labels_pred = [0, 0, 2, 2, 3, 3] 

 

normalized_mutual_info_score (labels_true, labels_pred) 

 Output 

0.7611702597222881 

Adjusted Mutual Information (AMI) 

Scikit learn have sklearn.metrics.adjusted_mutual_info_score module. 

Example 

from sklearn.metrics.cluster import adjusted_mutual_info_score 

 

 labels_true = [0, 0, 1, 1, 1, 1] 

 labels_pred = [0, 0, 2, 2, 3, 3] 

 

adjusted_mutual_info_score (labels_true, labels_pred) 

Output 

0.4444444444444448 

Fowlkes-Mallows Score 

The Fowlkes-Mallows function measures the similarity of two clustering of a set of points. 

It may be defined as the geometric mean of the pairwise precision and recall. 

Mathematically, 

𝐹𝑀𝑆 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)
 

Here, TP = True Positive; number of pair of points belonging to the same clusters in true 

as well as predicted labels both. 

FP = False Positive; number of pair of points belonging to the same clusters in true 

labels but not in the predicted labels. 

FN = False Negative; number of pair of points belonging to the same clusters in the 

predicted labels but not in the true labels. 

The Scikit learn has sklearn.metrics.fowlkes_mallows_score module: 
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Example 

from sklearn.metrics.cluster import fowlkes_mallows_score 

 

 labels_true = [0, 0, 1, 1, 1, 1] 

 labels_pred = [0, 0, 2, 2, 3, 3] 

 

fowlkes_mallows__score (labels_true, labels_pred) 

Output 

0.6546536707079771 

Silhouette Coefficient  

The Silhouette function will compute the mean Silhouette Coefficient of all samples using 

the mean intra-cluster distance and the mean nearest-cluster distance for each sample.  

Mathematically, 

  𝑆 = (𝑏 − 𝑎)/𝑚𝑎𝑥(𝑎, 𝑏) 

Here, a is intra-cluster distance.  

and, b is mean nearest-cluster distance. 

The Scikit learn have sklearn.metrics.silhouette_score module: 

Example 

from sklearn import metrics.silhouette_score 

from sklearn.metrics import pairwise_distances 

from sklearn import datasets 

import numpy as np 

from sklearn.cluster import KMeans 

dataset = datasets.load_iris() 

X = dataset.data 

y = dataset.target 

 

kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X) 

labels = kmeans_model.labels_ 

silhouette_score(X, labels, metric='euclidean') 

Output 

0.5528190123564091 



Scikit-Learn        

   140 

 

Contingency Matrix 

This matrix will report the intersection cardinality for every trusted pair of (true, 

predicted). Confusion matrix for classification problems is a square contingency matrix. 

The Scikit learn have sklearn.metrics.contingency_matrix module. 

Example 

from sklearn.metrics.cluster import contingency_matrix 

x = ["a", "a", "a", "b", "b", "b"] 

y = [1, 1, 2, 0, 1, 2] 

contingency_matrix(x, y) 

Output 

array([[0, 2, 1], 

       [1, 1, 1]]) 

The first row of above output shows that among three samples whose true cluster is “a”, 

none of them is in 0, two of the are in 1 and 1 is in 2. On the other hand, second row 

shows that among three samples whose true cluster is “b”, 1 is in 0, 1 is in 1 and 1 is in 

2.  
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Dimensionality reduction, an unsupervised machine learning method is used to reduce the 

number of feature variables for each data sample selecting set of principal features. 

Principal Component Analysis (PCA) is one of the popular algorithms for dimensionality 

reduction.   

Exact PCA 

Principal Component Analysis (PCA) is used for linear dimensionality reduction using 

Singular Value Decomposition (SVD) of the data to project it to a lower dimensional 

space. While decomposition using PCA, input data is centered but not scaled for each 

feature before applying the SVD. 

The Scikit-learn ML library provides sklearn.decomposition.PCA module that is 

implemented as a transformer object which learns n components in its fit() method. It 

can also be used on new data to project it on these components.    

Example 

The below example will use sklearn.decomposition.PCA module to find best 5 Principal 

components from Pima Indians Diabetes dataset. 

 from pandas import read_csv 

from sklearn.decomposition import PCA 

path = r'C:\Users\Leekha\Desktop\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

‘class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

X = array[:,0:8] 

Y = array[:,8] 

pca = PCA(n_components=5) 

fit = pca.fit(X) 

print(("Explained Variance: %s") % (fit.explained_variance_ratio_)) 

print(fit.components_) 

Output 

Explained Variance: [0.88854663 0.06159078 0.02579012 0.01308614 0.00744094] 

 

[[-2.02176587e-03  9.78115765e-02  1.60930503e-02  6.07566861e-02 

19. Scikit-Learn ― Dimensionality Reduction using 
PCA 
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   9.93110844e-01  1.40108085e-02  5.37167919e-04 -3.56474430e-03] 

 [-2.26488861e-02 -9.72210040e-01 -1.41909330e-01  5.78614699e-02 

   9.46266913e-02 -4.69729766e-02 -8.16804621e-04 -1.40168181e-01] 

 [-2.24649003e-02  1.43428710e-01 -9.22467192e-01 -3.07013055e-01 

   2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01] 

 [-4.90459604e-02  1.19830016e-01 -2.62742788e-01  8.84369380e-01 

  -6.55503615e-02  1.92801728e-01  2.69908637e-03 -3.01024330e-01] 

 [ 1.51612874e-01 -8.79407680e-02 -2.32165009e-01  2.59973487e-01 

  -1.72312241e-04  2.14744823e-02  1.64080684e-03  9.20504903e-01]] 

Incremental PCA 

Incremental Principal Component Analysis (IPCA) is used to address the biggest 

limitation of Principal Component Analysis (PCA) and that is PCA only supports batch 

processing, means all the input data to be processed should fit in the memory.  

The Scikit-learn ML library provides sklearn.decomposition.IPCA module that makes it 

possible to implement Out-of-Core PCA either by using its partial_fit method on 

sequentially fetched chunks of data or by enabling use of np.memmap, a memory 

mapped file, without loading the entire file into memory.  

Same as PCA, while decomposition using IPCA, input data is centered but not scaled for 

each feature before applying the SVD. 

Example 

The below example will use sklearn.decomposition.IPCA module on Sklearn digit 

dataset.  

from sklearn.datasets import load_digits 

from sklearn.decomposition import IncrementalPCA 

X, _ = load_digits(return_X_y=True) 

transformer = IncrementalPCA(n_components=10, batch_size=100) 

transformer.partial_fit(X[:100, :]) 

X_transformed = transformer.fit_transform(X) 

X_transformed.shape 

Output 

(1797, 10) 

Here, we can partially fit on smaller batches of data (as we did on 100 per batch) or you 

can let the fit() function to divide the data into batches. 
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Kernel PCA 

Kernel Principal Component Analysis, an extension of PCA, achieves non-linear 

dimensionality reduction using kernels. It supports both transform and 

inverse_transform. 

The Scikit-learn ML library provides sklearn.decomposition.KernelPCA module. 

Example 

The below example will use sklearn.decomposition.KernelPCA module on Sklearn digit 

dataset. We are using sigmoid kernel. 

from sklearn.datasets import load_digits 

from sklearn.decomposition import KernelPCA 

X, _ = load_digits(return_X_y=True) 

transformer = KernelPCA(n_components=10, kernel='sigmoid') 

X_transformed = transformer.fit_transform(X) 

X_transformed.shape 

Output 

(1797, 10) 

PCA using randomized SVD 

Principal Component Analysis (PCA) using randomized SVD is used to project data to a 

lower-dimensional space preserving most of the variance by dropping the singular vector 

of components associated with lower singular values.  Here, the 

sklearn.decomposition.PCA module with the optional parameter 

svd_solver=’randomized’ is going to be very useful. 

Example 

The below example will use sklearn.decomposition.PCA module with the optional 

parameter svd_solver=’randomized’ to find best 7 Principal components from Pima Indians 

Diabetes dataset. 

from pandas import read_csv 

from sklearn.decomposition import PCA 

path = r'C:\Users\Leekha\Desktop\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

 dataframe = read_csv(path, names=names) 

 array = dataframe.values 

 

 X = array[:,0:8] 
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 Y = array[:,8] 

 pca = PCA(n_components=7,svd_solver= 'randomized') 

 fit = pca.fit(X) 

 print(("Explained Variance: %s") % (fit.explained_variance_ratio_)) 

 print(fit.components_) 

Output  

Explained Variance: [8.88546635e-01 6.15907837e-02 2.57901189e-02 1.30861374e-

02 

 7.44093864e-03 3.02614919e-03 5.12444875e-04] 

[[-2.02176587e-03  9.78115765e-02  1.60930503e-02  6.07566861e-02 

   9.93110844e-01  1.40108085e-02  5.37167919e-04 -3.56474430e-03] 

 [-2.26488861e-02 -9.72210040e-01 -1.41909330e-01  5.78614699e-02 

   9.46266913e-02 -4.69729766e-02 -8.16804621e-04 -1.40168181e-01] 

 [-2.24649003e-02  1.43428710e-01 -9.22467192e-01 -3.07013055e-01 

   2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01] 

 [-4.90459604e-02  1.19830016e-01 -2.62742788e-01  8.84369380e-01 

  -6.55503615e-02  1.92801728e-01  2.69908637e-03 -3.01024330e-01] 

 [ 1.51612874e-01 -8.79407680e-02 -2.32165009e-01  2.59973487e-01 

  -1.72312241e-04  2.14744823e-02  1.64080684e-03  9.20504903e-01] 

 [-5.04730888e-03  5.07391813e-02  7.56365525e-02  2.21363068e-01 

  -6.13326472e-03 -9.70776708e-01 -2.02903702e-03 -1.51133239e-02] 

 [ 9.86672995e-01  8.83426114e-04 -1.22975947e-03 -3.76444746e-04 

   1.42307394e-03 -2.73046214e-03 -6.34402965e-03 -1.62555343e-01]] 

 


