

Assignment

Subject Code: MAT-111

Course Title: Basic Mathematics

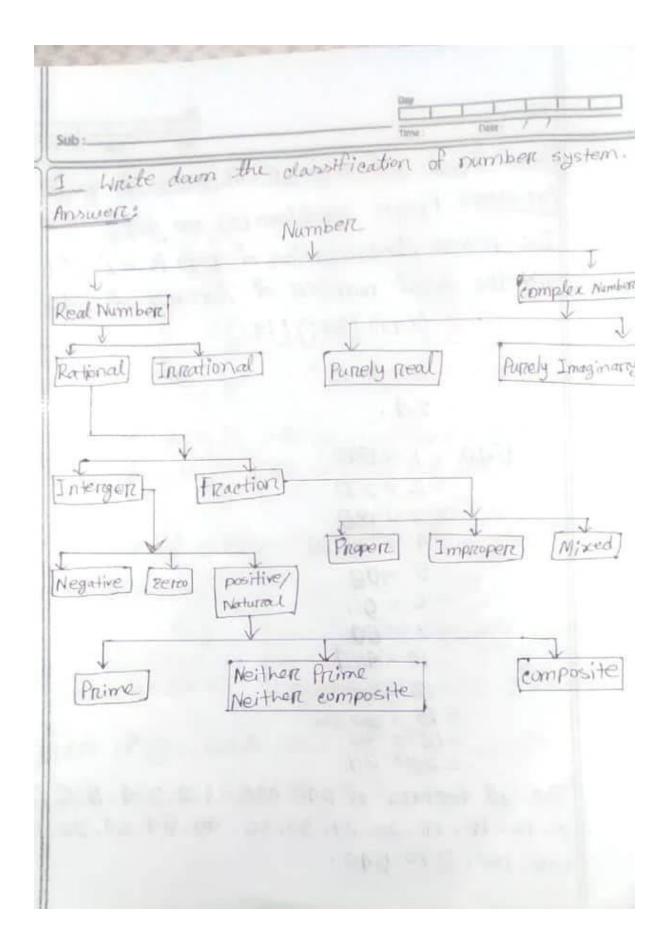
Submitted to:

Name: Masuma Parvin

Senior Lecturer

Daffodil International University

Submitted by:

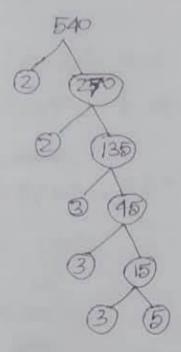

Name: Sarha Kabir Panshi

Student ID: 221-15-4932


Section: W

Department of CSE,

Daffodil International University



Sub :_

2 Find the prime Pactorization of 540 using thee.

Answers

The prime factorization of 540 is= 2,3351

= Find out the all factors of 540. Answers From prablem (2) we get.

The prime factorization of 540 is = 2.33.51

50. the total number of factores of 540 are=

(2+1) (3+1) (1+1)

= 3, 4,2

= 24.

540 =1 × 540

=2 x 270

= 3 × 180

= 4 × 108 | 35

= 5 ×108

= 6 × 00

= 9 × 60

= 10 × 754

= 12 × 3645

= 15 × 30 36 = 18 × 30

= 20X 27

The all factors of 540 are 1,2,3,4,5,6,9. 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540.

Sub:	Time: Date: 7 7
1 - What is the	GCD & LCM of 240 & 50
Answer:	2/540
2/240	2 270 3 135
2 60 2 30	3/45
3115	3/16 B
:.240 = 2 ⁴ .3.5	:.540 = 2 ¹ .3 ³ .5
LCM of 240 N	$540 = 2^4$, $3^3.5 = 2160$ $540 = 2^4$, $3.5 = 60$.
G1CD OF 240 %	240 = 2.3.8 = 0
E 5. 1.41.	HCF 82 LCM of 42,63 81 14
2/42	3 63 2 140 2 70 5 35
7	1 5000
: .42 = 2×3×7	:.63 = 3×7 :.140 = 2×5×7
	(40) = 2.3 ² 5.7 = 1260
HCF of 142,63	de 140) = 7.

Out			
		7	_
Tour !	Date!		

6 - Find the HCF & LCM of 3, 8 of & 10 Answerce

Calculation of Numerrator Calculation of Denumerrator

2CM of Numeriatore LCM of Denumeriatore = 24.5 = 80 = 34 = 81

HCF of Numerator

HCF of Denumerator.

: LCM of
$$\left(\frac{2}{3}, \frac{8}{9}, \frac{16}{81}, \frac{8}{81}, \frac{10}{29}\right) = \frac{80}{3}$$

Sulv			
P-A			
Stills:	P-A		
July	Sub:		

Day		
Time	Date / /	

I find the modulus and argument of

2 - 1+ 131 and also its polar, exponent form.

Answers We have,

$$=\frac{2\sqrt{3}i}{4}+\frac{2}{4}$$

So, polan form = $-\frac{1}{2} + \frac{\sqrt{3}i}{2}$ Now, $2 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$

$$= \sqrt{\frac{1+3}{4}} + \frac{3}{4} = 1$$

SD. modelles of Z = 1 And Argument of $2 = \theta = \pi - \tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$ =7-tan (\frac{13}{2} \times 2) =7-tan \ \3 =1- tan 1 tan 3

$$= \pi - \tan \tan 3$$

$$= \pi - \frac{\pi}{3}$$

$$= \frac{3\pi - \pi}{3}$$

Exponential form of = 2x = 12.eig

8 = Evaluate
$$\sqrt{-16} \times \sqrt{-4}$$
 &e $\sqrt{-16}$

Arrower: $\sqrt{-4}$ $\sqrt{-4}$ $\sqrt{-4}$ $\sqrt{-4}$ = $4i \times 2i$ = $4i$ = $2i$ = $2i$ = $2i$ = $2i$

Sub:	Osy	
	Titre Date:	7 /

2 - Evaluate Modules & Argument of 82-22 by replacing 2=2+i

Answers Herre given that,

:182-2=8(2+1)-(2+1)2

=16+81- (4.2.2.1+1)

=16+81-4-41-12

= 1G+81-9-4i+1

= 13 + 41 Madulup, 72 = \(\siz^2 + y^2 \)

= 1(13)2+(4)2

= 169+16

Argument, 0 = tan (2)

= $tan 1 \frac{4}{12}$

= 17.10

Day						
						I
Thosa t	- 34	Defia	1	1	_	_

10 Express 1+V3i in the form of M(cos 0 + i sin 0)

Arrowers Hene,

: Modulus, 12 = 12+ (53)2

$$= \sqrt{1+3}$$

$$= \sqrt{4}$$

$$= 2$$

:. Argument, 0 = tan 1 - 13

$$= \tan^{-1}\left(\tan\frac{\pi}{3}\right)$$

Therefore, 12 (eos 0 + i sin 0) form is

$$=2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}).$$