

CE 415 DESIGN OF STEEL STRUCTURES

BOLTS

SEMESTER: SPRING 2021

COURSE TEACHER: SAURAV BARUA

CONTACT NO: +8801715334075

EMAIL: saurav.ce@diu.edu.bd

OUTLINE

- ➤ Bolts, failure types of bolt connection
- >Math problem on tension member capacity

Structural Fasteners

In the construction of a steel structure, member are fabricated at factory and assembled at site.

☐ Bolts

Bolts are commonly used to assemble different components of a steel structure.

copyright @Saurav Barua

- ☐ A490 bolt is occasionally used
- ☐ Both of these are heavy hexagon head bolts with heavy hexagon head nuts
- ☐ The ASTM designation is on the top of the head as shown

Nut may be chamfered on both faces

Load Transfer through a bolted joint

The transfer of service loads through a joint is due to

- i) friction developed in the pieces being joined
- ii) the bearing stress developed between the bolt shank and the bolt holes.

Types of bolted joints

☐ Friction type bolted joint:

Joint containing high-strength bolts are designed either as slip-critical where high slip resistance is desired

☐ Bearing Type bolted joint:

As bearing type where high slip resistance at service load is unnecessary

Possible Limit States or Failure Modes for bolted connections

(a) Shear failure of bolt

(b) Shear failure of plate

(c) Bearing failure of bolt

(d) Bearing failure of plate

Possible Limit States or Failure Modes for bolted connections

(f) Bending failure of bolts

(e) Tensile failure

of bolts

(g) Tensile failure of plate

Example:

Investigate the capacity of the tension member connection of Fig. based on bolt limit states only. The connection is a bearing-type connection, with threads excluded from the shear planes, using $^7/_8$ -in. diam. A325 bolts in standard holes. The plates are A572 Grade 50 steel. Use the AISC Specification ASD Method.

Bolt shear limit state:

For A325 bolts, F_y =90ksi, F_u =120ksi. Threads are excluded from shear plane. Therefore, F_{nv} = 0.5 F_u = 0.5 (120) = 60 ksi.

 $^{7}/_{8}$ -in. diam. Bolts. $A_{b} = 0.601$ in². The allowable strength R_{n}/Ω in single

shear from Eq. 4.6.2 is
$$\frac{R_n}{\Omega} = \frac{F_{nv} m A_b}{\Omega} = \frac{60(1)0.6013}{2.0} = 18.0 \text{ kips/bolt}$$

 \therefore Total allowable load, T = 4(18) = 72 kip (based on bolt shear capacity)

 $2.4dtF_u/\Omega$

= 2.4 (7/8)(5/8)65/2.0

= 42.7 kip per bolt

For holes near edge

$$L_c = 1.5 - 0.5(7/8 + 1/16) = 1.03$$
 in.

 $\therefore R_n/\Omega = 1.2L_c tF_n/\Omega$

=1.2(1.03)(5/8)65/2.0

=25.1 kip/bolts < $2.4dtF_u/\Omega$

For interior holes

$$L_c = 3 - (7/8 + 1/16) = 2.063$$
 in.

 $\therefore R_n/\Omega = 1.2L_c tF_n/\Omega$

= 1.2(2.063)(5/8)65/2.0

= 50.28 kip per bolt > 2.4 dtF_{ii}/Ω

 $R_n/\Omega = 2.4dtF_n/\Omega$

= 42.7 kip per bolt

.. Total capacity based on bearing

= 2(25.1) + 2(42.7)

= 135.6 kip

Thus, the allowable capacity is 72 kips based on bolt shear.