

CE 415 DESIGN OF STEEL STRUCTURES

LECTURE 15 FLEXURAL MEMBER

SEMESTER: SUMMER 2021

COURSE TEACHER: SAURAV BARUA

CONTACT NO: +8801715334075

EMAIL: saurav.ce@diu.edu.bd

OUTLINE

- Stress diagram-compact and non-compact section
- · Moment capacity of compact section and partially compact section
- Investigate local buckling

When the yield stress is reached at the extreme fiber [Fig. (b)], the nominal moment strength M_n is referred to as the yield moment M_y and is computed as

$$M_n = M_y = S_x F_y$$

Where S_x = section modulus = I_x/c

When the condition of Fig. (d) is reached, every fiber has a strain equal to or greater than $\varepsilon_v = F_v/E_s$ i.e., it is in the plastic range. The nominal moment strength M_n is therefore referred to as the plastic moment M_p , and is computed as.

$$M_p = F_y \int_A y \, dA = F_y Z$$

$$Z = \int y \, dA \quad \rightarrow \text{Plastic section modulus}$$

$$Z = \int y \, dA \rightarrow \text{Plastic section modulus}$$

NOMINAL MOMENT CAPACITY OF LATERALLY SUPPORTED BEAMS <u>Compact Sections</u>

The nominal strength M_n for laterally stable "compact sections" according to AISC may be stated,

$$\boldsymbol{M}_n = \boldsymbol{M}_p = \boldsymbol{F}_y \boldsymbol{Z}_x$$

Where, M_p = Plastic moment capacity

 Z_x = Plastic section modulus

 F_v = Specified minimum yield stress.

In order to develop full plastic moment, the b/t ratio ($b=b_f/2$) for flange must be smaller than the limit λ_p defined by AISC.

Local buckling in hot-rolled l-shaped sections is, for practical purposes, only possible in the flanges.

Partially Compact Sections

The nominal strength M_n for laterally stable "noncompact sections" whose flange width/thickness ratios λ are less than λ_r but not as low as λ_p must be linearly interpolated between M_p and $M_r = 0.7$ $F_v S_x$

$$M_n = M_p - (M_p - 0.7F_y S_x) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right)$$

where $\lambda = b_f/2t_f$ for I-shaped member flanges

 b_f = flange width

 t_f = flange thickness

 λ_{pf} = compact limit for reaching M_p (AISC-Table B4.1)

 λ_{rf} = noncompact limit for reaching M_r (AISC-Table B4.1)

Ques. Investigate the local stability of the following section.

Flange Buckling Check

$$\lambda = \frac{b_f}{2t_f} = \frac{8}{2 \times 1} = 4$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15$$

Since $\lambda(4) < \lambda_p(9.15)$, flange is compact.

Web Buckling Check

$$\lambda = \frac{h}{t_{\rm w}} = \frac{12}{0.5} = 24$$

$$\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.6$$

Since $\lambda(24) < \lambda_p(90.6)$, web is also compact.

Ans. Section is compact.

Ques. Investigate the local stability of section W14×90

Solution.

From Table 1-1 of AISC Manual, we find,

Section	b_f	t _f	d	k _{des}	$t_{\mathbf{w}}$
W14×90	14.5	0.71	14	1.31	0.44

Flange Buckling Check

$$\lambda = \frac{b_f}{2t_f} = \frac{14.5}{2 \times 0.71} = 10.2$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15$$

$$\lambda_r = 1.00\sqrt{E/F_y} = 0.38\sqrt{29000/50} = 24.1$$

Since $\lambda_p(9.15) < \lambda(10.2) < \lambda_r(24.1)$, flange is noncompact.

Web Buckling Check

$$\lambda = \frac{h}{t_W} = \frac{d - 2k_{des}}{t_W} = \frac{14 - 2 \times 1.31}{0.44} = 25.86$$

$$\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.6$$

Since $\lambda(25.8) < \lambda_p(90.6)$, web is compact.

Ans. Section is noncompact (flange governs).

Table 1–1 (continued) W Shapes Dimensions

Shape A	2000			Web			Flange			Distance					
	Area,	Depth,	pth,	Thickness,		t _w	Width,		Thickness,		k				Work- able
	_ ^	t _w 2 1)r	t _f		Kdes	Kdet	K ₁	T	Gage				
	in. ² 38.8			in.		in.	in.		in.		in.	in.	in.	in.	in.
		14.7	145/8	0.645	5/8	5/16	14.7	143/4	1.03	1	1.63	25/16	19/16	10	51/2
×120	35.3	14.5	141/2	0.590	9/16	5/16	14.7	145/8	0.940	15/16	1.54	21/4	11/2	1	1
×109	32.0	14.3	143/8	0.525	1/2	1/4	14.6	145/8	0.860	7/8	1.46	23/16	11/2		
×99 ^f	29.1	14.2	141/8	0.485	1/2	1/4	14.6	145/8	0.780	3/4	1.38	21/16	17/16		
×901	26.5	14.0	14	0.440	7/16	1/4	14.5	141/2	0.710	11/16	1.31	2	17/16		•
W14×82	24.0	14.3	141/4	0.510	1/2	1/4	10.1	101/8	0.855	7/8	1.45	111/16	11/16	107/8	51/2
×74	21.8	14.2	141/8	0.450	7/16	1/4	10.1	101/8	0.785	13/16	1.38	15/8	11/16		
×68	20.0	14.0	14	0.415	7/16	1/4	10.0	10	0.720	3/4	1.31	19/16	11/16		
×61	17.9	13.9	13 ⁷ /a	0.375	3/8	3/16	10.0	10	0.645	5/8	1.24	11/2	1	1	
W14×53	15.6	13.9	137/8	0.370	3/8	3/16	8.06	8	0.660	11/16	1.25	11/2	1	10 ⁷ /8	51/2
×48	14.1	13.8	133/4	0.340	5/16	3/16	8.03	8	0.595	5/8	1.19	17/16	1	11	1
×43°	12.6	13.7	135/8	0.305	5/16	3/16	8.00	8	0.530	1/2	1.12	13/8	1		

copyright @Saura