

CE 415 DESIGN OF STEEL STRUCTURES

LECTURE 19 REVIEW

SEMESTER: SUMMER 2020

COURSE TEACHER: SAURAV BARUA

CONTACT NO: +8801715334075

EMAIL: saurav.ce@diu.edu.bd

OUTLINE

- > Welding Design
- ➤ Weld capacity calculation
- **≻**Column capacity

CLASS TEST ON WELDING

Examples

Determine the size and length of the fillet weld for the lap joint shown in Fig. Follow ASD. All plates are A36 steel ($F_v = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$)

Referring to Sec. 5.11, AISC-J2.2b gives the following limits of weld size,

Maximum size =
$$\frac{5}{8} - \frac{1}{16} = \frac{9}{16}$$
 in.

Minimum size = $\frac{1}{4}$ in.

Use $\frac{1}{2}$ -in. fillet weld, the effective throat dimension, $t_{e'}$ is taken as

$$t_e = 0.707a = 0.707(0.50) = 0.354$$
 in.

 $\frac{P_L - \frac{5}{8} \times 7}{95k}$ at $\frac{5'' \text{ Gusset } P_L}{8}$ $\frac{95k}{95k}$

Choose E60XX weld, $F_{\rm EXX}$ = 60 ksi. The nominal strength of ½-in. fillet weld per inch of length, according to Eq. 5.13.1,

$$R_{nw} = 0.6t_e F_{EXX} = 0.6(0.354)(60) = 12.74 \text{ kip/in}$$

Allowable strength of weld , $R_{nw}/\Omega = 12.74/2.0 = 6.37$ kip/in

Check 7" wide plate shear
$$\frac{R_n}{\Omega} = \frac{0.6tF_y}{1.50} = [0.6(5/8)36]/1.5=9.0 \text{ k/in}$$

plate rupture
$$\frac{R_n}{\Omega} = \frac{0.6tF_u}{2.00} = [0.6(5/8)58]/2 = 10.88 \text{ k/in}$$

∴ Weld strength controls,
Weld length = 95/6.37=14.9 in. Use 7½-in on each side.

copyright @S

Restricted Not available unless any of:

You belong to 172DE1
You belong to 172DE2

SB- Quiz 3, 9.8.20

Upload your answer here. [Marks 15]

Attempts allowed: 2

The quiz will not be available until Saturday, 8 August 2020, 4:53 PM

This quiz will close on Thursday, 13 August 2020, 11:59 PM.

Time limit: 1 hour

Grading method: Average grade

Example

○ A tension member splice is made with $\frac{1}{4}$ -inch E70 fillet welds as shown in Figure. Each side of the splice is welded as shown. The inner member is a PL $\frac{1}{2}$ × 6 and each outer member is a PL $\frac{5}{16}$ × 3. All steel is A36. Determine the maximum design capacity, ϕP_n , based on weld limit states.

All plates A36: $F_v = 36 \text{ ksi}, F_u = 58 \text{ ksi}.$

Weld strength: F_{EXX} = 70 ksi. Weld length on each side = 3+3+3 = 9 inch.

Weld size,
$$s = \frac{1}{4}$$
 inch
∴ Throat $t_e = \frac{s}{\sqrt{2}} = \frac{0.25}{1.414}$
∴ = 0.177 inch

Fillet weld capacity: $\phi P_n = \phi R_{nw} L = 0.75[t_e(0.6F_{EXX})]L$ = $0.75 \times 0.177 \times 0.6 \times 70 \times (9+9) = 100.4$ kip

Base metal - Inner Plate:

Yielding: $\phi P_n = \phi R_n L = 1.0(0.6tF_y)L = 0.6 \times \frac{1}{2} \times 36 \times 9 = 97.2 \text{ kip.}$

Rupture: $\phi P_n = \phi R_n L = 0.75(0.6tF_u)L = 0.75 \times 1/2 \times 58 \times 9 = 117.45$ kip.

Base metal - Outer Plate:

Yielding: $\phi P_n = \phi R_n L = 1.0(0.6tF_y)L = 0.6 \times \frac{5}{16} \times 36 \times 9 \times 2 = 121.5$ kip. Rupture: $\phi P_n = \phi R_n L = 0.75(0.6tF_y)L = 0.75 \times \frac{5}{16} \times 58 \times 9 \times 2 = 117.45$ kip.

.: Base metal (Inner plate) yielding governs.

$$\therefore \phi P_n = 97.2 \text{ kip. Ans.}$$

copyright @Saurav Barua

Determine Column Capacity Using AISC LRFD

Ques. A steel column of 25 ft length is made of W 14×61 shape which is supported by a fixed-hinge joint. Determine the axial capacity of the section. Steel is A992.

Soltuion.

$$K = 0.80$$
 (for fixed-hinge joint)
 $L = 25$ ft
 $F_y = 50$ ksi

From Table 1-7 of AISC Manual, $A_g = 17.90 \text{ in}^2$ and $r_y = 2.45 \text{ in}$.

Check Failure Mode

$$KL = 0.8 \times 25 = 20 \text{ ft}$$

$$\frac{KL}{r} = \frac{20 \times 12}{2.45} = 97.9$$

$$C_C = 4.71 \sqrt{\frac{E}{F_V}} = 4.71 \sqrt{\frac{29000}{50}} = 113.4$$

Since, $KL/r < C_c$, failure is by crushing.

Determine Capacity

Ans. 399.3 kip

$$F_{e} = \frac{\pi^{2} E}{(KL/r)^{2}} = \frac{\pi^{2} \times 29000}{97.9^{2}} = 29.83 \text{ ksi}$$

$$F_{cr} = 0.658^{Fy/Fe} F_{y} = 0.658^{50/29.83} \times 50 = 24.79 \text{ ksi}$$

$$\Phi_{c} P_{n} = \Phi_{c} F_{cr} A_{g} = 0.9 \times 24.79 \times 17.9 = 399.3 \text{ kip}$$

Main formula: AISC 2005

Physical length of column

K Effective length factor

Effective length Radius of gyration

KL/r Slenderness ratio

Far Fy E Cc Critical stress Yield stress

Modulus of elasticiy Critical coefficents

$$F_{cr} = \begin{cases} 0.658^{F_y/F_e}F_y & \text{if } KL/r < C_c \\ 0.877F_e & \text{if } KL/r > C_c \end{cases}$$

11

Soltuion.

$$K = 0.80$$
 (for fixed-hinge joint)
 $L = 35$ ft
 $F_y = 50$ ksi

Check Failure Mode

$$KL = 0.8 \times 35 = 28 \text{ ft}$$

$$\frac{KL}{r} = \frac{28 \times 12}{2.45} = 137.1$$
 $C_C = 113.4$

Since, $KL/r > C_C$, failure is by buckling.

Determine Capacity

$$F_{\rm e}=rac{\pi^2 E}{(KL/r)^2}=rac{\pi^2 imes 29000}{137.1^2}=15.22~{
m ksi}$$
 $F_{\rm cr}=0.877F_{\rm e}=0.877 imes 15.22=13.35~{
m ksi}$
 $\Phi_{\rm c}P_{\rm n}=\Phi_{\rm c}F_{\rm cr}A_{\rm g}=0.9 imes 13.35 imes 17.9=215.1~{
m kip}$

Ans. 215.1 kip