Course Code: CSE 322

Course Title: Data Mining and Machine learning Lab

Credits: 3 Total Marks: 100

Course Description:

An introduction to Weka and Python; Data preparation, model building, and data mining and machine learning techniques such as clustering, decisions trees and neural networks; Induction of predictive models from data: classification, regression, and probability estimation.

Ø Course Learning Outcome: (at the end of the course, student will be able to do:)

CLO1	Able to possess the basic knowledge of Weka and Python concerning data mining and machine
	learning
CLO2	Able to implement different data mining and machine learning algorithms like classification,
	prediction, clustering and association rule mining to solve real-world problems using Weka and
	Python
CLO3	Able to compare and evaluate different data mining and machine learning algorithms like
	classification, prediction, clustering and association rule mining using Weka and/or Python
CLO4	Able to apply implementation knowledge of data mining and machine learning in developing
	research ideas

Ø Mapping of Course Learning Outcomes to Program Learning Outcomes [attainment level used for CLOs from 1(weak)-3(strong) correlation]

PLO's CLO's	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11	PLO12
CLO1	3											
CLO2	3	3										
CLO3	2	3	2									
CLO4	3	3			2							1

Ø Teaching and Learning Activities (TLA)

TLA1	Interactive discussion using online/multimedia or whiteboard
TLA2	Interactive video and/or scenario-based presentation
TLA3	Case study and group discussion
TLA4	Real-life-project conceptualization in a team to apply data mining and machine learning knowledge

Ø Course Delivery Plan

Week/Lesson	Discussion Topic & Book Reference	Student Activities during	Assessment and
(hour)		Online and Onsite and TLA	Mapping with CLO
Wk. 1	Lesson-1: Introduction of the Course Teacher to the students and vice versa; Sharing the course information, e.g. Course Teacher's information, different information of BLC course, course contents, and course delivery plan and so on.	Online/Onsite discussion; Using Interactive content, e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; <u>TLA1, TLA2</u>	Background Preparation week
	Lesson-2 : Introduction to Weka: installation, accessing a data set, introduction to different file formats, running a simple classifier.		
Wk. 2	Data Visualization Using Weka	Online/Onsite discussion; Review Feedback online; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; <u>TLA1, TLA2</u>	<u>CLO1, CLO3</u>
Wk. 3	Feature/Attribute Selection Using Weka	Online/Onsite discussion; Review Feedbackonline; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; <u>TLA1, TLA2,</u> <u>TLA4</u>	<u>CLO1, CLO2</u>

Wk. 4	Classification Using Weka: Algorithm type: decision tree Method of classifier evaluation Parameter tuning Performance evaluation	Online/Onsite discussion; Review Feedbackonline; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; <u>TLA1, TLA2,</u> <u>TLA4</u>	<u>CLO1, CLO2</u>
Wk. 5 Lesson 9 & 10	Classification Using Weka: Algorithm type: Bayesian, instance-based Method of classifier evaluation Parameter tuning Performance evaluation	Lesson-9 & 10: Online/Onsite discussion; Review Feedbackonline; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; TLA1, TLA2, TLA3	<u>CLO1, CLO2, CLO3</u>
Wk. 6	Cluster Analysis Using Weka: Algorithm type: partitional (K- means), hierarchical, density- based Method of classifier evaluation Parameter tuning Performance evaluation	Online/Onsite discussion; Review Feedback online; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; <u>TLA1, TLA2, TLA3, TLA4</u>	<u>CLO1</u> , <u>CLO2, CLO3</u>

Wk. 7	Mic	lterm Exam Week	
Wk. 8	Presentation of Project # 1 (Using	g Weka) by Students' Groups	<u>CLO1</u> , <u>CLO2, CLO3,</u> <u>CLO4</u>
			<u>Project</u> <u>Presentation by</u> <u>Groups (Using Google</u> <u>Meet)</u>
Wk. 9 Lesson 13 & 14	Introduction to Python: installation, accessing a data set, introduction to different file formats, running a simple classifier.	Online/Onsite discussion; Review Feedback online; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; TLA1, TLA2, TLA3	<u>CLO1, CLO2</u>
Wk. 10	Classification Using Python: Algorithm type: Decision tree Method of classifier evaluation Parameter tuning Performance evaluation	Online/Onsite discussion; Review Feedback online; Using Interactive content, e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; TLA1, TLA2, TLA3	<u>CLO1, CLO2, CLO3</u>
Wk. 11	Classification Using Python (Continued): Algorithm type: Bayesian, instance-based Method of classifier evaluation Parameter tuning Performance evaluation	Online/Onsite discussion; Review Feedback online; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, Video, H5P etc.; TLA1, TLA2, TLA3	<u>CLO1, CLO2, CLO3</u>

-

Wk. 12	 Cluster Analysis Using Python: Algorithm type: partitional (<i>K</i>-means), hierarchical, densitybased Method of classifier evaluation Parameter tuning Performance evaluation 	Online/Onsite discussion; Review Feedback online; Using Interactive content e.g. Voice over PPT, Weekly Forum, PPT, -Video, H5P etc; <u>TLA1, TLA2, TLA3, TLA4</u>	<u>CLO1, CLO2</u>		
Wk. 13	Presentation of Project # 2 (Using	Python) by Students' Groups	<u>CLO1</u> , <u>CLO2</u> , <u>CLO3,</u> <u>CLO4</u>		
Wk. 14	Final Exam Week				
	Τορ	bics: Wk. 1 - Wk. 12			

Ø Recommended Books:

- I. Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, 4th Edition, Morgan Kaufmann, 2016.
- II. Jason Brownlee, Machine Learning Mastery with Weka, 2016.
- III. Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning, Springer, 2008.
- **IV.** Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python, O'Reilly Media, Inc., October 2016.
- V. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Elsevier Inc., 2005.
- VI. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann Publishers, October 1999.

Bloom's Criteria	Attendance (10)	Class Performance (25)	Project / Lab Report (25)	Final Exam (40)
Remember		05		05
Understand		05	05	05
Apply		05	05	15
Analyze		05	05	05
Evaluate		05	05	05
Create			05	05

Ø Marking [100 Marks]

Appendix-1: Program outcomes

POs	Category	Program Outcomes
PO1	Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis	Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.
PO3	Design/Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.
PO4	Investigations	Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5	Modern tool usage	Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7	Environment and sustainability	Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.
PO9	Individual work and teamwork	Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
PO10	Communication	Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

PO11	Project management	Demonstrate knowledge and understanding of the engineering and
	and finance	management principles and apply these to one's own work as a member or
		a leader of a team to manage projects in multidisciplinary environments.
PO12	Life Long Learning	Recognize the need for and have the preparation and ability to engage in
		independent, life-long learning in the broadest context of technological
		change.
1		