Functions

Discrete Mathematics

Definition: Function

Definition

Let A and B be non empty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Definitions: Domain, Codomain, Image, Preimage and Range

Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
If $f(a)=b$, we say that b is the image of a and a is the preimage of b.
The range of f is the set of all images of elements of A. Also, If f is a function from A to B, we say that f maps A to B.

Definition: Image of a Subset

Definition

Let f be a function from the set A to the set B and let S be a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so

$$
f(S)=\{t \in B \mid \exists s \in S \text { with }(t=f(s))\} .
$$

We also use the shorthand $f(S)=\{f(s) \mid s \in S\}$ to denote this set.

Example

－The domain of f is

$$
A=\{a, b, c, d\} .
$$

－The codomain of f is

$$
B=\{x, y, z\}
$$

－$f(a)=z$ ．
－The image of a is z ．
－The preimages of z are a ， c and d ．
－The range of f is $f(A)=\{y, z\} \subseteq B$ ．
－The image of the subset $S=\{c, d\} \subseteq A$ is $f(S)=\{z\} \subseteq B$ ．

Definition: One-To-One (Injective) Function

Definition

A function f from A to B is said to be one-to-one, or injective, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain A. A function is said to be an injection if it is injective.

By taking the contrapositive of the implication in this definition, a function is injective if and only if $a \neq b$ implies $f(a) \neq f(b)$.

Another way to understand it, a function is injective means that if an element of the codomain has a preimage, then it is a unique preimage.

Definition: Onto (Surjective) Function

Definition

A function f from A to B is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called a surjection if it is surjective.

Another way to understand it, a function is surjective means that each element of the codomain has at least one preimage.

Definition: One-To-One Correspondence (Bijective) Function

Definition

The function f is a one-to-one correspondence if it is both one-to-one and onto.

The function f is is said to be bijective if it is both injective and surjective. A function is said to be a bijection if it is bijective.

Example 1

Is f injective?
Is f surjective?
Is f bijective?

Example 2

Is f injective?
Is f surjective?
Is f bijective?

Example 3

Is f injective?
Is f surjective?
Is f bijective?

Example 4

Is f injective?
Is f surjective?
Is f bijective?

Example 5

Is f injective?
Is f surjective?
Is f bijective?

Venn Diagram of Function Classification

Addition and Product of Functions

Definition

Let f_{1} and f_{2} be functions from A to \mathbb{R}. Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to \mathbb{R} defined by

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
\left(f_{1} f_{2}\right)(x) & =f_{1}(x) f_{2}(x)
\end{aligned}
$$

Definition: Composition of Functions

Definition

Let g be a function from the set A to the set B, and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by

$$
(f \circ g)(a)=f(g(a))
$$

Definition: Inverse Function

Definition

Let f be a bijection from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$ when $f(a)=b$. The inverse function is also a bijection.

Identity Function

Definition

Identity function (also called identity mapping): The identity mapping $\mathbb{1}_{X}: X \rightarrow X$ is the function with domain and codomain X defined by

$$
\mathbb{1}_{X}(x)=x, \quad \forall x \in X
$$

Left and Right Inverse

Definition

Let $f: X \rightarrow Y$ be a fonction with domain X and codomain Y, and $g: Y \rightarrow X$ be a fonction with domain Y and codomain X.

The function g is a left inverse of f if $g \circ f=\mathbb{1}_{X}$.
The function g is a right inverse of f if $f \circ g=\mathbb{1}_{Y}$.
The function g is an inverse of f if g is both a left and right inverse of f. When f has an inverse, it is often written f^{-1}.

Left and Right Inverse

Theorem

A function is injective if and only if it has a left inverse.
A function is surjective if and only if it has a right inverse.
A function is bijective if and only if it has an inverse.
If a function has an inverse, then this inverse is unique.
Note: The left and right inverses are not necessarily unique.

