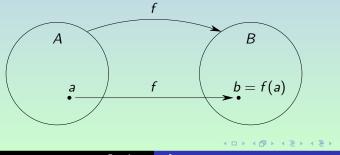
Functions Discrete Mathematics

(日)

Let A and B be non empty sets. A **function** f from A to B is an assignment of *exactly one* element of B to each element of A. We write f(a) = b if b is the *unique* element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f : A \rightarrow B$.



Definitions: Domain, Codomain, Image, Preimage and Range

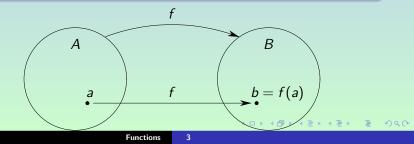
Definition

If f is a function from A to B, we say that A is the **domain** of f and B is the **codomain** of f.

If f(a) = b, we say that b is the **image** of a and a is the **preimage** of b.

The **range** of f is the set of all images of elements of A.

Also, If f is a function from A to B, we say that f maps A to B.



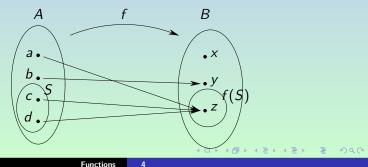
Definition: Image of a Subset

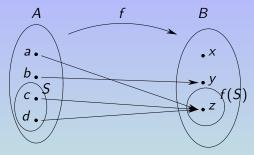
Definition

Let f be a function from the set A to the set B and let S be a subset of A. The **image** of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$F(S) = \{t \in B \mid \exists s \in S \text{ with } (t = f(s))\}.$$

We also use the shorthand $f(S) = \{f(s) | s \in S\}$ to denote this set.





- The domain of f is $A = \{a, b, c, d\}.$
- The codomain of f is $B = \{x, y, z\}.$
- f(a) = z.
- The image of *a* is *z*.

- The preimages of z are a, c and d.
- The range of f is $f(A) = \{y, z\} \subseteq B$.
- The image of the subset $S = \{c, d\} \subseteq A$ is $f(S) = \{z\} \subseteq B$.

(日) (四) (三) (三)

Definition: One-To-One (Injective) Function

Definition

A function f from A to B is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all a and b in the domain A. A function is said to be an **injection** if it is injective.

By taking the contrapositive of the implication in this definition, a function is injective if and only if $a \neq b$ implies $f(a) \neq f(b)$.

Another way to understand it, a function is injective means that if an element of the codomain has a preimage, then it is a unique preimage.

向下 イヨト イヨト

6

A function f from A to B is called **onto**, or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a **surjection** if it is surjective.

Another way to understand it, a function is surjective means that each element of the codomain has at least one preimage.

Definition: One-To-One Correspondence (Bijective) Function

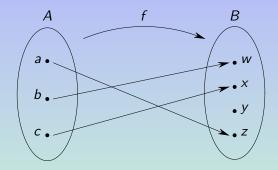
Definition

The function *f* is a **one-to-one correspondence** if it is both one-to-one and onto.

The function f is is said to be **bijective** if it is both injective and surjective. A function is said to be a **bijection** if it is bijective.

8

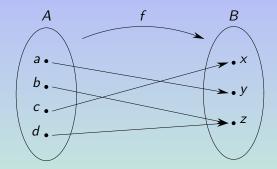
- 4 E b 4 E b



Is f injective?
Is f surjective?
Is f bijective?

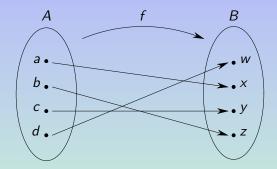
9

イロン イヨン イヨン イヨン



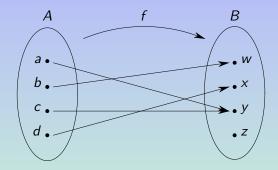
Is f injective?
Is f surjective?
Is f bijective?

(a)



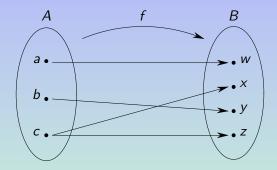
Is f injective?
Is f surjective?
Is f bijective?

イロン イヨン イヨン イヨン



Is f injective?
Is f surjective?
Is f bijective?

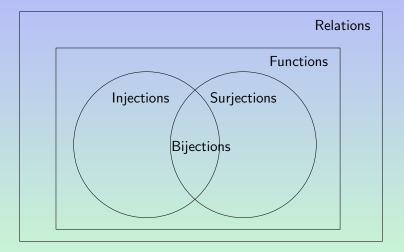
イロン イヨン イヨン イヨン



Is f injective?
Is f surjective?
Is f bijective?

イロン イヨン イヨン イヨン

Venn Diagram of Function Classification



(ロ) (同) (E) (E) (E)

Let f_1 and f_2 be functions from A to \mathbb{R} . Then $f_1 + f_2$ and f_1f_2 are also functions from A to \mathbb{R} defined by

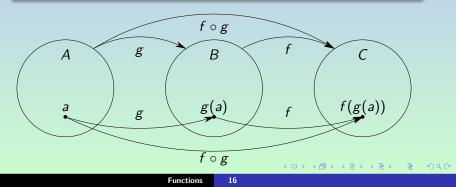
$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

 $(f_1f_2)(x) = f_1(x)f_2(x).$

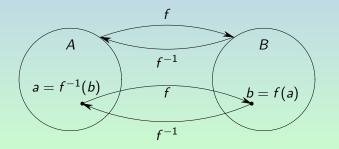
(4月) (日) (日)

Let g be a function from the set A to the set B, and let f be a function from the set B to the set C. The **composition of the functions** f and g, denoted by $f \circ g$, is defined by

 $(f \circ g)(a) = f(g(a)).$



Let f be a bijection from the set A to the set B. The **inverse** function of f is the function that assigns to an element bbelonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b. The inverse function is also a bijection.



Functions 1

Identity function (also called identity mapping): The identity mapping $\mathbb{1}_X : X \to X$ is the function with domain and codomain X defined by

$$\mathbb{1}_X(x) = x, \quad \forall x \in X.$$

(a)

Let $f: X \to Y$ be a fonction with domain X and codomain Y, and $g: Y \to X$ be a fonction with domain Y and codomain X.

The function g is a **left inverse** of f if $g \circ f = \mathbb{1}_X$.

The function g is a **right inverse** of f if $f \circ g = \mathbb{1}_Y$.

The function g is an **inverse** of f if g is both a left and right inverse of f. When f has an inverse, it is often written f^{-1} .

A (B) > A (B) > A (B) >

Theorem

A function is injective if and only if it has a left inverse.

A function is surjective if and only if it has a right inverse.

A function is bijective if and only if it has an inverse.

If a function has an inverse, then this inverse is unique.

Note: The left and right inverses are not necessarily unique.