Mathematical Induction Discrete Mathematics

The sum of first odd integers:

$$
\begin{array}{ll}
n=1, & 1=1 \\
n=2, & 1+3=4 \\
n=3, & 1+3+5=9 \\
n=4, & 1+3+5+7=16 \\
n=5, & 1+3+5+7+9=25 \\
n=6, & 1+3+5+7+9+11=36 \\
\vdots \\
n=k, & 1+3+5+\cdots+(2 k-1)=?
\end{array}
$$

Statement of Problem

Let $P(n)$, a propositional function on a well-ordered set S. The problem is to prove that

$$
\forall n \in S, P(n)
$$

is true.

Definition: Mathematical Induction

Let $P(n)$, a propositional function on a well-ordered set S. If 1 is the minimum element of the set S, then, the rule of inference:

$$
\begin{aligned}
& P(1) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
\therefore & \forall n P(n)
\end{aligned}
$$

is known as the principle of induction (or the first principle of induction).

The first hypothesis $P(1)$ is called the basis step.
The second hypothesis $P(k) \rightarrow P(k+1)$ for any k is called the inductive step. The assumption that $P(k)$ is true is called the inductive hypothesis.

Example: The Sum of the First n Odd Positive Integers

PRELIMINARY STEP: Let $P(n)$ be the propositional function:
$\sum_{i=1}^{n}(2 i-1)=n^{2}$.
BASIS STEP: We verify that $P(1)$ is true.
INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

We conclude that $P(n)$ is true for all positive integers n.

Example: The Sum of the First n Integers

PRELIMINARY STEP: Let $P(n)$ be the propositional function:
$\sum_{i=1}^{n} i=n(n+1) / 2$.
BASIS STEP: We verify that $P(1)$ is true.
INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

We conclude that $P(n)$ is true for all positive integers n.

Why Mathematical Induction Is Valid?

Suppose that the well-ordered set S is \mathbb{N}, that $P(1)$ is true and that the proposition $P(k) \rightarrow P(k+1)$ is true for any k. We use a proof by contradiction to prove that $P(n)$ must be true for all $n \in \mathbb{N}$. Suppose there exists at least one positive integer such that $P(n)$ is false. Let the set $F \subset \mathbb{N}$ be the set of integers such that $P(n)$ is false. By assumption, the set F is non empty. So, according to the well-ordering property, F has a least element, which will be designated by m. We know that m cannot be 1 because $P(1)$ is true. Therefore m is an integer greater than 1 and $m-1 \in \mathbb{N}$. Moreover, $m-1$ is less than m and does not belong to F, so $P(m-1)$ must be true. Since the conditional statement $P(k) \rightarrow P(k+1)$ is true for any k, then $P(m-1) \rightarrow P(m)$ and therefore $P(m)$ is true. This contradicts the choice of m.

