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Closures of Relations

                     Discrete Mathematics



Definition: Closure of a Relation

Let R be a relation on a set A. The relation R may or may not
have some property P such as reflexivity, symmetry or transitivity.

If there is a relation S

with property P,

containing R ,

and such that S is a subset of every relation with property P

containing R ,

then S is called the closure of R with respect to P.
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Definition: Reflexive Relation

Definition

A relation R on a set A is called reflexive if (a, a) ∈ R for every
element a ∈ A.

Let A be the set {1, 2, 3, 4} and R be the relation
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}.

MR =









1 1 0 0
1 1 0 0
0 0 0 1
1 0 0 1









.

Is this relation reflexive? If no, what is the reflexive closure of this
relation?
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Definition: Reflexive Closure

Let R be a relation on a set A. The reflexive closure of R is

R ∪ ∆

where
∆ = {(a, a) | a ∈ A}

is called the diagonal relation on A.
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Definition: Symmetric Relation

Definition

A relation R on a set A is called symmetric if (a, b) ∈ R implies
that (b, a) ∈ R for all a, b ∈ A.

Let A be the set {1, 2, 3, 4} and R be the relation
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}.

MR =









1 1 0 0
1 1 0 0
0 0 0 1
1 0 0 1









.

Is this relation symmetric? If no, what is the symmetric closure of
R?
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Definition: Symmetric Closure

Let R be a relation on a set A. The symmetric closure of R is

R ∪ R−1

where
R−1 = {(b, a) | (a, b) ∈ R}

is inverse relation of R .
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Definition: Transitive Relation

Definition

A relation R on a set A is called transitive if, whenever (a, b) ∈ R

and (b, c) ∈ R , then (a, c) ∈ R , for all a, b, c ∈ A.

Let A be the set {1, 2, 3, 4} and R be the relation
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}. Is this relation
transitive? If not, what is the transitive closure of R?

1

3 4

2 1

3 4

2
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Definitions: Composite of Relations

Definition

Let R be a relation from a set A to a set B , and S a relation from
B to a set C . The composite of R and S is the relation consisting
of ordered pairs (a, c), where a ∈ A, c ∈ C , and for which there
exists an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S . We
denote the composite of R and S by S ◦ R .

S ◦ R

A B C

a b
c

R S
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Definitions: Path and Length

Definition

A path from a to b in a directed graph G is a sequence of edges
(x0, x1), (x1, x2), ..., (xn−1, xn) in G , where n is a non negative
integer, and x0 = a and xn = b, that is, a sequence of edges where
the terminal vertex of an edge is the same as the initial vertex of
the next edge in the path. This path is denoted by
x0, x1, x2, ..., xn−1, xn and has length n. We view the empty set of
edges as a path from a to a. A path of length n ≥ 1 that begins
and ends at the same vertex is called a circuit or cycle.

Definition

There is a path from a to b in a relation R if there is a sequence
of elements a, x1, x2, ..., xn−1, b with (a, x1) ∈ R , (x1, x2) ∈ R , ...,
(xn−1, b) ∈ R . This path is of length n.
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Definition: Powers of a Relation

Definition

Let R be a relation on the set A. The powers Rn, n = 1, 2, ..., are
defined recursively by

R1 = R and Rn+1 = Rn ◦ R .

Theorem

Let R be a relation on the set A. There is a path of length n,

where n is a positive integer, from a to b if and only if (a, b) ∈ Rn.
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Definition: Join Matrix

Definition

Let A = [aij ] and B = [bij ] be m × n zero-one matrices. Then, the
join of A and B, denoted by A ∨ B, is the m × n zero-one matrix
with (i , j)th entry aij ∨ bij .

Example. Let

A =

[

1 0 1
0 1 0

]

, B =

[

0 1 0
1 1 0

]

.

Then

A ∨ B =

[

1 ∨ 0 0 ∨ 1 1 ∨ 0
0 ∨ 1 1 ∨ 1 0 ∨ 0

]

=

[

1 1 1
1 1 0

]

.
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Definition: Boolean Product

Definition

Let A = [aij ] be an m× k zero-one matrix and B = [bij ] be a k × n

zero-one matrix. Then, the Boolean product of A and B, denoted
by A ⊙ B, is the m × n matrix with (i , j)th entry [cij ], where

cij = (ai1 ∧ b1j ) ∨ (ai2 ∧ b2j) ∨ · · · ∨ (aik ∧ bkj).

Remark 1: MS◦R = MR ⊙ MS .
Remark 2: MR◦R = MR ⊙MR = M

[2]
R .
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Paths and Connectivity

Definition

Let R be a relation on the set A. The connectivity relation R∗

consists of pairs (a, b) such that there is a path of length at least
one from a to b in R .
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Transitive Closure and Connectivity

Theorem

The transitive closure of a relation R equals the connectivity

relation R∗.

Theorem

Let MR be the zero-one matrix of the relation R on a set with n

elements. Then the zero-one matrix of the transitive closure R∗ is

MR∗ = MR ∨ M
[2]
R ∨ M

[3]
R ∨ · · · ∨ M

[n]
R
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Procedure for Computing the Transitive Closure

procedure transitive closure(MR : zero-one n × n matrix)
{P will store the powers of MR}
P := MR

{J will store the join of the powers of MR}
J := MR

for i := 2 to n

begin

P := P ⊙ MR

J := J ∨ P

end

{J is the zero-one matrix for R∗}

Closures of Relations 15



Example of Transitive Closure, Step 1 of 4

Let A be the set {1, 2, 3, 4} and R be the relation
R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}. What is the
transitive closure of R?

1

3 4

2

MR =









1 1 0 0
1 1 0 0
0 0 0 1
1 0 0 1
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Example of Transitive Closure, Step 2 of 4

MR =









1 1 0 0
1 1 0 0
0 0 0 1
1 0 0 1









M
[2]
R =









1 1 0 0
1 1 0 0
1 0 0 1
1 1 0 1









M
[3]
R =









1 1 0 0
1 1 0 0
1 1 0 1
1 1 0 1









M
[4]
R =









1 1 0 0
1 1 0 0
1 1 0 1
1 1 0 1
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Example of Transitive Closure, Step 3 of 4

MR∗ = MR ∨ M
[2]
R ∨M

[3]
R ∨ M

[4]
R

MR∗ =









1 1 0 0
1 1 0 0
1 1 0 1
1 1 0 1
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Example of Transitive Closure, Step 4 of 4

MR =









1 1 0 0
1 1 0 0
0 0 0 1
1 0 0 1









MR∗ =









1 1 0 0
1 1 0 0
1 1 0 1
1 1 0 1









1

3 4

2 1

3 4

2
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