Closures of Relations Discrete Mathematics

Definition: Closure of a Relation

Let R be a relation on a set A. The relation R may or may not have some property \mathbf{P} such as reflexivity, symmetry or transitivity.

If there is a relation S

- with property \mathbf{P},
- containing R,
- and such that S is a subset of every relation with property \mathbf{P} containing R,
then S is called the closure of R with respect to \mathbf{P}.

Definition: Reflexive Relation

Definition

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Let A be the set $\{1,2,3,4\}$ and R be the relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$.

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Is this relation reflexive? If no, what is the reflexive closure of this relation?

Definition: Reflexive Closure

Let R be a relation on a set A. The reflexive closure of R is

$$
R \cup \Delta
$$

where

$$
\Delta=\{(a, a) \mid a \in A\}
$$

is called the diagonal relation on A.

Definition: Symmetric Relation

Definition

A relation R on a set A is called symmetric if $(a, b) \in R$ implies that $(b, a) \in R$ for all $a, b \in A$.

Let A be the set $\{1,2,3,4\}$ and R be the relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$.

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Is this relation symmetric? If no, what is the symmetric closure of R ?

Definition: Symmetric Closure

Let R be a relation on a set A. The symmetric closure of R is

$$
R \cup R^{-1}
$$

where

$$
R^{-1}=\{(b, a) \mid(a, b) \in R\}
$$

is inverse relation of R.

Definition：Transitive Relation

Definition

A relation R on a set A is called transitive if，whenever $(a, b) \in R$ and $(b, c) \in R$ ，then $(a, c) \in R$ ，for all $a, b, c \in A$ ．

Let A be the set $\{1,2,3,4\}$ and R be the relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$ ．Is this relation transitive？If not，what is the transitive closure of R ？

Definitions：Composite of Relations

Definition

Let R be a relation from a set A to a set B ，and S a relation from B to a set C ．The composite of R and S is the relation consisting of ordered pairs (a, c) ，where $a \in A, c \in C$ ，and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$ ．We denote the composite of R and S by $S \circ R$ ．

Definitions：Path and Length

Definition

A path from a to b in a directed graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ in G ，where n is a non negative integer，and $x_{0}=a$ and $x_{n}=b$ ，that is，a sequence of edges where the terminal vertex of an edge is the same as the initial vertex of the next edge in the path．This path is denoted by
$x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ and has length n ．We view the empty set of edges as a path from a to a．A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle．

Definition

There is a path from a to b in a relation R if there is a sequence of elements $a, x_{1}, x_{2}, \ldots, x_{n-1}, b$ with $\left(a, x_{1}\right) \in R,\left(x_{1}, x_{2}\right) \in R, \ldots$ ， $\left(x_{n-1}, b\right) \in R$ ．This path is of length n ．

Definition: Powers of a Relation

Definition

Let R be a relation on the set A. The powers $R^{n}, n=1,2, \ldots$, are defined recursively by

$$
R^{1}=R \quad \text { and } \quad R^{n+1}=R^{n} \circ R
$$

Theorem

Let R be a relation on the set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Definition: Join Matrix

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be $m \times n$ zero-one matrices. Then, the join of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A} \vee \mathbf{B}$, is the $m \times n$ zero-one matrix with (i, j) th entry $a_{i j} \vee b_{i j}$.

Example. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Then

$$
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Definition: Boolean Product

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times k$ zero-one matrix and $\mathbf{B}=\left[b_{i j}\right]$ be a $k \times n$ zero-one matrix. Then, the Boolean product of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A} \odot \mathbf{B}$, is the $m \times n$ matrix with (i, j) th entry $\left[c_{i j}\right]$, where

$$
c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 j}\right) \vee \cdots \vee\left(a_{i k} \wedge b_{k j}\right)
$$

Remark 1: $\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}$.
Remark 2: $\mathbf{M}_{R \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{R}=\mathbf{M}_{R}^{[2]}$.

Paths and Connectivity

Definition

Let R be a relation on the set A. The connectivity relation R^{*} consists of pairs (a, b) such that there is a path of length at least one from a to b in R.

Transitive Closure and Connectivity

Theorem

The transitive closure of a relation R equals the connectivity relation R^{*}.

Theorem

Let \mathbf{M}_{R} be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^{*} is

$$
\mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]} \vee \mathbf{M}_{R}^{[3]} \vee \cdots \vee \mathbf{M}_{R}^{[n]}
$$

Procedure for Computing the Transitive Closure

procedure transitive closure $\left(\mathbf{M}_{R}\right.$: zero-one $n \times n$ matrix $)$
$\left\{\mathbf{P}\right.$ will store the powers of $\left.\mathbf{M}_{R}\right\}$
$\mathbf{P}:=\mathbf{M}_{R}$
$\left\{\mathbf{J}\right.$ will store the join of the powers of $\left.\mathbf{M}_{R}\right\}$
$\mathbf{J}:=\mathbf{M}_{R}$
for $i:=2$ to n
begin

$$
\begin{aligned}
& \mathbf{P}:=\mathbf{P} \odot \mathbf{M}_{R} \\
& \mathbf{J}:=\mathbf{J} \vee \mathbf{P}
\end{aligned}
$$

end
$\left\{\mathbf{J}\right.$ is the zero-one matrix for $\left.R^{*}\right\}$

Example of Transitive Closure, Step 1 of 4

Let A be the set $\{1,2,3,4\}$ and R be the relation $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$. What is the transitive closure of R ?

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Example of Transitive Closure, Step 2 of 4

$$
\begin{array}{ll}
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] & \mathbf{M}_{R}^{[2]}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \\
\mathbf{M}_{R}^{[3]}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] & \mathbf{M}_{R}^{[4]}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
\end{array}
$$

Example of Transitive Closure, Step 3 of 4

$$
\begin{gathered}
\mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]} \vee \mathbf{M}_{R}^{[3]} \vee \mathbf{M}_{R}^{[4]} \\
\mathbf{M}_{R^{*}}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Example of Transitive Closure, Step 4 of 4

