Graph Terminology and Special Types of Graphs Discrete Mathematics

A (B) > A (B) > A (B) >

Two vertices u and v in an undirected graph G are called **adjacent** (or **neighbors**) in G if u and v are endpoints of an edge of G.

If e is associated with $\{u, v\}$, the edge e is called **incident with** the vertices u and v.

The edge e is also said to **connect** u and v.

The vertices u and v are called **endpoints** of an edge associated with $\{u, v\}$.

The **degree of a vertex in an undirected graph** is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of a vertex.

The degree of the vertex v is denoted by deg(v).

Definition: Isolated and Pendant Vertices

Definition

A vertex of **degree zero** is called **isolated**. It follows that an isolated vertex is not adjacent to any vertex.

A vertex is **pendant** if and only if it has a **degree one**. Consequently, a pendant vertex is adjacent to exactly one other vertex.

Theorem

Let G = (V, E) be an undirected graph with e edges. Then

$$2e = \sum_{v \in V} \deg(v).$$

Note that this applies even if multiple edges and loops are present.

・ロン ・回 と ・ヨン ・ヨン

Theorem

An undirected graph has an even number of vertices of odd degree.

・ロト ・日下 ・ヨト ・ヨト

When (u, v) is an edge of the graph G with directed edges, u is said to be **adjacent** to v and v is said to be **adjacent** from u.

The vertex u is called **initial vertex** of (u, v) and v is called the **terminal** or **end vertex** of (u, v).

Remark: The initial vertex and and terminal vertex of a loop are the same.

ヨト くきト くきと

In a graph with directed edges the **in-degree** of a vertex v, denoted by deg⁻(v), is the number of edges with v as their terminal vertex.

The **out-degree** of v, denoted by $deg^+(v)$, is the number of edges with v as their **initial vertex**.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.

Theorem

Let G = (V, E) be a graph with directed edges. Then

$$\sum_{v\in V} \deg^-(v) = \sum_{v\in V} \deg^+(v) = |E|.$$

The **complete graph** on *n* vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

The graphs K_n for $1 \le n \le 6$

・ 同 ト ・ 三 ト ・ 三 ト

Definition: Cycle

Definition

The **cycle** C_n , $n \ge 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}$ and $\{v_n, v_1\}$.

The graphs C_n , $3 \le n \le 6$

◆□ → ◆□ → ◆ □ → ◆ □ → ○

We obtain the **wheel** W_n when we add an additional vertex to the cycle C_n for $n \ge 3$ and connect this new vertex to each of the n vertices in C_n , by new edges.

The graphs W_n for $3 \le n \le 6$

12

高 ト イヨ ト イヨト

The *n*-dimensional hypercube, or *n*-cube, denoted by Q_n , is the graph that has vertices representing the 2^n bit strings of length *n*. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

The graphs Q_n for $1 \le n \le 3$

向下 イヨト イヨト

Definition: Subgraph

Definition

A subgraph of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$.

イロン イ団ン イヨン イヨン 三日

The **union** of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

(4回) (三) (三)

A simple graph is called **regular** if every vertex of this graph has the same degree.

A regular graph is called n-regular if every vertex in this graph has degree n.

向下 イヨト イヨト