Graph Terminology and Special Types of Graphs Discrete Mathematics

Definition: Adjacent Vertices

Definition

Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are endpoints of an edge of G.
If e is associated with $\{u, v\}$, the edge e is called incident with the vertices u and v.

The edge e is also said to connect u and v.
The vertices u and v are called endpoints of an edge associated with $\{u, v\}$.

Graph Terminology and Special Types of Graphs

Definition: The Degree of a Vertex

Definition

The degree of a vertex in andirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of a vertex.
The degree of the vertex v is denoted by $\operatorname{deg}(v)$.

Definition: Isolated and Pendant Vertices

Definition

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent to any vertex.

A vertex is pendant if and only if it has a degree one.
Consequently, a pendant vertex is adjacent to exactly one other vertex.

Theorem

Let $G=(V, E)$ be an undirected graph with e edges. Then

$$
2 e=\sum_{v \in V} \operatorname{deg}(v)
$$

Note that this applies even if multiple edges and loops are present.

Vertices of Odd Degree

Theorem

An undirected graph has an even number of vertices of odd degree.

Definition: Adjacent Vertex

Definition

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u.

The vertex u is called initial vertex of (u, v) and v is called the terminal or end vertex of (u, v).

Remark: The initial vertex and and terminal vertex of a loop are the same.

Definition: In-Degree and Out-Degree

Definition

In a graph with directed edges the in-degree of a vertex v, denoted by $\operatorname{deg}^{-}(v)$, is the number of edges with v as their terminal vertex.

The out-degree of v, denoted by $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.

Graph Terminology and Special Types of Graphs

Sum of In-Degrees and Out-Degrees

Theorem

Let $G=(V, E)$ be a graph with directed edges. Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E| .
$$

Definition: Complete Graph

Definition

The complete graph on n vertices, denoted by K_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.

\dot{K}_{1}

K_{3}

K_{5}

The graphs K_{n} for $1 \leq n \leq 6$

Definition: Cycle

Definition

The cycle $C_{n}, n \geq 3$, consists of n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}$ and $\left\{v_{n}, v_{1}\right\}$.

C_{3}

C4

C_{5}

C_{6}

The graphs $C_{n}, 3 \leq n \leq 6$

Definition: Wheels

Definition

We obtain the wheel W_{n} when we add an additional vertex to the cycle C_{n} for $n \geq 3$ and connect this new vertex to each of the n vertices in C_{n}, by new edges.

C_{3}

C_{4}

C_{5}

C_{6}

The graphs W_{n} for $3 \leq n \leq 6$

Definition: The n-Dimensional Hypercube

Definition

The n-dimensional hypercube, or n-cube, denoted by Q_{n}, is the graph that has vertices representing the 2^{n} bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

The graphs Q_{n} for $1 \leq n \leq 3$

Definition: Subgraph

Definition

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

G

H

Definition: Union of Graphs

Definition

The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.

Definition: Regular Graph

Definition

A simple graph is called regular if every vertex of this graph has the same degree.

A regular graph is called n-regular if every vertex in this graph has degree n.

