Graph Isomorphism Discrete Mathematics

Definition: Isomorphism of Graphs

Definition

The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is an injective (one-to-one) and surjective (onto) function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism.

In other words, when two simple graphs are isomorphic, there is a bijection (one-to-one correspondence) between vertices of the two graphs that preserves the adjacency relationship.

Example of Isomorphic Graphs

$$
f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{3}, f\left(u_{3}\right)=v_{5}, f\left(u_{4}\right)=v_{2} \text { and } f\left(u_{5}\right)=v_{4} .
$$

Example of Isomorphic Graphs

G	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	H	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
u_{1}	0	1	0	0	1	v_{1}	0	0	1	1	0
u_{2}	1	0	1	0	0	v_{2}	0	0	0	1	1
u_{3}	0	1	0	1	0	v_{3}	1	0	0	0	1
u_{4}	0	0	1	0	1	v_{4}	1	1	0	0	0
u_{5}	1	0	0	1	0	v_{5}	0	1	1	0	0
G	u_{1}	u_{2}	u_{3}	${ }_{4}$	u_{5}	H	v_{1}	v3	v_{5}	v_{2}	v_{4}
u_{1}	0	1	0	0	1	v_{1}	0	1	0	0	1
u_{2}	1	0	1	0	0	v_{3}	1	0	1	0	0
u_{3}	0	1	0	1	0	v_{5}	0	1	0	1	0
u_{4}	0	0	1		1	v_{2}	0	0	1	0	1
u_{5}	1	0	0	1	0	v_{4}	1	0	0	1	0

Isomorphic Graph's Invariant

We can tell if two graphs are invariant or not using graphs invariant. For example, two simple isomorphic graphs must :

- have the same number of vertices,
- have the same number of edges,
- have the same degrees of vertices.

Note 1: These conditions are necessary but not sufficient to show that two graphs are isomorphics.
Note 2: The breaking of one of these conditions is sufficient but not necessary to show that two graphs are not isomorphic.

Example of Non-Isomorphic Graphs

Are These Graphs Isomorphic?

H

Are These Graphs Isomorphic?

$$
f\left(u_{3}\right)=v_{2}, f\left(u_{4}\right)=v_{3}, f\left(u_{2}\right)=v_{5}, f\left(u_{5}\right)=v_{4} \text { and } f\left(u_{1}\right)=v_{1} .
$$

These Two Graphs Are Isomorphic

G

H

G	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}						
u_{1}	0	1	0	1	1		H	v_{1}	v_{5}	v_{2}	v_{3}
	v_{4}	0	1	0	1	1					
u_{2}	1	0	1	1	1		v_{5}	1	0	1	1
	1										
u_{3}	0	1	0	1	0		v_{2}	0	1	0	1
u_{4}	1	1	1	0	1		v_{3}	1	1	1	0
1											
u_{5}	1	1	0	1	0		v_{4}	1	1	0	1

