Graph Isomorphism Discrete Mathematics

Э

Definition

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is an injective (one-to-one) and surjective (onto) function f from V_1 to V_2 with the property that a and bare adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an **isomorphism**.

In other words, when two simple graphs are **isomorphic**, there is a bijection (one-to-one correspondence) between vertices of the two graphs that preserves the adjacency relationship.

· • @ • • = • • = •

Example of Isomorphic Graphs

 $f(u_1) = v_1$, $f(u_2) = v_3$, $f(u_3) = v_5$, $f(u_4) = v_2$ and $f(u_5) = v_4$.

(日) (四) (三) (三)

Example of Isomorphic Graphs

G	<i>u</i> ₁	<i>u</i> ₂	U3	И4	и 5	Н	v_1	<i>v</i> ₂	V3	<i>V</i> 4	V_5
<i>u</i> ₁	0	1	0	0	1	<i>v</i> ₁	0	0	1	1	0
<i>u</i> ₂	1	0	1	0	0	<i>v</i> ₂	0	0	0	1	1
U ₃	0	1	0	1	0	<i>V</i> 3	1	0	0	0	1
<i>U</i> 4	0	0	1	0	1	<i>V</i> 4	1	1	0	0	0
<i>и</i> 5	1	0	0	1	0	<i>V</i> 5	0	1	1	0	0
G	u_1	<i>u</i> ₂	u ₃	<i>u</i> 4	и ₅	Н	v_1	<i>v</i> 3	V_5	<i>v</i> ₂	<i>v</i> ₄
G <i>u</i> 1	<i>u</i> ₁ 0	<i>u</i> ₂ 1	<i>u</i> ₃ 0	<i>u</i> ₄ 0	и ₅ 1	$\frac{H}{v_1}$	<i>v</i> ₁ 0	<i>v</i> ₃	<i>v</i> ₅	<i>v</i> ₂	<i>v</i> ₄ 1
G u ₁ u ₂	<i>u</i> ₁ 0 1	<i>u</i> ₂ 1 0	<i>u</i> ₃ 0 1	<i>u</i> ₄ 0 0	и ₅ 1 0	H V1 V3	v ₁ 0 1	<i>v</i> ₃ 1 0	<i>v</i> 5 0 1	v ₂ 0 0	v ₄ 1 0
G U1 U2 U3	<i>u</i> ₁ 0 1 0	<i>u</i> ₂ 1 0 1	<i>u</i> ₃ 0 1 0	<i>u</i> ₄ 0 0 1	и ₅ 1 0 0	H V1 V3 V5	v ₁ 0 1 0	v ₃ 1 0 1	v ₅ 0 1 0	v ₂ 0 0 1	V ₄ 1 0 0
G U1 U2 U3 U4	<i>u</i> ₁ 0 1 0 0	<i>u</i> ₂ 1 0 1 0	<i>u</i> ₃ 0 1 0 1	<i>u</i> ₄ 0 0 1 0	<i>u</i> 5 1 0 0 1	H V1 V3 V5 V2	v ₁ 0 1 0 0	V ₃ 1 0 1 0	v ₅ 0 1 0 1	v ₂ 0 0 1 0	V ₄ 1 0 0 1

(日) (四) (三) (三)

E

We can tell if two graphs are invariant or not using **graphs invariant**. For example, two simple isomorphic graphs must :

- have the same number of vertices,
- have the same number of edges,
- have the same degrees of vertices.

Note 1: These conditions are necessary but **not sufficient** to show that two graphs are isomorphics.

Note 2: The breaking of one of these conditions is sufficient but not necessary to show that two graphs are not isomorphic.

Example of Non-Isomorphic Graphs

臣

Are These Graphs Isomorphic?

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Are These Graphs Isomorphic?

 $f(u_3) = v_2$, $f(u_4) = v_3$, $f(u_2) = v_5$, $f(u_5) = v_4$ and $f(u_1) = v_1$.

3

These Two Graphs Are Isomorphic

臣