Representing Graphs Discrete Mathematics

Э

One way to represent a graph without multiple edges is to list all the edges of this graph.

< ∃ >

$$G = (V, E) \text{ with } V = \{a, b, c, d, e\} \text{ and } E = \{\{a, b\}, \{a, d\}, \{b, d\}, \{b, e\}, \{d, c\}, \{e, c\}\}.$$

An other way to represent a graph without multiple edges is to use **adjacency lists**, which specify the vertices that are adjacent to each vertex of the graph.

	Vertex	Adjacent
$\begin{array}{c} a & b & c \\ \bullet & \bullet & \bullet \end{array}$		vertices
	а	b, d
	b	a, c, d, e
	с	d, e
d e	d	a, b, c
	۵	hc

Definition

Suppose that G = (V, E) is a simple graph where |V| = n. Suppose that the vertices of G are listed arbitrarily $v_1, v_2, ..., v_n$. The **adjacency matrix A** (or **A**_G) of G, with respect to this listing of the vertices, is the $n \times n$ zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and 0 as its (i, j)th entry when they are not adjacent.

4

Example of Adjacency Matrices

(日) (四) (三) (三)

Remarks on Adjacency Matrices

- Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices. Hence, there are as many as *n*! different adjacency matrices for a graph with *n* vertices, because there are *n*! different orderings of *n* vertices.
- The adjacency matrices of a simple graph is symmetric because if v_i is adjacent to v_j, then v_j is adjacent to v_i and if v_i is not adjacent to v_j, then v_j is not adjacent to v_i.
- Since a simple graph can not have a loop, a_{ii} = 0 for i = 1, 2, ..., n.

(a)

Adjacency Matrices for Pseudographs

- A loop on the vertex v_i is denoted by a 1 at the (i, i)th position of the adjacency matrix.
- When there are multiple edges between two vertices, the (*i*, *j*)th element of the adjacency matrix is equal to the number of edges between vertices v_i and v_j.
- All undirected graphs, including simple graphs, multigraphs and pseudographs, have symmetric adjacency matrices.

- 4 回 > - 4 回 > - 4 回 >

Definition

Let G = (V, E) be an undirected graph, in which |V| = n and |E| = m. Suppose that $v_1, v_2, ..., v_n$ are the vertices and $e_1, e_2, ..., e_m$ are the edges of G. Then the **incidence matrix** with respect to this ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{when edge } e_j \text{ is incident with } v_i, \\ 0 & \text{otherwise.} \end{cases}$$

・ロト ・同ト ・ヨト ・ヨト

Example of an Incidence Matrix

9

(日) (四) (三) (三)

æ

Incidence Matrix for Pseudographs

- Loops are represented using a column with exactly one entry equal to 1, corresponding to the vertex that is incident with this loop.
- Multiple edges are represented in the incidence matrix using columns with identical entries, because these edges are incident with the same pair of vertices.

