Representing Graphs Discrete Mathematics

Representing Graphs

One way to represent a graph without multiple edges is to list all the edges of this graph.

$$
\begin{aligned}
& G=(V, E) \text { with } V=\{a, b, c, d, e\} \text { and } \\
& E=\{\{a, b\},\{a, d\},\{b, d\},\{b, e\},\{d, c\},\{e, c\}\} .
\end{aligned}
$$

Representing Graphs by Adjacency Lists

An other way to represent a graph without multiple edges is to use adjacency lists, which specify the vertices that are adjacent to each vertex of the graph.

Vertex	Adjacent vertices
a	b, d
b	a, c, d, e
c	d, e
d	a, b, c
e	b, c

Definition: Adjacency Matrices

Definition

Suppose that $G=(V, E)$ is a simple graph where $|V|=n$. Suppose that the vertices of G are listed arbitrarily $v_{1}, v_{2}, \ldots, v_{n}$. The adjacency matrix \mathbf{A} ($\operatorname{or} \mathbf{A}_{G}$) of G, with respect to this listing of the vertices, is the $n \times n$ zero-one matrix with 1 as its (i, j) th entry when v_{i} and v_{j} are adjacent, and 0 as its (i, j) th entry when they are not adjacent.

Example of Adjacency Matrices

We order the vertices as u_{1}, u_{2} ，

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

u_{3}, u_{4}, u_{5}.

Remarks on Adjacency Matrices

- Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices. Hence, there are as many as n ! different adjacency matrices for a graph with n vertices, because there are n ! different orderings of n vertices.
- The adjacency matrices of a simple graph is symmetric because if v_{i} is adjacent to v_{j}, then v_{j} is adjacent to v_{i} and if v_{i} is not adjacent to v_{j}, then v_{j} is not adjacent to v_{i}.
- Since a simple graph can not have a loop, $a_{i i}=0$ for $i=1,2, \ldots, n$.

Adjacency Matrices for Pseudographs

－A loop on the vertex v_{i} is denoted by a 1 at the (i, i) th position of the adjacency matrix．
－When there are multiple edges between two vertices，the (i, j) th element of the adjacency matrix is equal to the number of edges between vertices v_{i} and v_{j} ．
－All undirected graphs，including simple graphs，multigraphs and pseudographs，have symmetric adjacency matrices．

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Definition: Incidence Matrices

Definition

Let $G=(V, E)$ be an undirected graph, in which $|V|=n$ and $|E|=m$. Suppose that $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, \ldots, e_{m}$ are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $\mathbf{M}=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1 & \text { when edge } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

Example of an Incidence Matrix

Incidence Matrix for Pseudographs

- Loops are represented using a column with exactly one entry equal to 1 , corresponding to the vertex that is incident with this loop.
- Multiple edges are represented in the incidence matrix using columns with identical entries, because these edges are incident with the same pair of vertices.

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}
u_{1}	1	1	0	0	0	0
u_{2}	0	0	1	1	1	0
u_{3}	0	0	0	1	1	1
u_{4}	0	1	1	0	0	1

