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Preface

In the early 1990s when one of us was teaching his first bioinformatics class,

he was not sure that there would be enough students to teach. Although

the Smith-Waterman and BLAST algorithms had already been developed

they had not become the household names among biologists that they are

today. Even the term “bioinformatics” had not yet been coined. DNA arrays

were viewed by most as intellectual toys with dubious practical application,

except for a handful of enthusiasts who saw a vast potential in the technol-

ogy. A few bioinformaticians were developing new algorithmic ideas for

nonexistent data sets: David Sankoff laid the foundations of genome rear-

rangement studies at a time when there was practically no gene order data,

Michael Waterman and Gary Stormo were developing motif finding algo-

rithms when there were very few promoter samples available, Gene Myers

was developing sophisticated fragment assembly tools when no bacterial

genome has been assembled yet, and Webb Miller was dreaming about com-

paring billion-nucleotide-long DNA sequences when the 172, 282-nucleotide

Epstein-Barr virus was the longest GenBank entry. GenBank itself just re-

cently made a transition from a series of bound (paper!) volumes to an elec-

tronic database on magnetic tape that could be sent to scientists worldwide.

One has to go back to the mid-1980s and early 1990s to fully appreciate the

revolution in biology that has taken place in the last decade. However, bioin-

formatics has affected more than just biology—it has also had a profound

impact on the computational sciences. Biology has rapidly become a large

source of new algorithmic and statistical problems, and has arguably been

the target for more algorithms than any of the other fundamental sciences.

This link between computer science and biology has important educational

implications that change the way we teach computational ideas to biologists,

as well as how applied algorithmics is taught to computer scientists.



1 Introduction

Imagine Alice, Bob, and two piles of ten rocks. Alice and Bob are bored one

Saturday afternoon so they play the following game. In each turn a player

may either take one rock from a single pile, or one rock from both piles. Once

the rocks are taken, they are removed from play; the player that takes the last

rock wins the game. Alice moves first.

It is not immediately clear what the winning strategy is, or even if there

is one. Does the first player (or the second) always have an advantage? Bob

tries to analyze the game and realizes that there are too many variants in

the game with two piles of ten rocks (which we will refer to as the 10+10

game). Using a reductionist approach, he first tries to find a strategy for the

simpler 2+2 game. He quickly sees that the second player—himself, in this

case—wins any 2+2 game, so he decides to write the “winning recipe”:

If Alice takes one rock from each pile, I will take the remaining rocks

and win. If Alice takes one rock, I will take one rock from the same

pile. As a result, there will be only one pile and it will have two rocks

in it, so Alice’s only choice will be to take one of them. I will take the

remaining rock to win the game.

Inspired by this analysis, Bob makes a leap of faith: the second player (i.e.,

himself) wins in any n+n game, for n ≥ 2. Of course, every hypothesis must

be confirmed by experiment, so Bob plays a few rounds with Alice. It turns

out that sometimes he wins and sometimes he loses. Bob tries to come up

with a simple recipe for the 3+3 game, but there are a large number of differ-

ent game sequences to consider, and the recipe quickly gets too complicated.

There is simply no hope of writing a recipe for the 10+10 game because the

number of different strategies that Alice can take is enormous.

Meanwhile, Alice quickly realizes that she will always lose the 2+2 game,

but she does not lose hope of finding a winning strategy for the 3+3 game.
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Moreover, she took Algorithms 101 and she understands that recipes written

in the style that Bob uses will not help very much: recipe-style instructions

are not a sufficiently expressive language for describing algorithms. Instead,

she begins by drawing the following table filled with the symbols ↑, ←, ↖,

and ∗. The entry in position (i, j) (i.e., the ith row and the jth column) de-

scribes the moves that Alice will make in the i + j game, with i and j rocks

in piles A and B respectively. A← indicates that she should take one stone

from pile B. A ↑ indicates that she should take one stone from pile A. A

↖ indicates that she should take one stone from each pile, and ∗ indicates

that she should not bother playing the game because she will definitely lose

against an opponent who has a clue.

0 1 2 3 4 5 6 7 8 9 10

0 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

1 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

2 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

3 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

4 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

5 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

6 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

7 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

8 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

9 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

10 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

For example, if she is faced with the 3+3 game, she finds a↖ in the third

row and third column, indicating that she should take a rock from each pile.

This makes Bob take the first move in a 2+2 game, which is marked with

a ∗. No matter what he does, Alice wins. Suppose Bob takes a rock from

pile B—this leads to the 2+1 game. Alice again consults the table by reading

the entry at (2,1), seeing that she should also take a rock from pile B leaving

two rocks in A. However, if Bob had instead taken a rock from pile A, Alice

would consult entry (1,2) to find ↑. She again should also take a rock from

pile A, leaving two rocks in pile B.

Impressed by the table, Bob learns how to use it to win the 10+10 game.

However, Bob does not know how to construct a similar table for the 20+20

game. The problem is not that Bob is stupid, but that he has not studied

algorithms. Even if, through sheer luck, Bob figured how to always win the
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20+20 game, he could neither say with confidence that it would work no

matter what Alice did, nor would he even be able to write down the recipe

for the general n + n game. More embarrassing to Bob is that the a general

10+10+10 game with three piles would turn into an impossible conundrum

for him.

There are two things Bob could do to remedy his situation. First, he could

take a class in algorithms to learn how to solve problems like the rock puzzle.

Second, he could memorize a suitably large table that Alice gives him and

use that to play the game. Leading questions notwithstanding, what would

you do as a biologist?

Of course, the answer we expect to hear from most rational people is “Why

in the world do I care about a game with two nerdy people and a bunch of

rocks? I’m interested in biology, and this game has nothing to do with me.”

This is not actually true: the rock game is in fact the ubiquitous sequence

alignment problem in disguise. Although it is not immediately clear what

DNA sequence alignment and the rock game have in common, the compu-

tational idea used to solve both problems is the same. The fact that Bob was

not able to find the strategy for the game indicates that he does not under-

stand how alignment algorithms work either. He might disagree if he uses

alignment algorithms or BLAST1 on a daily basis, but we argue that since he

failed to come up with a strategy for the 10+10 rock game, he will also fail

when confronted with a new flavor of alignment problem or a particularly

complex similarity analysis. More troubling to Bob, he may find it difficult

to compete with the scads of new biologists who think algorithmically about

biological problems.2

Many biologists are comfortable using algorithms like BLAST without re-

ally understanding how the underlying algorithm works. This is not sub-

stantially different from a diligent robot following Alice’s winning strategy

table, but it does have an important consequence. BLAST solves a particular

problem only approximately and it has certain systematic weaknesses. We’re

not picking on BLAST here: the reason that BLAST has these limitations is, in

part, because of the particular problem that it solves. Users who do not know

how BLAST works might misapply the algorithm or misinterpret the results

it returns. Biologists sometimes use bioinformatics tools simply as compu-

tational protocols in quite the same way that an uninformed mathematician

1. BLAST is a database search tool—a Google for biological sequences—that will be introduced
later in this book.
2. These “new biologists” have probably already found another even more elegant solution of
the rocks problem that does not require the construction of a table.
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might use experimental protocols without any background in biochemistry

or molecular biology. In either case, important observations might be missed

or incorrect conclusions drawn. Besides, intellectually interesting work can

quickly become mere drudgery if one does not really understand it.

Many recent bioinformatics books cater to this sort of protocol-centric prac-

tical approach to bioinformatics. They focus on parameter settings, specific

features of application, and other details without revealing the ideas behind

the algorithms. This trend often follows the tradition of biology books of

presenting material as a collection of facts and discoveries. In contrast, intro-

ductory books in algorithms usually focus on ideas rather than on the details

of computational recipes.

Since bioinformatics is a computational science, a bioinformatics textbook

should strive to present the principles that drive an algorithm’s design, rather

than list a stamp collection of the algorithms themselves. We hope that de-

scribing the intellectual content of bioinformatics will help retain your inter-

est in the subject. In this book we attempt to show that a handful of algorith-

mic ideas can be used to solve a large number of bioinformatics problems.

We feel that focusing on ideas has more intellectual value and represents

a better long-term investment: protocols change quickly, but the computa-

tional ideas don’t seem to.

We pursued a goal of presenting both the foundations of algorithms and

the important results in bioinformatics under the same cover. A more thor-

ough approach for a student would be to take an Introduction to Algorithms

course followed by a Bioinformatics course, but this is often an unrealistic ex-

pectation in view of the heavy course load biologists have to take. To make

bioinformatics ideas accessible to biologists we appeal to the innate algorith-

mic intuition of the student and try to avoid tedious proofs. The technical

details are hidden unless they are absolutely necessary.3

This book covers both new and old areas in computational biology. Some

topics, to our knowledge, have never been discussed in a textbook before,

while others are relatively old-fashioned and describe some experimental

approaches that are rarely used these days. The reason for including older

topics is twofold. First, some of them still remain the best examples for in-

troducing algorithmic ideas. Second, our goal is to show the progression of

ideas in the field, with the implicit warning that hot areas in bioinformatics

seem to come and go with alarming speed.

3. In some places we hide important computational and biological details and try to simplify
the presentation. We will unavoidably be blamed later for “trivializing” bioinformatics.
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One observation gained from teaching bioinformatics classes is that the

interest of computer science students, who usually know little of biology,

fades quickly when the students are introduced to biology without links to

computational issues. The same happens to biologists if they are presented

with seemingly unnecessary formalism with no links to real biological prob-

lems. To hold a student’s interest, it is necessary to introduce biology and

algorithms simultaneously. Our rather eclectic table of contents is a demon-

stration that attempts to reach this goal result in a somewhat interleaved or-

ganization of the material. However, we have tried to maintain a consistent

algorithmic theme (e.g., graph algorithms) throughout each chapter.

Molecular biology and computer science are complex fields whose termi-

nology and nomenclature can be formidable to the outsider. Bioinformatics

merges the two fields, and adds a healthy dose of statistics, combinatorics,

and other branches of mathematics. Like modern biologists who have to

master the dense language of mathematics and computer science, mathe-

maticians and computer scientists working in bioinformatics have to learn

the language of biology. Although the question of who faces the bigger chal-

lenge is a topic hotly debated over pints of beer, this is not the first “invasion”

of foreigners into biology; seventy years ago a horde of physicists infested bi-

ology labs, ultimately to revolutionize the field by deciphering the mystery

of DNA.

Two influential scientists are credited with crossing the barrier between

physics and biology: Max Delbrück and Erwin Schrödinger. Trained as

physicists, their entrances into the field of biology were remarkably different.

Delbrück, trained as an atomic physicist by Niels Bohr, quickly became an ex-

pert in genetics; in 1945 he was already teaching genetics to other biologists.4

Schrödinger, on the other hand, never turned into a “certified” geneticist and

remained somewhat of a biological dilettante. However, his book What Is

Life?, published in 1944, was influential to an entire generation of physicists

and biologists. Both James Watson (a biology student who wanted to be a

naturalist) and Francis Crick (a physicist who worked on magnetic mines)

switched careers to DNA science after reading Shrödinger’s book. Another

Nobel laureate, Sydney Brenner, even admitted to stealing a copy from the

public library in Johannesburg, South Africa.

Like Delbrück and Schrödinger, there is great variety in the biological

background of today’s computer scientists-turned-bioinformaticians. Some

of them have become experts in biology—though very few put on lab coats

4. Delbrück founded the famous phage genetics courses at Cold Spring Harbor Laboratory.
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and perform experiments—while others remain biological dilettantes. Al-

though there exists an opinion that every bioinformatician should be an ex-

pert in both biology and computer science, we are not sure that this is fea-

sible. First, it takes a lot of work just to master one of the two, so perhaps

understanding two in equal amounts is a bit much. Second, it is good to

recall that the first pioneers of DNA science were, in fact, self-proclaimed

dilettantes. James Watson knew almost no organic or physical chemistry be-

fore he started working on the double helix; Francis Crick, being a physicist,

knew very little biology. Neither saw any need to know about (let alone

memorize) the chemical structure of the four nucleotide bases when they

discovered the structure of DNA.5 When asked by Erwin Chargaff how they

could possibly expect to resolve the structure of DNA without knowing the

structures of its constituents, they responded that they could always look

up the structures in a book if the need arose. Of course, they understood the

physical principles behind a compound’s structure.

The reality is that even the most biologically oriented bioinformaticians are

experts only in some specific area of biology. Like Delbrück, who probably

would never have passed an exam in biology in the 1930s (when zoology and

botany remained the core of the mainstream biological curriculum), a typi-

cal modern-day bioinformatician is unlikely to pass the sequence of organic

chemistry, biochemistry, and structural biochemistry classes that a “real” bi-

ologist has to take. The question of how much biology a good computer

scientist–turned–bioinformatician has to know seems to be best answered

with “enough to deeply understand the biological problem and to turn it

into an adequate computational problem.” This book provides a very brief

introduction to biology. We do not claim that this is the best approach. For-

tunately, an interested reader can use Watson’s approach and look up the

biological details in the books when the need arises, or read pages 1 through

1294 of Alberts and colleagues’ (including Watson) book Molecular Biology of

the Cell (3).

This book is what we, as computer scientists, believe that a modern biolo-

gist ought to know about computer science if he or she would be a successful

researcher.

5. Accordingly, we do not present anywhere in this book the chemical structures of either nu-
cleotides or amino acids. No algorithm in this book requires knowledge of their structure.
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This book is about how to design algorithms that solve biological problems.

We will see how popular bioinformatics algorithms work and we will see

what principles drove their design. It is important to understand how an

algorithm works in order to be confident in its results; it is even more impor-

tant to understand an algorithm’s design methodology in order to identify

its potential weaknesses and fix them.

Before considering any algorithms in detail, we need to define loosely

what we mean by the word “algorithm” and what might qualify as one.

In many places throughout this text we try to avoid tedious mathematical

formalisms, yet leave intact the rigor and intuition behind the important con-

cept.

2.1 What Is an Algorithm?

Roughly speaking, an algorithm is a sequence of instructions that one must

perform in order to solve a well-formulated problem. We will specify prob-

lems in terms of their inputs and their outputs, and the algorithm will be the

method of translating the inputs into the outputs. A well-formulated prob-

lem is unambiguous and precise, leaving no room for misinterpretation.

In order to solve a problem, some entity needs to carry out the steps spec-

ified by the algorithm. A human with a pen and paper would be able to do

this, but humans are generally slow, make mistakes, and prefer not to per-

form repetitive work. A computer is less intelligent but can perform simple

steps quickly and reliably. A computer cannot understand English, so al-

gorithms must be rephrased in a programming language such as C or Java
in order to give specific instructions to the processor. Every detail must be

specified to the computer in exactly the right format, making it difficult to de-
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scribe algorithms; trifling details that a person would naturally understand

must be specified. If a computer were to put on shoes, one would need to

tell it to find a pair that both matches and fits, to put the left shoe on the left

foot, the right shoe on the right, and to tie the laces.1 In this book, however,

we prefer to simply leave it at “Put on a pair of shoes.”

However, to understand how an algorithm works, we need some way of

listing the steps that the algorithm takes, while being neither too vague nor

too formal. We will use pseudocode, whose elementary operations are sum-

marized below. Pseudocode is a language computer scientists often use to

describe algorithms: it ignores many of the details that are required in a pro-

gramming language, yet it is more precise and less ambiguous than, say, a

recipe in a cookbook. Individually, the operations do not solve any partic-

ularly difficult problems, but they can be grouped together into minialgo-

rithms called subroutines that do.

In our particular flavor of pseudocode, we use the concepts of variables,

arrays, and arguments. A variable, written as x or total, contains some nu-

merical value and can be assigned a new numerical value at different points

throughout the course of an algorithm. An array of n elements is an ordered

collection of n variables a1, a2, . . . , an. We usually denote arrays by bold-

face letters like a = (a1, a2, . . . , an) and write the individual elements as ai

where i is between 1 and n. An algorithm in pseudocode is denoted by a

name, followed by the list of arguments that it requires, like MAX(a, b) be-

low; this is followed by the statements that describe the algorithm’s actions.

One can invoke an algorithm by passing it the appropriate values for its ar-

guments. For example, MAX(1, 99) would return the larger of 1 and 99. The

operation return reports the result of the program or simply signals its end.

Below are brief descriptions of the elementary commands that we use in the

pseudocode throughout this book.2

Assignment

Format: a← b

Effect: Sets the variable a to the value b.

1. It is surprisingly difficult to write an unambiguous set of instructions on how to tie a shoelace.
2. An experienced computer programmer might be confused by our not using “end if” or “end
for”, which is the conventional practice. We rely on indentation to demarcate blocks of pseu-
docode.
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Example: b← 2

a← b

Result: The value of a is 2

Arithmetic

Format: a + b, a− b, a · b, a/b, ab

Effect: Addition, subtraction, multiplication, division, and exponentia-

tion of numbers.

Example: DIST(x1, y1, x2, y2)

1 dx← (x2 − x1)2

2 dy ← (y2− y1)2

3 return
√

(dx + dy)

Result: DIST(x1, y1,x2, y2) computes the Euclidean distance between points

with coordinates (x1, y1) and (x2, y2). DISTANCE(0, 0, 3, 4) returns

5.

Conditional

Format: if A is true

B

else

C

Effect: If statement A is true, executes instructions B, otherwise executes

instructions C. Sometimes we will omit “else C,” in which case

this will either execute B or not, depending on whether A is true.

Example: MAX(a, b)

1 if a < b

2 return b

3 else

4 return a

Result: MAX(a, b) computes the maximum of the numbers a and b. For

example, MAX(1, 99) returns 99.
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for loops

Format: for i← a to b

B

Effect: Sets i to a and executes instructions B. Sets i to a +1 and executes

instructions B again. Repeats for i = a + 2, a + 3, . . . , b− 1, b.3

Example: SUMINTEGERS(n)

1 sum← 0

2 for i← 1 to n

3 sum← sum + i

4 return sum

Result: SUMINTEGERS(n) computes the sum of integers from 1 to n. SUM-

INTEGERS(10) returns 1 + 2 + · · ·+ 10 = 55.

while loops

Format: while A is true

B

Effect: Checks the condition A. If it is true, then executes instructions B.

Checks A again; if it’s true, it executes B again. Repeats until A is

not true.

Example: ADDUNTIL(b)

1 i← 1

2 total ← i

3 while total ≤ b

4 i← i + 1

5 total ← total + i

6 return i

Result: ADDUNTIL(b) computes the smallest integer i such that 1 + 2 +

· · ·+i is larger than b. For example, ADDUNTIL(25) returns 7, since

3. If a is larger than b, this loop operates in the reverse order: it sets i to a and executes instruc-
tions B, then repeats for i = a − 1, a − 2, . . . , b + 1, b.
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1+2+ · · ·+7 = 28, which is larger than 25, but 1+2+ · · ·+6 = 21,

which is smaller than 25.

Array access

Format: ai

Effect: The ith number of array a = (a1, . . . ai, . . . an). For example, if

F = (1, 1, 2, 3, 5, 8, 13), then F3 = 2, and F4 = 3.

Example: FIBONACCI(n)

1 F1 ← 1

2 F2 ← 1

3 for i← 3 to n

4 Fi ← Fi−1 + Fi−2

5 return Fn

Result: FIBONACCI(n) computes the nth Fibonacci number. FIBONACCI(8)

returns 21.

While computer scientists are accustomed to the pseudocode jargon above,

we fear that some biologists reading it might decide that this book is too cryp-

tic and therefore useless. Although modern biologists deal with algorithms

on a daily basis, the language they use to describe an algorithm might be

closer to the language used in a cookbook, like the pumpkin pie recipe in fig-

ure 2.1. Accordingly, some bioinformatics books are written in this familiar

lingo as an effort to make biologists feel at home with different bioinformat-

ics concepts. Unfortunately, the cookbook language is insufficient to describe

more complex algorithmic ideas that are necessary for even the simplest tools

in bioinformatics. The problem is that natural languages are not suitable

for communicating algorithmic ideas more complex than the pumpkin pie.

Computer scientists have yet to invent anything better than pseudocode for

this purpose, so we use it in this book.

To illustrate more concretely the distinction between pseudocode and an

informal language, we can write an “algorithm” to create a pumpkin pie that

mimics the recipe shown in figure 2.1. The admittedly contrived pseudocode

below, MAKEPUMPKINPIE, is quite a bit more explicit.
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1 1
2 cups canned or cooked pumpkin

1 cup brown sugar, firmly packed
1
2 teaspoon salt
2 teaspoons cinnamon
1 teaspoon ginger
2 tablespoons molasses
3 eggs, slightly beaten
12 ounce can of evaporated milk
1 unbaked pie crust

Combine pumpkin, sugar, salt, ginger, cinnamon, and molasses. Add eggs
and milk and mix thoroughly. Pour into unbaked pie crust and bake in hot
oven (425 degrees Fahrenheit) for 40 to 45 minutes, or until knife inserted
comes out clean.

Figure 2.1 A recipe for pumpkin pie.

MAKEPUMPKINPIE(pumpkin, sugar, salt, spices, eggs, milk, crust)

1 PREHEATOVEN(425)

2 filling← MIXFILLING(pumpkin, sugar, salt, spices, eggs, milk)

3 pie← ASSEMBLE(crust, filling)

4 while knife inserted does not come out clean

5 BAKE(pie)

6 output “Pumpkin pie is complete”

7 return pie

MIXFILLING(pumpkin, sugar, salt, spices, eggs, milk)

1 bowl ← Get a bowl from cupboard

2 PUT(pumpkin, bowl)

3 PUT(sugar, bowl)

4 PUT(salt, bowl)

5 PUT(spices, bowl)

6 STIR(bowl)

7 PUT(eggs, bowl)

8 PUT(milk, bowl)

9 STIR(bowl)

10 filling← Contents of bowl

11 return filling
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MAKEPUMPKINPIE calls (i.e., activates) the subroutine MIXFILLING, which

uses return to return the pie filling. The operation return terminates the ex-

ecution of the subroutine and returns a result to the routine that called it,

in this case MAKEPUMPKINPIE. When the pie is complete, MAKEPUMPKIN-

PIE notifies and returns the pie to whomever requested it. The entity pie in

MAKEPUMPKINPIE is a variable that represents the pie in the various stages

of cooking.

A subroutine, such as MIXFILLING, will normally need to return the re-

sult of some important calculation. However, in some cases the inputs to the

subroutine might be invalid (e.g., if you gave the algorithm watermelon in-

stead of pumpkin). In these cases, a subroutine may return no value at all

and output a suitable error message. When an algorithm is finished calculat-

ing a result, it naturally needs to output that result and stop executing. The

operation output displays information to an interested user.4

A subtle observation is that MAKEPUMPKINPIE does not in fact make a

pumpkin pie, but only tells you how to make a pumpkin pie at a fairly ab-

stract level. If you were to build a machine that follows these instructions,

you would need to make it specific to a particular kitchen and be tirelessly

explicit in all the steps (e.g., how many times and how hard to stir the fill-

ing, with what kind of spoon, in what kind of bowl, etc.) This is exactly

the difference between pseudocode (the abstract sequence of steps to solve

a well-formulated computational problem) and computer code (a set of de-

tailed instructions that one particular computer will be able to perform). We

reiterate that the function of pseudocode in this book is only to communicate

the idea behind an algorithm, and that to actually use an algorithm in this

book you would need to turn the pseudocode into computer code, which is

not always easy.

We will often avoid tedious details in the specification of an algorithm by

specifying parts of it in English (e.g., “Get a bowl from cupboard”), using op-

erations that are not listed in our description of pseudocode, or by omitting

certain details that are unimportant. We assume that, in the case of confusion,

the reader will fill in the details using pseudocode operations in a sensible

way.

4. Exactly how this is done remains beyond the scope of pseudocode and really does not matter.
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2.2 Biological Algorithms versus Computer Algorithms

Nature uses algorithm-like procedures to solve biological problems, for ex-

ample, in the process of DNA replication. Before a cell can divide, it must first

make a complete copy of all its genetic material.

DNA replication proceeds in phases, each of which requires an elaborate

cooperation between different types of molecules. For the sake of simplic-

ity, we describe the replication process as it occurs in bacteria, rather than

the replication process in humans or other mammals, which is quite a bit

more involved. The basic mechanism was proposed by James Watson and

Francis Crick in the early 1950s, but could only be verified through the in-

genious Meselson-Stahl experiment of 1957. The replication process starts

from a pair of complementary5 strands of DNA and ends up with two pairs

of complementary strands.6

1. A molecular machine (in other words, a protein complex) called a DNA

helicase, binds to the DNA at certain positions called replication origins.

2. Helicase wrenches apart the two strands of DNA, creating a so-called

replication fork. The two strands are complementary and run in oppo-

site directions (one strand is denoted 3′ → 5′, the other 5′ → 3′). Two

other molecular machines, topoisomerase and single-strand binding protein

(not shown) bind to the single strands to help relieve the instability of

single-stranded DNA.

5. Complementarity is described in chapter 3.
6. It is possible that computer scientists will spontaneously abort due to the complexity of this
system. While biologists feel at home with a description of DNA replication, computer scientists
may find it too overloaded with unfamiliar terms. This example only illustrates what biologists
use as “pseudocode;” the terms here are not crucial for understanding the rest of the book.
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3. Primers, which are short single strands of RNA, are synthesized by a pro-

tein complex called primase and latch on to specific positions in the newly

opened strands, providing an anchor for the next step. Without primers,

the next step cannot begin.

4. A DNA polymerase (yet another molecular machine) binds to each freshly

separated template strand of the DNA; the DNA polymerase traverses the

parent strands only in the 3′ → 5′ direction. Therefore, the DNA poly-

merases attached to the two DNA strands move in opposite directions.

5. At each nucleotide, DNA polymerase matches the template strand’s nu-

cleotide with the complementary base, and adds it to the growing syn-

thesized chain. Prior to moving to the next nucleotide, DNA polymerase

checks to ensure that the correct base has been paired at the current posi-

tion; if not, it removes the incorrect base and retries.

Since DNA polymerase can only traverse DNA in the 3′ → 5′ direction,

and since the two strands of DNA run in opposite directions, only one

strand of the template DNA can be used by polymerase to continuously

synthesize its complement; the other strand requires occasional stopping

and restarting. This results in short segments called Okazaki fragments.

6. Another molecular machine, DNA ligase, repairs the gaps in the newly

synthesized DNA’s backbone, effectively linking together all Okazaki frag-

ments into a single molecule and cleaning any breaks in the primary strand.
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7. When all the DNA has been copied in such a manner, the original strands

separate, so that two pairs of DNA strands are formed, each pair consist-

ing of one old and one newly synthesized strand.

Obviously, an astounding amount of molecular logistics is required to en-

sure completely accurate DNA replication: DNA helicase separates strands,

DNA polymerase ensures proper complementarity, and so on. However, in

terms of the logic of the process, none of this complicated molecular machin-

ery actually matters—to mimic this process in an algorithm we simply need

to take a string which represents the DNA and return a copy of it.

String Duplication Problem:

Given a string of letters, return a copy.

Input: A string s = (s1, s2, . . . , sn) of length n, as an array

of characters.

Output: A string representing a copy of s.

Of course, this is a particularly easy problem to solve and yields absolutely

no interesting algorithmic intuition. However it is still illustrative to write

the pseudocode. The STRINGCOPY program below uses the string t to hold

a copy of the input string s, and returns the result t.

STRINGCOPY(s, n)

1 for i← 1 to n

2 ti ← si

3 return t

While STRINGCOPY is a trivial algorithm, the number of operations that a

real computer performs to copy a string is surprisingly large. For one partic-
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ular computer architecture, we may end up issuing thousands of instructions

to a computer processor. Computer scientists distance themselves from this

complexity by inventing programming languages that allow one to ignore

many of these details. Biologists have not yet invented a similar “language”

to describe biological algorithms working in the cell.

The amount of “intelligence” that the simplest organism, such as a bac-

terium, exhibits to perform any routine task—including replication—is amaz-

ing. Unlike STRINGCOPY, which only performs abstract operations, the bac-

terium really builds new DNA using materials that are floating near the repli-

cation fork. What would happen if it ran out? To prevent this, a bacterium

examines the surroundings, imports new materials from outside, or moves

off to forage for food. Moreover, it waits to begin copying its DNA until

sufficient materials are available. These observations, let alone the coordina-

tion between the individual molecules, lead us to wonder whether even the

most sophisticated computer programs can match the complicated behavior

displayed by even a single-celled organism.

2.3 The Change Problem

The first—and often the most difficult—step in solving a computational prob-

lem is to identify precisely what the problem is. By using the techniques

described in this book, you can then devise an algorithm that solves it. How-

ever, you cannot stop there. Two important questions to ask are: “Does it

work correctly?” and “How long will it take?” Certainly you would not be

satisfied with an algorithm that only returned correct results half the time,

or took 600 years to arrive at an answer. Establishing reasonable expecta-

tions for an algorithm is an important step in understanding how well the

algorithm solves the problem, and whether or not you trust its answer.

A problem describes a class of computational tasks. A problem instance is

one particular input from that class. To illustrate the difference between a

problem and an instance of a problem, consider the following example. You

find yourself in a bookstore buying a fairly expensive pen for $4.23 which

you pay for with a $5 bill (fig. 2.2). You would be due 77 cents in change, and

the cashier now makes a decision as to exactly how you get it.7 You would be

annoyed at a fistful of 77 pennies or 15 nickels and 2 pennies, which raises the

question of how to make change in the least annoying way. Most cashiers try

7. A penny is the smallest denomination in U.S. currency. A dollar is 100 pennies, a quarter is
25 pennies, a dime is 10, and a nickel is 5.



18 2 Algorithms and Complexity

Figure 2.2 The subtle difference between a problem (top) and an instance of a prob-
lem (bottom).

to minimize the number of coins returned for a particular quantity of change.

The example of 77 cents represents an instance of the United States Change

problem, which we can formulate as follows.8

8. Though this problem is not at particularly relevant to biology, it serves as a useful tool to
illustrate a number of different algorithmic approaches.
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United States Change Problem:

Convert some amount of money into the fewest number of coins.

Input: An amount of money, M , in cents.

Output: The smallest number of quarters q, dimes d, nickels

n, and pennies p whose values add to M (i.e., 25q + 10d +

5n + p = M and q + d + n + p is as small as possible).

The algorithm that is used by cashiers all over the United States to solve

this problem is simple:

USCHANGE(M)

1 while M > 0

2 c← Largest coin that is smaller than (or equal to) M

3 Give coin with denomination c to customer

4 M ←M − c

A slightly more detailed description of this algorithm is:

USCHANGE(M)

1 Give the integer part of M/25 quarters to customer.

2 Let remainder be the remaining amount due the customer.

3 Give the integer part of remainder/10 dimes to customer.

4 Let remainder be the remaining amount due the customer.

5 Give the integer part of remainder/5 nickels to customer.

6 Let remainder be the remaining amount due the customer.

7 Give remainder pennies to customer.

A pseudocode version of the above algorithm is:
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USCHANGE(M)

1 r ←M

2 q ← r/25

3 r ← r − 25 · q

4 d← r/10

5 r ← r − 10 · d

6 n← r/5

7 r ← r − 5 · n

8 p← r

9 return (q, d, n, p)

When r/25 is not a whole number, we take the floor of r/25, that is, the

integer part9 of r/25. When the cashier runs USCHANGE(77), it returns three

quarters, no dimes or nickels, and two pennies, which is the desired result

(there is no other combination that has fewer coins and adds to 77 cents).

First, the variable r is set to 77. Then q, the number of quarters, is set to the

value 3, since �77/25� = 3. The variable r is then updated in line 3 to be

equal to 2, which is the difference between the amount of money the cashier

is changing (77 cents) and the three quarters he has chosen to return. The

variables d and n—dimes and nickels, respectively—are subsequently set to

0 in lines 4 and 6, since �2/10� = 0 and �2/5� = 0; r remains unchanged on

lines 5 and 7 since d and n are 0. Finally, the variable p, which stands for

“pennies,” is set to 2, which is the amount in variable r. The values of four

variables—q, d, n, and p—are returned as the solution to the problem.10

2.4 Correct versus Incorrect Algorithms

As presented, USCHANGE lacks elegance and generality. Inherent in the al-

gorithm is the assumption that you are changing United States currency, and

that the cashier has an unlimited supply of each denomination—generally

quarters are harder to come by than dimes. We would like to generalize

the algorithm to accommodate different denominations without requiring a

completely new algorithm for each one. To accomplish this, however, we

must first generalize the problem to provide the algorithm with the denomi-

nations that it can change M into. The new Change problem below assumes

9. The floor of 77/25, denoted �3.08�, is 3.
10. Inevitably, an experienced computer programmer will wring his or her hands at returning
multiple, rather than single, answers from a subroutine. This is not actually a problem, but how
this really works inside a computer is irrelevant to our discussion of algorithms.
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that there are d denominations, rather than the four of the previous prob-

lem. These denominations are represented by an array c = (c1, . . . , cd). For

simplicity, we assume that the denominations are given in decreasing or-

der of value. For example, in the case of the United States Change prob-

lem, c = (25, 10, 5, 1), whereas in the European Union Change problem,

c = (20, 10, 5, 2, 1).

Change Problem:

Convert some amount of money M into given denominations, using the

smallest possible number of coins.

Input: An amount of money M , and an array of d denom-

inations c = (c1, c2, . . . , cd), in decreasing order of value

(c1 > c2 > · · · > cd).

Output: A list of d integers i1, i2, . . . , id such that c1i1+c2i2+

· · ·+ cdid = M , and i1 + i2 + · · ·+ id is as small as possible.

We can solve this problem with an even simpler five line pseudocode than

the previous USCHANGE algorithm.11

BETTERCHANGE(M, c, d)

1 r ←M

2 for k ← 1 to d

3 ik ← r/ck

4 r ← r − ck · ik
5 return (i1, i2, . . . , id)

We say that an algorithm is correct when it can translate every input in-

stance into the correct output. An algorithm is incorrect when there is at least

one input instance for which the algorithm does not produce the correct out-

put. At first this seems unbalanced: if an algorithm fails on even a single

input instance, then the whole algorithm is judged incorrect. This reflects a

critical, yet healthy, pessimism that you should maintain when designing an

algorithm: unless you can justify that an algorithm always returns correct

results, you should consider it to be wrong.12

11. This is a trap! Try to figure out why this is wrong. That is, find some set of inputs for which
this new algorithm does not return the correct answer.
12. Some problems are so difficult, however, that no practical algorithm that is correct has been
found. Often, researchers rely on approximation algorithms (described in chapter 5) to produce
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BETTERCHANGE is not a correct algorithm. Suppose we were changing 40

cents into coins with denominations of c1 = 25, c2 = 20, c3 = 10, c4 = 5,

and c5 = 1. BETTERCHANGE would incorrectly return 1 quarter, 1 dime,

and 1 nickel, instead of 2 twenty-cent pieces. As contrived as this may seem,

in 1875 a twenty-cent coin existed in the United States. Between 1865 and

1889, the U.S. Treasury even produced three-cent coins. How sure can we be

that BETTERCHANGE returns the minimal number of coins for our modern

currency, or for foreign countries? Determining the conditions under which

BETTERCHANGE is a correct algorithm is left as a problem at the end of this

chapter.

To correct the BETTERCHANGE algorithm, we could consider every pos-

sible combination of coins with denominations c1, c2, . . . , cd that adds to M ,

and return the combination with the fewest. We do not need to consider any

combinations with i1 > M/c1, or i2 > M/c2 (in general, ik should not ex-

ceed M/ck), because we would otherwise be returning an amount of money

strictly larger than M . The pseudocode below uses the symbol
∑

, meaning

summation:
∑m

i=1 ai = a1 + a2 + a3 + · · · + am. The pseudocode also uses

the notion of “infinity” (∞) as an initial value for smallestNumberOfCoins;

there are a number of ways to carry this out in a real computer, but the details

are not important here.

BRUTEFORCECHANGE(M, c, d)

1 smallestNumberOfCoins←∞

2 for each (i1, . . . , id) from (0, . . . , 0) to (M/c1, . . . , M/cd)

3 valueOfCoins←
∑d

k=1 ikck

4 if valueOfCoins = M

5 numberOfCoins←
∑d

k=1 ik
6 if numberOfCoins < smallestNumberOfCoins

7 smallestNumberOfCoins← numberOfCoins

8 bestChange← (i1, i2, . . . , id)

9 return (bestChange)

Line 2 iterates over every combination (i1, i2, . . . , id) of the d indices,13 and

results. The implicit acknowledgment that we make in using those types of algorithms is that
some better solution probably exists, but we were unable to find it.
13. An array index points to an element in an array. For example, if c =
{1, 1, 2, 3, 5, 8, 13, 21, 34}, then the index of element 8 is 6, while the index of element 34 is
9.
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stops when it has reached (M/c1, M/c2, . . . , M/cd−1, M/cd):

( 0, 0, . . . , 0, 0 )

( 0, 0, . . . , 0, 1 )

( 0, 0, . . . , 0, 2 )
...

( 0, 0, . . . , 0, M
cd

)

( 0, 0, . . . , 1, 0 )

( 0, 0, . . . , 1, 1 )

( 0, 0, . . . , 1, 2 )
...

( 0, 0, . . . , 1, M
cd

)
...

( M
c1

, M
c2

, . . . , M
cd−1
− 1, 0 )

( M
c1

, M
c2

, . . . , M
cd−1
− 1, 1 )

( M
c1

, M
c2

, . . . , M
cd−1
− 1, 2 )

...

( M
c1

, M
c2

, . . . , M
cd−1
− 1, M

cd
)

( M
c1

, M
c2

, . . . , M
cd−1

, 0 )

( M
c1

, M
c2

, . . . , M
cd−1

, 1 )

( M
c1

, M
c2

, . . . , M
cd−1

, 2 )

...

( M
c1

, M
c2

, . . . , M
cd−1

, M
cd

)

We have omitted some details from the BRUTEFORCECHANGE algorithm.

For example, there is no pseudocode operation that performs summation

of d integers at one time, nor does it include any way to iterate over every

combination of d indices. These subroutines are left as problems at the end of

this chapter because they are instructive to work out in detail. We have made

the hidden assumption that given any set of denominations we can change

any amount of money M . This may not be true, for example in the (unlikely)

case that the monetary system has no pennies (that is, cd > 1).

How do we know that BRUTEFORCECHANGE does not suffer from the

same problem as BETTERCHANGE did, namely that some input instance re-

turns an incorrect result? Since BRUTEFORCECHANGE explores all possible

combinations of denominations, it will eventually come across an optimal

solution and record it as such in the bestChange array. Any combination of

coins that adds to M must have at least as many coins as the optimal combi-

nation, so BRUTEFORCECHANGE will never overwrite bestChange with a
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suboptimal solution.

We revisit the Change problem in future chapters to improve on this so-

lution. So far we have answered only one of the two important algorithmic

questions (“Does it work?”, but not “How fast is it?”). We shall see that

BRUTEFORCECHANGE is not particularly speedy.

2.5 Recursive Algorithms

Recursion is one of the most ubiquitous algorithmic concepts. Simply, an

algorithm is recursive if it calls itself.

The Towers of Hanoi puzzle, introduced in 1883 by a French mathematician,

consists of three pegs, which we label from left to right as 1, 2, and 3, and

a number of disks of decreasing radius, each with a hole in the center. The

disks are initially stacked on the left peg (peg 1) so that smaller disks are on

top of larger ones. The game is played by moving one disk at a time between

pegs. You are only allowed to place smaller disks on top of larger ones, and

any disk may go onto an empty peg. The puzzle is solved when all of the

disks have been moved from peg 1 to peg 3.

Towers of Hanoi Problem:

Output a list of moves that solves the Towers of Hanoi.

Input: An integer n.

Output: A sequence of moves that will solve the n-disk

Towers of Hanoi puzzle.

Solving the puzzle with one disk is easy: move the disk to the right peg.

The two-disk puzzle is not much harder: move the small disk to the middle

peg, then the large disk to the right peg, then the small disk to the right peg

to rest on top of the large disk. The three-disk puzzle is somewhat harder,

but the following sequence of seven moves solves it:

• Move disk from peg 1 to peg 3

• Move disk from peg 1 to peg 2
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• Move disk from peg 3 to peg 2

• Move disk from peg 1 to peg 3

• Move disk from peg 2 to peg 1
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• Move disk from peg 2 to peg 3

• Move disk from peg 1 to peg 3

Now we will figure out how many steps are required to solve a four-disk

puzzle. You cannot complete this game without moving the largest disk.

However, in order to move the largest disk, we first had to move all the

smaller disks to an empty peg. If we had four disks instead of three, then

we would first have to move the top three to an empty peg (7 moves), then

move the largest disk (1 move), then again move the three disks from their

temporary peg to rest on top of the largest disk (another 7 moves). The whole

procedure will take 7 + 1 + 7 = 15 moves. More generally, to move a stack

of size n from the left to the right peg, you first need to move a stack of size

n − 1 from the left to the middle peg, and then from the middle peg to the

right peg once you have moved the nth disk to the right peg. To move a stack

of size n − 1 from the middle to the right, you first need to move a stack of

size n − 2 from the middle to the left, then move the (n − 1)th disk to the

right, and then move the stack of n− 2 from the left to the right peg, and so

on.

At first glance, the Towers of Hanoi problem looks difficult. However, the

following recursive algorithm solves the Towers of Hanoi problem with n

disks. The iterative version of this algorithm is more difficult to write and

analyze, so we do not present it here.

HANOITOWERS(n, fromPeg, toPeg)

1 if n = 1

2 output “Move disk from peg fromPeg to peg toPeg”

3 return

4 unusedPeg← 6− fromPeg − toPeg

5 HANOITOWERS(n− 1, fromPeg, unusedPeg)

6 output “Move disk from peg fromPeg to peg toPeg”

7 HANOITOWERS(n− 1, unusedPeg, toPeg)

8 return

The variables fromPeg, toPeg, and unusedPeg refer to the three different

pegs so that HANOITOWERS(n, 1, 3) moves n disks from the first peg to the

third peg. The variable unusedPeg represents which of the three pegs can



2.5 Recursive Algorithms 27

Table 2.1 The result of 6 − fromPeg − toPeg for all possible values of fromPeg
and toPeg.

fromPeg toPeg unusedPeg
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

serve as a temporary destination for the first n−1 disks. Note that fromPeg+

toPeg+unusedPeg is always equal to 1+2+3 = 6, so the value of the variable

unusedPeg can be computed as 6 − fromPeg − toPeg which is determined

in line 4 (see table 2.1). The subsequent statements (lines 5–7) then solve the

smaller problem of moving the stack of size n−1 first to the temporary space,

moving the largest disk, and then moving the n − 1 small disks to the final

destination. Note that we do not have to specify which disk the player should

move from fromPeg to toPeg: it is always the top disk currently residing on

fromPeg that gets moved.

Although the solution can be expressed in 8 lines of pseudocode, it re-

quires a surprisingly long time to run. To solve a five-disk tower requires

31 moves, but to solve a hundred-disk tower would require more moves

than there are atoms in the universe. The fast growth of the number of

moves that HANOITOWERS requires is easy to see by noticing that every time

HANOITOWERS(n, 1, 3) is called, it calls itself twice for n − 1, which in turn

triggers four calls for n − 2, and so on. We can illustrate this situation in a

recursion tree, which is shown in figure 2.3. A call to HANOITOWERS(4, 1, 3)

results in calls HANOITOWERS(3, 1, 2) and HANOITOWERS(3, 2, 3); each of

these results in calls to HANOITOWERS(2, 1, 3), HANOITOWERS(2, 3, 2) and

HANOITOWERS(2, 2, 1), HANOITOWERS(2, 1, 3), and so on. Each call to the

subroutine HANOITOWERS requires some amount of time, so we would like

to know how much time the algorithm will take. This is determined in sec-

tion 2.7.
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(4, 1, 3)

(3, 1, 2)

(2, 1, 3)

(1, 1, 2) (1, 2, 3)

(2, 3, 2)

(1, 3, 1) (1, 1, 2)

(3, 2, 3)

(2, 2, 1)

(1, 2, 3) (1, 3, 1)

(2, 1, 3)

(1, 1, 2) (1, 2, 3)

Figure 2.3 The recursion tree for a call to HANOITOWERS (4, 1, 3), which solves
the Towers of Hanoi problem of size 4. At each point in the tree, (i, j, k) stands for
HANOITOWERS (i, j, k).

2.6 Iterative versus Recursive Algorithms

Recursive algorithms can often be rewritten to use iterative loops instead,

and vice versa; it is a matter of elegance and clarity that dictates which tech-

nique is easier to use. Consider the problem of sorting a list of integers into

ascending order.
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Sorting Problem:

Sort a list of integers.

Input: A list of n distinct integers a = (a1, a2, . . . , an).

Output: Sorted list of integers, that is, a reordering b =

(b1, b2, . . . , bn) of integers from a such that b1 < b2 < · · · <

bn.

The following algorithm, called SELECTIONSORT, is a naive but simple it-

erative method to solve the Sorting problem. First, SELECTIONSORT finds the

smallest element in a, and moves it to the first position by swapping it with

whatever happens to be in the first position (i.e., a1). Next, SELECTIONSORT

finds the second smallest element in a, and moves it to the second position,

again by swapping with a2. At the ith iteration, SELECTIONSORT finds the ith

smallest element in a, and moves it to the ith position. This is an intuitive ap-

proach at sorting, but is not the best-known one. If a = (7, 92, 87, 1, 4, 3, 2, 6),

SELECTIONSORT(a, 8) takes the following seven steps:

(7, 92, 87, 1, 4, 3, 2, 6)

(1, 92, 87, 7, 4, 3, 2, 6)

(1, 2,87, 7, 4, 3, 92, 6)

(1, 2, 3,7, 4, 87, 92, 6)

(1, 2, 3, 4,7, 87, 92, 6)

(1, 2, 3, 4, 6,87, 92, 7)

(1, 2, 3, 4, 6, 7,92, 87)

(1, 2, 3, 4, 6, 7, 87, 92)

SELECTIONSORT(a, n)

1 for i← 1 to n− 1

2 aj ← Smallest element among ai, ai+1, . . . an.

3 Swap ai and aj

4 return a

Line 2 of SELECTIONSORT finds the smallest element over all elements of a

that come after i, and fits nicely into a subroutine as follows. The subroutine
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INDEXOFMIN(array, f irst, last) works with array and returns the index of

the smallest element between positions first and last by examining each

element from arrayfirst to arraylast.

INDEXOFMIN(array, f irst, last)

1 index← first

2 for k ← first + 1 to last

3 if arrayk < arrayindex

4 index← k

5 return index

For example, if a = (7, 92, 87, 1, 4, 3, 2, 6), then INDEXOFMIN(a, 1, 8) would

be 4, since a4 = 1 is smaller than any other element in (a1, a2, . . . , a8). Sim-

ilarly, INDEXOFMIN(a, 5, 8) would be 7, since a7 = 2 is smaller than any

other element in (a5, a6, a7, a8). We can now write SELECTIONSORT using

this subroutine.

SELECTIONSORT(a, n)

1 for i← 1 to n− 1

2 j ← INDEXOFMIN(a, i, n)

3 Swap elements ai and aj

4 return a

To illustrate the similarity between recursion and iteration, we could in-

stead have written SELECTIONSORT recursively (reusing INDEXOFMIN from

above):

RECURSIVESELECTIONSORT(a, f irst, last)

1 if first < last

2 index← INDEXOFMIN(a, f irst, last)

3 Swap afirst with aindex

4 a← RECURSIVESELECTIONSORT(a, f irst + 1, last)

5 return a

In this case, RECURSIVESELECTIONSORT(a, 1, n) performs exactly the same

operations as SELECTIONSORT(a, n).

It may seem contradictory at first that RECURSIVESELECTIONSORT calls it-

self to get an answer, but the key to understanding this algorithm is to realize

that each time it is called, it works on a smaller set of elements from the list

until it reaches the end of the list; at the end, it no longer needs to recurse.
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The reason that the recursion does not continue indefinitely is because the al-

gorithm works toward a point at which it “bottoms out” and no longer needs

to recurse—in this case, when first = last.

As convoluted as it may seem at first, recursion is often the most natural

way to solve many computational problems as it was in the Towers of Hanoi

problem, and we will see many recursive algorithms in the coming chapters.

However, recursion can often lead to very inefficient algorithms, as this next

example shows.

The Fibonacci sequence is a mathematically important, yet very simple,

progression of numbers. The series was first studied in the thirteenth century

by the early Italian mathematician Leonardo Pisano Fibonacci, who tried to

compute the number of offspring of a pair of rabbits over the course of a

year (fig. 2.4). Fibonacci reasoned that one pair of adult rabbits could create

a new pair of rabbits in about the same time that it takes bunnies to grow

into adults. Thus, in any given period, each pair of adult rabbits produces

a new pair of baby rabbits, and all baby rabbits grow into adult rabbits.14 If

we let Fn represent the number of rabbits in period n, then we can determine

the value of Fn in terms of Fn−1 and Fn−2. The number of adult rabbits

at time period n is equal to the number of rabbits (adult and baby) in the

previous time period, or Fn−1. The number of baby rabbits at time period

n is equal to the number of adult rabbits in Fn−1, which is Fn−2. Thus, the

total number of rabbits at time period n is the number of adults plus the

number of babies, that is, Fn = Fn−1 +Fn−2, with F1 = F2 = 1. Consider the

following problem:

Fibonacci Problem:

Calculate the nth Fibonacci number.

Input: An integer n.

Output: The nth Fibonacci number Fn = Fn−1 +Fn−2 (with

F1 = F2 = 1).

The simplest recursive algorithm, shown below, calculates Fn by calling

itself to compute Fn−1 and Fn−2. As figure 2.5 shows, this approach results

in a large amount of duplicated effort: in calculating Fn−1 we find the value

14. Fibonacci faced the challenge of adequately formulating the problem he was studying, one
of the more difficult parts of bioinformatics research. The Fibonacci view of rabbit life is overly
simplistic and inadequate: in particular, rabbits never die in his model. As a result, after just a
few generations, the number of rabbits will be larger than the number of atoms in the universe.
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1 pair 1 pair 2 pairs 3 pairs 5 pairs 8 pairs

Figure 2.4 Fibonacci’s model of rabbit expansion. A dashed line from a pair of big
rabbits to a pair of little rabbits means that the pair of adult rabbits had bunnies.

of Fn−2, but we calculate it again from scratch in order to determine Fn.

Therefore, most of the effort in this algorithm is wasted recomputing values

that are already known.
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RECURSIVEFIBONACCI(n)

1 if n = 1 or n = 2

2 return 1

3 else

4 a← RECURSIVEFIBONACCI(n− 1)

5 b← RECURSIVEFIBONACCI(n− 2)

6 return a + b

However, by using an array to save previously computed Fibonacci num-

bers, we can calculate the nth Fibonacci number without repeating work.

FIBONACCI(n)

1 F1 ← 1

2 F2 ← 1

3 for i← 3 to n

4 Fi ← Fi−1 + Fi−2

5 return Fn

In the language of the next section, FIBONACCI is a linear-time algorithm,

while RECURSIVEFIBONACCI is an exponential-time algorithm. What this

example has shown is not that an iterative algorithm is superior to a recursive

algorithm, but that the two methods may lead to algorithms that require

different amounts of time to solve the same problem instance.

2.7 Fast versus Slow Algorithms

Real computers require a certain amount of time to perform an operation

such as addition, subtraction, or testing the conditions in a while loop. A su-

percomputer might take 10−9 second to perform an addition, while a hand

calculator might take 10−5 second. Suppose that you had a computer that

took 10−9 second to perform an elementary operation such as addition, and

that you knew how many operations a particular algorithm would perform.

You could estimate the running time of the algorithm simply by taking the

product of the number of operations and the time per operation. However,

computing devices are constantly improving, leading to a decreasing time

per operation, so your notion of the running time would soon be outdated.

Rather than computing an algorithm’s running time on every computer, we

rely on the total number of operations that the algorithm performs to de-
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n

n− 1

n− 2

n− 3 n− 4

n− 3

n− 4 n− 5

n− 2

n− 3

n− 4 n− 5

n− 4

n− 5 n− 6

Figure 2.5 The recursion tree for RECURSIVEFIBONACCI(n). Vertices enclosed in
dashed circles represent duplicated effort—the same value had been calculated in
another vertex in the tree at a higher level. As the tree grows larger, the number of
dashed vertices increases exponentially (2i−2 at level i), while the number of regular
vertices increases linearly (2 per level).

scribe its running time, since this is an attribute of the algorithm, and not an

attribute of the computer you happen to be using.

Unfortunately, determining how many operations an algorithm will per-

form is not always easy. We can see that USCHANGE will always perform 17

operations (one for each assignment, subtraction, multiplication, and divi-

sion), but this is a very simple algorithm. An algorithm like SELECTIONSORT,

on the other hand, will perform a different number of operations depending

on what it receives as input: it will take less time to sort a 5-element list than

it will to sort a 5000-element list. You might be tempted to think that SE-

LECTIONSORT will take 1000 times longer to sort a 5000-element array than

it will to sort a 5-element array. But you would be wrong. As we will see,

it actually takes on the order of 10002 = 1, 000, 000 times longer, no matter

what kind of computer you use. It is typically the case that the larger the

input is, the longer the algorithm takes to process it.

If we know how to compute the number of basic operations that an al-

gorithm performs, then we have a basis to compare it against a different

algorithm that solves the same problem. Rather than tediously count every
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multiplication and addition, we can perform this comparison by gaining a

high-level understanding of the growth of each algorithm’s operation count

as the size of the input increases. To illustrate this, suppose an algorithm A

performs 11n3 operations on an input of size n, and a different algorithm,

B, solves the same problem in 99n2 + 7 operations. Which algorithm, A or

B, is faster? Although, A may be faster than B for some small n (e.g., for

n between 0 and 9), B will become faster with large n (e.g., for all n ≥ 10).

Since n3 is, in some sense, a “faster-growing” function than n2 with respect

to n, the constants 11, 99, and 7 do not affect the competition between the

two algorithms for large n (see figure 2.6). We refer to A as a cubic algo-

rithm and to B as a quadratic algorithm, and say that A is less efficient than

B because it performs more operations to solve the same problem when n is

large. Thus, we will often be somewhat imprecise when we count operations

in algorithms—the behavior of algorithms on small inputs does not matter.

Let us estimate how long BRUTEFORCECHANGE will take on an input in-

stance of M cents, and denominations (c1, c2, . . . , cd). To calculate the total

number of operations in the for loop, we can take the approximate num-

ber of operations performed in each iteration and multiply this by the total

number of iterations. Since there are roughly M
c1
· M

c2
· · · M

cd
iterations, the for

loop performs on the order of d · Md

c1·c2···cd
operations, which dwarfs the other

operations in the algorithm.

This type of algorithm is often referred to as an exponential algorithm in

contrast to quadratic, cubic, or other polynomial algorithms. The expres-

sion for the running time of exponential algorithms includes a term like Md,

where d is a parameter of the problem (i.e., d may deliberately be made arbi-

trarily large by changing the input to the algorithm), while the running time

of a polynomial algorithm is bounded by a term like Mk where k is a con-

stant not related to the size of any parameters. For example, an algorithm

with running time M1 (linear), M2 (quadratic), M3 (cubic), or even M2005

is polynomial. Of course, an algorithm with running time M2005 is not very

practical, perhaps less so than some exponential algorithms, and much ef-

fort in computer science goes into designing faster and faster polynomial

algorithms. Since d may be large when the algorithm is called with a long

list of denominations [e.g., c = (1, 2, 3, 4, 5, . . . , 100)], we see that BRUTE-

FORCECHANGE can take a very long time to execute.

We have seen that the running time of an algorithm is often related to the

size of its input. However, the running time of an algorithm can also vary

among inputs of the same size. For example, suppose SELECTIONSORT first
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0

4000

8000

12000

16000

20000

99x2 + 7

11x3

6000 logx

x

Figure 2.6 A comparison of a logarithmic (h(x) = 6000 log x), a quadratic (f(x) =
99x2 + 7), and a cubic (g(x) = 11x3) function. After x = 8, both f(x) and g(x)
are larger than h(x). After x = 9, g(x) is larger than f(x), even though for values 0
through 9, f(x) is larger than g(x). The functions that we chose here are irrelevant and
arbitrary: any three (positive-valued) functions with leading terms of log x, x2, and
x3 respectively would exhibit the same basic behavior, though the crossover points
might be different.

checked to see if its input were already sorted. It would take this modi-

fied SELECTIONSORT less time to sort an ordered list of 5000 elements than

it would to sort an unordered list of 5000 elements. As we see in the next

section, when we speak of the running time of an algorithm as a function of

input size, we refer to that one input—or set of inputs—of a particular size

that the algorithm will take the longest to process. In the modified SELEC-

TIONSORT, that input would be any not-already-sorted list.
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2.8 Big-O Notation

Computer scientists use the Big-O notation to describe concisely the running

time of an algorithm. If we say that the running time of an algorithm is

quadratic, or O(n2), it means that the running time of the algorithm on an in-

put of size n is limited by a quadratic function of n. That limit may be 99.7n2

or 0.001n2 or 5n2+3.2n+99993; the main factor that describes the growth rate

of the running time is the term that grows the fastest with respect to n, for

example n2 when compared to terms like 3.2n, or 99993. All functions with

a leading term of n2 have more or less the same rate of growth, so we lump

them into one class which we call O(n2). The difference in behavior between

two quadratic functions in that class, say 99.7n2 and 5n2 + 3.2n + 99993, is

negligible when compared to the difference in behavior between two func-

tions in different classes, say 5n2 + 3.2n and 1.2n3. Of course, 99.7n2 and

5n2 are different functions and we would prefer an algorithm that takes 5n2

operations to an algorithm that takes 99.7n2. However, computer scientists

typically ignore the leading constant and pay attention only to the fastest-

growing term.

When we write f(n) = O(n2), we mean that the function f(n) does not

grow faster than a function with a leading term of cn2, for a suitable choice

of the constant c. A formal definition of Big-O notation, which is helpful in

analyzing an algorithm’s running time, is given in figure 2.7.

The relationship f(n) = O(n2) tells us that f(n) does not grow faster than

some quadratic function, but it does not tell us whether f(n) grows slower

than any quadratic function. In other words, 2n = O(n2), but this valid

statement is not as informative as it could be; 2n = O(n) is more precise.

We say that the Big-O relationship establishes an upper bound on the growth

of a function: if f(n) = O(g(n)), then the function f grows no faster than

the function g. A similar concept exists for lower bounds, and we use the

notation f(n) = Ω(g(n)) to indicate that f grows no slower than g. If, for

some function g, an algorithm’s time grows no faster than g and no slower

than g, then we say that g is a tight bound for the algorithm’s running time.

For example, if an algorithm requires 2n log n time, then technically, it is an

O(n2) algorithm even though this is a misleadingly loose bound. A tight

bound on the algorithm’s running time is actually O(n log n). Unfortunately,

it is often easier to prove a loose bound than a tight one.

In keeping with the healthy dose of pessimism toward an algorithm’s cor-

rectness, we measure an algorithm’s efficiency as its worst case efficiency,

which is the largest amount of time an algorithm can take given the worst
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A function f(x) is “Big-O of g(x)”, or O(g(x)), when f(x) is less than or
equal to g(x) to within some constant multiple c. If there are a few points
x such that f(x) is not less than c · g(x), this does not affect our overall
understanding of f ’s growth. Mathematically speaking, the Big-O notation
deals with asymptotic behavior of a function as its input grows arbitrarily
large, beyond some (arbitrary) value x0.

Definition 2.1 A function f(x) is O (g(x)) if there are positive real constants c
and x0 such that f(x) ≤ cg(x) for all values of x ≥ x0.

For example, the function 3x = O(.2x2), but at x = 1, 3x > .2x2. However,
for all x > 15, .2x2 > 3x. Here, x0 = 15 represents the point at which 3x
is bounded above by .2x2. Notice that this definition blurs the advantage
gained by mere constants: 5x2 = O(x2), even though it would be wrong to
say that 5x2 ≤ x2.
Like Big-O notation, which governs an upper bound on the growth of a
function, we can define a relationship that reflects a lower bound on the
growth of a function.

Definition 2.2 A function f(x) is Ω (g(x)) if there are positive real constants c
and x0 such that f(x) ≥ cg(x) for all values of x ≥ x0.

If f(x) = Ω(g(x)), then f is said to grow “faster” than g.
Now, if f(x) = O(g(x)) and f(x) = Ω(g(x)) then we know very precisely
how f(x) grows with respect to g(x). We call this the Θ relationship.

Definition 2.3 A function f(x) is Θ (g(x)) if f(x) = O (g(x)) and f(x) =
Ω (g(x)).

Figure 2.7 Definitions of the Big-O, Ω, and Θ notations.

possible input of a given size. The advantage to considering the worst case

efficiency of an algorithm is that we are guaranteed that our algorithm will

never behave worse than our worst case estimate, so we are never surprised

or disappointed. Thus, when we derive a Big-O bound, it is a bound on the

worst case efficiency.

We illustrate the above notion of efficiency by analyzing the two sorting

algorithms, SELECTIONSORT and RECURSIVESELECTIONSORT. The parame-

ter that describes the input size is n, the number of integers in the input list,

so we wish to determine the efficiency of the algorithms as a function of n.
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The SELECTIONSORT algorithm makes n − 1 iterations in the for loop and

analyzes n − i + 1 elements ai, . . . , an in iteration i. In the first iteration, it

analyzes all n elements, at the next one it analyzes n− 1 elements, and so on.

Therefore, the approximate number of operations performed in SELECTION-

SORT is: n+(n−1)+(n−2)+· · ·+2+1=1+2+· · ·+n = n(n+1)/2.15 At each

iteration, the same swapping of array elements occurs, so SELECTIONSORT

requires roughly n(n + 1)/2 + 3n operations, which is O(n2) operations.16

Again, because we can safely ignore multiplicative constants and terms that

are smaller than the fastest-growing term, our calculations are somewhat im-

precise but yield an overall picture of the function’s growth.

We will now consider RECURSIVESELECTIONSORT. Let T (n) denote the

amount of time that RECURSIVESELECTIONSORT takes on an n-element ar-

ray. Calling RECURSIVESELECTIONSORT on an n-element array involves find-

ing the smallest element (roughly n operations), followed by a recursive call

on a list with n − 1 elements, which performs T (n − 1) operations. Calling

RECURSIVESELECTIONSORT on a 1-element list requires 1 operation (one for

the if statement), so the following equations hold.

T (n) = n + T (n− 1)

T (1) = 1

Therefore,

T (n) = n + T (n− 1)

= n + (n− 1) + T (n− 2)

= n + (n− 1) + (n− 2) + · · ·+ 3 + 2 + T (1)

= O(n2).

Thus, calling RECURSIVESELECTIONSORT on an n element array will require

roughly the same O(n2) time as calling SELECTIONSORT. Since RECURSIVES-

ELECTIONSORT always performs the same operations on a list of size n, we

can be certain that this is a tight analysis of the running time of the algo-

rithm. This is why using SELECTIONSORT to sort a 5000-element array takes

1, 000, 000 times longer than it does to sort a 5-element array: 5, 0002 =

1, 000, 000 · 52.

15. Here we rely on the fact that 1 + 2 + · · · + n = n(n + 1)/2.
16. Each swapping requires three (rather than two) operations.
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Of course, this does not show that the Sorting problem requires O(n2) time

to solve. All we have shown so far is that two particular algorithms, RECUR-

SIVESELECTIONSORT and SELECTIONSORT, require O(n2) time; in fact, we

will see a different sorting algorithm in chapter 7 that runs in O(n log n) time.

We can use the same technique to calculate the running time of HANOITOW-

ERS called on a tower of size n. Let T (n) denote the number of disk moves

that HANOITOWERS(n) performs. The following equations hold.

T (n) = 2 · T (n− 1) + 1

T (1) = 1

This recurrence relation produces the following sequence: 1, 3, 7, 15, 31, 63,

and so on. We can solve it by adding 1 to both sides and noticing

T (n) + 1 = 2 · T (n− 1) + 1 + 1 = 2(T (n− 1) + 1).

If we introduce a new variable, U(n) = T (n) + 1, then U(n) = 2 · U(n − 1).

Thus, we have changed the problem to the following recurrence relation.

U(n) = 2 · U(n− 1)

U(1) = 2

This gives rise to the sequence 2, 4, 8, 16, 32, 64, . . . and it is easy to see that

U(n) = 2n. Since T (n) = U(n) − 1, we see that T (n) = 2n − 1. Thus,

HANOITOWERS is an exponential algorithm, which we hinted at in section 2.5.

2.9 Algorithm Design Techniques

Over the last forty years, computer scientists have discovered that many al-

gorithms share similar ideas, even though they solve very different prob-

lems. There appear to be relatively few basic techniques that can be applied

when designing an algorithm, and we cover some of them later in this book

in varying degrees of detail. For now we will mention the most common

algorithm design techniques, so that future examples can be categorized in

terms of the algorithm’s design methodology.

To illustrate the design techniques, we will consider a very simple problem

that plagues nearly everyone with a cordless phone. Suppose your cordless

phone rings, but you have misplaced the handset somewhere in your home.
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How do you find it? To complicate matters, you have just walked into your

home with an armful of groceries, and it is dark out, so you cannot rely solely

on eyesight.

2.9.1 Exhaustive Search

An exhaustive search, or brute force, algorithm examines every possible alter-

native to find one particular solution.

For example, if you used the brute force algorithm to find the ringing tele-

phone, you would ignore the ringing of the phone, as if you could not hear

it, and simply walk over every square inch of your home checking to see

if the phone was present. You probably would not be able to answer the

phone before it stopped ringing, unless you were very lucky, but you would

be guaranteed to eventually find the phone no matter where it was.

BRUTEFORCECHANGE is a brute force algorithm, and chapter 4 introduces

some additional examples of such algorithms—these are the easiest algo-

rithms to design and understand, and sometimes they work acceptably for

certain practical problems in biology. In general, though, brute force algo-

rithms are too slow to be practical for anything but the smallest instances
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and we will spend most of this book demonstrating how to avoid the brute

force algorithms or how to finesse them into faster versions.

2.9.2 Branch-and-Bound Algorithms

In certain cases, as we explore the various alternatives in a brute force algo-

rithm, we discover that we can omit a large number of alternatives, a tech-

nique that is often called branch-and-bound, or pruning.

Suppose you were exhaustively searching the first floor and heard the

phone ringing above your head. You could immediately rule out the need

to search the basement or the first floor. What may have taken three hours

may now only take one, depending on the amount of space that you can rule

out.
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2.9.3 Greedy Algorithms

Many algorithms are iterative procedures that choose among a number of

alternatives at each iteration. For example, a cashier can view the Change

problem as a series of decisions he or she has to make: which coin (among d

denominations) to return first, which to return second, and so on. Some of

these alternatives may lead to correct solutions while others may not. Greedy

algorithms choose the “most attractive” alternative at each iteration, for ex-

ample, the largest denomination possible. USCHANGE used quarters, then

dimes, then nickels, and finally pennies (in that order) to make change for M .

By greedily choosing the largest denomination first, the algorithm avoided

any combination of coins that included fewer than three quarters to make

change for an amount larger than or equal to 75 cents. Of course, we showed

that the generalization of this greedy strategy, BETTERCHANGE, produced

incorrect results when certain new denominations were included.

In the telephone example, the corresponding greedy algorithm would sim-

ply be to walk in the direction of the telephone’s ringing until you found it.

The problem here is that there may be a wall (or an expensive and fragile

vase) between you and the phone, preventing you from finding it. Unfortu-

nately, these sorts of difficulties frequently occur in most realistic problems.

In many cases, a greedy approach will seem “obvious” and natural, but will

be subtly wrong.

2.9.4 Dynamic Programming

Some algorithms break a problem into smaller subproblems and use the so-

lutions of the subproblems to construct the solution of the larger one. During

this process, the number of subproblems may become very large, and some

algorithms solve the same subproblem repeatedly, needlessly increasing the
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running time. Dynamic programming organizes computations to avoid re-

computing values that you already know, which can often save a great deal

of time. The Ringing Telephone problem does not lend itself to a dynamic

programming solution, so we consider a different problem to illustrate the

technique.

Suppose that instead of answering the phone you decide to play the “Rocks”

game from the previous chapter with two piles of rocks, say ten in each. We

remind the reader that in each turn, one player may take either one rock

(from either pile) or two rocks (one from each pile). Once the rocks are taken,

they are removed from play. The player that takes the last rock wins the

game. You make the first move.

To find the winning strategy for the 10+10 game, we can construct a table,

which we can call R, shown below. Instead of solving a problem with 10

rocks in each pile, we will solve a more general problem with n rocks in one

pile and m rocks in another (the n + m game) where n and m are arbitrary.

If Player 1 can always win the game of 5 + 6, then we would say R5,6 = W ,

but if Player 1 has no winning strategy against a player that always makes

the right moves, we would write R5,6 = L. Computing Rn,m for an arbitrary

n and m seems difficult, but we can build on smaller values. Some games,

notably R0,1, R1,0, and R1,1, are clearly winning propositions for Player 1

since in the first move, Player 1 can win. Thus, we fill in entries (1, 1), (0, 1)

and (1, 0) as W .

0 1 2 3 4 5 6 7 8 9 10

0 W

1 W W

2

3

4

5

6

7

8

9

10

After the entries (0, 1), (1, 0), and (1, 1) are filled, one can try to fill other

entries. For example, in the (2, 0) case, the only move that Player 1 can make

leads to the (1, 0) case that, as we already know, is a winning position for
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his opponent. A similar analysis applies to the (0, 2) case, leading to the

following result:

0 1 2 3 4 5 6 7 8 9 10

0 W L

1 W W

2 L

3

4

5

6

7

8

9

10

In the (2, 1) case, Player 1 can make three different moves that lead respec-

tively to the games of (1, 1), (2, 0), or (1, 0). One of these cases, (2, 0), leads to

a losing position for his opponent and therefore (2, 1) is a winning position.

The case (1, 2) is symmetric to (2, 1), so we have the following table:

0 1 2 3 4 5 6 7 8 9 10

0 W L

1 W W W

2 L W

3

4

5

6

7

8

9

10

Now we can fill in R2,2. In the (2, 2) case, Player 1 can make three different

moves that lead to entries (2, 1), (1, 2), and (1, 1). All of these entries are

winning positions for his opponent and therefore R2,2 = L
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0 1 2 3 4 5 6 7 8 9 10

0 W L

1 W W W

2 L W L

3

4

5

6

7

8

9

10

We can proceed filling in R in this way by noticing that for the entry (i, j)

to be L, the entries above, diagonally to the left and directly to the left, must

be W . These entries ((i− 1, j), (i− 1, j − 1), and (i, j − 1)) correspond to the

three possible moves that player 1 can make.

0 1 2 3 4 5 6 7 8 9 10

0 W L W L W L W L W L

1 W W W W W W W W W W W

2 L W L W L W L W L W L

3 W W W W W W W W W W W

4 L W L W L W L W L W L

5 W W W W W W W W W W W

6 L W L W L W L W L W L

7 W W W W W W W W W W W

8 L W L W L W L W L W L

9 W W W W W W W W W W W

10 L W L W L W L W L W L

The ROCKS algorithm determines if Player 1 wins or loses. If Player 1

wins in an n+m game, ROCKS returns W . If Player 1 loses, ROCKS returns L.

The ROCKS algorithm introduces an artificial initial condition, R0,0 = L to

simplify the pseudocode.
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ROCKS(n, m)

1 R0,0 = L

2 for i← 1 to n

3 if Ri−1,0 = W

4 Ri,0 ← L

5 else

6 Ri,0 ←W

7 for j ← 1 to m

8 if R0,j−1 = W

9 R0,j ← L

10 else

11 R0,j ←W

12 for i← 1 to n

13 for j ← 1 to m

14 if Ri−1,j−1 = W and Ri,j−1 = W and Ri−1,j = W

15 Ri,j ← L

16 else

17 Ri,j ←W

18 return Rn,m

In point of fact, a faster algorithm to solve the Rocks puzzle relies on the

simply pattern in R, and checks to see if n and m are both even, in which

case the player loses.

FASTROCKS(n, m)

1 if n and m are both even

2 return L

3 else

4 return W

However, though FASTROCKS is more efficient than ROCKS, it may be dif-

ficult to modify it for other games, for example a game in which each player

can move up to three rocks at a time from the piles. This is one example

where the slower algorithm is more instructive than a faster one. But obvi-

ously, it is usually better to use the faster one when you really need to solve

the problem.



48 2 Algorithms and Complexity

2.9.5 Divide-and-Conquer Algorithms

One big problem may be hard to solve, but two problems that are half the

size may be significantly easier. In these cases, divide-and-conquer algorithms

fare well by doing just that: splitting the problem into smaller subproblems,

solving the subproblems independently, and combining the solutions of sub-

problems into a solution of the original problem. The situation is usually

more complicated than this and after splitting one problem into subprob-

lems, a divide-and-conquer algorithm usually splits these subproblems into

even smaller sub-subproblems, and so on, until it reaches a point at which

it no longer needs to recurse. A critical step in many divide-and-conquer

algorithms is the recombining of solutions to subproblems into a solution

for a larger problem. Often, this merging step can consume a considerable

amount of time. We will see examples of this technique in chapter 7.

2.9.6 Machine Learning

Another approach to the phone search problem is to collect statistics over the

course of a year about where you leave the phone, learning where the phone

tends to end up most of the time. If the phone was left in the bathroom

80% of the time, in the bedroom 15% of the time, and in the kitchen 5% of

the time, then a sensible time-saving strategy would be to start the search in

the bathroom, continue to the bedroom, and finish in the kitchen. Machine

learning algorithms often base their strategies on the computational analysis

of previously collected data.

2.9.7 Randomized Algorithms

If you happen to have a coin, then before even starting to search for the

phone, you could toss it to decide whether you want to start your search

on the first floor if the coin comes up heads, or on the second floor if the coin

comes up tails. If you also happen to have a die, then after deciding on the

second floor, you could roll it to decide in which of the six rooms on the sec-

ond floor to start your search.17 Although tossing coins and rolling dice may

be a fun way to search for the phone, it is certainly not the intuitive thing

to do, nor is it at all clear whether it gives you any algorithmic advantage

over a deterministic algorithm. We will learn how randomized algorithms

17. Assuming that you have a large house, of course.
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help solve practical problems, and why some of them have a competitive

advantage over deterministic algorithms.

2.10 Tractable versus Intractable Problems

We have described a correct algorithm that solves the Change problem, but

requires exponential time to do so. This does not mean that all algorithms

that solve the Change problem will require exponential time. Showing that a

particular algorithm requires exponential time is much different than show-

ing that a problem cannot be solved by any algorithm in less than exponential

time. For example, we showed that RECURSIVEFIBONACCI required expo-

nential time to compute the nth Fibonacci number, while FIBONACCI solves

the same problem in linear O(n) time.18

We have seen that algorithms can be categorized according to their com-

plexity. In the early 1970s, computer scientists discovered that problems could

also be categorized according to their inherent complexity. It turns out that

some problems, such as listing every subset of an n-element set, require ex-

ponential time—no algorithm, no matter how clever, could possibly solve the

problem in less than exponential time. Other problems, such as sorting a list

of integers, require only polynomial time. Somewhere between the polyno-

mial problems and the exponential problems lies one particularly important

category of problems called the NP-complete problems. These are problems

18. There exists an algorithm even faster than O(n) to compute the n-th Fibonacci number; it
does not calculate all of the Fibonacci numbers in the sequence up to n.
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that appear to be quite difficult, in that no polynomial-time algorithm for any

of these problems has yet been found. However, nobody can seem to prove

that polynomial-time algorithms for these problems are impossible, so no-

body can rule out the possibility that these problems are actually efficiently

solvable. One particularly famous example of an NP-complete problem is

the Traveling Salesman problem, which has a wide variety of practical appli-

cations in biology.

Traveling Salesman Problem:

Find the shortest path through a set of cities, visiting each city only one

time.

Input: A map of cities, roads between the cities, and dis-

tances along the roads.

Output: A sequence of roads that will take a salesman

through every city on the map, such that he will visit each

city exactly once, and will travel the shortest total distance.

The critical property ofNP-complete problems is that, if oneNP-complete

problem is solvable by a polynomial-time algorithm, then all NP-complete

problems can be solved by minor modifications of the same algorithm. The



2.11 Notes 51

fact that nobody has yet found that magic algorithm, after half a century

of research, suggests that it may not exist. However, this has not yet been

proven mathematically. It turns out that thousands of algorithmic prob-

lems are actually instances of the Traveling Salesman problems in disguise.19

Taken together, these problems form the class of NP-complete problems.

Despite the lack of mathematical proof, attempting to find a polynomial al-

gorithm for anNP-complete problem will likely result in failure and a whole

lot of wasted time. Unfortunately, proving that a problem really is NP-

complete, and not just superficially difficult, is somewhat of an undertaking.

In fact, it is not yet known whether or not some important bioinformatics

problems areNP-complete.

2.11 Notes

The word “algorithm” derived from the name of the ninth-century Arab

mathematician, al-Khwarizmi, of the court of Caliph Mamun in Baghdad.

al-Khwarizmi was a scholar in the House of Wisdom, where Greek scientific

works were translated; much of the mathematical knowledge in medieval

Europe was derived from Latin translations of his books. More recent books

on the general topic of algorithms are Knuth, 1998 (57); Aho, Hopcroft, and

Ullman, 1983 (1); and Cormen et al., 2001 (24).

The notion ofNP-completeness was proposed in the early 1970s by Steph-

en Cook (23), and Leonid Levin (65), and was further analyzed by Richard

Karp in 1972 (53) who demonstrated a rich variety of NP-complete prob-

lems. Garey and Johnson (39) authored an encyclopedic reference of NP-

complete problems.

19. Although these problems may have nothing in common with the Traveling Salesman
problem—no cities, no roads, no distances—the Traveling Salesman problem can be converted
into each one, and vice versa.
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Richard Karp, born 1935 in Boston,

is a Professor at the University of Cali-

fornia at Berkeley, with a principal ap-

pointment in computer science and ad-

ditional appointments in mathematics,

bioengineering, and operations research.

He attended Boston Latin School and

Harvard University, where he received

a PhD in Applied Mathematics in 1959.

From 1959 to 1968 he was a member of

the Mathematical Sciences Department

of the IBM Research Center in Yorktown

Heights, NY. He has been a faculty mem-

ber at the University of California at

Berkeley since 1968 (with the exception

of the period 1995–99, when he was a

professor at the University of Washing-

ton). Since 1988 he has also been a research scientist at the International

Computer Science Institute, a non-profit research company in Berkeley. Karp

says:

Ever since my undergraduate days I have had a fascination with com-

binatorial algorithms. These puzzle-like problems involve searching

through a finite but vast set of possibilities for a pattern or structure

that meets certain requirements or is of minimum cost. Examples in

bioinformatics include sequence assembly, multiple alignment of se-

quences, phylogeny construction, the analysis of genomic rearrange-

ments, and the modeling of gene regulation. For some combinatorial

problems, there are elegant and efficient algorithms that proceed like

clockwork to find the required solution, but most are less tractable and

require either a very long computation or a compromise on a solution

that may not be optimal.

In 1972, Karp developed an approach to showing that many seemingly

hard combinatorial problems are equivalent in the sense that either all of

them or none of them are efficiently solvable (a problem is considered effi-

ciently solvable if it can be solved by a polynomial algorithm). These prob-

lems are the “NP-Complete” problems. Over the years, thousands of exam-

ples have been added to his original list of twenty-one NP-complete prob-
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lems, yet despite intensive effort none of these problems has been shown to

be efficiently solvable. Many computer scientists (including Karp) believe

that none of them ever will be.

Karp began working in bioinformatics circa 1991, attracted by the belief

that computational methods might reveal the secret inner workings of living

organisms. He says:

[I hoped] that my experience in studying combinatorial algorithms

could be useful in cracking those secrets. I have indeed been able to ap-

ply my skills in this new area, but only after coming to understand that

solving biological problems requires far more than clever algorithms:

it involves a creative partnership between biologists and mathematical

scientists to arrive at an appropriate mathematical model, the acquisi-

tion and use of diverse sources of data, and statistical methods to show

that the biological patterns and regularities that we discover could not

be due to chance. My recent work is concerned with analyzing the

transcriptional regulation of genes, discovering conserved regulatory

pathways, and analyzing genetic variation in humans.

There have been spectacular advances in biology since 1991, most no-

table being the sequencing of genomes. I believe that we are now

poised to understand—and possibly even reprogram— the gene reg-

ulatory networks and the metabolic networks that control cellular pro-

cesses. By comparing many related organisms, we hope to understand

how these networks evolved. Effectively, we are trying to find the ge-

netic basis of complex diseases so that we can develop more effective

modes of treatment.
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2.12 Problems

Problem 2.1

Write an algorithm that, given a list of n numbers, returns the largest and smallest
numbers in the list. Estimate the running time of the algorithm. Can you design
an algorithm that performs only 3n/2 comparisons to find the smallest and largest
numbers in the list?

Problem 2.2

Write two algorithms that iterate over every index from (0, 0, . . . , 0) to (n1, n2, . . . , nd).
Make one algorithm recursive, and the other iterative.

Problem 2.3

Is log n = O(n)? Is log n = Ω(n)? Is log n = Θ(n)?

Problem 2.4

You are given an unsorted list of n− 1 distinct integers from the range 1 to n. Write a
linear-time algorithm to find the missing integer.

Problem 2.5

Though FIBONACCI(n) is fast, it uses a fair amount of space to store the array F.
How much storage will it require to calculate the nth Fibonacci number? Modify the
algorithm to require a constant amount of storage, regardless of the value of n.

Problem 2.6

Prove that

Fn =
1√
5
(φn − φ

n
)

where Fn is the nth Fibonacci number, φ = 1+
√

5
2

and φ = 1−√
5

2
.

Problem 2.7

Design an algorithm for computing the n-th Fibonacci number that requires less than
O(n) time. Hint: You probably want to use the result from problem 2.6. However,
computing φn naively still requires O(n) time because each multiplication is a single
operation.

Problem 2.8

Propose a more realistic model of rabbit life (and death) that limits the life span of rab-
bits by k years. For example, if k = 2.5, then the corresponding sequence 1, 1, 2, 3, 4
grows more slowly than the Fibonacci seqence. Write a recurrence relation and pseu-
docode to compute the number of rabbits under this model. Will the number of rab-
bits ever exceed the number of atoms in the universe (under these assumptions)?

Problem 2.9

Write an iterative (i.e., nonrecursive) algorithm to solve the Hanoi Tower problem.
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Problem 2.10

Prove that
Pn

i=1 i = n(n+1)
2

.

Problem 2.11

Prove that
Pn

i=1 2i = 2n+1 − 2 and that
Pn

i=1 2−i = 1− 2−n.

Problem 2.12

We saw that BETTERCHANGE is an incorrect algorithm for the set of denominations
(25, 20, 10, 5, 1). Add a new denomination to this set such that BETTERCHANGE will
return the correct change combination for any value of M .

Problem 2.13

Design an algorithm that computes the average number of coins returned by the pro-
gram USCHANGE(M) as M varies from 1 to 100.

Problem 2.14

Given a set of arbitrary denominations c = (c1, c2, . . . , cd), write an algorithm that
can decide whether BETTERCHANGE is a correct algorithm when run on c.
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Problem 2.15

A king stands on the upper left square of the chessboard. Two players make turns
moving the king either one square to the right or one square downward or one square
along a diagonal in the southeast direction. The player who can place the king on the
lower right square of the chessboard wins. Who will win? Describe the winning
strategy.

Problem 2.16

Bob and Alice are bored one Saturday afternoon so they invent the following game.
Initially, there are n rocks in a single pile. At each turn, one of the two players can
split any pile of rocks that has more than 1 rock into two piles of arbitrary size such
that the size of each of the two new piles must add up to the size of the original big
pile. No player can split a pile that has only a single rock, and the last person to move
wins. Does one of the two players, first or second, have an advantage? Explain which
player will win for each value of n.
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Problem 2.17

There are n bacteria and 1 virus in a Petri dish. Within the first minute, the virus kills
one bacterium and produces another copy of itself, and all of the remaining bacteria
reproduce, making 2 viruses and 2 · (n − 1) bacteria. In the second minute, each of
the viruses kills a bacterium and produces a new copy of itself (resulting in 4 viruses
and 2(2(n− 1) − 2) = 4n− 8 bacteria; again, the remaining bacteria reproduce. This
process continues every minute. Will the viruses eventually kill all the bacteria? If
so, design an algorithm that computes how many steps it will take. How does the
running time of your algorithm depend on n?

Problem 2.18

A very large bioinformatics department at a prominent university has a mix of 100
professors: some are honest and hard-working, while others are deceitful and do
not like students. The honest professors always tell the truth, but the deceitful ones
sometimes tell the truth and sometimes lie. You can ask any professors the following
question about any other professor: “Professor Y , is Professor X honest?” Professor
Y will answer with either “yes” or “no.” Design an algorithm that, with no more than
198 questions, would allow you to figure out which of the 100 professors are honest
(thus identifying possible research advisors). It is known that there are more honest
than dishonest professors.

Problem 2.19

You are given an 8 × 8 table of natural numbers. In any one step, you can either
double each of the numbers in any one row, or subtract 1 from each of the numbers
in any one column. Devise an algorithm that transforms the original table into a table
of all zeros. What is the running time of your algorithm?

Problem 2.20

There are n black, m green, and k brown chameleons on a deserted island. When two
chameleons of different colors meet they both change their color to the third one (e.g.,
black and green chameleons become brown). For each choice of n, m, and k decide
whether it is possible that after some time all the chameleons on the island are the
same color (if you think that it is always possible, check the case n = 1, m = 3, and
k = 5).
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To understand bioinformatics in any meaningful way, it is necessary for a

computer scientist to understand some basic biology, just as it is necessary

for a biologist to understand some basic computer science. This chapter pro-

vides a short and informal introduction to those biological fundamentals.

We scanned existing bioinformatics books to find out how much biological

material was “relevant” to those books and we were surprised how little

biological knowledge was actually presented. It would be safe to say that

the minimum biological background one needs in order to digest a typical

bioinformatics book could fit into ten pages.1 In this chapter we give a brief

introduction to biology that covers most of the computational concepts dis-

cussed in bioinformatics books. Some of the sections in this chapter are not

directly related to the rest of the book, but we present them to convey the

fascinating story of molecular biology in the twentieth century.

3.1 What Is Life Made Of?

Biology at the microscopic level began in 1665 when a maverick and virtu-

oso performer of public animal dissections, Robert Hooke, discovered that

organisms are composed of individual compartments called cells. Cell the-

ory, further advanced by Matthias Schleiden and Theodor Schwann in the

1830s, marked an important milestone: it turned biology into a science be-

yond the reach of the naked eye. In many ways, the study of life became the

study of cells.

1. This is not to say that computer scientists should limit themselves to these ten pages. More
detailed discussions can be found in introductory biology textbooks like Brown (17), Lewin (66),
or Alberts (3).
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A great diversity of cells exist in nature, but they all have some common

features. All cells have a life cycle: they are born, eat, replicate, and die. Dur-

ing the life cycle, a cell has to make many important decisions. For example,

if a cell were to attempt to replicate before it had collected all of the neces-

sary nutrients to do so, the result would be a disaster. However, cells do not

have brains. Instead, these decisions are manifested in complex networks

of chemical reactions, called pathways, that synthesize new materials, break

other materials down for spare parts, or signal that the time has come to eat

or die. The amazingly reliable and complex algorithm that controls the life

of the cell is still beyond our comprehension.

One can envision a cell as a complex mechanical system with many mov-

ing parts. Not only does it store all of the information necessary to make a

complete replica of itself, it also contains all the machinery required to collect

and manufacture its components, carry out the copying process, and kick-

start its new offspring. In macroscopic terms, a cell would be roughly anal-

ogous to a car factory that could mine for ore, fabricate girders and concrete

pillars, and assemble an exact working copy of itself, all the while building

family sedans with no human intervention.

Despite the complexity of a cell, there seems to be a few organizing princi-

ples that are conserved across all organisms. All life on this planet depends

on three types of molecule: DNA, RNA, and proteins.2 Roughly speaking,

a cell’s DNA holds a vast library describing how the cell works. RNA acts

to transfer certain short pieces of this library to different places in the cell,

at which point those smaller volumes of information are used as templates

to synthesize proteins. Proteins form enzymes that perform biochemical re-

actions, send signals to other cells, form the body’s major components (like

the keratin in our skin), and otherwise perform the actual work of the cell.

DNA, RNA, and proteins are examples of strings written in either the four-

letter alphabet of DNA and RNA or the twenty-letter alphabet of proteins.

This meshes well with Schrödinger’s visionary idea about an “instruction

book” of life scribbled in a secret code. It took a long time to figure out that

DNA, RNA, and proteins are the main players in the cells. Below we give a

brief summary of how this was discovered.

2. To be sure, other types of molecules, like lipids, play a critical role in maintaining the cell’s
structure, but DNA, RNA, and proteins are the three primary types of molecules that biologists
study.
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3.2 What Is the Genetic Material?

Schleiden’s and Schwann’s studies of cells were further advanced by the

discovery of threadlike chromosomes in the cell nucleii. Different organ-

isms have different numbers of chromosomes, suggesting that they might

carry information specific for each species. This fit well with the work of

the Augustinian monk Gregor Mendel in the 1860s, whose experiments with

garden peas suggested the existence of genes that were responsible for in-

heritance. Evidence that traits (more precisely, genes) are located on chro-

mosomes came in the 1920s through the work of Thomas Morgan. Unlike

Mendel, Morgan worked in New York City and lacked the garden space to

cultivate peas, so he instead used fruit flies for his experiments: they have

a short life span and produce numerous offspring. One of these offspring

turned out to have white eyes, whereas wild flies had red eyes. This one

white-eyed male fly born in Morgan’s “fly room” in New York City became

the cornerstone of modern genetics.

The white-eyed male fly was mated with its red-eyed sisters and the off-

spring were followed closely for a few generations. The analysis of offspring

revealed that white eyes appeared predominantly in males, suggesting that

a gene for eye color resides on the X chromosome (which partly determines

the gender of a fruit fly). Thus, Morgan suspected that genes were located

on chromosomes. Of course, Morgan had no idea what chromosomes were

themselves made of.

Morgan and his students proceeded to identify other mutations in flies and

used ever more sophisticated techniques to assign these mutations to certain

locations on chromosomes. Morgan postulated that the genes somehow re-

sponsible for these mutations were also positioned at these locations. His

group showed that certain genes are inherited together, as if they were a sin-

gle unit. For example, Morgan identified mutants with a black body color

(normal flies are gray) and mutants with vestigial wings. He proceeded to

cross black flies with vestigial wings with gray flies with normal wings, ex-

pecting to see a number of gray flies with vestigial wings, gray flies with

normal wings, black flies with vestigial wings, and black flies with normal

wings. However, the experiment produced a surprisingly large number of

normal flies (gray body, normal wings) and a surprisingly large number

of double mutants (black body, vestigial wings). Morgan immediately pro-

posed a hypothesis that such linked genes reside close together on a chromo-

some. Moreover, he theorized, the more tightly two genes are linked (i.e., the

more often they are inherited together), the closer they are on a chromosome.



60 3 Molecular Biology Primer

Morgan’s student Alfred Sturtevant pursued Morgan’s chromosome the-

ory and constructed the first genetic map of a chromosome that showed the

order of genes. Sturtevant studied three genes: cn, which determines eye

color; b, which determines body color; and vg, which determines wing size.

Sturtevant crossed double-mutant b and vg flies with normal flies and saw

that about 17% of the offspring had only a single mutation. However, when

Sturtevant crossed double-mutant b and cn flies he found that 9% of the off-

spring had only a single mutation. This implied that b and cn reside closer

together than b and vg; a further experiment with cn and vg mutants demon-

strated an 8% single mutation rate. Combined together, these three observa-

tions showed that b lies on one side of cn and vg on the other. By studying

many genes in this way, it is possible to determine the ordering of genes.

However, the nature of genes remained an elusive and abstract concept for

many years, since it was not clear how genes encoded information and how

they passed that information to the organism’s progeny.

3.3 What Do Genes Do?

By the early 1940s, biologists understood that a cell’s traits were inherent

in its genetic information, that the genetic information was passed to its

offspring, and that the genetic information was organized into genes that

resided on chromosomes. They did not know what the chromosomes were

made of or what the genes actually did to give rise to a cell’s traits. George

Beadle and Edward Tatum were the first to identify the job of the gene, with-

out actually revealing the true nature of genetic information. They worked

with the bread mold Neurospora, which can survive by consuming very sim-

ple nutrients like sucrose and salt. To be able to live on such a limited diet,

Neurospora must have some proteins (enzymes) that are able to convert these

simple nutrients into “real food” like amino acids and the other molecules

necessary for life. It was known that proteins performed this type of chemi-

cal “work” in the cell.

In 1941 Beadle and Tatum irradiated Neurospora with x-rays and examined

its growth on the usual “spartan” medium. Not surprisingly, some irradiated

Neurospora spores failed to grow on this diet. Beadle and Tatum conjectured

that x-rays introduced some mutations that possibly “destroyed” one of the

genes responsible for processing Neurospora’s diet into real food. Which par-

ticular gene was destroyed remained unclear, but one of the experiments

revealed that the irradiated Neurospora survived and even flourished when
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Beadle and Tatum supplemented its spartan diet with vitamin B6. An im-

mediate conclusion was that x-rays damaged a gene that produces a protein

(enzyme) responsible for the synthesis of B6. The simplest explanation for

this observation was that the role of a gene was to produce proteins. The

rule of “one gene, one protein” remained the dominant thinking for the next

half-century until biologists learned that one gene may produce a multitude

of proteins.

3.4 What Molecule Codes for Genes?

DNA was discovered in 1869 by Johann Friedrich Miescher when he isolated

a substance he called “nuclein” from the nuclei of white blood cells. By the

early 1900s it was known that DNA (nuclein) was a long molecule consisting

of four types of bases: adenine (A), thymine (T), guanine (G), and cytosine

(C). Originally, biologists discovered five types of bases, the fifth being uracil

(U), which is chemically similar to thymine. By the 1920s, nucleic acids were

grouped into two classes called DNA and RNA, that differ slightly in their

base composition: DNA uses T while RNA uses U.

DNA, or deoxyribonucleic acid, is a simple molecule consisting of a sugar

(a common type of organic compound), a phosphate group (containing the

element phosphorus), and one of four nitrogenous bases (A, T, G, or C). The

chemical bonds linking together nucleotides in DNA are always the same

such that the backbone of a DNA molecule is very regular. It is the A, T, C,

and G bases that give “individuality” to each DNA molecule.

Ironically, for a long time biologists paid little attention to DNA since it

was thought to be a repetitive molecule incapable of encoding genetic infor-

mation. They thought that each nucleotide in DNA followed another in an

unchanging long pattern like ATGCATGCATGCATGCATGC, like synthetic

polymers. Such a simple sequence could not serve as Schrödinger’s code-

script, so biologists remained largely uninterested in DNA. This changed in

1944 when Oswald Avery and colleagues proved that genes indeed reside on

DNA.

3.5 What Is the Structure of DNA?

The modern DNA era began in 1953 when James Watson and Francis Crick

(fig. 3.1) determined the double helical structure of a DNA molecule. Just

3 years earlier, Erwin Chargaff discovered a surprising one-to-one ratio of
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Figure 3.1 Watson and Crick puzzling about the structure of DNA. (Photo courtesy
of Photo Researchers, Inc.)

the adenine-to-thymine and guanine-to-cytosine content in DNA (known as

the Chargaff rule). In 1951, Maurice Wilkins and Rosalind Franklin obtained

sharp x-ray images of DNA that suggested that DNA is a helical molecule.

Watson and Crick were facing a three-dimensional jigsaw puzzle: find

a helical structure made out of DNA subunits that explains the Chargaff

rule. When they learned of the Chargaff rule, Watson and Crick wondered

whether A might be chemically attracted to T (and G to C) during DNA repli-

cation. If this was the case, then the “parental” strand of DNA would be

complementary to the “child” strand, in the sense that ATGACC is comple-

mentary to TACTGG. After manipulating paper and metal Tinkertoy repre-

sentations of bases3 Watson and Crick arrived at the very simple and elegant

double-stranded helical structure of DNA. The two strands were held to-

gether by hydrogen bonds between specific base pairings: A-T and C-G. The

key ingredient in their discovery was the chemical logic begind the comple-

mentary relationship between nucleotides in each strand—it explained the

3. Computers were not common at that time, so they built a six-foot tall metal model of DNA.
Amusingly, they ran out of the metal pieces and ended up cutting out cardboard ones to take
their place.
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Chargaff rule, since A was predicted to pair with T, and C with G. Thus, the

nucleotide string of one strand completely defined the nucleotide string of

the other. This is, in fact, the key to DNA replication, and the missing link

between the DNA molecule and heredity. As Watson and Crick gently put

it in their one-page paper on April 25, 1953: “It has not escaped our notice

that the specific pairing we have postulated immediately suggests a possible

copying mechanism for the genetic material.”

3.6 What Carries Information between DNA and Proteins?

The double helix provided the key to DNA replication, but the question re-

mained as to how DNA (a long but simple molecule) generates an enormous

variety of different proteins. The DNA content of a cell does not change over

time, but the concentrations of different proteins do. DNA is written in a

four-letter alphabet while proteins are written in a twenty-letter alphabet.

The key insight was that different pieces of a long DNA molecule coded for

different proteins. But what was the code that translated texts written in a

four-letter alphabet into texts written in a twenty-letter alphabet? How was

this code read and executed?

First, we must realize that there are two types of cells: those that encapsu-

late their DNA in a nucleus and those that do not. The former are referred to

as eukaryotic cells and the latter are prokaryotic cells. All multicellular organ-

isms (like flies or humans) are eukaryotic, while most unicellular organisms

(like bacteria) are prokaryotic. For our purposes, the major difference be-

tween prokaryotes and eukaryotes is that prokaryotic genes are continuous

strings, while they are broken into pieces (called exons) in eukaryotes. Hu-

man genes may be broken into as many as 50 exons, separated by seemingly

meaningless pieces called introns, whose function researchers are still trying

to determine.

Understanding the connection between DNA and proteins began with the

realization that proteins could not be made directly from DNA, since in eu-

karyotes DNA resides within the nucleus, whereas protein synthesis had

been observed to happen outside the nucleus, in the cytoplasm. Therefore,

some unknown agent had to somehow transport the genetic information

from the DNA in the nucleus to the cytoplasm. In the mid 1950s Paul Zamec-

nik discovered that protein synthesis in the cytoplasm happens with the help

of certain large molecules called ribosomes that contain RNA. This led to the

suspicion that RNA could be the intermediary agent between DNA and pro-
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teins. Finally, in 1960 Benjamin Hall and and Sol Spiegelman demonstrated

that RNA forms duplexes with single-stranded DNA, proving that the RNA

(responsible for the synthesis of a particular protein) is complementary to the

DNA segment (i.e., the gene) that codes for the protein. Thus, DNA served

as a template used to copy a particular gene into messenger RNA (mRNA) that

carries the gene’s genetic information to the ribosome to make a particular

protein.4

Chemically speaking, RNA, or ribonucleic acid, is almost the same as DNA.

There are two main differences between RNA and DNA: there is no T base

in RNA—the similar base U takes its place—and an oxygen atom is added to

the sugar component. These two seemingly minor differences have a major

impact on the biological roles of the two molecules. DNA is mostly inert

and almost always double-stranded, helping it to serve as a static repository

for information. RNA, on the other hand, is more chemically active and it

usually lives in a single-stranded form. The effect is that RNA can carry

short messages from the DNA to the cellular machinery that builds protein,

and it can actively participate in important chemical reactions.

In 1960 Jerard Hurwitz and Samuel Weiss identified a molecular machine

(composed of many proteins) that uses DNA as a template and adds ribonu-

cleotide by ribonucleotide to make RNA. This process is called transcription

and the molecular machine responsible for this process got the name RNA

polymerase. Despite the advances in our understanding of the copying of

DNA into RNA, how RNA polymerase knows where to start and stop tran-

scribing DNA remains one of the many unsolved bioinformatics problems.

Furthermore, the transcription of a gene into mRNA is tightly controlled, so

that not all genes produce proteins at all times. Though some basic mecha-

nisms of how gene transcription is controlled are known, a comprehensive

understanding for all genes is still beyond our grasp.

In eukaryotes, a gene is typically broken into many pieces but it still pro-

duces a coherent protein. To do so, these cells have to cut the introns out of

the RNA transcript and concatenate all the exons together prior to the mRNA

entering the ribosome. This process of cutting and pasting the “raw” RNA

version of the gene into the mRNA version that enters the ribosome is called

splicing and is quite complicated at a molecular level.

4. Later biologists discovered that not all RNAs are destined to serve as templates for building
proteins. Some RNAs (like transfer RNA described below) play a different role.
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DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT
RNA: AUG GCG CCG AUA AUG ACG GUC CUU CCU UGA

Protein: Met Ala Pro Ile Met Thr Val Leu Pro Stop

Figure 3.2 The transcription of DNA into RNA, and the translation of RNA into a
protein. Every amino acid is denoted with three letters, for example Met stands for
the amino acid Methionine.

3.7 How Are Proteins Made?

In 1820 Henry Braconnot identified the first amino acid, glycine. By the early

1900s all twenty amino acids had been discovered and their chemical struc-

ture identified. Since the early 1900s when Emil Hermann Fischer showed

that amino acids were linked together into linear chains to form proteins,

proteins became the focus of biochemistry and molecular biology. It was

postulated that the properties of proteins were defined by the composition

and arrangement of their amino acids, which we now accept as true.

To uncover the code responsible for the transformation of DNA into pro-

tein, biologists conjectured that triplets of consecutive letters in DNA (called

codons) were responsible for the amino acid sequence in a protein. Thus,

a particular 30-base pair gene in DNA will make a protein of a specific 10

amino acids in a specific order, as in figure 3.2. There are 43 = 64 different

codons, which is more than three times as large as the number of amino acids.

To explain this redundancy biologists conjectured that the genetic code re-

sponsible for transforming DNA into protein is degenerate: different triplets

of nucleotides may code for the same amino acid. Biologists raced to find out

which triplets code for which amino acids and by the late 1960s discovered

the genetic code (table 3.1).5 The triplet rule was therefore confirmed and is

now accepted as fact.

Unlike the regular double-helical structure of DNA, the three-dimensional

structure of proteins is highly variable. Researchers invest a large amount

of effort into finding the structure of each protein; it is this structure that

determines what role a protein plays in the cell—does it participate in the

DNA replication process, or does it take part in some pathway that helps the

cell metabolize sugar faster? Proteins perform most of the chemical work

5. The exact genetic code and the set of start and stop codons may vary by species from the
standard genetic code presented in table 3.1. For example, mitochondrial DNA or single-cell
protozoan ciliates use a slightly different table.
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Table 3.1 The genetic code, from the perspective of mRNA. The codon for methio-
nine, or AUG, also acts as a “start” codon that initiates transcription. This code is
translated as in figure 3.2.

U C A G

U

UUU Phe
UUC Phe
UUA Leu
UUG Leu

UCU Ser
UCC Ser
UCA Ser
UCG Ser

UAU Tyr
UAC Tyr
UAA Stop
UAG Stop

UGU Cys
UGC Cys
UGA Stop
UGG Trp

C

CUU Leu
CUC Leu
CUA Leu
CUG Leu

CCU Pro
CCC Pro
CCA Pro
CCG Pro

CAU His
CAC His
CAA Gln
CAG Gln

CGU Arg
CGC Arg
CGA Arg
CGG Arg

A

AUU Ile
AUC Ile
AUA Ile
AUG Met

ACU Thr
ACC Thr
ACA Thr
ACG Thr

AAU Asn
AAC Asn
AAA Lys
AAG Lys

AGU Ser
AGC Ser
AGA Arg
AGG Arg

G

GUU Val
GUC Val
GUA Val
GUG Val

GCU Ala
GCC Ala
GCA Ala
GCG Ala

GAU Asp
GAC Asp
GAA Glu
GAG Glu

GGU Gly
GGC Gly
GGA Gly
GGG Gly

in the cell, including copying DNA, moving materials inside the cell, and

communicating with nearby cells. Biologists used to believe that one gene

coded for one protein, but a more complex picture emerged recently with the

discovery of alternative splicing, allowing one gene to code for many proteins.

Many chemical systems in the cell require protein complexes, which are

groups of proteins that clump together into a large structure. A protein com-

plex, known as RNA polymerase, begins transcribing a gene by copying its

DNA base sequence into a short RNA base sequence (pairing a DNA T with

an RNA A, a DNA A with an RNA U, and so on) called messenger RNA,6

or mRNA. This short molecule is then attacked by large molecular com-

plexes known as ribosomes, which read consecutive codons and locate the

corresponding amino acid for inclusion in the growing polypeptide chain.

Ribosomes are, in effect, molecular factories where proteins are assembled.

To help with the location of the proper amino acid for a given codon, a spe-

6. More precisely, this is the case in prokaryotes. In eukaryotes, this RNA template undergoes
the splicing process above to form mRNA.
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cial type of RNA, called transfer RNA (tRNA), performs a specific and elegant

function. There are twenty types of tRNAs, and twenty types of amino acids.

Each type of amino acid binds to a different tRNA, and the tRNA molecules

have a three-base segment (called an anticodon) that is complementary to the

codon in the mRNA. As in DNA base-pairing, the anticodon on the tRNA

sticks to the codon on the RNA, which makes the amino acid available to the

ribosome to add to the polypeptide chain. When one amino acid has been

added, the ribosome shifts one codon to the right, and the process repeats.

The process of turning an mRNA into a protein is called translation, since it

translates information from the RNA (written in a four-letter alphabet) into

the protein (written in 20-letter alphabet). All proteins, including the ones

necessary for this process, are produced by this process.

This flow of information,

DNA→ transcription→ RNA→ translation→ protein,

is emphatically referred to as the central dogma in molecular biology.

3.8 How Can We Analyze DNA?

Over the years, biologists have learned how to analyze DNA. Below we de-

scribe some important techniques for copying, cutting, pasting, measuring,

and probing DNA.

3.8.1 Copying DNA

Why does one need to copy DNA, that is, to obtain a large number of identi-

cal DNA fragments? From a computer science perspective, having the same

string in 109 copies does not mean much since it does not increase the to-

tal amount of information. However, most experimental techniques (like gel

electrophoresis, used for measuring DNA length) require many copies of the

same DNA fragment. Since it is difficult to detect a single molecule or even a

hundred molecules with modern instrumentation, amplifying DNA to yield

millions or billions of identical copies is often a prerequisite of further anal-

ysis.

One method, polymerase chain reaction or PCR, is the Gutenberg printing

press for DNA and is illustrated in figure 3.3. PCR amplifies a short (100-

to 500-nucleotide) DNA fragment and produces a large number of identical

DNA strings. To use PCR, one must know a pair of short (20- to 30-letter)
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strings in the DNA flanking the area of interest and design two PCR primers,

synthetic DNA fragments identical to these strings.

Suppose we want to generate a billion copies of a DNA fragment of 500

nucleotides, that we know happens to be flanked by the 20-mer nucleotide

sequence X on the left and the 20-mer nucleotide sequence Y on the right.

PCR repeats a cycle of three operations: denaturation, priming, and extension

to double the number of DNA fragments in every iteration. Therefore, after

thirty iterations of PCR we will have on the order of 230 DNA fragments,

which is more than a billion copies. To start PCR, we only need a single copy

of the target DNA, some artificially synthesized 20-nucleotide long DNA

fragment X (many copies), some 20-nucleotide long DNA fragment Y (many

copies), and billions of “spare” nucleotides (A,T,G,C).7 We also need a molec-

ular machine that will copy an existing DNA strand to produce a new DNA

strand, and for this purpose we hijack DNA polymerase. DNA polymerase

has an ability to add a complementary copy to a single-stranded DNA as

long as there is a primer (i.e., X and Y ) attached to the DNA strand and a

sufficient supply of spare nucleotides

The denaturation step simply amounts to heating double-stranded DNA

to separate it into two single strands (fig. 3.3 (top)). Priming is cooling down

the solution to allow primers X and Y to hybridize to their complemen-

tary positions in DNA (fig. 3.3 (middle)). In the extension step, DNA poly-

merase extends the primer to produce two double-stranded DNA copies

from single-stranded DNA (fig. 3.3 (bottom)). By repeatedly performing

these three steps, one achieves an exponential increase in the amount of

DNA, as shown in figure 3.4.

Another way to copy DNA is to clone it. In contrast to PCR, cloning does

not require any prior information about flanking primers. However, biolo-

gists usually have no control over which fragment of DNA gets amplified.

The process usually starts with breaking DNA into small pieces; to study

an individual piece, biologists obtain many identical copies of each piece

by cloning the pieces, and then try to select the individual piece of inter-

est. Cloning incorporates a fragment of DNA into a cloning vector, which is

a DNA molecule originating from a virus or bacterium. In this operation,

the cloning vector does not lose its ability for self-replication, but carries the

additional incorporated insert that the biologist plans to study. Vectors intro-

duce foreign DNA into host cells (such as bacteria) which reproduce in large

quantities. The self-replication process creates a large number of copies of the

7. X stands for the Watson-Crick complement of the 20-mer X.
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Figure 3.3 The three main operations in the polymerase chain reaction. Denatura-
tion (top) is performed by heating the solution of DNA until the strands separate
(which happens around 70 C). Priming (middle) occurs when an excess amount of
primers X and Y are added to the denatured solution and the whole soup is allowed
to cool. Finally, extension (bottom) occurs when DNA polymerase and excess free
nucleotides (more precisely, nucleotide triphosphates) are added.
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Figure 3.4 The first few iterations of PCR. Within three iterations we can go from
one copy of the target DNA to eight copies.

fragment, thus enabling its properties to be studied. A fragment reproduced

in this way is called a clone. Biologists can make clone libraries consisting of

thousands of clones (each representing a short, randomly chosen DNA frag-

ment) from the same DNA molecule. For example, the entire human genome

can be represented as a library of 30,000 clones, each clone carrying a 100- to

200-kilobase (1000 base pairs) insert.
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Figure 3.5 Sticky and blunt ends after cutting DNA with restriction enzymes.
BamHI and PvuII cut at GGATCC and CAGCTG, respectively, both of which are palin-
dromes. However, the result of BamHI leaves four unmatched nucleotides on each of
the strands that are cut (these unmatched nucleotides are called sticky ends); if a gene
is cut out of one organism with BamHI, it can be inserted into a different sequence
that has also been cut with BamHI because the sticky ends act as glue.

3.8.2 Cutting and Pasting DNA

In order to study a gene (more generally, a genomic region) of interest, it is

sometimes necessary to cut it out of an organism’s genome and reintroduce

it into some host organism that is easy to grow, like a bacterium. Fortunately,

there exist “scissors” that do just this task: certain proteins destroy the in-

ternal bonds in DNA molecules, effectively cutting it into pieces. Restriction

enzymes are proteins that act as molecular scissors that cut DNA at every

occurrence of a certain string (recognition site). For example, the BamHI re-

striction enzyme cuts DNA into restriction fragments at every occurrence of

the string GGATCC. Restriction enzymes first bind to the recognition site in

the double-stranded DNA and then cut the DNA. The cut may produce blunt

or sticky ends, as shown in figure 3.5.

Biologists have many ways to fuse two pieces of DNA together by adding

the required chemical bonds. This is usually done by mimicking the pro-

cesses that happen in the cell all the time: hybridization (based on com-

plementary base-pairing) and ligation (fixing bonds within single strands),

shown in figure 3.6.
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Figure 3.6 Cutting and pasting two fragments that have sticky ends (created by the
restriction enzyme BamHI). After hybridization, the bonds in the same DNA strands
remain unfixed. The ligation step patches these bonds.

3.8.3 Measuring DNA Length

Gel electrophoresis is a technique that allows a biologist to measure the size

of a DNA fragment without actually finding its exact sequence. DNA is a

negatively charged molecule that migrates toward the positive pole of an

electric field. The gel acts as a molecular “brake” so that long molecules move

slower than short ones. The speed of migration of a fragment is related to the

fragment’s size, so the measurement of the migration distance for a given

amount of time allows one to estimate the size of a DNA fragment. But, of

course, you cannot actually see DNA molecules, so “molecular light bulbs,”

which are fluorescent compounds, are attached by a chemical reaction to the

ends of the DNA fragments. With these bulbs, biologists can see how far

different DNA fragments in a mixture migrate in the gel and thus estimate

their respective lengths.

3.8.4 Probing DNA

A common task in biology is to test whether a particular DNA fragment is

present in a given DNA solution. This is often done using hybridization: the
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process of joining two complementary DNA strands into a single double-

stranded molecule. Biologists often use probes, which are single-stranded

DNA fragments 20 to 30 nucleotides long that have a known sequence and a

fluorescent tag. Hybridization of the probe to some unknown DNA fragment

of interest can show a biologist the presence of the probe’s complementary

sequence in the larger DNA fragment.8

We can also probe RNA using a DNA array to see if a gene is on or off.

A DNA array is essentially composed of “spots” bound to a solid support,

such as a glass slide. On each spot are many copies of the complement of one

gene’s mRNA transcript. If the mRNA content of a cell is poured onto this

slide, the mRNA will bind to the single-stranded spots and can be detected

with the light-bulb technique described eariler. As a result, biologists can

find out which genes are producing mRNA in a particular tissue under fixed

conditions.

3.9 How Do Individuals of a Species Differ?

The genetic makeup of an individual manifests itself in traits, such as hair

color, eye color, or susceptibility to malaria. Traits are caused by variations

in genes. A surprising observation is that, despite the near similarity of

genomes among all humans, no two individuals are quite the same. In fact,

the variations among the same gene across different individuals are limited

to a handful of different base pairs (if any). Roughly only 0.1% of the 3 billion

nucleotide human genome (or 3 million bases) are different between any two

individuals. Still, this leaves room for roughly 43,000,000 different genomes,

and is for all intents and purposes an endless diversity.

In other words, when we speak of “the” genome of a species, we are refer-

ring to some sort of “master” genome that is fairly representative of all the

possible genomes that an individual of that species could have. While spe-

cific individuals of the species may differ in some bases, the basic long DNA

sequence is roughly the same in all members of the species. Of course, this

handful of differences is critically important, and the large Human Diversity

Project is underway to understand how various individuals differ. This will

hopefully identify the mutations reponsible for a number of genetic diseases.

8. This is, essentially, a constant-time search of a database performed by molecular machines,
something computer scientists only fantasize about!
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3.10 How Do Different Species Differ?

The genomes of different organisms may be vastly different and amazingly

similar.9 The human genome consists of about 3 billion bases, while the fly

genome has a scant 140 million bases. However, an analysis of the genomic

sequences for two vastly different organisms (fruit flies and humans) has

revealed that many genes in humans and flies are similar. Moreover, as many

as 99% of all human genes are conserved across all mammals! Some human

genes show strong similarity across not only mammals and flies but also

across worms, plants, and (worse yet) deadly bacteria. A species, then, is a

collection of individuals whose genomes are “compatible,” in the sense of

mating.

The likelihood that all currently living species could spontaneously de-

velop the same gene with the same function is quite low, so it seems reason-

able to assume that some process must exist that generates new species from

old ones. This process is called evolution. The theory that all living things

have evolved through a process of incremental change over millions of years

has been at the heart of biology since the publication in 1859 of Charles Dar-

win’s On the Origin of Species. However, only with the discovery of genomic

sequences were biologists able to see how these changes are reflected in the

genetic texts of existing species.

There are a number of sources for genetic variation across individuals in

a species. Errors in the replication of DNA, and bizarre biological processes

such as reverse transcription all cause the genomes of any two individuals in

a species to be subtly different. However, genetic differences are not entirely

spurious; many organisms have inherent processes that enforce genetic vari-

ation, so that no two individuals could be the same.10 Occasionally, a vari-

ation in an individual’s genome can produce a new trait, perhaps slightly

stronger teeth or longer fins. If the mutations in an individual are beneficial

in that individual’s environment, then that individual will be more likely

to be reproductively successful, passing along the mutation to its progeny.

If the mutations are harmful, then that individual will be less likely to re-

produce and the mutation will die out. This filtering of mutations is called

natural selection. Over many generations the more successful individuals will

become an increasingly large part of the population, to the end that the ben-

9. There are some genetic similarities between species that are rather surprising; we will exam-
ine some of these similarities in later chapters.
10. For example, chromosomes randomly crossover before they can make offspring. This occurs
in meiosis, a cell replication mechanism required for most multicellular organisms to reproduce.
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eficial mutation gradually takes root in all the living members of a species.

As the species, as a whole, takes on the new trait, we say that it adapts to its

environment.

If a species is divided into two isolated groups and placed into different

environments, then the groups will adapt differently.11 After many more

generations, the two groups become so different that their individuals can

no longer reproduce with each other, and they have become different species.

This process is called speciation. Adaptation and speciation together form the

basis of the process of evolution by natural selection, and explains the appar-

ent paradox that there is such a diversity of life on the planet, yet so many

of the genes seem similar at a sequence level. The recent abundance of ge-

nomic sequence data has enabled bioinformaticians to carry out studies that

try to unravel the evolutionary relationships among different species. Since

evolution by natural selection is the direct effect of adjustments to a species’

genomic sequence, it stands to reason that studying the genomic sequences

in different species can yield insight into their evolutionary history.

3.11 Why Bioinformatics?

As James Watson and Francis Crick worked to decipher the DNA puzzle,

the 30 year-old English architect Michael Ventris tried to decipher an ancient

language known as Linear B. At the beginning of the twentieth century, ar-

chaeologists excavated the ancient city of Knossos located on the island of

Crete and found what might have been the palace of King Minos, complete

with labyrinth. The archaeologists also found clay tablets with an unfamiliar

form of writing. These were letters of an unknown language and there was

nothing to compare them to.

The script that the ancient Cretans used (nicknamed “Linear B”) remained

a mystery for the next fifty years. Linguists at that time thought that Linear

B was used to write in some hypothetical Minoan language (i.e., after King

Minos) and cut off any investigation into the possibility that the language on

11. For example, a small group of birds might fly to an isolated part of a continent, or a few
lizards might float to an island on a log.
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the tablets was Greek.12 In 1936, a fourteen-year-old boy, Michael Ventris,

went on a school trip to the Minoan exhibit in London and was fascinated

with the legend of the Minotaur and the unsolved puzzle of the Minoan lan-

guage. After seventeen years of code-breaking, Ventris decoded the Minoan

language at about the same time Watson and Crick deciphered the structure

of DNA.

Some Linear B tablets had been discovered on the Greek mainland. Not-

ing that certain strings of symbols appeared in the Cretan texts but did not

appear in Greek texts, Ventris made the inspired guess that those strings ap-

plied to cities on the island. Armed with these new symbols that he could

decipher, he soon unlocked much more text, and determined that the un-

derlying language of Linear B was, in fact, just Greek written in a different

alphabet. This showed that the Cretan civilization of the Linear B tablets had

been part of Greek civilization.

There were two types of clay tablets found at Crete: some written in Linear

B and others written in a different script named Linear A. Linear A appears to

be older than Linear B and linguists think that Linear A is the oldest written

language of Europe, a precursor of Greek. Linear A has resisted all attempts

at decoding. Its underlying language is still unknown and probably will

remain undecoded since it does not seem to relate to any other surviving

language in the world. Linear A and Linear B texts are written in alphabets

consisting of roughly ninety symbols.

Bioinformatics was born after biologists discovered how to sequence DNA

and soon generated many texts in the four-letter alphabet of DNA. DNA is

more like Linear A than Linear B when it comes to decoding—we still know

very little about the language of DNA. Like Michael Ventris, who mobilized

the mathematics of code-breaking to decipher Linear B, bioinformaticians

use algorithms, statistics, and other mathematical techniques to decipher the

language of DNA.

For example, suppose we have the genomic sequences of two insects that

we suspect are somewhat related, evolutionarily speaking—perhaps a fruit

fly (Drosophila melanogaster) and a malaria mosquito (Anopheles gamibae). Tak-

ing the Michael Ventris approach, we would like to know what parts of the

fruit fly genomic sequence are dissimilar and what parts are similar to the

mosquito genomic sequence. Though the means to find this out may not be

immediately obvious at this point, the alignment algorithms described later

12. For many years biologists thought that proteins rather than DNA represent the language of
the cell, which was another mistaken assumption.



3.11 Why Bioinformatics? 77

in this book allow one to compare any two genes and to detect similarities

between them. Unfortunately, it will take an unbearably long time to do so

if we want to compare the entire fruit fly genome with the entire mosquito

genome. Rather than giving up on the question altogether, biologists com-

bined their efforts with algorithmists and mathematicians to come up with

an algorithm (BLAST) that solves the problem very quickly and evaluates

the statistical significance of any similarities that it finds.

Comparing related DNA sequences is often a key to understanding each

of them, which is why recent efforts to sequence many related genomes

(e.g., human, chimpanzee, mouse, rat) provide the best hope for understand-

ing the language of DNA. This approach is often referred to as comparative

genomics. A similar approach was used by the nineteenth century French

linguist Jean-François Champollion who decoded the ancient Egyptian lan-

guage.

The ancient Egyptians used hieroglyphs, but when the Egyptian religion

was banned in the fourth century as a pagan cult, knowledge of hieroglyph-

ics was lost. Even worse, the spoken language of Egyptian and its script

(known as demotic) was lost soon afterward and completely forgotten by the

tenth century when Arabic became the language of Egypt. As a result, a

script that had been in use since the beginning of the third millennium BC

turned into a forgotten language that nobody remembered.

During Napoleon’s Egyptian campaign, French soldiers near the city of

Rosetta found a stone (now known as the Rosetta stone) that was inscribed in

three different scripts. Many of Napoleon’s officers happened to be classi-

cally educated and one of them, a Lieutenant Bouchard, identified the three

bands of scripts as hieroglyphic, demotic, and ancient Greek. The last sen-

tence of the Greek inscription read: “This decree shall be inscribed on stelae

of hard rock, in sacred characters, both native and Greek.” The Rosetta stone

thus presented a comparative linguistics problem not unlike the comparative

genomics problems bionformaticians face today.

In recent decades biology has raised fascinating mathematical problems

and has enabled important biological discoveries. Biologists that reduce

bioinformatics to simply “the application of computers in biology” some-

times fail to recognize the rich intellectual content of bioinformatics. Bioin-

formatics has become a part of modern biology and often dictates new fash-

ions, enables new approaches, and drives further biological developments.

Simply using bioinformatics as a tool kit without a reasonable understand-

ing of the main computational ideas is not very different from using a PCR

kit without knowing how PCR works.
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Bioinformatics is a large branch of biology (or of computer science) and

this book presents neither a complete cross section nor a detailed look at

any one part of it. Our intent is to describe those algorithmic principles that

underlie the solution to several important biological problems to make it pos-

sible to understand any other part of the field.
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Russell F. Doolittle, born 1931 in Con-

necticut, is currently a research profes-

sor at the Center for Molecular Genet-

ics, University of California, San Diego.

His principal research interests center

around the evolution of protein struc-

ture and function. He has a PhD in bio-

chemistry from Harvard (1962) and did

postdoctoral work in Sweden. He was

an early advocate of using computers as

an aid to characterizing proteins.

For some it may be difficult to envision

a time when the World Wide Web did

not exist and every academician did not

have a computer terminal on his or her desk. It may be even harder to imag-

ine the primitive state of computer hardware and software at the time of

the recombinant DNA revolution, which dates back to about 1978. It was

in this period that Russell Doolittle, using a DEC PDP11 computer and a

suite of home-grown programs, began systematically searching sequences

in an effort to find evolutionary and other biological relationships. In 1983

he stunned cancer biologists when he reported that a newly reported se-

quence for platelet derived growth factor (PDGF) was virtually identical to
a previously reported sequence for the oncogene known as ν-sis.13 This was

big news, and the finding served as a wake-up call to molecular biologists:

searching all new sequences against up-to-date databases is your first order

of business.
Doolittle had actually begun his computer studies on protein sequences

much earlier. Fascinated by the idea that the history of all life might be trace-

able by sequence analysis, he had begun determining and aligning sequences

in the early 1960s. When he landed a job at UCSD in 1964, he tried to interest

consultants at the university computer center in the problem, but it was clear

that the language and cultural divide between them was too great. Because

computer people were not interested in learning molecular biology, he would

have to learn about computing. He took an elementary course in FORTRAN

13. Oncogenes are genes in viruses that cause a cancer-like transformation of infected cells.
Oncogene ν-sis in the simian sarcoma virus causes uncontrolled cell growth and leads to can-
cer in monkeys. The seemingly unrelated growth factor PDGF is a protein that stimulates cell
growth.
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programming, and, with the help of his older son, developed some simple

programs for comparing sequences. These were the days when one used

a keypunch machine to enter data on eighty-column cards, packs of which

were dropped off at the computer center with the hope that the output could

be collected the next day.

In the mid-1960s, Richard Eck and Margaret Dayhoff had begun the Atlas

of Protein Sequence and Structure, the forerunner of the Protein Identifica-

tion Resource (PIR) database. Their original intention was to publish an an-

nual volume of "all the sequences that could fit between two covers." Clearly,

no one foresaw the deluge of sequences that was to come once methods had

been developed for directly sequencing DNA. In 1978, for example, the entire

holding of the atlas, which could be purchased on magnetic tape, amounted

to 1081 entries. Realizing that this was a very biased collection of protein

sequences, Doolittle began his own database, which, because it followed the

format of the atlas, he called NEWAT ("new atlas"). At about the same time

he acquired a PDP11 computer, the maximum capacity of which was only

100 kilobytes, much of that occupied by a mini-UNIX operating system. With

the help of his secretary and his younger son (eleven years old at the time),

Doolittle began typing in every new sequence he could get his hands on,

searching each against every other sequence in the collection as they went.

This was in keeping with his view that all new proteins come from old pro-

teins, mostly by way of gene duplications. In the first few years of their small

enterprise, Doolittle & Son established a number of unexpected connections.

Doolittle admits that in 1978 he knew hardly anything about cancer viruses,

but a number of chance happenings put him in touch with the field. For

one, Ted Friedmann and Gernot Walter (who was then at the Salk Institute),

had sought Doolittle’s aid in comparing the sequences of two DNA tumor

viruses, simian virus 40 (SV40) and the polyoma virus. This led indirectly to

contacts with Inder Verma’s group at Salk, which was studying retroviruses

and had sequenced an “oncogene” called ν-mos in a retrovirus that caused

sarcomas in mice. They asked Doolittle to search it for them, but no signif-

icant matches were found. Not long afterward (in 1980), Doolittle read an

article reporting the nucleotide sequence of an oncogene from an avian sar-

coma virus—the famous Rous sarcoma virus. It was noted in that article that

the Salk team had provided the authors with a copy of their still unpublished

mouse sarcoma gene sequence, but no resemblances had been detected. In

line with his own project, Doolittle promptly typed the new avian sequence

into his computer to see if it might match anything else. He was astonished

to find that in fact a match quickly appeared with the still unpublished Salk
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sequence for the mouse retrovirus oncogene. He immediately telephoned

Inder Verma; "Hey, these two sequences are in fact homologous. These pro-

teins must be doing the same thing." Verma, who had just packaged up a

manuscript describing the new sequence, promptly unwrapped it and added

the new feature. He was so pleased with the outcome that he added Doolit-

tle’s name as one of the coauthors.

How was it that the group studying the Rous sarcoma virus had missed

this match? It’s a reflection on how people were thinking at the time. They

had compared the DNA sequences of the two genes without translating them

into the corresponding amino acid sequences, losing most of the information

as a result. It was another simple but urgent message to the community

about how to think about sequence comparisons.

In May of 1983, an article appeared in Science describing the characteri-

zation of a growth factor isolated from human blood platelets. Harry An-

toniades and Michael Hunkapiller had determined 28 amino acid residues

from the N-terminal end of PDGF. (It had taken almost 100,000 units of hu-

man blood to obtain enough of the growth factor material to get this much

sequence.) The article noted that the authors had conducted a limited search

of known sequences and hadn’t found any similar proteins.

By this time, Doolittle had modem access to a department VAX computer

where he now stored his database. He typed in the PDGF partial sequence

and set it searching. Twenty minutes later he had the results of the search;

human PDGF had a sequence that was virtually identical to that of an onco-

gene isolated from a woolly monkey. Doolittle describes it as an electrifying

moment, enriched greatly by his prior experiences with the other oncogenes.

He remembers remarking to his then fifteen-year old son, “Will, this exper-

iment took us five years and twenty minutes.” As it happened, he was not

alone in enjoying the thrill of this discovery. Workers at the Imperial Cancer

Laboratory in London were also sequencing PDGF, and in the spring of 1983

had written to Doolittle asking for a tape of his sequence collection. He had

sent them his newest version, fortuitously containing the ν-sis sequence from

the woolly monkey. Just a few weeks before the Science article appeared,

Antoniades and Hunkapiller replied with an effusive letter of thanks, not

mentioning just why the tape had been so valuable to them. Meanwhile,

Doolittle had written to both the PDGF workers and the ν-sis team, suggest-

ing that they compare notes. As a result, the news of the match was quickly

made known, and a spirited race to publication occurred, the report from

the Americans appearing in Science only a week ahead of the British effort

in Nature. Doolittle went on to make many other matches during the mid-
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1980s, including several more involving oncogenes. For example, he found a

relationship between the oncogene ν-jun and the gene regulator GCN4. He

describes those days as unusual in that an amateur could still occasionally

compete with the professionals. Although he continued with his interests in

protein evolution, he increasingly retreated to the laboratory and left bioin-

formatics to those more formally trained in the field.



4 Exhaustive Search

Exhaustive search algorithms require little effort to design but for many prob-

lems of interest cannot process inputs of any reasonable size within your

lifetime. Despite this problem, exhaustive search, or brute force algorithms

are often the first step in designing more efficient algorithms.

We introduce two biological problems: DNA restriction mapping and regula-

tory motif finding, whose brute force solutions are not practical. We further de-

scribe the branch-and-bound technique to transform an inefficient brute force

algorithm into a practical one. In chapter 5 we will see how to improve our

motif finding algorithm to arrive at an algorithm very similar to the popular

CONSENSUS motif finding tool. In chapter 12 we describe two randomized

algorithms, GibbsSampler and RandomProjections, that use coin-tossing to

find motifs.

4.1 Restriction Mapping

Hamilton Smith discovered in 1970 that the restriction enzyme HindII cleaves

DNA molecules at every occurrence, or site, of the sequences GTGCAC or

GTTAAC, breaking a long molecule into a set of restriction fragments. Shortly

thereafter, maps of restriction sites in DNA molecules, or restriction maps,

became powerful research tools in molecular biology by helping to narrow

the location of certain genetic markers.

If the genomic DNA sequence of an organism is known, then construc-

tion of a restriction map for HindII amounts to finding all occurrences of

GTGCAC and GTTAAC in the genome. Because the first bacterial genome

was sequenced twenty-five years after the discovery of restriction enzymes,
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for many years biologists were forced to build restriction maps for genomes

without prior knowledge of the genomes’ DNA sequence.1

Several experimental approaches to restriction mapping exist, each with

advantages and disadvantages. The distance between two individual restric-

tion sites corresponds to the length of the restriction fragment between those

two sites and can be measured by the gel electrophoresis technique described

in chapter 2. This requires no knowledge of the DNA sequence. Biologists

can vary experimental conditions to produce either a complete digest [fig. 4.1

(a)] or a partial digest [fig. 4.1 (b)] of DNA.2 The restriction mapping prob-

lem can be formulated in terms of recovering positions of points when only

pairwise distances between those points are known.

To formulate the restriction mapping problem, we will introduce some no-

tation. A multiset is a set that allows duplicate elements (e.g., {2, 2, 2, 3, 3, 4, 5}

is a multiset with duplicate elements 2 and 3). If X = {x1 = 0, x2, . . . , xn} is

a set of n points on a line segment in increasing order, then ΔX denotes the

multiset of all
(
n
2

)
pairwise distances3 between points in X :

ΔX = {xj − xi : 1 ≤ i < j ≤ n} .

For example, if X={0, 2, 4, 7, 10}, then ΔX={2, 2, 3, 3, 4, 5, 6, 7, 8, 10}, which

are the ten pairwise distances between these points (table 4.1). In restriction

mapping, we are given ΔX , the experimental data about fragment lengths.

The problem is to reconstruct X from ΔX . For example, could you infer

1. While restriction maps were popular research tools in the late 1980s, their role has been some-
what reduced in the last ten to fifteen years with the development of efficient DNA sequencing
technologies. Though biologists rarely have to solve the DNA mapping problems in current
research, we present them here as illustrations of branch-and-bound techniques for algorithm
development.
2. Biologists typically work with billions of identical DNA molecules in solution. A complete
digest corresponds to experimental conditions under which every DNA molecule at every re-
striction site is cut (i.e., the probability of cut at every restriction site is 1). Every linear DNA
molecule with n restriction sites is cut into n+1 fragments that are recorded by gel electrophore-
sis as in figure 4.1 (a). A partial digest corresponds to experimental conditions that cut every
DNA molecule at a given restriction site with probability less than 1. As a result, with some
probability, the interval between any two (not necessarily consecutive) sites remains uncut, thus
generating all fragments shown in figure 4.1 (b).
3. The notation

`
n
k

´
, read “n choose k,” means “the number of distinct subsets of k elements

taken from a (larger) set of n elements,” and is given by the expression n!
(n−k)!k!

. In particular,
`
n
2

´
= n(n−1)

2
is the number of different pairs of elements from an n-element set. For example,

if n = 5, the set {1, 2, 3, 4, 5} has
`5

2

´
= 10 subsets formed by two elements: {1, 2}, {1, 3},

{1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, and {4, 5}. These ten subsets give rise to the
elements x2 − x1, x3 − x1, x4 − x1, x5 − x1, x3 − x2, x4 − x2, x5 − x2, x4 − x3, x5 − x3, and
x5 − x4.
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(a) Complete digest.
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2
2
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3

4
5
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7
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10

(b) Partial digest.

Figure 4.1 Different methods of digesting a DNA molecule. A complete digest pro-
duces only fragments between consecutive restriction sites, while a partial digest
yields fragments between any two restriction sites. Each of the dots represents a
restriction site.

that the set ΔX = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}was derived from {0, 2, 4, 7, 10}?

Though gel electrophoresis allows one to determine the lengths of DNA frag-

ments easily, it is often difficult to judge their multiplicity. That is, the num-

ber of different fragments of a given length can be difficult to determine.

However, it is experimentally possible to do so with a lot of work, and we

assume for the sake of simplifing the problem that this information is given

to us as an input to the problem.
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Table 4.1 Representation of ΔX = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10} as a two-dimensional
table, with the elements of X = {0, 2, 4, 7, 10} along both the top and right side. The
element at (i, j) in the table is the value xj − xi for 1 ≤ i < j ≤ n.

0 2 4 7 10
0 2 4 7 10
2 2 5 8
4 3 6
7 3

10

Partial Digest Problem:

Given all pairwise distances between points on a line, reconstruct the

positions of those points.

Input: The multiset of pairwise distances L, containing
(

n
2

)

integers.

Output: A set X , of n integers, such that ΔX = L

This Partial Digest problem, or PDP, is sometimes called the Turnpike problem

in computer science. Suppose you knew the set of distances between every

(not necessarily consecutive) pair of exits on a highway leading from one

town to another. Could you reconstruct the geography of the highway from

this information? That is, could you find the distance from the first town to

each exit? Here, the “highway exits” are the restrictions sites in DNA; the

lengths of the resulting DNA restriction fragments correspond to distances

between highway exits. Computationally, the only difference between the

Turnpike problem and the PDP is that the distances between exits are given

in miles in the Turnpike problem, while the distances between restriction

sites are given in nucleotides in the PDP.

We remark that it is not always possible to uniquely reconstruct a set X

based only on ΔX . For example, for any integer v and set A, one can see that

ΔA is equal to Δ(A⊕ {v}), where A⊕ {v} is defined to be {a + v : a ∈ A}, a

shift of every element in A by v. Also ΔA = Δ(−A), where−A = {−a : a ∈ A}

is the reflection of A. For example, sets A = {0, 2, 4, 7, 10}, Δ(A ⊕ {100}) =

{100, 102, 104, 107, 110}, and−A = {−10,−7,−4,−2, 0}all produce the same

partial digest. The sets {0, 1, 3, 8, 9, 11, 12, 13, 15}and {0, 1, 3, 4, 5, 7, 12, 13, 15}



4.2 Impractical Restriction Mapping Algorithms 87

present a less trivial example of this problem of nonuniqueness. The partial

digests of these two sets is the same multiset of 36 elements4:

{14, 24, 34, 43, 52, 62, 72, 83, 92, 102, 112, 123, 13, 14, 15}.

0 1 3 4 5 7 12 13 15

0 1 3 4 5 7 12 13 15

1 2 3 4 6 11 12 14

3 1 2 4 9 10 12

4 1 3 8 9 11

5 2 7 8 10

7 5 6 8

12 1 3

13 2

15

0 1 3 8 9 11 12 13 15

0 1 3 8 9 11 12 13 15

1 2 7 8 10 11 12 14

3 5 6 8 9 10 12

8 1 3 4 5 7

9 2 3 4 6

11 1 2 4

12 1 3

13 2

15

In general, sets A and B are said to be homometric if ΔA = ΔB. Let U and

V be two sets of numbers. One can verify that the multisets

U ⊕ V = {u + v : u ∈ U, v ∈ V }

and

U � V = {u− v : u ∈ U, v ∈ V }

are homometric (a problem at the end of this chapter). The “nontrivial” nine-

point example above came from U = {6, 7, 9} and V = {−6, 2, 6}. Indeed

U ⊕ V ={0, 1, 3, 8, 9, 11, 12, 13, 15} while U � V ={0, 1, 3, 4, 5, 7, 12, 13, 15} as

illustrated below:

U ⊕ V -6 2 6

6 0 8 12

7 1 9 13

9 3 11 15

U � V -6 2 6

6 12 4 0

7 13 5 1

9 15 7 3

While the PDP is to find one set X such that ΔX = L, biologists are often

interested in all homometric sets.

4.2 Impractical Restriction Mapping Algorithms

The algorithm below, BRUTEFORCEPDP, takes the list L of
(
n
2

)
integers as an

input, and returns the set X of n integers such that ΔX = L. We remind the

reader that we do not always provide complete details for all of the opera-

tions in pseudocode. In particular, we have not provided any subroutine to

calculate ΔX ; problem 4.1 asks you to do fill in the details for this step.

4. The notation 14 means that element 1 is repeated four times in this multiset.
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BRUTEFORCEPDP(L, n)

1 M ← maximum element in L

2 for every set of n− 2 integers 0 < x2 < · · · < xn−1 < M

3 X ← {0, x2, . . . , xn−1, M}

4 Form ΔX from X

5 if ΔX = L

6 return X

7 output “No Solution”

BRUTEFORCEPDP is slow since it examines
(
M−1
n−2

)
different sets of posi-

tions, which requires about O(Mn−2) time.5

One might question the wisdom of selecting n − 2 arbitrary integers from

the interval 0 to M . For example, if L does not contain the number 5, there is

really no point in choosing any xi = 5, though the above algorithm will do

so. Indeed, observing that all points in X have to correspond to some distance

in ΔX , we can select n − 2 distinct elements from L rather than the less

constrained selection from the interval (0, M). Since M may be large, even

with a small number of points, building a new algorithm that makes choices

of xi based only on elements in L yields an improvement in efficiency.

ANOTHERBRUTEFORCEPDP(L, n)

1 M ← maximum element in L

2 for every set of n− 2 integers 0 < x2 < · · · < xn−1 < M from L

3 X ← {0, x2, . . . , xn−1, M}

4 Form ΔX from X

5 if ΔX = L

6 return X

7 output “No Solution”

This algorithm examines
(
|L|

n−2

)
different sets of integers, but |L| = n(n−1)

2 ,

so ANOTHERBRUTEFORCEPDP takes roughly O(n2n−4) time. This is still

not practical, but since M can be arbitrarily large compared to n, this is actu-

ally a more efficient algorithm than BRUTEFORCEPDP. For example, BRUTE-

FORCEPDP takes a very long time to execute when called on an input of

L = {2, 998, 1000}, but ANOTHERBRUTEFORCEPDP takes very little time.

Here, n is 3 while M is 1000.

5. Although a careful mathematical analysis of the running time leads to a somewhat smaller
number, it does not help much in practice.
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4.3 A Practical Restriction Mapping Algorithm

In 1990, Steven Skiena described a different brute force algorithm for the PDP

that works well in practice.6 First, find the largest distance in L; this must de-

termine the two outermost points of X , and we can delete this distance from

L. Now that we have fixed the two outermost points, we select the largest

remaining distance in L, call it δ. One of the points that generated δ must

be one of the two outermost points, since δ is the largest remaining distance;

thus, we have one of two choices to place a point: δ from the leftmost point,

or δ from the rightmost point. Suppose we decide to include the point that is

δ from the leftmost point in the set. We can calculate the pairwise distances

between this new position and all the other positions that we have chosen,

and ask if these distances are in L. If so, then we remove those distances from

L and repeat by selecting the next largest remaining distance in L and so on.

If these pairwise distances are not in L, then we choose the position that is

δ from the rightmost point, and perform the same query. However, if these

pairwise distances are not in L either, then we must have made a bad choice

at some earlier step and we need to backtrack a few steps, reverse a decision,

and try again. If we ever get to the point where L is empty, then we have

found a valid solution.7

For example, suppose L = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}. The size of L is
(
n
2

)
=

n(n−1)
2 = 10, where n is the number of points in the solution. In this case, n

must be 5, and we will refer to the positions in X as x1 = 0, x2, x3, x4 and x5,

from left to right, on the line.

Since 10 is the largest distance in L, x5 must be at position 10, so we remove

this distance x5 − x1 = 10 from L to obtain

X = {0, 10} L = {2, 2, 3, 3, 4, 5, 6, 7, 8} .

The largest remaining distance is 8. We have two choices: either x4 = 8 or

x2 = 2. Since those two cases are mirror images of each other, without loss

of generality, we can assume x2 = 2. After removal of distances x5 − x2 = 8

and x2 − x1 = 2 from L, we obtain

X = {0, 2, 10} L = {2, 3, 3, 4, 5, 6, 7} .

6. To be more accurate, this algorithm works well for high-quality PDP data. However, the
bottleneck in the PDP technique is the difficulty in acquiring accurate data.
7. This is an example of a cookbook description; the pseudocode of this algorithm is described
below.
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Now 7 is the largest remaining distance, so either x4 = 7 or x3 = 3. If

x3 = 3, then x3 − x2 = 1 must be in L, but it is not, so x4 must be at 7. After

removing distances x5 − x4 = 3, x4 − x2 = 5, and x4 − x1 = 7 from L, we

obtain

X = {0, 2, 7, 10} L = {2, 3, 4, 6} .

Now 6 is the largest remaining distance, and we once again have only two

choices: either x3 = 4 or x3 = 6. If x3 = 6, the distance x4 − x3 = 1 must be

in L, but it is not. We are left with only one choice, x3 = 4, and this provides

a solution X = {0, 2, 4, 7, 10} to the PDP.

The PARTIALDIGEST algorithm shown below works with the list of pair-

wise distances, L, and uses the function DELETE(y, L) which removes the

value y from L. We use the notation Δ(y, X) to denote the multiset of dis-

tances between a point y and all points in a set X . For example,

Δ(2, {1, 3, 4, 5}) = {1, 1, 2, 3} .

PARTIALDIGEST(L)

1 width← Maximum element in L

2 DELETE(width, L)

3 X ← {0, width}

4 PLACE(L, X)

PLACE(L, X)

1 if L is empty

2 output X

3 return

4 y ← Maximum element in L

5 if Δ(y, X) ⊆ L

6 Add y to X and remove lengths Δ(y, X) from L

7 PLACE(L, X)

8 Remove y from X and add lengths Δ(y, X) to L

9 if Δ(width− y, X) ⊆ L

10 Add width− y to X and remove lengths Δ(width − y, X) from L

11 PLACE(L, X)

12 Remove width− y from X and add lengths Δ(width− y, X) to L

13 return

After each recursive call in PLACE, we undo our modifications to the sets

X and L in order to restore them for the next recursive call. It is important to

note that this algorithm will list all sets X with ΔX = L.

At first glance, this algorithm looks efficient—at each point we examine

two alternatives (“left” or “right”), ruling out the obviously incorrect deci-

sions that lead to inconsistent distances. Indeed, this algorithm is very fast
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for most instances of the PDP since usually only one of the two alternatives,

“left” or “right,” is viable at any step. It was not clear for a number of years

whether or not this algorithm is polynomial in the worst case—sometimes

both alternatives are viable. If both “left” and “right” alternatives hold and

if this continues to happen in future steps of the algorithm, then the perfor-

mance of the algorithm starts growing as 2k where k is the number of such

“ambiguous” steps.8

Let T (n) be the maximum time PARTIALDIGEST takes to find the solution

for an n-point instance of the PDP. If there is only one viable alternative at

every step, then PARTIALDIGEST steadily reduces the size of the problem by

one and calls itself recursively, so

T (n) = T (n− 1) + O(n),

where O(n) is the work spent adjusting the sets X and L. However, if there

are two alternatives, then

T (n) = 2T (n− 1) + O(n).

While the expressions T (n) = T (n − 1) + O(n) and T (n) = 2T (n − 1) +

O(n) bear a superficial similarity in form, they each lead to very different

expressions for the algorithm’s running time. One is quadratic, as we saw

when analyzing SELECTIONSORT, and the other exponential, as we saw with

HANOITOWERS. In fact, polynomial algorithms for the PDP were unknown

until 2002 when Maurice Nivat and colleagues designed the first one.

4.4 Regulatory Motifs in DNA Sequences

Fruit flies, like humans, are susceptible to infections from bacteria and other

pathogens. Although fruit flies do not have as sophisticated an immune sys-

tem as humans do, they have a small set of immunity genes that are usually

dormant in the fly genome, but somehow get switched on when the organ-

ism gets infected. When these genes are turned on, they produce proteins

that destroy the pathogen, usually curing the infection.

One could design an experiment that is rather unpleasant to the flies, but

very informative to biologists: infect flies with a bacterium, then grind up the

flies and measure (perhaps with a DNA array) which genes are switched on

8. There exist pathological examples forcing the algorithm to explore both “left” and “right”
alternatives at nearly every step.
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as an immune response. From this set of genes, we would like to determine

what triggers their activation. It turns out that many immunity genes in

the fruit fly genome have strings that are reminiscent of TCGGGGATTTCC,

located upstream of the genes’ start. These short strings, called NF-κB bind-

ing sites, are important examples of regulatory motifs that turn on immunity

and other genes. Proteins known as transcription factors bind to these motifs,

encouraging RNA polymerase to transcribe the downstream genes. Motif

finding is the problem of discovering such motifs without any prior know-

ledge of how the motifs look.

Ideally, the fly infection experiment would result in a set of upstream re-

gions from genes in the genome, each region containing at least one NF-κB

binding site. Suppose we do not know what the NF-κB pattern looks like,

nor do we know where it is located in the experimental sample. The fly in-

fection experiment requires an algorithm that, given a set of sequences from

a genome, can find short substrings that seem to occur surprisingly often.

“The Gold Bug”, by Edgar Allan Poe, helps to illustrate the spirit, if not the

mechanics, of finding motifs in DNA sequences. When the character William

Legrand finds a parchment written by the pirate Captain Kidd, Legrand’s

friend says, “Were all the jewels of Golconda awaiting me upon my solution

of this enigma, I am quite sure that I should be unable to earn them.” Written

on the parchment in question was

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;]8*:+*8!
83(88)5*!;46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5*
-4)8‘8*; 4069285);)6!8)4++;1(+9;48081;8:8+1;48!85;4

)485!528806*81(+9;48;(88;4(+?34;48)4+;161;:188;+?;

Mr. Legrand responds, “It may well be doubted whether human ingenu-

ity can construct an enigma of the kind which human ingenuity may not, by

proper application, resolve.” He notices that a combination of three symbols—

; 4 8—appears very frequently in the text. He also knows that Captain

Kidd’s pirates speak English and that the most frequent English word is

“the.” Proceeding under the assumption that ; 4 8 encodes “the,” Mr.

Legrand deciphers the parchment note and finds the pirate treasure. After

making this substitution, Mr. Legrand has a slightly easier text to decipher:

53++!305))6*THE26)H+.)H+)TE06*THE!E‘60))E5T]E*:+*E!
E3(EE)5*!TH6(TEE*96*?TE)*+(THE5)T5*!2:*+(TH956*2(5*
-H)E‘E*T H0692E5)T)6!E)H++T1(+9THE0E1TE:E+1THE!E5TH

)HE5!52EE06*E1(+9THET(EETH(+?3HTHE)H+T161T:1EET+?T
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You might try to figure out what the symbol “)” might code for in order to

complete the puzzle.

Unfortunately, DNA texts are not that easy to decipher, and there is little

doubt that nature has constructed an enigma that human ingenuity cannot

entirely solve. However, bioinformaticians borrowed Mr. Legrand’s method,

and a popular approach to motif finding is based on the assumption that fre-

quent or rare words may correspond to regulatory motifs in DNA. It stands

to reason that if a word occurs considerably more frequently than expected,

then it is more likely to be some sort of “signal,” and it is crucially important

to figure out the biological meaning of the signal.

This “DNA linguistics” approach is at the heart of the pattern-driven ap-

proach to signal finding, which is based on enumerating all possible patterns

and choosing the most frequent (or the most statistically surprising) among

them.

4.5 Profiles

Figure 4.2 (a) presents seven 32-nucleotide DNA sequences generated ran-

domly. Also shown [fig. 4.2 (b)] are the same sequences with the “secret”

pattern P = ATGCAACT of length l = 8 implanted at random positions.

Suppose you do not know what the pattern P is, or where in each sequence

it has been implanted [fig. 4.2 (c)]. Can you reconstruct P by analyzing the

DNA sequences?

We could simply count the number of times each l-mer, or string of length

l, occurs in the sample. Since there are only 7 · (32 + 8) = 280 nucleotides

in the sample, it is unlikely that any 8-mer other than the implanted pattern

appears more than once.9 After counting all 8-mer occurrences in figure 4.2

(c) we will observe that, although most 8-mers appear in the sample just once

(with a few appearing twice), there is one 8-mer that appears in the sample

suspiciously many times—seven or more. This overrepresented 8-mer is the

pattern P we are trying to find.

Unlike our simple implanted patterns above, DNA uses a more inventive

notion of regulatory motifs by allowing for mutations at some nucleotide

positions [fig. 4.2 (d)]. For example, table 4.2 shows eighteen different NF-κB

motifs; notice that, although none of them are the consensus binding site se-

quence TCGGGGATTTCC, each one is not substantially different. When the

implanted pattern P is allowed to mutate, reconstructing P becomes more

9. The probability that any 8-mer appears in the sample is less than 280/48 ≈ 0.004



CGGGGCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC

(a) Seven random sequences.

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

(b) The same DNA sequences with the implanted
pattern ATGCAACT.

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

(c) Same as (b), but hiding the implant locations. Sud-
denly this problem looks difficult to solve.

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA
GGATGgAtCTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGAaGCAACcCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCtTGgAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCcAtTTTCAAC
TACATGATCTTTTGATGgcACTTGGATGAGGGAATGATGC

(d) Same as (b), but with the implanted pattern ATG-
CAACT randomly mutated in two positions; no two
implanted instances are the same. If we hide the lo-
cations as in (c), the difficult problem becomes nearly
impossible.

Figure 4.2 DNA sequences with implanted motifs.
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Table 4.2 A small collection of putative NF-κB binding sites.

T C G G G G A T T T C A

A C G G G G A T T T T T

T C G G T A C T T T A C

T T G G G G A C T T T T

C C G G T G A T T C C C

G C G G G G A A T T T C

T C G G G G A T T C C T

T C G G G G A T T C C T

T A G G G G A A C T A C

T C G G G T A T A A A C

T C G G G G G T T T T T

C C G G T G A C T T A C

C C A G G G A C T C C C

A A G G G G A C T T C C

T T G G G G A C T T T T

T T T G G G A G T C C C

T C G G T G A T T T C C

T A G G G G A A G A C C
A: 2 3 1 0 0 1 16 3 1 2 4 1

T: 12 3 1 0 4 1 0 9 15 11 5 6

G: 1 0 16 18 14 16 1 1 1 0 0 0

C: 3 12 0 0 0 0 1 5 1 5 9 11
T C G G G G A T T T C C

complicated, since the 8-mer count does not reveal the pattern. In fact, the

string ATGCAACT does not even appear in figure 4.2 (d), but the seven mu-

tated versions of it appear at position 8 in the first sequence, position 19 in

the second sequence, 3 in the third, 5 in the fourth, 31 in the fifth, 27 in the

sixth, and 15 in the seventh.

In order to unambiguously formulate the motif finding problem, we need

to define precisely what we mean by “motif.” Relying on a single string to

represent a motif often fails to represent the variation of the pattern in real

biological sequences, as in figure 4.2 (d). A more flexible representation of a

motif uses a profile matrix.

Consider a set of t DNA sequences, each of which has n nucleotides. Se-

lect one position in each of these t sequences, thus forming an array s =
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CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTT...
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA

GGATGgAtCTGATGCCGTTTGACGACCTA...
AAGGAaGCAACcCCAGGAGCGCCTTTGCTGG...

AATTTTCTAAAAAGATTATAATGTCGGTCCtTGgAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCcAtTTTCAAC

TACATGATCTTTTGATGgcACTTGGATGAGGGAATGATGC

(a) Superposition of the seven highlighted 8-mers from figure 4.2 (d).

A T C C A G C T
G G G C A A C T
A T G G A T C T

Alignment A A G C A A C C
T T G G A A C T
A T G C C A T T
A T G G C A C T

A 5 1 0 0 5 5 0 0
Profile T 1 5 0 0 0 1 1 6

G 1 1 6 3 0 1 0 0
C 0 0 1 4 2 0 6 1

Consensus A T G C A A C T

(b) The alignment matrix, profile matrix and consensus
string formed from the 8-mers starting at positions s =
(8, 19, 3, 5, 31, 27, 15) in figure 4.2 (d).

Figure 4.3 From DNA sample, to alignment matrix, to profile, and, finally, to con-
sensus string. If s = (8, 19, 3, 5, 31, 27, 15) is an array of starting positions for 8-mers
in figure 4.2 (d), then Score(s) = 5 + 5 + 6 + 4 + 5 + 5 + 6 + 6 = 42.
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(s1, s2, . . . , st), with 1 ≤ si ≤ n − l + 1. The l-mers starting at these po-

sitions can be compiled into a t × l alignment matrix whose (i, j)th element

is the nucleotide in the si + j − 1th element in the ith sequence (fig. 4.3).

Based on the alignment matrix, we can compute the 4× l profile matrix whose

(i, j)th element holds the number of times nucleotide i appears in column

j of the alignment matrix, where i varies from 1 to 4. The profile matrix,

or profile, illustrates the variability of nucleotide composition at each posi-

tion for a particular choice of l-mers. For example, the positions 3, 7, and

8 are highly conserved, while position 4 is not. To further summarize the

profile matrix, we can form a consensus string from the most popular element

in each column of the alignment matrix, which is the nucleotide with the

largest entry in the profile matrix. Figure 4.3 shows the alignment matrix for

s = (8, 19, 3, 5, 31, 27, 15), the corresponding profile matrix, and the resulting

consensus string ATGCAACT.

By varying the starting positions in s, we can construct a large number of

different profile matrices from a given sample. We need some way of grading

them against each other. Some profiles represent high conservation of a pat-

tern while others represent no conservation at all. An imprecise formulation

of the Motif Finding problem is to find the starting positions s correspond-

ing to the most conserved profile. We now develop a specific measure of

conservation, or strength, of a profile.

4.6 The Motif Finding Problem

If P(s) denotes the profile matrix corresponding to starting positions s, then

we will use MP(s)(j) to denote the largest count in column j of P(s). For

the profile P(s) in figure 4.3, MP(s)(1) = 5, MP(s)(2) = 5, and MP(s)(8) = 6.

Given starting positions s, the consensus score is defined to be Score(s, DNA) =∑l
j=1 MP(s)(j). For the starting positions in figure 4.3, Score(s, DNA) =

5 + 5 + 6 + 4 + 5 + 5 + 6 + 6 = 42. Score(s, DNA) can be used to mea-

sure the strength of a profile corresponding to the starting positions s. A

consensus score of l · t corresponds to the best possible alignment, in which

each row of a column has the same letter. A consensus score of lt
4 , however,

corresponds to the worst possible alignment, which has an equal mix of all

nucleotides in each column. In its simplest form, the Motif Finding prob-

lem can be formulated as selecting starting positions s from the sample that
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maximize Score(s, DNA).10

Motif Finding Problem:

Given a set of DNA sequences, find a set of l-mers, one from each

sequence, that maximizes the consensus score.

Input: A t×n matrix of DNA, and l, the length of the pattern

to find.

Output: An array of t starting positions s = (s1, s2, . . . , st)

maximizing Score(s, DNA).

Another view onto this problem is to reframe the Motif Finding problem

as the problem of finding a median string. Given two l-mers v and w, we can

compute the Hamming distance between them, dH(v, w), as the number of po-

sitions that differ in the two strings. For example, dH(ATTGTC, ACTCTC) =

2:

A T T G T C
: X : X : :
A C T C T C

Now suppose that s = (s1, s2, . . . , st) is an array of starting positions, and

that v is some l-mer. We will abuse our notation a bit and use dH(v, s) to

denote the total Hamming distance between v and the l-mers starting at posi-

tions s: dH(v, s) =
∑t

i=1 dH(v, si), where dH(v, si) is the Hamming distance

between v and the l-mer that starts at si in the ith DNA sequence. We will

use TotalDistance(v, DNA) = mins(dH(v, s)) to denote the minimum possi-

ble total Hamming distance between a given string v and any set of starting

positions in the DNA. Finding TotalDistance(v, DNA) is a simple problem:

first one has to find the best match for v in the first DNA sequence (i.e., a po-

sition minimizing dH(v, s1) for 1 ≤ s1 ≤ n− l + 1), then the best match in the

10. Another approach is to maximize the entropy of the corresponding profile. Let P(s) = (pi,j),
where pi,j is the count at element (i, j) of the 4 × l profile matrix. Entropy is defined as

lX

j=1

4X

i=1

pi,j

t
log

pi,j

t

where t is the number of sequences in the DNA sample. Although entropy is a more statistically
adequate measure of profile strength than the consensus score, for the sake of simplicity we use
the consensus score in the examples below.
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A T C C A G C T
G G G C A A C T
A T G G A T C T
A A G C A A C C
T T G G A A C T
A T G C C A T T
A T G G C A C T

Figure 4.4 Calculating the total Hamming distance for the consensus string ATG-
CAACT (the alignment is the same as in figure 4.3). The bold letters show the con-
sensus sequence; the total Hamming distance can be calculating as the number of
nonbold letters.

second one, and so on. That is, the minimum is taken over all possible start-

ing positions s. Finally, we define the median string for DNA as the string

v that minimizes TotalDistance(v, DNA); this minimization is performed

over all 4l strings v of length l.

We can formulate the problem of finding a median string in DNA se-

quences as follows.

Median String Problem:

Given a set of DNA sequences, find a median string.

Input: A t× n matrix DNA, and l, the length of the pattern

to find.

Output: A string v of l nucleotides that minimizes

TotalDistance(v, DNA) over all strings of that length.

Notice that this is a double minimization: we are finding a string v that

minimizes TotalDistance(v, DNA), which is in turn the smallest distance

among all choices of starting points s in the DNA sequences. That is, we are

calculating

min
all choices of

l-mers v

min
all choices of

starting positions s

dH(v, s).

Despite the fact that the Median String problem is a minimization problem

and the Motif Finding problem is a maximization problem, the two prob-
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lems are computationally equivalent. Let s be a set of starting positions with

consensus score Score(s, DNA), and let w be the consensus string of the cor-

responding profile. Then

dH(w, s) = lt− Score(s, DNA).

For example, in figure 4.4, the Hamming distance between the consensus

string w and each of the seven implanted patterns is 2, and dH(w, s)=2 · 7 =

7 · 8− 42.

The consensus string minimizes dH(v, s) over all choices of v, i.e.,

dH(w, s) = min
all choices of v

dH(v, s) = lt− Score(s, DNA)

Since t and l are constants, the smallest value of dH can also be obtained by

maximizing Score(s, DNA) over all choices of s:

min
all choices of s

min
all choices of v

dH(v, s) = lt− max
all choices of s

Score(s, DNA).

The problem on the left is the Median String problem while the problem on

the right is the Motif Finding problem.

In other words, the consensus string for the solution of the Motif Find-

ing problem is the median string for the input DNA sample. The median

string for DNA can be used to generate a profile that solves the Motif Find-

ing problem, by searching in each of the t sequences for the substring with

the smallest Hamming distance from the median string.

We introduce this formulation of the Median String problem to give more

efficient alternative motif finding algorithms below.

4.7 Search Trees

In both the Median String problem and the Motif Finding problem we have

to sift through a large number of alternatives to find the best one but we so

far lack the algorithmic tools to do so. For example, in the Motif Finding

problem we have to consider all (n− l + 1)t possible starting positions s:
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( 1, 1, . . . , 1, 1 )

( 1, 1, . . . , 1, 2 )

( 1, 1, . . . , 1, 3 )
...

( 1, 1, . . . , 1, n− l + 1 )

( 1, 1, . . . , 2, 1 )

( 1, 1, . . . , 2, 2 )

( 1, 1, . . . , 2, 3 )
...

( 1, 1, . . . , 2, n− l + 1 )
...

( n− l + 1, n− l + 1, . . . , n− l + 1, 1 )

( n− l + 1, n− l + 1, . . . , n− l + 1, 2 )

( n− l + 1, n− l + 1, . . . , n− l + 1, 3 )
...

( n− l + 1, n− l + 1, . . . , n− l + 1, n− l + 1 )

For the Median String problem we need to consider all 4l possible l-mers:

AA· · · AA
AA· · · AT
AA· · · AG
AA· · · AC
AA· · · TA
AA· · · TT
AA· · · TG
AA· · · TC

...

CC· · · GG
CC· · · GC
CC· · · CA
CC· · · CT
CC· · · CG
CC· · · CC
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1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

Figure 4.5 All 4-mers in the alphabet of {1, 2}.

We note that this latter progression is equivalent to the following one if we

let 1 stand for A, 2 for T, 3 for G, and 4 for C:

(1, 1, . . . , 1, 1)

(1, 1, . . . , 1, 2)

(1, 1, . . . , 1, 3)

(1, 1, . . . , 1, 4)

(1, 1, . . . , 2, 1)

(1, 1, . . . , 2, 2)

(1, 1, . . . , 2, 3)

(1, 1, . . . , 2, 4)
...

(4, 4, . . . , 3, 3)

(4, 4, . . . , 3, 4)

(4, 4, . . . , 4, 1)

(4, 4, . . . , 4, 2)

(4, 4, . . . , 4, 3)

(4, 4, . . . , 4, 4)

In general, we want to consider all kL L-mers in a k-letter alphabet. For the

Motif Finding problem, k = n−l+1, whereas for the Median String problem,

k = 4. Figure 4.5 shows all 24 4-mers in the two-letter alphabet of 1 and 2.

Given an L-mer from a k-letter alphabet, the subroutine NEXTLEAF (below)

demonstrates how to jump from an L-mer a = (a1a2 · · · aL) to the next L-

mer in the progression. Exactly why this algorithm is called NEXTLEAF will

become clear shortly.
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NEXTLEAF(a, L, k)

1 for i← L to 1

2 if ai < k

3 ai ← ai + 1

4 return a

5 ai ← 1

6 return a

NEXTLEAF operates in a way that is very similar to the natural process

of counting. In most cases, (a1, a2, . . . , aL) is followed by (a1, a2, . . . , aL +

1). However, when aL = k, the next invocation of NEXTLEAF will reset aL

to 1 and add 1 to aL−1—compare this to the transition from 3719 to 3720

in counting. However, when there is a long string of the value k on the

right-hand side of a, the algorithm needs to reset them all to 1—compare

this with the transition from 239999 to 240000. When all entries in a are

k, the algorithm wraps around and returns (1, 1, . . . , 1), which is one way

we can tell that we are finished examining L-mers. In the case that L =

10, NEXTLEAF is exactly like counting decimal numbers, except that we use

“digits” from 1 to 10, rather than from 0 to 9.

The following algorithm, ALLLEAVES, simply uses NEXTLEAF to output

all the 4-mers in the order shown in figure 4.5.

ALLLEAVES(L, k)

1 a← (1, . . . , 1)

2 while forever

3 output a

4 a← NEXTLEAF(a, L, k)

5 if a = (1, 1, . . . , 1)

6 return

Even though line 2 of this algorithm seems as though it would loop forever,

since NEXTLEAF will eventually loop around to (1, 1, . . . , 1), the return in

line 6 will get reached and it will eventually stop.

Computer scientists often represent all L-mers as leaves in a tree, as in fig-

ure 4.6. L-mer trees will have L levels (excluding the topmost root level), and

each vertex has k children. L-mers form leaves at the lowest level of the tree,

(L − 1)-mers form the next level up, and (L − 2)-mers a level above that,

and so on. For example, the vertices on the third level of the tree represent

the eight different 3-mers: (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2),
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Figure 4.6 All 4-mers in the two-letter alphabet {1, 2} can be represented as leaves
in a tree.

(2, 2, 1), and (2, 2, 2).

The tree in figure 4.6 with L = 4 and k = 2 has 31 vertices.11 Note that

in a tree with L levels and k children per vertex, each leaf is equivalent to

an array a of length L in which each element ai takes on one of k different

values. In turn, this is equivalent to an L-long string from an alphabet of size

k, which is what we have been referring to as an L-mer. We will consider

all of these representations to be equivalent. Internal vertices, on the other

hand, can be represented as a pair of items: a list a of length L and an integer

i that specifies the vertex’s level. The entries (a1, a2, . . . , ai) uniquely identify

a vertex at level i; we will rely on the useful fact that the representation of an

internal vertex is the prefix that is common to all of the leaves underneath it.

To represent all possible starting positions for the Motif Finding problem,

we can construct the tree with L = t levels12 and k = n − l + 1 children per

vertex. For the Median String problem, L = l and k = 4. The astute reader

may realize that the internal vertices of the tree are somewhat meaningless

11. In general, a tree with k children per vertex has ki vertices at level i (every vertex at level

i−1 gives birth to k children); the total number of vertices in the tree is then
PL

i=0 ki, while the
number of leaves is only kL.
12. As a reminder, t is the number of DNA sequences, n is the length of each one, and l is the
length of the profile we would like to find.
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PREORDER(v)
1 output v
2 if v has children
3 PREORDER( left child of v )
4 PREORDER( right child of v )

Figure 4.7 The order of traversing all vertices in a tree. The recursive algorithm
PREORDER demonstrates how the vertices were numbered.

for the purposes of finding motifs, since they do not represent a sensible

choice of starting positions in all of the t sequences. For this reason, we would

like a method of scanning only the leaves of a tree and ignore the internal

vertices. In doing this, it will probably appear that we have only complicated

matters: we deliberately constructed a tree that contains internal vertices and

now we will summarily ignore them. However, using the tree representation

wlll allow us to use the branch-and-bound technique to improve upon brute

force algorithms.

Listing the leaves of a tree is straightforward, but listing all vertices (i.e.,

all leaves and all internal vertices) is somewhat trickier. We begin at level 0

(the root) and then consider each of its k children in order. For each child, we
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again consider each of its k children and so on. Figure 4.7 shows the order of

traversing vertices for a tree with L = 4 and k = 2 and also gives an elegant

recursive algorithm to perform this process. The sequence of vertices that

PREORDER(root) would return on the tree of L = 4 and k = 2 would be as

follows:

(-,-,-,-)
(1,-,-,-)
(1,1,-,-)
(1,1,1,-)
(1,1,1,1)
(1,1,1,2)
(1,1,2,-)
(1,1,2,1)
(1,1,2,2)
(1,2,-,-)
(1,2,1,-)
(1,2,1,1)
(1,2,1,2)
(1,2,2,-)
(1,2,2,1)
(1,2,2,2)
(2,-,-,-)
(2,1,-,-)
(2,1,1,-)
(2,1,1,1)
(2,1,1,2)
(2,1,2,-)
(2,1,2,1)
(2,1,2,2)
(2,2,-,-)
(2,2,1,-)
(2,2,1,1)
(2,2,1,2)
(2,2,2,-)
(2,2,2,1)
(2,2,2,2)

Traversing the complete tree iteratively is implemented in the NEXTVER-

TEX algorithm, below. NEXTVERTEX takes vertex a = (a1, . . . , aL) at level i as
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an input and returns the next vertex in the tree. In reality, at level i NEXTVER-

TEX only uses the values a1, . . . , ai and ignores ai+1, . . . , aL. NEXTVERTEX

takes inputs that are similar to NEXTLEAF, with the exception that the “cur-

rent leaf” is now the “current vertex,” so it uses the parameter i for the level

on which the vertex lies. Given a, L, i, and k, NEXTVERTEX returns the next

vertex in the tree as the pairing of an array and a level. The algorithm will

return a level number of 0 when the traversal is complete.

NEXTVERTEX(a, i, L, k)

1 if i < L

2 ai+1 ← 1

3 return (a, i + 1)

4 else

5 for j ← L to 1

6 if aj < k

7 aj ← aj + 1

8 return (a, j)

9 return (a, 0)

When i < L, NEXTVERTEX(a, i, L, k) moves down to the next lower level

and explores that subtree of a. If i = L, NEXTVERTEX either moves along the

lowest level as long as aL < k or jumps back up in the tree.

We alluded above to using this tree representation to help reduce work in

brute force search algorithms. The general branch-and-bound approach will

allow us to ignore any children (or grandchildren, great-grandchildren, and

so on) of a vertex if we can show that they are all uninteresting. If none of the

descendents of a vertex could possibly have a better score than the best leaf

that has already been explored, then there really is no point descending into

the children of that vertex. At each vertex we calculate a bound–the most

wildly optimistic score of any leaves in the subtree rooted at that vertex—

and then decide whether or not to consider its children. In fact, the strategy is

named branch-and-bound for exactly this reason: at each point we calculate

a bound and then decide whether or not to branch out further (figure 4.8).

Branching-and-bounding requires that we can skip an entire subtree rooted

at an arbitrary vertex. The subroutine NEXTVERTEX is not up to this task, but

the algorithm BYPASS, below, allows us to skip the subtree rooted at vertex

(a, i). If we skip a vertex at level i of the tree, we can just increment ai (un-

less ai = k, in which case we need to jump up in the tree). The algorithm

BYPASS takes the same type of input and produces the same type of output

as NEXTLEAF.
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Figure 4.8 A tree that has uninteresting subtrees. The numbers next to a leaf rep-
resent the “score” for that L-mer. Scores at internal vertices represent the maximum
score in the subtree rooted at that vertex. To improve the brute force algorithm, we
want to “prune” (ignore) subtrees that do not contain high-scoring leaves. For ex-
ample, since the score of the very first leaf is 24, it does not make sense to analyze
the 4th, 5th, or 6th leaves whose scores are 20, 4, and 5, respectively. Therefore, the
subtree containing these vertices can be ignored.

BYPASS(a, i, L, k)

1 for j ← i to 1

2 if aj < k

3 aj ← aj + 1

4 return (a, j)

5 return (a, 0)

We pause to remark that the iterative version of tree navigation that we

present here is equivalent to the standard recursive approach that would be

found in an introductory algorithms text for computer scientists. Rather than

rob you of this discovery, the problems at the end of this chapter explore this

relationship in more detail. Simply transforming the list of alternatives that

need to be searched into a search tree makes many brute force algorithms bla-

tantly obvious; even better, a sensible branch-and-bound strategy will often

become clear.

4.8 Finding Motifs

The brute force approach to solve the Motif Finding problem looks through

all possible starting positions.
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BRUTEFORCEMOTIFSEARCH(DNA, t, n, l)

1 bestScore← 0

2 for each (s1, . . . , st) from (1, . . . , 1) to (n− l + 1, . . . , n− l + 1)

3 if Score(s, DNA) > bestScore

4 bestScore← Score(s, DNA)

5 bestMotif ← (s1, s2, . . . , st)

6 return bestMotif

There are n−l+1 choices for the first index (s1) and for each of those, there

are n− l+1 choices for the second index (s2). For each of those choices, there

are n − l + 1 choices for the third index, and so on. Therefore, the overall

number of positions is (n − l + 1)t, which is exponential in t, the number

of sequences. For each s, the algorithm calculates Score(s, DNA), which

requires O(l) operations. Thus, the overall complexity of the algorithm is

evaluated as O(lnt).

The only remaining question is how to write line 2 using standard pseu-

docode operations. This is particularly easy if we use NEXTLEAF from the

previous section. In this case, L = n − l + 1 and k = t. Rewriting BRUTE-

FORCEMOTIFSEARCH in this way we arrive at BRUTEFORCEMOTIFSEARCH-

AGAIN.

BRUTEFORCEMOTIFSEARCHAGAIN(DNA, t, n, l)

1 s← (1, 1, . . . , 1)

2 bestScore← Score(s, DNA)

3 while forever

4 s← NEXTLEAF(s, t, n− l + 1)

5 if Score(s, DNA) > bestScore

6 bestScore← Score(s, DNA)

7 bestMotif ← (s1, s2, . . . , st)

8 if s = (1, 1, . . . , 1)

9 return bestMotif

Finally, to prepare for the branch-and-bound strategy, we will want the

equivalent version, SIMPLEMOTIFSEARCH, which uses NEXTVERTEX to ex-

plore each leaf.



110 4 Exhaustive Search

SIMPLEMOTIFSEARCH(DNA, t, n, l)

1 s← (1, . . . , 1)

2 bestScore← 0

3 i← 1

4 while i > 0

5 if i < t

6 (s, i)← NEXTVERTEX(s, i, t, n− l + 1)

7 else

8 if Score(s, DNA) > bestScore

9 bestScore← Score(s, DNA)

10 bestMotif ← (s1, s2, . . . , st)

11 (s, i)← NEXTVERTEX(s, i, t, n− l + 1)

12 return bestMotif

Observe that some sets of starting positions can be ruled out immedi-

ately without iterating over them, based simply on the most optimistic es-

timate of their score. For example, if the first i of t starting positions [i.e.,

(s1, s2, . . . , si)] form a “weak” profile, then it may not be necessary to even

consider any starting positions in the sequences i + 1, i + 2, . . . , t, since the

resulting profile could not possibly be better than the highest-scoring profile

already found.

Given a set of starting positions s = (s1, s2, . . . , st), define the partial con-

sensus score, Score(s, i, DNA), to be the consensus score of the i× l alignment

matrix involving only the first i rows of DNA corresponding to starting po-

sitions (s1, s2, . . . , si,−,−, . . . ,−). In this case, a− indicates that we have not

chosen any value for that entry in s. If we have the partial consensus score for

s1, . . . , si, even in the best of circumstances the remaining t− i rows can only

improve the consensus score by (t − i) · l; therefore, the score of any align-

ment matrix with the first i starting positions (s1, . . . , si) could be at most

Score(s, i, DNA) + (t− i) · l. This implies that if Score(s, i, DNA) + (t− i) · l

is less than the currently best score, bestScore, then it does not make sense

to explore any of the remaining t − i sequences in the sample—with this

choice of (s1, . . . , si)—it would obviously result in wasted effort. Therefore,

the bound Score(s, i, DNA) + (t − i) · l could save us the trouble of looking

at (n− l + 1)t−i leaves.
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BRANCHANDBOUNDMOTIFSEARCH(DNA, t, n, l)

1 s← (1, . . . , 1)

2 bestScore← 0

3 i← 1

4 while i > 0

5 if i < t

6 optimisticScore← Score(s, i, DNA) + (t− i) · l

7 if optimisticScore < bestScore

8 (s, i)← BYPASS(s, i, t, n− l + 1)

9 else

10 (s, i)← NEXTVERTEX(s, i, t, n− l + 1)

11 else

12 if Score(s, DNA) > bestScore

13 bestScore← Score(s)

14 bestMotif ← (s1, s2, . . . , st)

15 (s, i)← NEXTVERTEX(s, i, t, n− l + 1)

16 return bestMotif

Though this branch-and-bound strategy improves our algorithm for some

problem instances, we have not improved the worst-case efficiency: you can

design a sample with an implanted pattern that requires exponential time to

find.

4.9 Finding a Median String

We mentioned above that the Median String problem gives us an alternate

approach to finding motifs. If we apply the brute force technique to solve

this problem, we arrive at the following algorithm13:

13. The parameters t, n, and l in this algorithm are needed to compute the value
of TOTALDISTANCE(word,DNA). A more detailed pseudocode would use TOTALDIS-
TANCE(word,DNA, t, n, l) but we omit these details for brevity.
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Figure 4.9 A search tree for the Median String problem. Each branching point can
give rise to only four children, as opposed to the n−l+1 children in the Motif Finding
problem.

BRUTEFORCEMEDIANSEARCH(DNA, t, n, l)

1 bestWord← AAA · · ·AA

2 bestDistance←∞

3 for each l-mer word from AAA...A to TTT...T
4 if TOTALDISTANCE(word, DNA) < bestDistance

5 bestDistance← TOTALDISTANCE(word, DNA)

6 bestWord← word

7 return bestWord

BRUTEFORCEMEDIANSEARCH considers each of 4l nucleotide strings of

length l and computes TOTALDISTANCE at every step. Given word, we can

calculate TotalDistance(word, DNA) in a single pass over DNA (i.e., in O(nt)

time), rather than by considering all possible starting points in the DNA

sample. Therefore, BRUTEFORCEMEDIANSEARCH has running time O(4l ·n ·

t), which compares favorably with the O(lnt) of SIMPLEMOTIFSEARCH. A

typical motif has a length (l) ranging from eight to fifteen nucleotides, while

the typical size of upstream regions that are analyzed have length (n) ranging

from 500 to 1000 nucleotides. BRUTEFORCEMEDIANSEARCH is a practical

algorithm for finding short motifs while SIMPLEMOTIFSEARCH is not.

We will proceed along similar lines to construct a branch-and-bound strat-

egy for BRUTEFORCEMEDIANSTRING as we did in the transformation of
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BRUTEFORCEMOTIFSEARCH into SIMPLEMOTIFSEARCH. We can modify the

median string search to explore the entire tree of all l-nucleotide strings (see

figure 4.9) rather than only the leaves of that tree as in BRUTEFORCEMEDI-

ANSEARCH. A vertex at level i in this tree represents a nucleotide string of

length i, which can be viewed as the i-long prefix of every leaf below that ver-

tex. SIMPLEMEDIANSEARCH assumes that nucleotides A, C, G, T are coded

as numerals (1, 2, 3, 4); for example, the assignment in line 1 sets s to the

l-mer (1, 1, . . . , 1), corresponding to the nucleotide string AA . . . A.

SIMPLEMEDIANSEARCH(DNA, t, n, l)

1 s← (1, 1, . . . , 1)

2 bestDistance←∞

3 i← 1

4 while i > 0

5 if i < l

6 (s, i)← NEXTVERTEX(s, i, l, 4)

7 else

8 word← nucleotide string corresponding to (s1, s2, . . . sl)

9 if TOTALDISTANCE(word, DNA) < bestDistance

10 bestDistance← TOTALDISTANCE(word, DNA)

11 bestWord← word

12 (s, i)← NEXTVERTEX(s, i, l, 4)

13 return bestWord

In accordance with the branch-and-bound strategy, we find a bound for

TotalDistance(word, DNA) at each vertex. It should be clear that if the total

distance between the i-prefix of word and DNA is larger than the smallest

seen so far for one of the leaves (nucleotide strings of length l), then there is

no point investigating subtrees of the vertex corresponding to that i-prefix

of word; all extensions of this prefix into an l-mer will have at least the

same total distance and probably more. This is what forms our branch-and-

bound strategy. The bound in BRANCHANDBOUNDMEDIANSEARCH relies

on the optimistic scenario that there could be some extension to the prefix that

matches every string in the sample, which would add 0 to the total distance

calculation.
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BRANCHANDBOUNDMEDIANSEARCH(DNA, t, n, l)

1 s← (1, 1, . . . , 1)

2 bestDistance←∞

3 i← 1

4 while i > 0

5 if i < l

6 prefix← nucleotide string corresponding to (s1, s2, . . . , si)

7 optimisticDistance← TOTALDISTANCE(prefix, DNA)

8 if optimisticDistance > bestDistance

9 (s, i)← BYPASS(s, i, l, 4)

10 else

11 (s, i)← NEXTVERTEX(s, i, l, 4)

12 else

13 word← nucleotide string corresponding to (s1, s2, . . . sl)

14 if TOTALDISTANCE(word, DNA) < bestDistance

15 bestDistance← TOTALDISTANCE(word, DNA)

16 bestWord← word

17 (s, i)← NEXTVERTEX(s, i, l, 4)

18 return bestWord

The naive bound in BRANCHANDBOUNDMEDIANSEARCH is overly gen-

erous, and it is possible to design more aggressive bounds (this is left as a

problem at the end of the chapter). As usual with branch-and-bound algo-

rithms, BRANCHANDBOUNDMEDIANSEARCH provides no improvement in

the worst-case running time but often results in a practical speedup.

4.10 Notes

In 1965, Werner Arber (32) discovered restriction enzymes, conjecturing that

they cut DNA at positions where specific nucleotide patterns occur. In 1970,

Hamilton Smith (95) verified Arber’s hypothesis by showing that the HindII

restriction enzyme cuts DNA in the middle of palindromes GTGCAC or GT-
TAAC. Other restriction enzymes have similar properties, but cut DNA at

different patterns. Dan Nathans pioneered the application of restriction en-

zymes to genetics and constructed the first ever restriction map in 1973 (26).

All three were awarded the Nobel Prize in 1978.

The PARTIALDIGEST algorithm for the construction of restriction maps

was proposed by Steven Skiena and colleagues in 1990 (94). In 1994 Zheng

Zhang (114) came up with a “difficult” instance of PDP that requires an ex-
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ponential time to solve using the PARTIALDIGEST algorithm. In 2002, Mau-

rice Nivat and colleagues described a polynomial algorithm to solve the

PDP (30).

Studies of gene regulation were pioneered by François Jacob and Jacques

Monod in the 1950s. They identified genes (namely, regulatory genes) whose

proteins (transcription factors) have as their sole function the regulation of

other genes. Twenty years later it was shown that these transcription factors

bind specifically in the upstream areas of the genes they regulate and recog-

nize certain patterns (motifs) in DNA. It was later discovered that, in some

cases, transcription factors may bind at a distance and regulate a gene from

very far (tens of thousands of nucleotides) away.

Computational approaches to motif finding were pioneered by Michael

Waterman (89), Gary Stormo (46) and their colleagues in the mid-1980s. Pro-

files were introduced by Gary Stormo and colleagues in 1982 (101) and fur-

ther developed by Michael Gribskov and colleagues in 1987 (43). Although

the naive exhaustive motif search described in this chapter is too slow, there

exist fast and practical branch-and-bound approaches to motif finding (see

Marsan and Sagot, 2000 (72), Eskin and Pevzner, 2002 (35)).
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Gary Stormo, born 1950 in South Dako-

ta, is currently a professor in the Depart-

ment of Genetics at Washington Univer-

sity in St. Louis. Stormo went to Caltech

as a physics major, but switched to bi-

ology in his junior year. Although that

was only at an undergraduate level, the

strong introduction to the physical sci-

ences and math helped prepare him for

the opportunities that came later. He

has a PhD in Molecular Biology from

the University of Colorado at Boulder.

His principal research interests center

around the analysis of gene regulation

and he was an early advocate of using

computers to infer regulatory motifs and

understand gene regulation.

He went to the University of Colorado in Boulder as a graduate student

and quickly got excited about understanding gene regulation, working in

the lab of Larry Gold. During his graduate career, methods for sequencing

DNA were developed so he suddenly had many examples of regulatory sites

that he could compare to each other, and could also compare to the mutants

that he had collected. Together with Tom Schneider he set out to write a col-

lection of programs for various kinds of analysis on the sequences that were

available. At the time neither the algorithms nor the math were very diffi-

cult; even quite simple approaches were new and useful. He did venture into

some artificial intelligence techniques that took some effort to understand,

but the biggest challenge was that they had to do everything themselves.

GenBank didn’t exist yet so they had to develop their own databases to keep

all of the DNA sequences and their annotation, and they even had to type

most of them in by hand (with extensive error checking) because in those

days most sequences were simply published in journals.

As part of his thesis work he developed profiles (also called position weight

matrices) as a better representation of regulatory sites than simple consen-

sus sequences. He had published a few different ways to derive the pro-

files matrices, depending on the types of data available and the use to be

made of them. But he was looking for a method to discover the matrix if one
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only knew a sample of DNA sequences that had the regulatory sites some-

where within them at unknown positions, the problem that is now known

as the Motif Finding problem. A few years earlier Michael Waterman had

published an algorithm for discovering a consensus motif from a sample of

DNA sequences, and Stormo wanted to do the same thing with a profile

representation. The problem has two natural aspects to it, how to find the

correct alignment of regulatory sites without examining all possible align-

ments, and how to evaluate different alignments so as to choose the best. For

the evaluation step he used the entropy-based information content measure

from Tom Schneider’s thesis because it had nice statistical properties and

they had shown that, with some simplifying assumptions, it was directly re-

lated to the binding energy of the protein to the sites. In retrospect is seems

almost trivial, but at the time it took them considerable effort to come up

with the approach that is employed in the greedy CONSENSUS program.

Stormo knew that the idea would work, and of course it did, so long as the

problem wasn’t too difficult—the pattern had to have sufficient information

content to stand out from the background. He knew this would be a very

useful tool, although at the time nobody anticipated DNA array experiments

which make it even more useful because one can get samples of putatively

coregulated genes so much more easily. Of course these data have more noise

than originally thought, so the algorithms have had to become more robust.

One of Stormo’s most enjoyable scientific experiences came soon after he

got his PhD and began working on a collaborative project with his adviser,

Larry Gold and Pete von Hippel at the University of Oregon. Gold’s lab had

previously shown that the gene in the T4 phage known as “32” (which partic-

ipates in replication, recombination, and repair) also regulated its own syn-

thesis at the translational level. von Hippel’s group had measured the bind-

ing parameters of the protein, while another group had recently sequenced

the gene and its regulatory region. By combining the binding parameters of

the protein with analysis of the sequence, including a comparison to other

gene sequences, they were able to provide a model for the protein’s activity

in gene regulation. A few years later Stormo got to help fill in some more

details of the model through a comparison of the regulatory region from the

closely related phages T2 and T6 and showed that there was a conserved

pseudoknot structure that acted as a nucleation site for the autogenous bind-

ing. Stormo says:

This was very satisfying because of how all of the different aspects of

the problem, from biophysical measurements to genetics to sequence
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analysis came together to describe a really interesting example of gene

regulation.

Discoveries can come in many different ways, and the most important

thing is to be ready for them. Some people will pick a particular problem

and work on it very hard, bringing all of the tools available, even inventing

new ones, to try and solve it. Another way is to look for connections between

different problems, or methods in one field that can be applied to problems in

another field. Gary thinks this interdisciplinary approach is particularly use-

ful in bioinformatics, although the hard work focused on specific problems

is also important. His research style has always been to follow his interests

which can easily wander from an initial focus. He feels that if he had fol-

lowed a more consistent line of work he could have made more progress in

certain areas, but he really enjoys reading widely and working on problems

where he can make a contribution, even if they are outside his major research

areas.

I think the regulation of gene expression will continue to be an impor-

tant problem for a long time. Although significant progress has been

made, there are still lots of connections to be made between transcrip-

tion factors and the genes they regulate. Plus lots of gene regulation

happens post-transcriptionally and we are just beginning to look at

that in a systematic way. The ultimate goal of really understanding

the complete regulatory networks is a major challenge. I also think

evolutionary biology will be an increasingly important topic for un-

derstanding the diversity of life on the planet.
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4.11 Problems

Problem 4.1

Write an algorithm that, given a set X, calculates the multiset ΔX.

Problem 4.2

Consider partial digest

L = {1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11, 12, 15}.

Solve the Partial Digest problem for L (i.e., find X such that ΔX = L).

Problem 4.3

Write an algorithm that, given an n-element set, generates all m-element subsets of
this set. For example, the set {1, 2, 3, 4} has six two-element subsets {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, and {3, 4}. How long will your algorithm take to run? Can it be
done faster?

Problem 4.4

Write an algorithm that, given an n-element multiset, generates all m-element subsets
of this set. For example, the set {1, 2, 2, 3} has four two-element subsets {1, 2}, {1, 3},
{2, 3}, and {2, 2}. How long will your algorithm take to run? Can it be done faster?

Problem 4.5

Prove that the sets U⊕V = {u+v : u ∈ U, v ∈ V } and U�V = {u−v : u ∈ U, v ∈ V }
are homometric for any two sets U and V .

Problem 4.6

Given a multiset of integers A = {ai}, we call the polynomial A(x) =
P

i
xai the

generating function for A. Verify that the generating function for ΔA is ΔA(x) =
A(x)A(x−1). Given generating functions for U and V , find generating functions for
A = U ⊕ V and B = U � V . Compare generating functions for ΔA and ΔB. Are
they the same?

Problem 4.7

Write pseudocode for the PARTIALDIGEST algorithm that has fewer lines than the one
presented in the text.

Problem 4.8

Find a set ΔX with the smallest number of elements that could have arisen from
more than one X, not counting shifts and reflections.

Double Digest mapping is a restriction mapping technique that is even simpler (experimentally)

than a partial digest but uses two different restriction enzymes. In this approach, biologists

digest DNA in such a way that only fragments between consecutive sites are formed (fig. 4.10).

One way to construct a double digest map is to measure the fragment lengths (but not the order)

from a complete digestion of the DNA by each of the two enzymes singly, and then by the two
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1 3 5 10 11 14 16 17

1 4 5 6 2

3 8 3 3 1

+ 1 2 2 5 1 3 2 1 1

(a)

1 2 4 7 11 12 15 17

2 5 4 6 1

1 3 8 3 3

(b)

Figure 4.10 Restriction map of two restriction enzymes. When the digest is per-
formed with each restriction enzyme separately and then with both enzymes com-
bined, you may be able to reconstruct the original restriction map. The single digests
{1, 2, 4, 5, 6} and {1, 3, 3, 3, 8} as well as the double digest {1, 1, 1, 1, 2, 2, 2, 3, 5} allow
one to uniquely reconstruct the restriction map (a). There are many other restriction
maps that yield the same single digests, but produce a different double digest (b).
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enzymes applied together. The problem of determining the positions of the cuts from fragment

length data is known as the Double Digest problem, or DDP.

Figure 4.10 shows “DNA” cut by two restriction enzymes, A (shown by a circle) and B (shown

by a square). Through gel electrophoresis experiments with these two restriction enzymes, a bi-

ologist can obtain information about the sizes of the restriction fragments generated by each in-

dividually. However, there are many orderings (maps) corresponding to these fragment lengths.

To find out which of the maps is the correct one, biologists cleave DNA by both enzymes at the

same time; this procedure is known as a double digest. The two maps presented in figure 4.10

produce the same single digests A and B but different double digests A+ B. The double digest

that fits experimental data corresponds to the correct map. The Double Digest problem is to find

a physical map, given three sets of fragment lengths: A, B, and A + B.

Problem 4.9

Devise a brute force algorithm for the DDP and suggest a branch-and-bound ap-
proach to improve its performance.

Another technique used to build restriction maps leads to the Probed Partial Digest problem (PPDP).

In this method DNA is partially digested with a restriction enzyme, thus generating a collection

of DNA fragments between every two cutting sites. After this, a labeled probe that attaches to

the DNA between two cutting sites is hybridized to the partially digested DNA, and the sizes

of fragments to which the probe hybridizes are measured. In contrast to the PDP, where the in-

put consists of all partial fragments, the input for the PPDP consists of all partial fragments that

contain a given point (this point corresponds to the position of the labeled probe). The problem

is to reconstruct the positions of the sites from the multiset of measured lengths.

In the PPDP, we assume that the labeled probe is hybridized at position 0 and that A is the set

of restriction sites with negative coordinates while B is the set of restriction sites with positive

coordinates. The probed partial digest experiment provides the multiset {b−a : a ∈ A, b ∈ B}

and the problem is to find A and B given this set.

Problem 4.10

Design a brute force algorithm for the PPDP and suggest a branch-and-bound ap-
proach to improve its performance.

Problem 4.11

The search trees in the text are complete k-ary trees: each vertex that is not a leaf has
exactly k children. It is also balanced: the number of edges in the path from the root
to any leaf is the same (this is sometimes referred to as the height of the tree). Find a
closed-form expression for the total number of vertices in a complete and balanced
k-ary tree of height L.

Problem 4.12

Given a long text string T and one shorter pattern string s, find the first occurrence
of s in T (if any). What is the complexity of your algorithm?

Problem 4.13

Given a long text string T , one shorter pattern string s, and an integer k, find the first
occurrence in T of a string (if any) s′ such that dH(s, s′) ≤ k. What is the complexity
of your algorithm?
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Problem 4.14

Implement an algorithm that counts the number of occurrences of each l-mer in a
string of length n. Run it over a bacterial genome and construct the distribution of
l-mer frequencies. Compare this distribution to that of a random string of the same
length as the bacterial genome.

Problem 4.15

The following algorithm is a cousin of one of the motif finding algorithms we have
considered in this chapter. Identify which algorithm is a cousin of ANOTHERMOTIF-
SEARCH and find the similarities and differences between these two algorithms.

ANOTHERMOTIFSEARCH(DNA, t, n, l)

1 s← (1, 1, . . . , 1)

2 bestMotif ← FINDINSEQ(s, 1, t, n, l)

3 return bestMotif

FINDINSEQ(s, currentSeq, t, n, l)

1 bestScore← 0

2 for j ← 1 to n− l + 1

3 scurrentSeq ← j

4 if currentSeq �= t

5 s← FINDINSEQ(s, currentSeq + 1, t, n, l)

6 if Score(s) > bestScore

7 bestScore← Score(s)

8 bestMotif ← s

9 return bestMotif

Problem 4.16

The following algorithm is a cousin of one of the motif finding algorithms we have
considered in this chapter. Identify which algorithm is a cousin of YETANOTHERMO-
TIFSEARCH and find the similarities and differences between these two algorithms.
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YETANOTHERMOTIFSEARCH(DNA, t, n, l)

1 s← (1, 1, . . . , 1)

2 bestMotif← FIND(s, 1, t, n, l)

3 return bestMotif

FIND(s, currentSeq, t, n, l)

1 i← currentSeq

2 bestScore← 0

3 for j ← 1 to n− l + 1

4 si ← j

5 bestPossibleScore← Score(s, i) + (t− i) · l
6 if bestPossibleScore > bestScore

7 if currentSeq �= t

8 s← FIND(s, currentSeq + 1, t, n, l)

9 if Score(s) > bestScore

10 bestScore← Score(s)

11 bestMotif ← s

12 return bestMotif

Problem 4.17

Derive a tighter bound for the branch-and-bound strategy for the Median String prob-
lem. Hint: Split an l-mer w into two parts, u and v. Use TotalDistance(u, DNA) +
TotalDistance(v,DNA) to bound TotalDistance(w,DNA).



5 Greedy Algorithms

The algorithm USCHANGE in chapter 2 is an example of a greedy strategy: at

each step, the cashier would only consider the largest denomination smaller

than (or equal to) M . Since the goal was to minimize the number of coins re-

turned to the customer, this seemed like a sensible strategy: you would never

use five nickels in place of one quarter. A generalization of USCHANGE, BET-

TERCHANGE also used what seemed like the best option and did not consider

any others, which is what makes an algorithm “greedy.” Unfortunately, BET-

TERCHANGE actually returned incorrect results in some cases because of its

short-sighted notion of “good.” This is a common characteristic of greedy

algorithms: they often return suboptimal results, but take very little time to

do so. However, there are a lucky few greedy algorithms that find optimal

rather than suboptimal solutions.

5.1 Genome Rearrangements

Waardenburg’s syndrome is a genetic disorder resulting in hearing loss and

pigmentary abnormalities, such as two differently colored eyes. The disease

was named after the Dutch ophthalmologist who first noticed that people

with two differently colored eyes frequently had hearing problems as well.

In the early 1990s, biologists narrowed the search for the gene implicated in

Waardenburg’s syndrome to human chromosome 2, but its exact location re-

mained unknown for some time. There was another clue that shed light on

the gene associated with Waardenburg’s syndrome, that drew attention to

chromosome 2: for a long time, breeders scrutinized mice for mutants, and

one of these, designated splotch, had pigmentary abnormalities like patches

of white spots, similar to those in humans with Waardenburg’s syndrome.

Through breeding, the splotch gene was mapped to one of the mouse chro-
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Figure 5.1 Transformation of the mouse gene order into the human gene order on
the X chromosome (only the five longest synteny blocks are shown here).

mosomes. As gene mapping proceeded it became clear that there are groups

of genes in mice that appear in the same order as they do in humans: these

genes are likely to be present in the same order in a common ancestor of

humans and mice—the ancient mammalian genome. In some ways, the

human genome is just the mouse genome cut into about 300 large genomic

fragments, called synteny blocks, that have been pasted together in a different

order. Both sequences are just two different shufflings of the ancient mam-

malian genome. For example, chromosome 2 in humans is built from frag-

ments that are similar to mouse DNA residing on chromosomes 1, 2, 3, 5, 6,

7, 10, 11, 12, 14, and 17. It is no surprise, then, that finding a gene in mice

often leads to clues about the location of the related gene in humans.

Every genome rearrangement results in a change of gene ordering, and a

series of these rearrangements can alter the genomic architecture of a species.

Analyzing the rearrangement history of mammalian genomes is a challeng-

ing problem, even though a recent analysis of human and mouse genomes

implies that fewer than 250 genomic rearrangements have occurred since the

divergence of humans and mice approximately 80 million years ago. Every

study of genome rearrangements involves solving the combinatorial puzzle
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of finding a series of rearrangements that transform one genome into an-

other. Figure 5.1 presents a rearrangement scenario in which the mouse X chro-

mosome is transformed into the human X chromosome.1 The elementary

rearrangement event in this scenario is the flipping of a genomic segment,

called a reversal, or an inversion. One can consider other types of evolution-

ary events but in this book we only consider reversals, the most common

evolutionary events.

Biologists are interested in the most parsimonious evolutionary scenario,

that is, the scenario involving the smallest number of reversals. While there is

no guarantee that this scenario represents an actual evolutionary sequence, it

gives us a lower bound on the number of rearrangements that have occurred

and indicates the similarity between two species.2

Even for the small number of synteny blocks shown, it is not so easy to ver-

ify that the three evolutionary events in figure 5.1 represent a shortest series

of reversals transforming the mouse gene order into the human gene order

on the X chromosome. The exhaustive search technique that we presented

in the previous chapter would hardly work for rearrangement studies since

the number of variants that need to be explored becomes enormous for more

than ten synteny blocks. Below, we explore two greedy approaches that work

to differing degrees of success.

5.2 Sorting by Reversals

In their simplest form, rearrangement events can be modeled by a series

of reversals that transform one genome into another. The order of genes

(rather, of synteny blocks) in a genome can be represented by a permutation3

1. Extreme conservation of genes on X chromosomes across mammalian species provides an
opportunity to study the evolutionary history of X chromosomes independently of the rest of the
genomes, since the gene content of X chromosomes has barely changed throughout mammalian
evolution. However, the order of genes on X chromosomes has been disrupted several times. In
other words, genes that reside on the X chromosome stay on the X chromosome (but their order
may change). All other chromosomes may exchange genes, that is, a gene can move from one
chromosome to another.
2. In fact, a sequence of reversals that transforms the X chromosome of mouse into the X chro-
mosome of man does not even represent an evolutionary sequence, since humans are not de-
scended from the present-day mouse. However, biologists believe that the architecture of the X
chromosome in the human-mouse ancestor is about the same as the architecture of the human
X chromosome.
3. A permutation of a sequence of n numbers is just a reordering of that sequence. We will
always use permutations of consecutive integers: for example, 2 1 3 4 5 is a permutation of
1 2 3 4 5.
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π = π1π2 · · ·πn. The order of synteny blocks on the X chromosome in hu-

mans is represented in figure 5.1 by (1, 2, 3, 4, 5), while the ordering in mice

is (3, 5, 2, 4, 1).4

A reversal ρ(i, j) has the effect of reversing the order of synteny blocks

πiπi+1 · · ·πj−1πj

In effect, this transforms

π = π1 · · ·πi−1πiπi+1 · · ·πj−1πj
−−−−−−−−−−−−→

πj+1 · · ·πn

into

π · ρ(i, j) = π1 · · ·πi−1πjπj−1 · · ·πi+1πi
←−−−−−−−−−−−−

πj+1 · · ·πn

For example, if π = 1 2 4 3 7 5−−−→ 6, then π · ρ(3, 6) = 1 2 5 7 3 4←−−− 6. With this rep-

resentation of a genome, and a rigorous definition of an evolutionary event,

we are in a position to formulate the computational problem that mimics the

biological rearrangement process.

Reversal Distance Problem:

Given two permutations, find a shortest series of reversals that trans-

forms one permutation into another.

Input: Permutations π and σ.

Output: A series of reversals ρ1, ρ2, . . . , ρt transforming π

into σ (i.e., π · ρ1 · ρ2 · · · ρt = σ), such that t is minimum.

We call t the reversal distance between π and σ, and write d(π, σ) to denote

the reversal distance for a given π and σ. In practice, one usually selects the

second genome’s order as a gold standard, and arbitrarily sets σ to be the

identity permutation 1 2 · · · n. The Sorting by Reversals problem is similar to

the Reversal Distance problem, except that it requires only one permutation

as input.

4. In reality, genes and synteny blocks have directionality, reflecting whether they reside on the
direct strand or the reverse complement strand of the DNA. In other words, the synteny block
order in an organism is really represented by a signed permutation. However, in this section we
ignore the directionality of the synteny blocks for simplicity.
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Sorting by Reversals Problem:

Given a permutation, find a shortest series of reversals that transforms

it into the identity permutation.

Input: Permutation π.

Output: A series of reversals ρ1, ρ2, . . . , ρt transforming π

into the identity permutation such that t is minimum.

In this case, we call t the reversal distance of π and denote it as d(π). When

sorting a permutation π = 1 2 3 6 4 5, it hardly makes sense to move the

already-sorted first three elements of π. If we define prefix(π) to be the num-

ber of already-sorted elements of π, then a sensible strategy for sorting by

reversals is to increase prefix(π) at every step. This approach sorts π in 2

steps: 1 2 3 6 45 → 1 2 3 4 6 5→ 1 2 3 4 5 6. Generalizing this leads to an algo-

rithm that sorts a permutation by repeatedly moving its ith element to the

ith position.5

SIMPLEREVERSALSORT(π)

1 for i← 1 to n− 1

2 j ← position of element i in π (i.e., πj = i)

3 if j �= i

4 π ← π · ρ(i, j)

5 output π

6 if π is the identity permutation

7 return

SIMPLEREVERSALSORT is an example of a greedy algorithm that chooses

the “best” reversal at every step. However, the notion of “best” here is rather

short-sighted—simply increasing prefix(π) does not guarantee the smallest

number of reversals. For example, SIMPLEREVERSALSORT takes five steps to

sort 6 1 2 3 4 5:

6 1 2 3 4 5→ 1 6 23 4 5→ 1 2 6 34 5→ 1 2 3 6 45→ 1 2 3 4 6 5→ 1 2 3 4 5 6

However, the same permutation can be sorted in just two steps:

6 1 2 3 4 5→ 5 4 3 2 16→ 1 2 3 4 5 6.

5. Note the superficial similarity of this algorithm to SELECTIONSORT in chapter 2.
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Therefore, we can confidently say that SIMPLEREVERSALSORT is not a correct

algorithm, in the strict sense of chapter 2. In fact, despite its commonsense

appeal, SIMPLEREVERSALSORT is a terrible algorithm since it takes n−1 steps

to sort the permutation π = n 1 2 . . . (n− 1) even though d(π) = 2.

Even before biologists faced genome rearrangement problems, computer

scientists studied the related Sorting by Prefix Reversals problem, also known

as the Pancake Flipping problem: given an arbitrary permutation π, find

dpref (π), which is the minimum number of reversals of the form ρ(1, i) sort-

ing π. The Pancake Flipping problem was inspired by the following “real-

life” situation described by (the fictitious) Harry Dweighter:

The chef in our place is sloppy, and when he prepares a stack of pan-

cakes they come out all different sizes. Therefore, when I deliver them

to a customer, on the way to a table I rearrange them (so that the small-

est winds up on top, and so on, down to the largest at the bottom) by

grabbing several from the top and flipping them over, repeating this

(varying the number I flip) as many times as necessary. If there are n

pancakes, what is the maximum number of flips that I will ever have

to use to rearrange them?

An analog of SIMPLEREVERSALSORT will sort every permutation by at

most 2(n− 1) prefix reversals. For example, one can sort 1 2 3 6 4 5 by 4 prefix
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reversals (1 2 3 64 5 → 6 3 2 1 4 5 → 5 4 1 2 36 → 3 2 14 5 6 → 1 2 3 4 5 6) but

it is not clear whether there exists an even shorter series of prefix reversals

to sort this permutation. William Gates, an undergraduate student at Har-

vard in the mid-1970s, and Christos Papadimitriou, a professor at Harvard in

the mid-1970s, now at Berkeley, made the first attempt to solve this problem

and proved that any permutation can be sorted by at most 5
3 (n + 1) prefix

reversals. However, the Pancake Flipping problem remains unsolved.

5.3 Approximation Algorithms

In chapter 2 we mentioned that, for many problems, efficient polynomial

algorithms are still unknown and unlikely ever to be found. For such prob-

lems, computer scientists often find a compromise in approximation algorithms

that produce an approximate solution rather than an optimal one.6 The ap-

proximation ratio of algorithm A on input π is defined as A(π)
OPT (π) , where A(π)

is the solution produced by the algorithm A and OPT (π) is the correct (op-

timal) solution of the problem.7 The approximation ratio, or performance guar-

antee of algorithm A is defined as its maximum approximation ratio over all

inputs of size n, that is, as

max
|π|=n

A(π)

OPT (π)
.

We assume thatA is a minimization algorithm, i.e., an algorithm that attempts

to minimize its objective function. For maximization algorithms, the approx-

imation ratio is

min
|π|=n

A(π)

OPT (π)
.

In essence, an approximation algorithm gives a worst-case scenario of just

how far off an algorithm’s output can be from some hypothetical perfect al-

gorithm. The approximation ratio of SIMPLEREVERSALSORT is at least n−1
2 ,

so a biologist has no guarantee that this algorithm comes anywhere close to

the correct solution. For example, if n is 1001, this algorithm could return

a series of reversals that is as large as 500 times the optimal. Our goal is

6. Approximation algorithms are only relevant to problems that have a numerical objective
function like minimizing the number of coins returned to the customer. A problem that does
not have such an objective function (like the Partial Digest problem) does not lend itself to ap-
proximation algorithms.
7. Technically, an approximation algorithm is not correct, in the sense of chapter 2, since there
exists some input that returns a suboptimal (incorrect) output. The approximation ratio gives
one an idea of just how incorrect the algorithm can be.
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0 2 1←− 3 4 5−−−→ 8 7 6←−−− 9

Figure 5.2 Breakpoints, adjacencies, and strips for permutation 2 1 3 4 5 8 7 6 (ex-
tended by 0 and 9 on the ends). Strips with more than one element are divided into
decreasing strips (←) and increasing strips (→). The boundary between two non-
consecutive elements (in this case, 02, 13, 58, and 69) is a breakpoint; breakpoints
demarcate the boundaries of strips.

to design approximation algorithms with better performance guarantees, for

example, an algorithm with an approximation ratio of 2, or even better, 1.01.

Of course, an algorithm with an approximation ratio of 1 (by definition, a

correct and optimal algorithm) would be the acme of perfection, but such al-

gorithms can be hard to find. As of the writing of this book, the best known

algorithm for sorting by reversals has a performance guarantee of 1.375.

5.4 Breakpoints: A Different Face of Greed

We have described a greedy algorithm that attempts to maximize prefix(π)

in every step, but any chess player knows that greed often leads to wrong

decisions. For example, the ability to take a queen in a single step is usually

a good sign of a trap. Good chess players use a more sophisticated notion

of greed that evaluates a position based on many subtle factors rather than

simply on the face value of a piece they can take.

The problem with SIMPLEREVERSALSORT is that prefix(π) is a naive mea-

sure of our progress toward the identity permutation, and does not accu-

rately reflect how difficult it is to sort a permutation. Below we define break-

points that can be viewed as “bottlenecks” for sorting by reversals. Using

the number of breakpoints, rather than prefix(π), as the basis of greed leads

to a better algorithm for sorting by reversals, in the sense that it produces a

solution that is closer to the optimal one.

It will be convenient for us to extend the permutation π1 · · ·πn by π0 = 0

and πn+1 = n+1 on the ends. To be clear, we do not move π0 or πn+1 during

the process of sorting. We call a pair of neighboring elements πi and πi+1,

for 0 ≤ i ≤ n, an adjacency if πi and πi+1 are consecutive numbers; we call
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the pair a breakpoint if not. The permutation in figure 5.2 has five adjacen-

cies (2 1, 3 4, 4 5, 8 7, and 7 6) and four breakpoints (0 2, 1 3, 5 8, and 6 9). A

permutation on n elements may have as many as n + 1 breakpoints (e.g., the

permutation 0 6 1 3 5 7 2 4 8 on seven elements has eight breakpoints) and as

few as 0 (the identity permutation 0 1 2 3 4 5 6 7 8).8 Every breakpoint corre-

sponds to a pair of elements πi and πi+1 that are neighbors in π but not in

the identity permutation. In fact, the identity permutation is the only per-

mutation with no breakpoints at all. Therefore, the nonconsecutive elements

πi and πi+1 forming a breakpoint must be separated in the process of trans-

forming π to the identity, and we can view sorting by reversals as the process

of eliminating breakpoints. The observation that every reversal can eliminate

at most two breakpoints (one on the left end and another on the right end of

the reversal) immediately implies that d(π) ≥ b(π)
2 , where b(π) is the number

of breakpoints in π. The algorithm BREAKPOINTREVERSALSORT eliminates

as many breakpoints as possible in every step in order to reach the identity

permutation.

BREAKPOINTREVERSALSORT(π)

1 while b(π) > 0

2 Among all reversals, choose reversal ρ minimizing b(π · ρ)

3 π ← π · ρ

4 output π

5 return

One problem with this algorithm is that it is not clear why BREAKPOINTRE-

VERSALSORT is a better approximation algorithm than SIMPLEREVERSAL-

SORT. Moreover, it is not even obvious yet that BREAKPOINTREVERSALSORT

terminates! How can we be sure that removing some breakpoints does not

introduce others, leading to an endless cycle?

We define a strip in a permutation π as an interval between two consecutive

breakpoints, that is, as any maximal segment without breakpoints (see fig-

ure 5.2). For example, the permutation 0 2 1 3 4 5 8 7 6 9 consists of five strips:

0, 2 1, 3 4 5, 8 7 6, and 9. Strips can be further divided into increasing strips

(3 4 5) and decreasing strips (2 1) and (8 7 6). Single-element strips can be con-

sidered to be either increasing or decreasing, but it will be convenient to

8. We remind the reader that we extend permutations by 0 and n + 1 on their ends, thus intro-
ducing potential breakpoints in the beginning and in the end.
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define them as decreasing (except for elements 0 and n+1 which will always

be classified as increasing strips).

We present the following theorems, first to show that endless cycles of

breakpoint removal cannot happen, and then to show that the approxima-

tion ratio of the algorithm is 4. While the notion of “theorem” and “proof”

might seem overly formal for what is, at heart, a biological problem, it is

important to consider that we have modeled the biological process in math-

ematical terms. We are proving analytically that the algorithm meets certain

expectations. This notion of proof without experimentation is very different

from what a biologist would view as proof, but it is just as important when

working in bioinformatics.

Theorem 5.1 If a permutation π contains a decreasing strip, then there is a reversal

ρ that decreases the number of breakpoints in π, that is, b(π · ρ) < b(π).

Proof: Among all decreasing strips in π, choose the strip containing the

smallest element k (k = 3 for permutation 0 1 2−−→ 7 6 5←−− 8←− 4 3←− 9−→). Element k − 1

in π cannot belong to a decreasing strip, since otherwise we would choose a

strip ending at k − 1 rather than a strip ending at k. Therefore, k − 1 belongs

to an increasing strip; moreover, it is easy to see that k − 1 terminates this

strip (for permutation 0 1 2−−→ 7 6 5←−− 8←− 4 3−→ 9−→, k − 1 = 2 and 2 is at the right end

of the increasing strip 0 1 2). Therefore elements k and k − 1 correspond to

two breakpoints, one at the end of the decreasing strip ending with k and

the other at the end of the increasing strip ending in k − 1. Reversing the

segment between k and k − 1 brings them together, as in 0 1 2 7 6 5 8 4 39 →

0 1 2 3 4−−−−→ 8←− 5 6 7−−→ 9−→, thus reducing the number of breakpoints in π. �

For example, BREAKPOINTREVERSALSORT may perform the following four

steps when run on the input (0 8 2 7 6 5 1 4 3 9) in order to reduce the number

of breakpoints:

( 0−→ 8←− 2←− 7 6 5←−−− 1←− 4←− 3←− 9−→) b(π) = 6

( 0−→ 2←− 8 7 6 5←−−−− 1←− 4←− 3←− 9−→) b(π) = 5

( 0−→ 2 3 4−−−→ 1←− 5 6 7 8 9−−−−−−−−→) b(π) = 3

( 0−→ 4 3 2 1←−−−−− 5 6 7 8 9−−−−−−−−→) b(π) = 2

(0 1 2 3 4 5 6 7 8 9−−−−−−−−−−−−−−−−−−→) b(π) = 0

In this case, BREAKPOINTREVERSALSORT steadily reduces the number of

breakpoints in every step of the algorithm. In other cases, (e.g., the permu-

tation (0 1−→ 5 6 7−−→ 2 3 4−−→ 8 9−→) without decreasing strips), no reversal reduces the

number of breakpoints. In order to overcome this, we can simply find any
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increasing strip (excluding π0 and πn+1, of course) and flip it. This creates a

decreasing strip and we can proceed.

IMPROVEDBREAKPOINTREVERSALSORT(π)

1 while b(π) > 0

2 if π has a decreasing strip

3 Among all reversals, choose reversal ρ minimizing b(π · ρ)

4 else

5 Choose a reversal ρ that flips an increasing strip in π

6 π ← π · ρ

7 output π

8 return

The theorem below demonstrates that such “no progress” situations do not

happen too often in the course of IMPROVEDBREAKPOINTREVERSALSORT. In

fact, the theorem quanitifes exactly how often those situations could possibly

occur and provides an approximation ratio guarantee.

Theorem 5.2 IMPROVEDBREAKPOINTREVERSALSORT is an approximation al-

gorithm with a performance guarantee of at most 4.

Proof: Theorem 5.1 implies that as long as π has a decreasing strip, IM-

PROVEDBREAKPOINTREVERSALSORT reduces the number of breakpoints in

π. On the other hand, it is easy to see that if all strips in π are increasing,

then there might not be a reversal that reduces the number of breakpoints.

In this case IMPROVEDBREAKPOINTREVERSALSORT finds a reversal ρ that

reverses an increasing strip(s) in π. By reversing an increasing strip, ρ cre-

ates a decreasing strip in π implying that IMPROVEDBREAKPOINTREVERSAL-

SORT will be able to reduce the number of strips at the next step. Therefore,

for every “no progress” step, IMPROVEDBREAKPOINTREVERSALSORT will

make progress at the next step which means that IMPROVEDBREAKPOINTRE-

VERSALSORT eliminates at least one breakpoint in every two steps. In the

worst-case scenario, the number of steps in IMPROVEDBREAKPOINTREVER-

SALSORT is at most 2b(π) and its approximation ratio is at most 2b(π)
d(π) . Since

d(π) ≥ b(π)
2 , IMPROVEDBREAKPOINTREVERSALSORT has a performance guar-

antee9 bounded above by 2b(π)
d(π) ≤

2b(π)
b(π)

2

= 4. �

9. To be clear, we are not claiming that IMPROVEDBREAKPOINTREVERSALSORT will take four
times as long, or use four times as much memory as an (unknown) optimal algorithm. We
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5.5 A Greedy Approach to Motif Finding

In chapter 4 we saw a brute force algorithm to solve the Motif Finding prob-

lem. With a disappointing running time of O(l · nt), the practical limitation

of that algorithm is that we simply cannot run it on biological samples. We

choose instead to rely on a faster greedy technique, even though it is not

correct (in the sense of chapter 2) and does not result in an algorithm with

a good performance guarantee. Despite the fact that this algorithm is an

approximation algorithm with an unknown approximation ratio, a popular

tool based on this approach developed by Gary Stormo and Gerald Hertz in

1989, CONSENSUS, often produces results that are as good as or better than

more complicated algorithms.

GREEDYMOTIFSEARCH scans each DNA sequence only once. Once we

have scanned a particular sequence i, we decide which of its l-mer has the

best contribution to the partial alignment score Score(s, i, DNA) for the first

i sequences and immediately claim that this l-mer is part of the alignment.

The pseudocode is shown below.

GREEDYMOTIFSEARCH(DNA, t, n, l)

1 bestMotif← (1, 1, . . . , 1)

2 s← (1, 1, . . . , 1)

3 for s1 ← 1 to n− l + 1

4 for s2 ← 1 to n− l + 1

5 if Score(s, 2, DNA) > Score(bestMotif , 2, DNA)

6 BestMotif1 ← s1

7 BestMotif2 ← s2

8 s1 ← BestMotif1

9 s2 ← BestMotif2

10 for i← 3 to t

11 for si ← 1 to n− l + 1

12 if Score(s, i, DNA) > Score(bestMotif , i, DNA)

13 bestMotifi ← si

14 si ← bestMotifi

15 return bestMotif

are saying that IMPROVEDBREAKPOINTREVERSALSORT will return an answer that contains no
more than four times as many steps as an optimal answer. Unfortunately, we cannot determine
exactly how far from optimal we are for each particular input, so we have to rely on this upper
bound for the approximation ratio.
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GREEDYMOTIFSEARCH first finds the two closest l-mers—in the sense of

Hamming distance—in sequences 1 and 2 and forms a 2× l seed matrix. This

stage requires l(n − l + 1)2 operations. At each of the remaining t − 2 itera-

tions GREEDYMOTIFSEARCH extends the seed matrix into a matrix with one

more row by scanning the ith sequence (for 3 ≤ i ≤ t) each of the remaining

t−2 sequences and selecting the one l-mer that has the maximum Score(s, i).

This amounts to roughly l · (n− l + 1) operations in each iteration. Thus, the

running time of this algorithm is O(ln2 + lnt), which is vastly better than the

O(lnt) of SIMPLEMOTIFSEARCH or even the O(4lnt) of BRUTEFORCEMEDI-

ANSTRING. When t is small compared to n, GREEDYMOTIFSEARCH really

behaves as O(ln2), and the bulk of the time is actually spent locating the

l-mers from the first two sequences that are the most similar.

As you can imagine, because the sequences are scanned sequentially, it is

possible to construct input instances where GREEDYMOTIFSEARCH will miss

the optimal motif. One important difference between the popular CONSEN-
SUS motif finding software tool and the algorithm presented here is that

CONSENSUS can scan the sequences in a random order, thereby making

it more difficult to construct inputs that elicit worst-case behavior. Another

important difference is that CONSENSUS saves a large number (usually at

least 1000) of seed matrices at each iteration rather than only the one that

GREEDYMOTIFSEARCH saves, making CONSENSUS less likely to miss the

optimal solution. However, no embellishment of this greedy approach will

be guaranteed to find an optimal motif.

5.6 Notes

The analysis of genome rearrangements in molecular biology was pioneered

by Theodosius Dobzhansky and Alfred Sturtevant who, in 1936, published

a milestone paper (102) presenting a rearrangement scenario for the species

of fruit fly. In 1984 Nadeau and Taylor (78) estimated that surprisingly few

genomic rearrangements (about 200) had taken place since the divergence of

the human and mouse genomes. This estimate, made in the pregenomic era

and based on a very limited data set, comes close to the recent postgenomic

estimates based on the comparison of the entire human and mouse DNA

sequences (85). The computational studies of the Reversal Distance prob-

lem were pioneered by David Sankoff in the early 1990s (93). The greedy

algorithm based on breakpoint elimination is from a paper (56) by John Ke-

cecioglu and David Sankoff. The best currently known algorithm for sorting
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by reversals has an approximation ratio of 1.375 and was introduced by Piotr

Berman, Sridhar Hannenhalli and Marek Karpinski (13). The first algorith-

mic analysis of the Pancake Flipping problem was the work of William Gates

and Christos Papadimitriou in 1979 (40).

The greedy CONSENSUS algorithm was introduced by Gerald Hertz and

Gary Stormo, and further improved upon in 1999 in a later paper by the same

authors (47).
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David Sankoff currently holds the Ca-

nada Research Chair in Mathematical

Genomics at the University of Ottawa.

He studied at McGill University, doing

a PhD in Probability Theory with Don-

ald Dawson, and writing a thesis on sto-

chastic models for historical linguistics.

He joined the new Centre de recherches

mathématiques (CRM) of the University

of Montreal in 1969 and was also a pro-

fessor in the Mathematics and Statistics

Department from 1984–2002. He is one

of the founding fathers of bioinformatics

whose fundamental contributions to the

area go back to the early 1970s.

Sankoff was trained in mathematics and physics; his undergraduate sum-

mers in the early 1960s, however, were spent in a microbiology lab at the

University of Toronto helping out with experiments in the field of virology

and whiling away evenings and weekends in the library reading biological

journals. It was exciting, and did not require too much background to keep

up with the molecular biology literature: the Watson-Crick model was not

even ten years old, the deciphering of the genetic code was still incomplete,

and mRNA was just being discovered. With this experience, Sankoff had

no problems communicating some years later with Robert J. Cedergren, a

biochemist with a visionary interest in applying computers to problems in

molecular biology.

In 1971, Cedergren asked Sankoff to find a way to align RNA sequences.

Sankoff knew little of algorithm design and nothing of discrete dynamic

programming, but as an undergraduate he had effectively used the latter

in working out an economics problem matching buyers and sellers. The

same approach worked with alignment. Bob and David became hooked

on the topic, exploring statistical tests for alignment and other problems,

fortunately before they realized that Needleman and Wunsch had already

published a dynamic programming technique for biological sequence com-

parison.

A new question that emerged early in the Sankoff and Cedergren work

was that of multiple alignment and its pertinence to molecular evolution.
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Sankoff was already familiar with phylogeny problems from his work on lan-

guage families and participation in the early numerical taxonomy meetings

(before the schism between the parsimony-promoting cladists, led by Steve

Farris, and the more statistically oriented systematists). Combining phylo-

genetics with sequence comparison led to tree-based dynamic programming

for multiple alignment. Phylogenetic problems have cropped up often in

Sankoff’s research projects over the following decades.

Sankoff and Cedergren also studied RNA folding, applying several passes

of dynamic programming to build energy-optimal RNA structures. They

did not find the loop-matching reported by Daniel Kleitman’s group (later

integrated into a general, widely-used algorithm by Michael Zuker), though

they eventually made a number of contributions in the 1980s, in particular to

the problem of multiple loops and to simultaneous alignment and folding.

Sankoff says:

My collaboration with Cedergen also ran into its share of dead ends.

Applying multidimensional scaling to ribosome structure did not lead

very far, efforts to trace the origin of the genetic code through the phy-

logenetic analyses of tRNA sequences eventually petered out, and an

attempt at dynamic programming for consensus folding of proteins

was a flop.

The early and mid-1970s were nevertheless a highly productive time for

Sankoff; he was also working on probabilistic analysis of grammatical vari-

ation in natural languages, on game theory models for electoral processes,

and various applied mathematics projects in archaeology, geography, and

physics. He got Peter Sellers interested in sequence comparison; Sellers later

attracted attention by converting the longest common subsequence (LCS)

formulation to the edit distance version. Sankoff collaborated with promi-

nent mathematician Vaclav Chvatal on the expected length of the LCS of two

random sequences, for which they derived upper and lower bounds. Sev-

eral generations of probabilists have contributed to narrowing these bounds.

Sankoff says:

Evolutionary biologists Walter Fitch and Steve Farris spent sabbaticals

with me at the CRM, as did computer scientist Bill Day, generously

adding my name to a series of papers establishing the hardness of var-

ious phylogeny problems, most importantly the parsimony problem.

In 1987, Sankoff became a Fellow of the new Evolutionary Biology Pro-

gram of the Canadian Institute for Advanced Research (CIAR). At the very
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first meeting of the CIAR program he was inspired by a talk by Monique

Turmel on the comparison of chloroplast genomes from two species of al-

gae. This led Sankoff to the comparative genomics–genome rearrangement

track that has been his main research line ever since. Originally he took a

probabilistic approach, but within a year or two he was trying to develop

algorithms and programs for reversal distance. A phylogeny based on the re-

versal distances among sixteen mitochondrial genomes proved that a strong

phylogenetic signal can be conserved in the gene order of even a miniscule

genome across many hundreds of millions of years. Sankoff says:

The network of fellows and scholars of the CIAR program, including

Bob Cedergren, Ford Doolittle, Franz Lang, Mike Gray, Brian Golding,

Mike Zuker, Claude Lemieux, and others across Canada; and a stellar

group of international advisors (such as Russ Doolittle, Michael Smith,

Marcus Feldman, Wally Gilbert) and associates (Mike Waterman, Joe

Felsenstein, Mike Steel and many others) became my virtual “home

department," a source of intellectual support, knowledge, and expe-

rience across multiple disciplines and a sounding board for the latest

ideas.

My comparative genomics research received two key boosts in the 1990s.

One was the sustained collaboration of a series of outstanding stu-

dents and postdocs: Guillaume Leduc, Vincent Ferretti, John Kece-

cioglu, Mathieu Blanchette, Nadia El-Mabrouk and David Bryant. The

second was my meeting Joe Nadeau; I already knew his seminal pa-

per with Taylor on estimating the number of conserved linkage seg-

ments and realized that our interests coincided perfectly while our

backgrounds were complementary.

When Nadeau showed up in Montreal for a short-lived appointment in

the Human Genetics Department at McGill, it took no more than an hour for

him and Sankoff to get started on a major collaborative project. They refor-

mulated the Nadeau-Taylor approach in terms of gene content data, freeing

it from physical or genetic distance measurements. The resulting simpler

model allowed them to thoroughly explore the mathematical properties of

the Nadeau-Taylor model and to experiment with the consequences of devi-

ating from it.

The synergy between the algorithmic and probabilistic aspects of com-

parative genomics has become basic to how Sankoff understands evolution.

The algorithmic is an ambitious attempt at deep inference, based on heavy
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assumptions and the sophisticated but inflexible mathematics they enable.

The probabilistic is more descriptive and less explicitly revelatory of histor-

ical process, but the models based on statistics are easily generalized, their

hypotheses weakened or strengthened, and their robustness ascertained. In

Sankoff’s view, it is the playing out of this dialectic that makes the field of

whole-genome comparison the most interesting topic of research today and

for the near future.

My approach to research is not highly planned. Not that I don’t have

a vision about the general direction in which to go, but I have no spe-

cific set of tools that I apply as a matter of course, only an intuition

about what type of method or model, what database or display, might

be helpful. When I am lucky I can proceed from one small epiphany

to another, working out some of the details each time, until some clear

story emerges. Whether this involves stochastic processes, combina-

torial optimization, or differential equations is secondary; it is the bi-

ology of the problem that drives its mathematical formulation. I am

rarely motivated to research well-studied problems; instead I find my-

self confronting new problems in relatively unstudied areas; alignment

was not a burning preoccupation with biologists or computer scientists

when I started working on it, neither was genome rearrangement fif-

teen years later. I am quite pleased, though sometimes bemused, by the

veritable tidal wave of computational biologists and bioinformaticians

who have inundated the field where there were only a few isolated

researchers thirty or even twenty years ago.
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5.7 Problems

Problem 5.1

Suppose you have a maximization algorithm, A, that has an approximation ratio of
4. When run on some input π, A(π) = 12. What can you say about the true (correct)
answer OPT = OPT (π)?

• OPT ≥ 3

• OPT ≤ 3

• OPT ≥ 12

• OPT ≤ 12

• OPT ≥ 48

• OPT ≤ 48

Problem 5.2

What is the approximation ratio of the BETTERCHANGE algorithm?

Problem 5.3

Design an approximation algorithm for the Pancake Flipping problem. What is its
approximation ratio?

Problem 5.4

Perform the BREAKPOINTREVERSALSORT algorithm with π = 3 4 6 5 8 1 7 2 and show
all intermediate permutations (break ties arbitrarily). Since BREAKPOINTREVERSAL-
SORT is an approximation algorithm, there may be a sequence of reversals that is
shorter than the one found by BREAKPOINTREVERSALSORT. Could you find such a
sequence of reversals? Do you know if it is the shortest possible sequence of rever-
sals?

Problem 5.5

Find a permutation with no decreasing strips for which there exists a reversal that
reduces the number of breakpoints.

Problem 5.6

Can you find a permutation for which BREAKPOINTREVERSALSORT produces four
times as many reversals than the optimal solution of the Reversal Sorting problem?

A DNA molecule is not always shaped like a line segment. Some simple organisms have a

circular DNA molecule as a genome, where the molecule has no beginning and no end. These

circular genomes can be visualized as a sequence of integers written along the perimeter of a

circle. Two circular sequences would be considered equivalent if you could rotate one of the

circles and get the same sequence written on the other.

Problem 5.7

Devise an approximation algorithm to sort a circular genome by reversals (i.e., trans-
form it to the identity circular permutation). Evaluate the algorithm’s performance
guarantee.
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Problem 5.8

Devise a better algorithm (i.e., one with a better approximation ratio) for the Sorting
by Reversals problem.

The swap sorting of permutation π is a transformation of π into the identity permutation by

exchanges of adjacent elements. For example, 3142 → 1342 → 1324 → 1234 is a three-step

swap sorting of permutation 3124.

Problem 5.9

Design an algorithm for swap sorting that uses the minimum number of swaps to
sort a permutation.

Problem 5.10

Design an algorithm for swap sorting that uses the minimum number of swaps to
sort a circular permutation.

Problem 5.11

How many permutations on n elements have a single breakpoint? How many per-
mutations have exactly two breakpoints? How many permutations have exactly three
breakpoints?

Given permutations π and σ, a breakpoint between π and σ is defined as a pair of adjacent

elements πi and πi+1 in π that are separated in σ. For example, if π = 143256 and σ = 123465,

then π1 = 1 and π2 = 4 in π form a breakpoint between π and σ since 1 and 4 are separated

in σ. The number of breakpoints between π=01432567 and σ=01234657 is three (14, 25 and 67),

while the number of breakpoints between σ and π is also three (12, 46 and 57).

Problem 5.12

Prove that the number of breakpoints between π and σ equals the number of break-
points between σ and π.

Problem 5.13

Given permutations π1 = 124356, π2 = 143256 and π3 = 123465, compute the num-
ber of breakpoints between: (1) π1 and π2, (2) π1 and π3, and (3) π2 and π3.

Problem 5.14

Given the three permutations π1, π2, and π3 from the previous problem, find an an-

cestral permutation σ which minimizes the total breakpoint distance
P3

i=1 br(πi, σ)

between all three genomes and σ (br(πi, σ) is the number of breakpoints between πi

and σ).

Problem 5.15

Given three permutations π1, π2, and π3 from the previous problem, find an ancestral

permutation σ which minimizes the total reversal distance
P3

i=1 d(πi, σ) between all
three genomes and σ.
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Analysis of genome rearrangements in multiple genomes corresponds to the following Multiple

Breakpoint Distance problem: : given a set of permutations π1, . . . , πk , find an ancestral permu-

tation σ such that
P

i=1,k br(πi, σ) is minimal, where br(πi, σ) is the number of breakpoints

between πi and σ.

Problem 5.16

Design a greedy algorithm for the Multiple Breakpoint Distance problem and evalu-
ate its approximation ratio.

Problem 5.17

Alice and Bob have been assigned the task of implementing the BREAKPOINTREVER-
SALSORT approximation algorithm.

• Bob wants to get home early so he decides to naively implement the algorithm,
without putting any thought into performance improvements. What is the run-
ning time of his program?

• Alice makes some changes to the algorithm and claims her algorithm achieves the
same approximation ratio as Bob’s (4) and runs in time O(n2). Give the pseu-
docode for Alice’s algorithm.

• Not to be outdone, Bob gets a copy of Alice’s algorithm, and makes an improve-
ment of his own. He claims that in the case where every strip is increasing, he can
guarantee that there will be a decreasing strip in each of the next two steps (rather
than one as in BREAKPOINTREVERSALSORT). Bob believes that this will give his
new algorithm a better approximation ratio than the previous algorithms. What
is Bob’s improvement, and what approximation ratio does it achieve?

Problem 5.18

Design an input for the GREEDYMOTIFSEARCH algorithm that causes the algorithm
to output an incorrect result. That is, create a sample that has a strong pattern that is
missed because of the greedy nature of the algorithm. If optimalScore is the score of
the strongest motif in the sample and greedyScore is the score returned by GREEDY-
MOTIFSEARCH, how large can optimalScore/greedyScore be?
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Algorithms

We introduced dynamic programming in chapter 2 with the Rocks prob-

lem. While the Rocks problem does not appear to be related to bioinfor-

matics, the algorithm that we described is a computational twin of a popu-

lar alignment algorithm for sequence comparison. Dynamic programming

provides a framework for understanding DNA sequence comparison algo-

rithms, many of which have been used by biologists to make important in-

ferences about gene function and evolutionary history. We will also apply

dynamic programming to gene finding and other bioinformatics problems.

6.1 The Power of DNA Sequence Comparison

After a new gene is found, biologists usually have no idea about its func-

tion. A common approach to inferring a newly sequenced gene’s function

is to find similarities with genes of known function. A striking example of

such a biological discovery made through a similarity search happened in

1984 when scientists used a simple computational technique to compare the

newly discovered cancer-causing ν-sis oncogene with all (at the time) known

genes. To their astonishment, the cancer-causing gene matched a normal

gene involved in growth and development called platelet-derived growth

factor (PDGF).1 After discovering this similarity, scientists became suspicious

that cancer might be caused by a normal growth gene being switched on at

the wrong time—in essence, a good gene doing the right thing at the wrong

time.

1. Oncogenes are genes in viruses that cause a cancer-like transformation of infected cells. Onco-
gene ν-sis in the simian sarcoma virus causes uncontrolled cell growth and leads to cancer in
monkeys. The seemingly unrelated growth factor PDGF is a protein that stimulates cell growth.
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Another example of a successful similarity search was the discovery of the

cystic fibrosis gene. Cystic fibrosis is a fatal disease associated with abnormal

secretions, and is diagnosed in children at a rate of 1 in 3900. A defective gene

causes the body to produce abnormally thick mucus that clogs the lungs and

leads to lifethreatening lung infections. More than 10 million Americans are

unknowing and symptomless carriers of the defective cystic fibrosis gene;

each time two carriers have a child, there is a 25% chance that the child will

have cystic fibrosis.

In 1989 the search for the cystic fibrosis gene was narrowed to a region

of 1 million nucleotides on the chromosome 7, but the exact location of the

gene remained unknown. When the area around the cystic fibrosis gene was

sequenced, biologists compared the region against a database of all known

genes, and discovered similarities between some segment within this region

and a gene that had already been discovered, and was known to code for

adenosine triphosphate (ATP) binding proteins.2 These proteins span the cell

membrane multiple times as part of the ion transport channel; this seemed

a plausible function for a cystic fibrosis gene, given the fact that the disease

involves sweat secretions with abnormally high sodium content. As a result,

the similarity analysis shed light on a damaged mechanism in faulty cystic

fibrosis genes.

Establishing a link between cancer-causing genes and normal growth genes

and elucidating the nature of cystic fibrosis were only the first success stories

in sequence comparison. Many applications of sequence comparison algo-

rithms quickly followed, and today bioinformatics approaches are among

the dominant techniques for the discovery of gene function.

This chapter describes algorithms that allow biologists to reveal the simi-

larity between different DNA sequences. However, we will first show how

dynamic programming can yield a faster algorithm to solve the Change prob-

lem.

6.2 The Change Problem Revisited

We introduced the Change problem in chapter 2 as the problem of changing

an amount of money M into the smallest number of coins from denomina-

tions c = (c1, c2, . . . , cd). We showed that the naive greedy solution used by

cashiers everywhere is not actually a correct solution to this problem, and

ended with a correct—though slow—brute force algorithm. We will con-

2. ATP binding proteins provide energy for many reactions in the cell.
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sider a slightly modified version of the Change problem, in which we do

not concern ourselves with the actual combination of coins that make up

the optimal change solution. Instead, we only calculate the smallest number

of coins needed (it is easy to modify this algorithm to also return the coin

combination that achieves that number).

Suppose you need to make change for 77 cents and the only coin denomi-

nations available are 1, 3, and 7 cents. The best combination for 77 cents will

be one of the following:

• the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

• the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

• the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

For 77 cents, the best combination would be the smallest of the above three

choices. The same logic applies to 76 cents (best of 75, 73, or 69 cents), and

so on (fig. 6.1). If bestNumCoinsM is the smallest number of coins needed to

change M cents, then the following recurrence relation holds:

bestNumCoinsM = min

⎧
⎨

⎩

bestNumCoinsM−1 + 1

bestNumCoinsM−3 + 1

bestNumCoinsM−7 + 1

In the more general case of d denominations c = (c1, . . . , cd):

bestNumCoinsM = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bestNumCoinsM−c1 + 1

bestNumCoinsM−c2 + 1
...

bestNumCoinsM−cd
+ 1

This recurrence motivates the following algorithm:
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77 76 75 74 73 72 71 70 69 68 67

76 75 74 73 72 71 70 69 68 67

75 74 73 72 71 70 69 68 67

Figure 6.1 The relationships between optimal solutions in the Change problem. The
smallest number of coins for 77 cents depends on the smallest number of coins for 76,
74, and 70 cents; the smallest number of coins for 76 cents depends on the smallest
number of coins for 75, 73, and 69 cents, and so on.

RECURSIVECHANGE(M, c, d)

1 if M = 0

2 return 0

3 bestNumCoins←∞

4 for i← 1 to d

5 if M ≥ ci

6 numCoins← RECURSIVECHANGE(M − ci, c, d)

7 if numCoins + 1 < bestNumCoins

8 bestNumCoins← numCoins + 1

9 return bestNumCoins

The sequence of calls that RECURSIVECHANGE makes has a feature in com-

mon with the sequence of calls made by RECURSIVEFIBONACCI, namely, that

RECURSIVECHANGE recalculates the optimal coin combination for a given

amount of money repeatedly. For example, the optimal coin combination

for 70 cents is recomputed repeatedly nine times over and over as (77 − 7),

(77 − 3 − 3 − 1), (77 − 3 − 1 − 3), (77 − 1 − 3 − 3), (77 − 3 − 1 − 1 − 1 − 1),

(77 − 1 − 3 − 1 − 1 − 1), (77 − 1 − 1 − 3 − 1 − 1), (77 − 1 − 1 − 1 − 3 − 1),

(77 − 1 − 1 − 1 − 1 − 3), and (77 − 1 − 1 − 1 − 1 − 1 − 1 − 1). The optimal
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coin combination for 20 cents will be recomputed billions of times rendering

RECURSIVECHANGE impractical.

To improve RECURSIVECHANGE, we can use the same strategy as we did

for the Fibonacci problem—all we really need to do is use the fact that the

solution for M relies on solutions for M − c1, M − c2, and so on, and then

reverse the order in which we solve the problem. This allows us to lever-

age previously computed solutions to form solutions to larger problems and

avoid all this recomputation.

Instead of trying to find the minimum number of coins to change M cents,

we attempt the superficially harder task of doing this for each amount of

money, m, from 0 to M . This appears to require more work, but in fact, it

simplifies matters. The following algorithm with running time O(Md) cal-

culates bestNumCoinsm for increasing values of m. This works because the

best number of coins for some value m depends only on values less than m.

DPCHANGE(M, c, d)

1 bestNumCoins0 ← 0

2 for m← 1 to M

3 bestNumCoinsm ←∞

4 for i← 1 to d

5 if m ≥ ci

6 if bestNumCoinsm−ci
+ 1 < bestNumCoinsm

7 bestNumCoinsm ← bestNumCoinsm−ci
+ 1

8 return bestNumCoinsM

The key difference between RECURSIVECHANGE and DPCHANGE is that

the first makes d recursive calls to compute the best change for M (and each

of these calls requires a lot of work!), while the second analyzes the d already

precomputed values to almost instantly compute the new one. As surprising

as it may sound, simply reversing the order of computations in figure 6.1

makes a dramatic difference in efficiency (fig. 6.2).

We stress again the difference between the complexity of a problem and

the complexity of an algorithm. In particular, we initially showed an O(Md)

algorithm to solve the Change problem, and there did not appear to be any

easy way to remedy this situation. Yet the DPCHANGE algorithm provides

a simple O(Md) solution. Conversely, a minor modification of the Change

problem renders the problem very difficult. Suppose you had a limited num-

ber of each denomination and needed to change M cents using no more than

the provided supply of each coin. Since you have fewer possible choices in
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0
0

0 1
0 1

0 1 2
0 1 2

0 1 2 3
0 1 2 1

0 1 2 3 4
0 1 2 1 2

0 1 2 3 4 5
0 1 2 1 2 3

0 1 2 3 4 5 6
0 1 2 1 2 3 2

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 1

0 1 2 3 4 5 6 7 8
0 1 2 1 2 3 2 1 2

0 1 2 3 4 5 6 7 8 9
0 1 2 1 2 3 2 1 2 3

Figure 6.2 The solution for 9 cents (bestNumCoins9) depends on 8 cents, 6
cents and 2 cent, but the smallest number of coins can be obtained by computing
bestNumCoinsm for 0 ≤ m ≤ 9.

this new problem, it would seem to require even less time than the original

Change problem, and that a minor modification to DPCHANGE would work.

However, this is not the case and this problem turns out to be very difficult.
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6.3 The Manhattan Tourist Problem

We will further illustrate dynamic programming with a surprisingly useful

toy problem, called the Manhattan Tourist problem, and then build on this

intuition to describe DNA sequence alignment.

Imagine a sightseeing tour in the borough of Manhattan in New York City,

where a group of tourists are determined to walk from the corner of 59th

Street and 8th Avenue to the Chrysler Building at 42nd Street and Lexing-

ton Avenue. There are many attractions along the way, but assume for the

moment that the tourists want to see as many attractions as possible. The

tourists are allowed to move either to the south or to the east, but even so,

they can choose from many different paths (exactly how many is left as a

problem at the end of the chapter). The upper path in figure 6.3 will take

the tourists to the Museum of Modern Art, but they will have to miss Times

Square; the bottom path will allow the tourists to see Times Square, but they

will have to miss the Museum of Modern Art.

The map above can also be represented as a gridlike structure (figure 6.4)

with the numbers next to each line (called weights) showing the number of

attractions on every block. The tourists must decide among the many possi-

ble paths between the northwesternmost point (called the source vertex) and

the southeasternmost point (called the sink vertex). The weight of a path from

the source to the sink is simply the sum of weights of its edges, or the overall

number of attractions. We will refer to this kind of construct as a graph, the

intersections of streets we will call vertices, and the streets themselves will

be edges and have a weight associated with them. We assume that horizontal

edges in the graph are oriented to the east like→while vertical edges are ori-

ented to the south like ↓. A path is a continuous sequence of edges, and the

length of a path is the sum of the edge weights in the path.3 A more detailed

discussion of graphs can be found in chapter 8.

Although the upper path in figure 6.3 is better than the bottom one, in the

sense that the tourists will see more attractions, it is not immediately clear if

there is an even better path in the grid. The Manhattan Tourist problem is to

find the path with the maximum number of attractions,4 that is, a longest path

3. We emphasize that the length of paths in the graph represent the overall number of attractions
on this path and has nothing to do with the real length of the path (in miles), that is, the distance
the tourists travel.
4. There are many interesting museums and architectural landmarks in Manhattan. However,
it is impossible to please everyone, so one can change the relative importance of the types of
attractions by modulating the weights on the edges in the graph. This flexibility in assigning
weights will become important when we discuss scoring matrices for sequence comparison.
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(a path of maximum overall weight) in the grid.

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid G with two distinguished vertices:

a source and a sink.

Output: A longest path in G from source to sink.

Note that, since the tourists only move south and east, any grid positions

west or north of the source are unusable. Similarly, any grid positions south

or east of the sink are unusable, so we can simply say that the source vertex

is at (0, 0) and that the sink vertex at (n, m) defines the southeasternmost

corner of the grid. In figure 6.4 n = m = 4, but n does not always have

to equal m. We will use the grid shown in figure 6.4, rather than the one

corresponding to the map of Manhattan in figure 6.3 so that you can see a

nontrivial example of this problem.

The brute force approach to the Manhattan Tourist problem is to search

among all paths in the grid for the longest path, but this is not an option

for even a moderately large grid. Inspired by the previous chapter you may

be tempted to use a greedy strategy. For example, a sensible greedy strat-

egy would be to choose between two possible directions (south or east) by

comparing how many attractions tourists would see if they moved one block

south instead of moving one block east. This greedy strategy may provide re-

warding sightseeing experience in the beginning but, a few blocks later, may

bring you to an area of Manhattan you really do not want to be in. In fact,

no known greedy strategy for the Manhattan Tourist problem provides an

optimal solution to the problem. Had we followed the (obvious) greedy al-

gorithm, we would have chosen the following path, corresponding to twenty

three attractions.5

5. We will show that the optimal number is, in fact, thirty-four.
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Figure 6.3 A city somewhat like Manhattan, laid out on a grid with one-way streets.
You may travel only to the east or to the south, and you are currently at the north-
westernmost point (source) and need to travel to the southeasternmost point (sink).
Your goal is to visit as many attractions as possible.
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Figure 6.4 Manhattan represented as a graph with weighted edges.
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Instead of solving the Manhattan Tourist problem directly, that is, finding

the longest path from source (0, 0) to sink (n, m), we solve a more general

problem: find the longest path from source to an arbitrary vertex (i, j) with

0 ≤ i ≤ n, 0 ≤ j ≤ m. We will denote the length of such a best path as si,j ,

noticing that sn,m is the weight of the path that represents the solution to the



6.3 The Manhattan Tourist Problem 157

Manhattan Tourist problem. If we only care about the longest path between

(0, 0) and (n, m)—the Manhattan Tourist problem—then we have to answer

one question, namely, what is the best way to get from source to sink. If we

solve the general problem, then we have to answer n×m questions: what is

the best way to get from source to anywhere. At first glance it looks like we

have just created n ×m different problems (computing (i, j) with 0 ≤ i ≤ n

and 0 ≤ j ≤ m) instead of a single one (computing sn,m), but the fact that

solving the more general problem is as easy as solving the Manhattan Tourist

problem is the basis of dynamic programming. Note that DPCHANGE also

generalized the problems that it solves by finding the optimal number of

coins for all values less than or equal to M .

Finding s0,j (for 0 ≤ j ≤ m) is not hard, since in this case the tourists do

not have any flexibility in their choice of path. By moving strictly to the east,

the weight of the path s0,j is the sum of weights of the first j city blocks.

Similarly, si,0 is also easy to compute for 0 ≤ i ≤ n, since the tourists move

only to the south.
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Now that we have figured out how to compute s0,1 and s1,0, we can com-

pute s1,1. The tourists can arrive at (1, 1) in only two ways: either by trav-

eling south from (0, 1) or east from (1, 0). The weight of each of these paths

is

• s0,1 + weight of the edge (block) between (0,1) and (1,1);
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• s1,0 + weight of the edge (block) between (1,0) and (1,1).

Since the goal is to find the longest path to, in this case, (1, 1), we choose the

larger of the above two quantities: 3 + 0 and 1 + 3. Note that since there are

no other ways to get to grid position (1, 1), we have found the longest path

from (0, 0) to (1, 1).
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We have just found s1,1. Similar logic applies to s2,1, and then to s3,1, and so

on; once we have calculated si,0 for all i, we can calculate si,1 for all i.
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Once we have calculated si,1 for all i, we can use the same idea to calculate

si,2 for all i, and so on. For example, we can calculate s1,2 as follows.
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s1,2 = max

{
s1,1 + weight of the edge between (1,1) and (1,2)

s0,2 + weight of the edge between (0,2) and (1,2)
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In general, having the entire column s∗,j allows us to compute the next whole

column s∗,j+1. The observation that the only way to get to the intersection at

(i, j) is either by moving south from intersection (i− 1, j) or by moving east

from the intersection (i, j − 1) leads to the following recurrence:

si,j = max

{
si−1,j + weight of the edge between (i− 1, j) and (i, j)

si,j−1 + weight of the edge between (i, j − 1) and (i, j)
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This recurrence allows us to compute every score si,j in a single sweep of

the grid. The algorithm MANHATTANTOURIST implements this procedure.

Here,
↓
w is a two-dimensional array representing the weights of the grid’s

edges that run north to south, and
→
w is a two-dimensional array representing

the weights of the grid’s edges that run west to east. That is,
↓
wi,j is the weight

of the edge between (i, j − 1) and (i, j); and
→
wi,j is the weight of the edge

between (i, j − 1) and (i, j).

MANHATTANTOURIST(
↓
w,

→
w, n, m)

1 s0,0 ← 0

2 for i← 1 to n

3 si,0 ← si−1,0+
↓
wi,0

4 for j ← 1 to m

5 s0,j ← s0,j−1+
→
w0,j

6 for i← 1 to n

7 for j ← 1 to m

8 si,j ← max

{
si−1,j+

↓
wi,j

si,j−1+
→
wi,j

9 return sn,m

Lines 1 through 5 set up the initial conditions on the matrix s, and line 8 cor-

responds to the recurrence that allows us to fill in later table entries based on

earlier ones. Most of the dynamic programming algorithms we will develop

in the context of DNA sequence comparison will look just like MANHAT-

TANTOURIST with only minor changes. We will generally just arrive at a

recurrence like line 8 and call it an algorithm, with the understanding that

the actual implementation will be similar to MANHATTANTOURIST.6

Many problems in bioinformatics can be solved efficiently by the applica-

tion of the dynamic programming technique, once they are cast as traveling

in a Manhattan-like grid. For example, development of new sequence com-

parison algorithms often amounts to building an appropriate “Manhattan”

that adequately models the specifics of a particular biological problem, and

by defining the block weights that reflect the costs of mutations from one

DNA sequence to another.

6. MANHATTANTOURIST computes the length of the longest path in the grid, but does not give
the path itself. In section 6.5 we will describe a minor modification to the algorithm that returns
not only the optimal length, but also the optimal path.
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Figure 6.5 A city somewhat more like Manhattan than figure 6.4 with the compli-
cating issue of a street that runs diagonally across the grid. Broadway cuts across
several blocks. In the case of the Manhattan Tourist problem, it changes the optimal
path (the optimal path in this new city has six attractions instead of five).
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Unfortunately, Manhattan is not a perfectly regular grid. Broadway cuts

across the borough (figure 6.5). We would like to solve a generalization of

the Manhattan Tourist problem for the case in which the street map is not

a regular rectangular grid. In this case, one can model any city map as a

graph with vertices corresponding to the intersections of streets, and edges

corresponding to the intervals of streets between the intersections. For the

sake of simplicity we assume that the city blocks correspond to directed edges,

so that the tourist can move only in the direction of the edge and that the

resulting graph has no directed cycles.7 Such graphs are called directed acyclic

graphs, or DAGs. We assume that every edge has an associated weight (e.g.,

the number of attractions) and represent a graph G as a pair of two sets, V

for vertices and E for edges: G = (V, E). We number vertices from 1 to

|V | with a single integer, rather than a row-column pair as in the Manhattan

problem. This does not change the generic dynamic programming algorithm

other than in notation, but it allows us to represent imperfect grids. An edge

from E can be specified in terms of its origin vertex u and its destination

vertex v as (u, v). The following problem is simply a generalization of the

Manhattan Tourist problem that is able to deal with arbitrary DAGs rather

than with perfect grids.

Longest Path in a DAG Problem:

Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG G with source and sink vertices.

Output: A longest path in G from source to sink.

Not surprisingly, the Longest Path in a DAG problem can also be solved

by dynamic programming. At every vertex, there may be multiple edges

that “flow in” and multiple edges that “flow out.” In the city analogy, any

intersection may have multiple one-way streets leading in, and some other

number of one-way streets exiting. We will call the number of edges entering

a vertex (i.e., the number of inbound streets) the indegree of the vertex (i.e.,

intersection), and the number of edges leaving a vertex (i.e., the number of

outbound streets) the outdegree of the vertex.

In the nicely regular case of the Manhattan problem, most vertices had

7. A directed cycle is a path from a vertex back to itself that respects the directions of edges. If
the resulting graph contained a cycle, a tourist could start walking along this cycle revisiting the
same attractions many times. In this case there is no “best” solution since a tourist may increase
the number of visited attractions indefinitely.
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u1 u2

u3 v w2

w1

Figure 6.6 A graph with six vertices. The vertex v has indegree 3 and outdegree 2.
The vertices u1, u2 and u3 are all predecessors of v, and w1 and w2 are successors of
v.

indegree 2 and outdegree 2, except for the vertices along the boundaries of

the grid. In the more general DAG problem, a vertex can have an arbitrary

indegree and outdegree. We will call u a predecessor to vertex v if (u, v) ∈ E—

in other words, a predecessor of a vertex is any vertex that can be reached by

traveling backwards along an inbound edge. Clearly, if v has indegree k, it

has k predecessors.

Suppose a vertex v has indegree 3, and the set of predecessors of v is

{u1, u2, u3} (figure 6.6). The longest path to v can be computed as follows:

sv = max

⎧
⎨

⎩

su1 + weight of edge from u1 to v

su2 + weight of edge from u2 to v

su3 + weight of edge from u3 to v

In general, one can imagine a rather hectic city plan, but the recurrence

relation remains simple, with the score sv of the vertex v defined as follows.

sv = max
u∈Predecessors(v)

(su + weight of edge from u to v)

Here, Predecessors(v) is the set of all vertices u such that u is a predecessor

of v. Since every edge participates in only a single recurrence, the running
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Figure 6.7 The “Dressing in the Morning problem” represented by a DAG. Some of
us have more trouble than others.

time of the algorithm is defined by the number of edges in the graph.8 The

one hitch to this plan for solving the Longest Path problem in a DAG is that

one must decide on the order in which to visit the vertices while computing

s. This ordering is important, since by the time vertex v is analyzed, the

values su for all its predecessors must have been computed. Three popular

strategies for exploring the perfect grid are displayed in figure 6.9, column by

column, row by row, and diagonal by diagonal. These exploration strategies

correspond to different topological orderings of the DAG corresponding to the

perfect grid. An ordering of vertices v1, . . . , vn of a DAG is called topological

if every edge (vi, vj) of the DAG connects a vertex with a smaller index to a

vertex with a larger index, that is, i < j. Figure 6.7 represents a DAG that

corresponds to a problem that we each face every morning. Every DAG has

a topological ordering (fig. 6.8); a problem at the end of this chapter asks you

to prove this fact.

8. A graph with vertex set V can have at most |V |2 edges, but graphs arising in sequence com-
parison are usually sparse, with many fewer edges.
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Figure 6.8 Two different ways of getting dressed in the morning corresponding to
two different topological orderings of the graph in figure 6.7.
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Figure 6.9 Three different strategies for filling in a dynamic programming array.
The first fills in the array column by column: earlier columns are filled in before later
ones. The second fills in the array row by row. The third method fills array entries
along the diagonals and is useful in parallel computation.
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6.4 Edit Distance and Alignments

So far, we have been vague about what we mean by “sequence similarity”

or “distance” between DNA sequences. Hamming distance (introduced in

chapter 4), while important in computer science, is not typically used to com-

pare DNA or protein sequences. The Hamming distance calculation rigidly

assumes that the ith symbol of one sequence is already aligned against the ith

symbol of the other. However, it is often the case that the ith symbol in one

sequence corresponds to a symbol at a different—and unknown—position

in the other. For example, mutation in DNA is an evolutionary process:

DNA replication errors cause substitutions, insertions, and deletions of nu-

cleotides, leading to “edited” DNA texts. Since DNA sequences are subject

to insertions and deletions, biologists rarely have the luxury of knowing in

advance whether the ith symbol in one DNA sequence corresponds to the

ith symbol in the other.

As figure 6.10 (a) shows, while strings ATATATAT and TATATATA are very

different from the perspective of Hamming distance, they become very simi-

lar if one simply moves the second string over one place to align the (i+1)-st

letter in ATATATAT against the ith letter in TATATATA for 1 ≤ i ≤ 7. Strings

ATATATAT and TATAAT present another example with more subtle similarities.

Figure 6.10 (b) reveals these similarities by aligning position 2 in ATATATAT
against position 1 in TATAAT. Other pairs of aligned positions are 3 against

2, 4 against 3, 5 against 4, 7 against 5, and 8 against 6 (positions 1 and 6 in

ATATATAT remain unaligned).

In 1966, Vladimir Levenshtein introduced the notion of the edit distance

between two strings as the minimum number of editing operations needed

to transform one string into another, where the edit operations are insertion

of a symbol, deletion of a symbol, and substitution of one symbol for another.

For example, TGCATAT can be transformed into ATCCGAT with five editing

operations, shown in figure 6.11. This implies that the edit distance between

TGCATAT and ATCCGAT is at most 5. Actually, the edit distance between

them is 4 because you can transform one to the other with one move fewer,

as in figure 6.12.

Unlike Hamming distance, edit distance allows one to compare strings of

different lengths. Oddly, Levenshtein introduced the definition of edit dis-

tance but never described an algorithm for actually finding the edit distance

between two strings. This algorithm has been discovered and rediscovered

many times in applications ranging from automated speech recognition to,

obviously, molecular biology. Although the details of the algorithms are



168 6 Dynamic Programming Algorithms

A T A T A T A T -
: : : : : : :

- T A T A T A T A

(a) Alignment of ATATATAT against
TATATATA.

A T A T A T A T
: : : : : :

- T A T A - A T

(b) Alignment of ATATATAT against
TATAAT.

Figure 6.10 Alignment of ATATATAT against TATATATA and of ATATATAT against
TATAAT.

TGCATAT

ATCCAT

TGCATA

TGCAT

ATGCAT

ATCCGAT

delete last T

delete last A

insert A at the front

substitute C for G in the third position

insert a G before the last A

Figure 6.11 Five edit operations can take TGCATAT into ATCCGAT.

slightly different across the various applications, they are all based on dy-

namic programming.

The alignment of the strings v (of n characters) and w (of m characters,

with m not necessarily the same as n) is a two-row matrix such that the first

row contains the characters of v in order while the second row contains the

characters of w in order, where spaces may be interspersed throughout the

strings in different places. As a result, the characters in each string appear

in order, though not necessarily adjacently. We also assume that no column
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TGCATAT

ATCCGAT

ATGCATAT

ATGCAAT

ATGCGAT

delete T in the sixth position

substitute G for A in the fifth position

substitute C for G in the third position

insert A at the front

Figure 6.12 Four edit operations can also take TGCATAT into ATCCGAT.

of the alignment matrix contains spaces in both rows, so that the alignment

may have at most n + m columns.

A T - G T T A T -
A T C G T - A - C

Columns that contain the same letter in both rows are called matches, while

columns containing different letters are called mismatches. The columns of

the alignment containing one space are called indels, with the columns con-

taining a space in the top row called insertions and the columns with a space

in the bottom row deletions. The alignment shown in figure 6.13 (top) has five

matches, zero mismatches, and four indels. The number of matches plus the

number of mismatches plus the number of indels is equal to the length of the

alignment matrix and must be smaller than n + m.

Each of the two rows in the alignment matrix is represented as a string

interspersed by space symbols “−”; for example AT−GTTAT− is a represen-

tation of the row corresponding to v = ATGTTAT, while ATCGT−A−C is a

representation of the row corresponding to w = ATCGTAC. Another way to

represent the row AT−GTTAT− is 1 2 2 3 4 5 6 7 7, which shows the number of

symbols of v present up to a given position. Similarly, ATCGT−A−C is rep-

resented as 1 2 3 4 5 5 6 6 7. When both rows of an alignment are represented

in this way (fig. 6.13, top), the resulting matrix is

(
0

0

)(
1

1

)(
2

2

)(
2

3

)(
3

4

)(
4

5

)(
5

5

)(
6

6

)(
7

6

)(
7

7

)

Each column in this matrix is a coordinate in a two-dimensional n×m grid;
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the entire alignment is simply a path

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→ (6, 6)→ (7, 6)→ (7, 7)

from (0, 0) to (n, m) in that grid (again, see figure 6.13). This grid is similar

to the Manhattan grid that we introduced earlier, where each entry in the

grid looks like a city block. The main difference is that here we can move

along the diagonal. We can construct a graph, this time called the edit graph,

by introducing a vertex for every intersection of streets in the grid, shown in

figure 6.13. The edit graph will aid us in calculating the edit distance.

Every alignment corresponds to a path in the edit graph, and every path

in the edit graph corresponds to an alignment where every edge in the path

corresponds to one column in the alignment (fig. 6.13). Diagonal edges in the

path that end at vertex (i, j) in the graph correspond to the column

(
vi

wj

)
,

horizontal edges correspond to

(
−

wj

)
, and vertical edges correspond to

(
vi

−

)
. The alignment above can be drawn as follows.

(
0

0

) A(
1

1

)

A

T(
2

2

)

T

−(
2

3

)

G

G(
3

4

)

C

T(
4

5

)

T

T(
5

5

)

−

A(
6

6

)

A

T(
7

6

)

−

−(
7

7

)

C

Analyzing the merit of an alignment is equivalent to analyzing the merit

of the corresponding path in the edit graph. Given any two strings, there

are a large number of different alignment matrices and corresponding paths

in the edit graph. Some of these have a surplus of mismatches and indels

and a small number of matches, while others have many matches and few

indels and mismatches. To determine the relative merits of one alignment

over another, we rely on the notion of a scoring function, which takes as

input an alignment matrix (or, equivalently, a path in the edit graph) and

produces a score that determines the “goodness” of the alignment. There are

a variety of scoring functions that we could use, but we want one that gives

higher scores to alignments with more matches. The simplest functions score

a column as a positive number if both letters are the same, and as a negative

number if the two letters are different. The score for the whole alignment is

the sum of the individual column scores. This scoring scheme amounts to
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0 1 2 2 3 4 5 6 7 7

v = A T - G T T A T -
| | | | |

w = A T C G T - A - C
0 1 2 3 4 5 5 6 6 7

0
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1
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T
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G
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T
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T
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7

v

w

↘ ↘ → ↘ ↘ ↓ ↘ ↓ →
A T - G T T A T -
A T C G T - A - C

Figure 6.13 An alignment grid for v = ATGTTAT and w = ATCGTAC. Every align-
ment corresponds to a path in the alignment grid from (0, 0) to (n, m), and every path
from (0, 0) to (n, m) in the alignment grid corresponds to an alignment.
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assigning weights to the edges in the edit graph.

By choosing different scoring functions, we can solve different string com-

parison problems. If we choose the very simple scoring function of “+1 for

a match, 0 otherwise,” then the problem becomes that of finding the longest

common subsequence between two strings, which is discussed below. Be-

fore describing how to calculate Levenshtein’s edit distance, we develop the

Longest Common Subsequence problem as a warm-up.

6.5 Longest Common Subsequences

The simplest form of a sequence similarity analysis is the Longest Common

Subsequence (LCS) problem, where we eliminate the operation of substitu-

tion and allow only insertions and deletions. A subsequence of a string v

is simply an (ordered) sequence of characters (not necessarily consecutive)

from v. For example, if v = ATTGCTA, then AGCA and ATTA are subse-

quences of v whereas TGTT and TCG are not.9 A common subsequence of

two strings is a subsequence of both of them. Formally, we define the com-

mon subsequence of strings v = v1 . . . vn and w = w1 . . . wm as a sequence of

positions in v,

1 ≤ i1 < i2 < · · · < ik ≤ n

and a sequence of positions in w,

1 ≤ j1 < j2 < · · · < jk ≤ m

such that the symbols at the corresponding positions in v and w coincide:

vit
= wjt

for 1 ≤ t ≤ k.

For example, TCTA is a common to both ATCTGAT and TGCATA.

Although there are typically many common subsequences between two

strings v and w, some of which are longer than others, it is not immedi-

ately obvious how to find the longest one. If we let s(v,w) be the length

of the longest common subsequence of v and w, then the edit distance be-

tween v and w—under the assumption that only insertions and deletions

are allowed—is d(v,w) = n + m − 2s(v,w), and corresponds to the mini-

9. The difference between a subsequence and a substring is that a substring consists only of con-
secutive characters from v, while a subsequence may pick and choose characters from v as long
as their ordering is preserved.
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Figure 6.14 Dynamic programming algorithm for computing the longest common
subsequence.

mum number of insertions and deletions needed to transform v into w. Fig-

ure 6.14 (bottom) presents an LCS of length 4 for the strings v = ATCTGAT
and w = TGCATA and a shortest sequence of two insertions and three dele-

tions transforming v into w (shown by “-” in the figure). The LCS problem

follows.

Longest Common Subsequence Problem:

Find the longest subsequence common to two strings.

Input: Two strings, v and w.

Output: The longest common subsequence of v and w.

What do the LCS problem and the Manhattan Tourist problem have in

common? Every common subsequence corresponds to an alignment with no
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Figure 6.15 An LCS edit graph.

mismatches. This can be obtained simply by removing all diagonal edges

from the edit graph whose characters do not match, thus transforming it into

a graph like that shown in figure 6.15. We further illustrate the relationship

between the Manhattan Tourist problem and the LCS Problem by showing

that these two problems lead to very similar recurrences.

Define si,j to be the length of an LCS between v1 . . . vi, the i-prefix of v

and w1 . . . wj , the j-prefix of w. Clearly, si,0 = s0,j = 0 for all 1 ≤ i ≤ n and
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1 ≤ j ≤ m. One can see that si,j satisfies the following recurrence:

si,j = max

⎧
⎨

⎩

si−1,j

si,j−1

si−1,j−1 + 1, if vi = wj

The first term corresponds to the case when vi is not present in the LCS

of the i-prefix of v and j-prefix of w (this is a deletion of vi); the second

term corresponds to the case when wj is not present in this LCS (this is an

insertion of wj); and the third term corresponds to the case when both vi and

wj are present in the LCS (vi matches wj). Note that one can “rewrite” these

recurrences by adding some zeros here and there as

si,j = max

⎧
⎨

⎩

si−1,j + 0

si,j−1 + 0

si−1,j−1 + 1, if vi = wj

This recurrence for the LCS computation is like the recurrence given at the

end of the section 6.3, if we were to build a particularly gnarly version of

Manhattan and gave horizontal and vertical edges weights of 0, and set the

weights of diagonal (matching) edges equal to +1 as in figure 6.15.

In the following, we use s to represent our dynamic programming table,

the data structure that we use to fill in the dynamic programming recur-

rence. The length of an LCS between v and w can be read from the element

(n, m) of the dynamic programming table, but to reconstruct the LCS from

the dynamic programming table, one must keep some additional informa-

tion about which of the three quantities, si−1,j , si,j−1, or si−1,j−1 + 1, corre-

sponds to the maximum in the recurrence for si,j . The following algorithm

achieves this goal by introducing backtracking pointers that take one of the

three values←, ↑, or↖. These specify which of the above three cases holds,

and are stored in a two-dimensional array b (see figure 6.14).
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LCS(v,w)

1 for i← 0 to n

2 si,0 ← 0

3 for j ← 1 to m

4 s0,j ← 0

5 for i← 1 to n

6 for j ← 1 to m

7 si,j ← max

⎧
⎨

⎩

si−1,j

si,j−1

si−1,j−1 + 1, if vi = wj

8 bi,j ←

⎧
⎨

⎩

“ ↑′′ if si,j = si−1,j

“←′′ if si,j = si,j−1

“↖′′, if si,j = si−1,j−1 + 1
9 return (sn,m,b)

The following recursive program prints out the longest common subse-

quence using the information stored in b. The initial invocation that prints

the solution to the problem is PRINTLCS(b,v, n, m).

PRINTLCS(b,v, i, j)

1 if i = 0 or j = 0

2 return

3 if bi,j = “↖′′

4 PRINTLCS(b,v, i− 1, j − 1)

5 print vi

6 else

7 if bi,j = “ ↑′′

8 PRINTLCS(b,v, i− 1, j)

9 else

10 PRINTLCS(b,v, i, j − 1)

The dynamic programming table in figure 6.14 (left) presents the compu-

tation of the similarity score s(v,w) between v and w, while the table on

the right presents the computation of the edit distance between v and w

under the assumption that insertions and deletions are the only allowed op-

erations. The edit distance d(v,w) is computed according to the initial con-

ditions di,0 = i, d0,j = j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m and the following

recurrence:
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di,j = min

⎧
⎨

⎩

di−1,j + 1

di,j−1 + 1

di−1,j−1, if vi = wj

6.6 Global Sequence Alignment

The LCS problem corresponds to a rather restrictive scoring that awards 1 for

matches and does not penalize indels. To generalize scoring, we extend the k-

letter alphabet A to include the gap character “−”, and consider an arbitrary

(k+1)× (k+1) scoring matrix δ, where k is typically 4 or 20 depending on the

type of sequences (DNA or protein) one is analyzing. The score of the column(
x
y

)
in the alignment is δ(x, y) and the alignment score is defined as the sum

of the scores of the columns. In this way we can take into account scoring of

mismatches and indels in the alignment. Rather than choosing a particular

scoring matrix and then resolving a restated alignment problem, we will pose

a general Global Alignment problem that takes the scoring matrix as input.

Global Alignment Problem:

Find the best alignment between two strings under a given scoring

matrix.

Input: Strings v, w and a scoring matrix δ.

Output: An alignment of v and w whose score (as defined

by the matrix δ) is maximal among all possible alignments

of v and w.

The corresponding recurrence for the score si,j of an optimal alignment

between the i-prefix of v and j-prefix of w is as follows:

si,j = max

⎧
⎨

⎩

si−1,j + δ(vi,−)

si,j−1 + δ(−, wj)

si−1,j−1 + δ(vi, wj)

When mismatches are penalized by some constant −μ, indels are penal-

ized by some other constant −σ, and matches are rewarded with +1, the

resulting score is

#matches− μ ·#mismatches− σ ·#indels
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The corresponding recurrence can be rewritten as

si,j = max

⎧
⎪⎪⎨

⎪⎪⎩

si−1,j − σ

si,j−1 − σ

si−1,j−1 − μ, if vi �= wj

si−1,j−1 + 1, if vi = wj

We can again store similar “backtracking pointer” information while cal-

culating the dynamic programming table, and from this reconstruct the align-

ment. We remark that the LCS problem is the Global Alignment problem

with the parameters μ = 0, σ = 0 (or, equivalently, μ =∞, σ = 0).

6.7 Scoring Alignments

While the scoring matrices for DNA sequence comparison are usually de-

fined only by the parameters μ (mismatch penalty) and σ (indel penalty),

scoring matrices for sequences in the amino acid alphabet of proteins are

quite involved. The common matrices for protein sequence comparison,

point accepted mutations (PAM) and block substitution (BLOSUM), reflect the

frequency with which amino acid x replaces amino acid y in evolutionarily

related sequences.

Random mutations of the nucleotide sequence within a gene may change

the amino acid sequence of the corresponding protein. Some of these muta-

tions do not drastically alter the protein’s structure, but others do and impair

the protein’s ability to function. While the former mutations usually do not

affect the fitness of the organism, the latter often do. Therefore some amino

acid substitutions are commonly found throughout the process of molecu-

lar evolution and others are rare: Asn, Asp, Glu, and Ser are the most

“mutable” amino acids while Cys and Trp are the least mutable. For exam-

ple, the probability that Ser mutates into Phe is roughly three times greater

than the probability that Trp mutates into Phe. Knowledge of the types

of changes that are most and least common in molecular evolution allows

biologists to construct the amino acid scoring matrices and to produce bio-

logically adequate sequence alignments. As a result, in contrast to nucleotide

sequence comparison, the optimal alignments of amino acid sequences may

have very few matches (if any) but still represent biologically adequate align-

ments. The entry of amino acid scoring matrix δ(i, j) usually reflects how

often the amino acid i substitutes the amino acid j in the alignments of re-

lated protein sequences. If one is provided with a large set of alignments of
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related sequences, then computing δ(i, j) simply amounts to counting how

many times the amino acid i is aligned with amino acid j. A “minor” compli-

cation is that to build this set of biologically adequate alignments one needs

to know the scoring matrix! Fortunately, in many cases the alignment of

very similar sequences is so obvious that it can be constructed even without

a scoring matrix, thus resolving this predicament. For example, if proteins

are 90% identical, even a naive scoring matrix (e.g., a matrix that gives pre-

mium +1 for matches and penalties−1 for mismatches and indels) would do

the job. After these “obvious” alignments are constructed they can be used

to compute a scoring matrix δ that can be used iteratively to construct less

obvious alignments.

This simplified description hides subtle details that are important in the

construction of scoring matrices. The probability of Ser mutating into Phe
in proteins that diverged 15 million years ago (e.g., related proteins in mouse

and rat) is smaller than the probability of the Ser → Phe mutation in pro-

teins that diverged 80 million years ago (e.g., related proteins in mouse and

human). This observation implies that the best scoring matrices to compare

two proteins depends on how similar these organisms are.

Biologists get around this problem by first analyzing extremely similar

proteins, for example, proteins that have, on average, only one mutation per

100 amino acids. Many proteins in human and chimpanzee fulfill this re-

quirement. Such sequences are defined as being one PAM unit diverged and to

a first approximation one can think of a PAM unit as the amount of time in

which an “average” protein mutates 1% of its amino acids. The PAM 1 scor-

ing matrix is defined from many alignments of extremely similar proteins as

follows.

Given a set of base alignments, define f(i, j) as the total number of times

amino acids i and j are aligned against each other, divided by the total num-

ber of aligned positions. We also define g(i, j) as f(i,j)
f(i) , where f(i) is the

frequency of amino acid i in all proteins from the data set. g(i, j) defines

the probability that an amino acid i mutates into amino acid j within 1 PAM

unit. The (i, j) entry of the PAM 1 matrix is defined as δ(i, j) = log f(i,j)
f(i)·f(j) =

log g(i,j)
f(j) (f(i) · f(j) stands for the frequency of aligning amino acid i against

amino acid j that one expects simply by chance). The PAM n matrix can

be defined as the result of applying the PAM 1 matrix n times. If g is the

20 × 20 matrix of frequencies g(i, j), then gn (multiplying this matrix by it-

self n times) gives the probability that amino acid i mutates into amino acid

j during n PAM units. The (i, j) entry of the PAM n matrix is defined as
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log
gn

i,j

f(j) .

For large n, the resulting PAM matrices often allow one to find related

proteins even when there are practically no matches in the alignment. In this

case, the underlying nucleotide sequences are so diverged that their compar-

ison usually fails to find any statistically significant similarities. For example,

the similarity between the cancer-causing ν-sis oncogene and the growth fac-

tor PDGF would probably have remained undetected had Russell Doolittle

and colleagues not transformed the nucleotide sequences into amino acid

sequences prior to performing the comparison.

6.8 Local Sequence Alignment

The Global Alignment problem seeks similarities between two entire strings.

This is useful when the similarity between the strings extends over their en-

tire length, for example, in protein sequences from the same protein family.

These protein sequences are often very conserved and have almost the same

length in organisms ranging from fruit flies to humans. However, in many

biological applications, the score of an alignment between two substrings of

v and w might actually be larger than the score of an alignment between the

entireties of v and w.

For example, homeobox genes, which regulate embryonic development, are

present in a large variety of species. Although homeobox genes are very dif-

ferent in different species, one region in each gene—called the homeodomain—

is highly conserved. The question arises how to find this conserved area and

ignore the areas that show little similarity. In 1981 Temple Smith and Michael

Waterman proposed a clever modification of the global sequence alignment

dynamic programming algorithm that solves the Local Alignment problem.

Figure 6.16 presents the comparison of two hypothetical genes v and w of

the same length with a conserved domain present at the beginning of v and

at the end of w. For simplicity, we will assume that the conserved domains

in these two genes are identical and cover one third of the entire length, n, of

these genes. In this case, the path from source to sink capturing the similarity

between the homeodomains will include approximately 2
3n horizontal edges,

1
3n diagonal match edges (corresponding to homeodomains), and 2

3n vertical

edges. Therefore, the score of this path is

−
2

3
nσ +

1

3
n−

2

3
nσ = n

(
1

3
−

4

3
σ

)
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However, this path contains so many indels that it is unlikely to be the high-

est scoring alignment. In fact, biologically irrelevant diagonal paths from

the source to the sink will likely have a higher score than the biologically

relevant alignment, since mismatches are usually penalized less than indels.

The expected score of such a diagonal path is n(1
4 −

3
4μ) since every diagonal

edge corresponds to a match with probability 1
4 and mismatch with proba-

bility 3
4 . Since (1

3 −
4
3σ) < (1

4 −
3
4μ) for many settings of indel and mismatch

penalties, the global alignment algorithm will miss the correct solution of

the real biological problem, and is likely to output a biologically irrelevant

near-diagonal path. Indeed, figure 6.16 bears exactly this observation.

When biologically significant similarities are present in certain parts of

DNA fragments and are not present in others, biologists attempt to maxi-

mize the alignment score s(vi . . . vi′ , wj . . . wj′ ), over all substrings vi . . . vi′

of v and wj . . . wj′ of w. This is called the Local Alignment problem since the

alignment does not necessarily extend over the entire string length as it does

in the Global Alignment problem.

Local Alignment Problem:

Find the best local alignment between two strings.

Input: Strings v and w and a scoring matrix δ.

Output: Substrings of v and w whose global alignment, as

defined by δ, is maximal among all global alignments of all

substrings of v and w.

The solution to this seemingly harder problem lies in the realization that

the Global Alignment problem corresponds to finding the longest local path

between vertices (0, 0) and (n, m) in the edit graph, while the Local Align-

ment problem corresponds to finding the longest path among paths between

arbitrary vertices (i, j) and (i′, j′) in the edit graph. A straightforward and in-

efficient approach to this problem is to find the longest path between every

pair of vertices (i, j) and (i′, j′), and then to select the longest of these com-

puted paths.10 Instead of finding the longest path from every vertex (i, j)

to every other vertex (i′, j′), the Local Alignment problem can be reduced

to finding the longest paths from the source (0,0) to every other vertex by

10. This will result in a very slow algorithm with O(n4) running time: there are roughly n2

pairs of vertices (i, j) and computing local alignments starting at each of them typically takes
O(n2) time.
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--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
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Figure 6.16 (a) Global and (b) local alignments of two hypothetical genes that each
have a conserved domain. The local alignment has a much worse score according to
the global scoring scheme, but it correctly locates the conserved domain.
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Figure 6.17 The Smith-Waterman local alignment algorithm introduces edges of
weight 0 (here shown with dashed lines) from the source vertex (0, 0) to every other
vertex in the edit graph.

adding edges of weight 0 in the edit graph. These edges make the source

vertex (0,0) a predecessor of every vertex in the graph and provide a “free

ride” from the source to any other vertex (i, j). A small difference in the

following recurrence reflects this transformation of the edit graph (shown in

figure 6.17):

si,j = max

⎧
⎪⎪⎨

⎪⎪⎩

0

si−1,j + δ(vi,−)

si,j−1 + δ(−, wj)

si−1,j−1 + δ(vi, wj)

The largest value of si,j over the whole edit graph represents the score

of the best local alignment of v and w; recall that in the Global Alignment

problem, we simply looked at sn,m. The difference between local and global

alignment is illustrated in figure 6.16 (top).

Optimal local alignment reports only the longest path in the edit graph. At

the same time, several local alignments may have biological significance and

methods have been developed to find the k best nonoverlapping local align-

ments. These methods are particularly important for comparison of multido-

main proteins that share similar blocks that have been shuffled in one protein

compared to another. In this case, a single local alignment representing all

significant similarities may not exist.
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6.9 Alignment with Gap Penalties

Mutations are usually caused by errors in DNA replication. Nature fre-

quently deletes or inserts entire substrings as a unit, as opposed to deleting

or inserting individual nucleotides. A gap in an alignment is defined as a con-

tiguous sequence of spaces in one of the rows. Since insertions and deletions

of substrings are common evolutionary events, penalizing a gap of length x

as −σx is cruel and unusual punishment. Many practical alignment algo-

rithms use a softer approach to gap penalties and penalize a gap of x spaces

by a function that grows slower than the sum of penalties for x indels.

To this end, we define affine gap penalties to be a linearly weighted score

for large gaps. We can set the score for a gap of length x to be −(ρ + σx),

where ρ > 0 is the penalty for the introduction of the gap and σ > 0 is the

penalty for each symbol in the gap (ρ is typically large while σ is typically

small). Though this may seem to be complicating our alignment approach, it

turns out that the edit graph representation of the problem is robust enough

to accommodate it.

Affine gap penalties can be accommodated by adding “long” vertical and

horizontal edges in the edit graph (e.g., an edge from (i, j) to (i + x, j) of

length−(ρ+σx) and an edge from (i, j) to (i, j +x) of the same length) from

each vertex to every other vertex that is either east or south of it. We can then

apply the same algorithm as before to compute the longest path in this graph.

Since the number of edges in the edit graph for affine gap penalties increases,

at first glance it looks as though the running time for the alignment algorithm

also increases from O(n2) to O(n3), where n is the longer of the two string

lengths.11 However, the following three recurrences keep the running time

down:

↓
si,j= max

{
↓
si−1,j −σ

si−1,j − (ρ + σ)

→
s i,j= max

{
→
s i,j−1 −σ

si,j−1 − (ρ + σ)

11. The complexity of the corresponding Longest Path in a DAG problem is defined by the
number of edges in the graph. Adding long horizontal and vertical edges imposed by affine
gap penalties increases the number of edges by a factor of n.
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si,j = max

⎧
⎪⎨

⎪⎩

si−1,j−1 + δ(vi, wj)
↓
si,j
→
s i,j

The variable
↓
si,j computes the score for alignment between the i-prefix of

v and the j-prefix of w ending with a deletion (i.e., a gap in w), while the

variable
→
s i,j computes the score for alignment ending with an insertion (i.e.,

a gap in v). The first term in the recurrences for
↓
si,j and

→
s i,j corresponds to

extending the gap, while the second term corresponds to initiating the gap.

Essentially,
↓
si,j and

→
s i,j are the scores of optimal paths that arrive at vertex

(i, j) via vertical and horizontal edges correspondingly.

Figure 6.18 further explains how alignment with affine gap penalties can

be reduced to the Manhattan Tourist problem in the appropriate city grid. In

this case the city is built on three levels: the bottom level built solely with

vertical ↓ edges with weight −σ; the middle level built with diagonal edges

of weight δ(vi, wj); and the upper level, which is built from horizontal edges

→ with weight −σ. The lower level corresponds to gaps in sequence w, the

middle level corresponds to matches and mismatches, and the upper level

corresponds to gaps in sequence v. Also, in this graph there are two edges

from each vertex (i, j)middle at the middle level that connect this vertex with

vertex (i + 1, j)lower at the lower level and with vertex (i, j + 1)upper at the

upper level. These edges model a start of the gap and have weight −(ρ + σ).

Finally, one has to introduce zero-weight edges connecting vertices (i, j)lower

and (i, j)upper with vertex (i, j)middle at the middle level (these edges model

the end of the gap). In effect, we have created a rather complicated graph,

but the same algorithm works with it.

We have now introduced a number of pairwise sequence comparison prob-

lems and shown that they can all be solved by what is essentially the same

dynamic programming algorithm applied to a suitably built Manhattan-style

city. We will now consider other applications of dynamic programming in

bioinformatics.

6.10 Multiple Alignment

The goal of protein sequence comparison is to discover structural or func-

tional similarities among proteins. Biologically similar proteins may not ex-

hibit a strong sequence similarity, but we would still like to recognize resem-
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−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−(ρ + σ)

−(ρ + σ)

+0

+0

Figure 6.18 A three-level edit graph for alignment with affine gap penalties. Every
vertex (i, j) in the middle level has one outgoing edge to the upper level, one outgo-
ing edge to the lower level, and one incoming edge each from the upper and lower
levels.



6.10 Multiple Alignment 187



188 6 Dynamic Programming Algorithms

--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C
||||| | X|||| | || XXX||| | ||| | |

-ATTGC-G--ATTCGTAT------GGGACA-TGGATGCATGCAG-TGAC

Figure 6.19 Multiple alignment of three sequences.

blance even when the sequences share only weak similarities.12 If sequence

similarity is weak, pairwise alignment can fail to identify biologically related

sequences because weak pairwise similarities may fail statistical tests for

significance. However, simultaneous comparison of many sequences often

allows one to find similarities that are invisible in pairwise sequence com-

parison.

Let v1, . . . ,vk be k strings of length n1, . . . , nk over an alphabet A. Let A′

denote the extended alphabet A
⋃
{−}, where ‘−’ denotes the space char-

acter (reserved for insertions and deletions). A multiple alignment of strings

v1, . . . ,vk is specified by a k × n matrix A, where n ≥ max1≤i≤k ni. Each

element of the matrix is a member of A′, and each row i contains the char-

acters of vi in order, interspersed with n − ni spaces (figure 6.19). We also

assume that every column of the multiple alignment matrix contains at least

one symbol fromA, that is, no column in a multiple alignment contains only

spaces. The multiple alignment matrix we have constructed is a generaliza-

tion of the pairwise alignment matrix to k > 2 sequences. The score of a

multiple alignment is defined to be the sum of scores of the columns, with

the optimal alignment being the one that maximizes the score. Just as it was

in section 4.5, the consensus of an alignment is a string of the most common

characters in each column of the multiple alignment. At this point, we will

use a very general scoring function that is defined by a k-dimensional matrix

δ of size |A′|× . . .×|A′| that describes the scores of all possible combinations

of k symbols fromA′.13

A straightforward dynamic programming algorithm in the k-dimensional

edit graph formed from k strings solves the Multiple Alignment problem.

12. Sequences that code for proteins that perform the same function are likely to be somehow
related but it may be difficult to decide whether this similarity is significant or happens just by
chance.
13. This is a k-dimensional scoring matrix rather than the two-dimensional |A′| × |A′| matrix
for pairwise alignment (which is a multiple alignment with k = 2).
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For example, suppose that we have three sequences u, v, and w, and that we

want to find the “best” alignment of all three. Every multiple alignment of

three sequences corresponds to a path in the three-dimensional Manhattan-

like edit graph. In this case, one can apply the same logic as we did for

two dimensions to arrive at a dynamic programming recurrence, this time

with more terms to consider. To get to vertex (i, j, k) in a three-dimensional

edit graph, you could come from any of the following predecessors (note

that δ(x, y, z) denotes the score of a column with letters x, y, and z, as in

figure 6.20):

1. (i− 1, j, k) for score δ(ui,−,−)

2. (i, j − 1, k) for score δ(−, vj ,−)

3. (i, j, k − 1) for score δ(−,−, wk)

4. (i− 1, j − 1, k) for score δ(ui, vj ,−)

5. (i− 1, j, k − 1) for score δ(ui,−, wk)

6. (i, j − 1, k − 1) for score δ(−, vj , wk)

7. (i− 1, j − 1, k − 1) for score δ(ui, vj , wk)

We create a three-dimensional dynamic programming array s and it is easy

to see that the recurrence for si,j,k in the three-dimensional case is similar to

the recurrence in the two-dimensional case (fig. 6.21). Namely,

si,j,k = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si−1,j,k +δ(vi,−,−)

si,j−1,k +δ(−, wj ,−)

si,j,k−1 +δ(−,−, uk)

si−1,j−1,k +δ(vi, wj ,−)

si−1,j,k−1 +δ(vi,−, uk)

si,j−1,k−1 +δ(−, wj , uk)

si−1,j−1,k−1 +δ(vi, wj , uk)

Unfortunately, in the case of k sequences, the running time of this ap-

proach is O((2n)k), so some improvements of the exact algorithm, and many

heuristics for suboptimal multiple alignments, have been proposed. A good

heuristic would be to compute all
(
k
2

)
optimal pairwise alignments between

every pair of strings and then combine them together in such a way that pair-

wise alignments induced by the multiple alignment are close to the optimal
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Figure 6.20 The scoring matrix, δ, used in a three-sequence alignment.

(i, j, k)

(i, j, k − 1)

(i, j − 1, k)

(i− 1, j − 1, k)

(i− 1, j − 1, k − 1)

(i− 1, j, k)

(i− 1, j, k − 1)

(i, j − 1, k − 1)

Figure 6.21 A cell in the alignment graph between three sequences.
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ones. Unfortunately, it is not always possible to combine optimal pairwise

alignments into a multiple alignment since some pairwise alignments may be

incompatible. For example, figure 6.22 (a) shows three sequences whose opti-

mal pairwise alignment can be combined into a multiple alignment, whereas

(b) shows three sequences that cannot be combined. As a result, some mul-

tiple alignment algorithms attempt to combine some compatible subset of

optimal pairwise alignments into a multiple alignment.

Another approach to do this uses one particularly strong pairwise align-

ment as a building block for the multiple k-way alignment, and iteratively

adds one string to the growing multiple alignment. This greedy progressive

multiple alignment heuristic selects the pair of strings with greatest similarity

and merges them together into a new string following the principle “once a

gap, always a gap.”14 As a result, the multiple alignment of k sequences is

reduced to the multiple alignment of k−1 sequences. The motivation for the

choice of the closest strings at the early steps of the algorithm is that close

strings often provide the most reliable information about a real alignment.

Many popular iterative multiple alignment algorithms, including the tool

CLUSTAL, use similar strategies.

Although progressive multiple alignment algorithms work well for very

close sequences, there are no performance guarantees for this approach. The

problem with progressive multiple alignment algorithms like CLUSTAL is

that they may be misled by some spuriously strong pairwise alignment, in

effect, a bad seed. If the very first two sequences picked for building multiple

alignment are aligned in a way that is incompatible with the optimal multiple

alignment, the error in this initial pairwise alignment will propagate all the

way through to the whole multiple alignment. Many multiple alignment

algorithms have been proposed, and even with systematic deficiencies such

as the above they remain quite useful in computational biology.

We have described multiple alignment for k sequences as a generalization

of the Pairwise Alignment problem, which assumed the existence of a k-

dimensional scoring matrix δ. Since such k-dimensional scoring matrices are

not very practical, we briefly describe two other scoring approaches that are

more biologically relevant. The choice of the scoring function can drastically

affect the quality of the resulting alignment, and no single scoring approach

is perfect in all circumstances.

The columns of a multiple alignment of k sequences describe a path of

14. Essentially, this principle states that once a gap has been introduced into the alignment it
will never close, even if that would lead to a better overall score.
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TTTTGGGG AAAAGGGG

AAAATTTT

AAAATTTT----
----TTTTGGGG

AAAA----GGGG
----TTTTGGGG

AAAATTTT----
AAAA----GGGG----TTTTGGGG

AAAATTTT----
AAAA----GGGG

(a) Compatible pairwise alignments

TTTTGGGG GGGGAAAA

AAAATTTT

AAAATTTT----
----TTTTGGGG

----GGGGAAAA
TTTTGGGG----

----AAAATTTT
GGGGAAAA----

?

(b) Incompatible pairwise alignments

Figure 6.22 Given three sequences, it might be possible to combine their pairwise
alignment into a multiple alignment (a), but it might not be (b).
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edges in a k-dimensional version of the Manhattan gridlike edit graph. The

weights of these edges are determined by the scoring function δ. Intuitively,

we want to assign higher scores to the columns with a low variation in let-

ters, such that high scores correspond to highly conserved sequences. For

example, in the Multiple Longest Common Subsequence problem, the score of

a column is set to 1 if all the characters in the column are the same, and 0 if

even one character disagrees.

In the more statistically motivated entropy approach, the score of a multiple

alignment is defined as the sum of the entropies of the columns, which are

defined to be15
∑

x∈A′

px log px

where px is the frequency of letter x ∈ A′ in a given column. In this case,

the more conserved the column, the larger the entropy score. For example,

a column that has each of the 4 nucleotides present k
4 times will have an

entropy score of 4 1
4 log 1

4 = −2, while a completely conserved column (as

in the multiple LCS problem) would have entropy 0. Finding the longest

path in the k-dimensional edit graph corresponds to finding the multiple

alignment with the largest entropy score.

While entropy captures some statistical notion of a good alignment, it can

be hard to design efficient algorithms that optimize this scoring function.

Another popular scoring approach is the Sum-of-Pairs score (SP-score). Any

multiple alignment A of k sequences v1, . . . ,vk forces a pairwise alignment

between any two sequences vi and vj of score sA(vi,vj).16 The SP-score for a

multiple alignment A is given by
∑

1≤i<j≤k sA(vi,vj). In this definition, the

score of an alignment A is built from the scores of all pairs of strings in the

alignment.

6.11 Gene Prediction

In 1961 Sydney Brenner and Francis Crick demonstrated that every triplet of

nucleotides (codon) in a gene codes for one amino acid in the corresponding

protein. They were able to introduce deletions in DNA and observed that

deletion of a single nucleotide or two consecutive nucleotides in a gene dra-

matically alters its protein product. Paradoxically, deleting three consecutive

15. The correct way to define entropy is to take the negative of this expression, but the definition
above allows us to deal with a maximization rather than a minimization problem.
16. We remark that the resulting “forced” alignment is not necessarily optimal.
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nucleotides results in minor changes in the protein. For example, the phrase

THE SLY FOX AND THE SHY DOG (written in triplets) turns into gibber-

ish after deleting one letter (THE SYF OXA NDT HES HYD OG) or two let-

ters (THE SFO XAN DTH ESH YDO G), but makes some sense after delet-

ing three nucleotides THE SOX AND THE SHY DOG. Inspired by this ex-

periment Charles Yanofsky proved that a gene and its protein product are

collinear, that is, the first codon in the gene codes for the first amino acid in

the protein, the second codon codes for the second amino acid (rather than,

say, the seventeenth), and so on. Yanofsky’s ingenious experiment was so

influential that nobody even questioned whether codons are represented by

continuous stretches in DNA, and for the subsequent fifteen years biologists

believed that a protein was encoded by a long string of contiguous triplets.

However, the discovery of split human genes in 1977 proved that genes are

often represented by a collection of substrings, and raised the computational

problem of predicting the locations of genes in a genome given only the ge-

nomic DNA sequence.

The human genome is larger and more complex than bacterial genomes.

This is not particularly surprising since one would expect to find more genes

in humans than in bacteria. However, the genome size of many eukaryotes

does not appear to be related to an organism’s genetic complexity; for exam-

ple, the salamander genome is ten times larger than the human genome. This

apparent paradox was resolved by the discovery that many organisms con-

tain not only genes but also large amounts of so-called junk DNA that does

not code for proteins at all. In particular, most human genes are broken into

pieces called exons that are separated by this junk DNA. The difference in the

sizes of the salamander and human genomes thus presumably reflects larger

amounts of junk DNA and repeats in the salamander genome.

Split genes are analogous to a magazine article that begins on page 1, con-

tinues on page 13, then takes up again on pages 43, 51, 74, 80, and 91, with

pages of advertising appearing in between. We do not understand why these

jumps occur. and a significant portion of the human genome is this junk “ad-

vertising” that separates exons.

More confusing is that the jumps between different parts of split genes

are inconsistent from species to species. A gene in an insect edition of the

genome will be organized differently than the related gene in a worm genome.

The number of parts (exons) may be different: the information that appears

in one part in the human edition may be broken up into two in the mouse

version, or vice versa. While the genes themselves are related, they may be

quite different in terms of the parts’ structure.
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Split genes were first discovered in 1977 in the laboratories of Phillip Sharp

and Richard Roberts during studies of the adenovirus. The discovery was

such a surprise that the paper by Roberts’s group had an unusually catchy ti-

tle for the journal Cell: “An Amazing Sequence Arrangement at the 5’ End of

Adenovirus 2 Messenger RNA.” Sharp’s group focused their experiments on

an mRNA17 that encodes a viral protein known as hexon. To map the hexon

mRNA in the viral genome, mRNA was hybridized to adenovirus DNA and

the hybrid molecules were analyzed by electron microscopy. Strikingly, the

mRNA-DNA hybrids formed in this experiment displayed three loop struc-

tures, rather than the continuous duplex segment suggested by the classic

continuous gene model (figure 6.23). Further hybridization experiments re-

vealed that the hexon mRNA is built from four separate fragments of the

adenovirus genome. These four continuous segments (called exons) in the

adenovirus genome are separated by three “junk” fragments called introns.

Gene prediction is the problem of locating genes in a genomic sequence.

Human genes constitute only 3% of the human genome, and no existing in

silico gene recognition algorithm provides completely reliable gene recogni-

tion. The intron-exon model of a gene seems to prevail in eukaryotic organ-

isms; prokaryotic organisms (like bacteria) do not have broken genes. As

a result, gene prediction algorithms for prokaryotes tend to be somewhat

simpler than those for eukaryotes.18

There are roughly two categories of approaches that researchers have used

for predicting gene location. The statistical approach to gene prediction is to

look for features that appear frequently in genes and infrequently elsewhere.

Many researchers have attempted to recognize the locations of splicing signals

at exon-intron junctions.19 For example, the dinucleotides AG and GT on the

left- and right-hand sides of an exon are highly conserved (figure 6.24). In

addition, there are other less conserved positions on both sides of the exons.

The simplest way to represent such binding sites is by a profile describing the

propensities of different nucleotides to occur at different positions. Unfortu-

17. At that time, messenger RNA (mRNA) was viewed as a copy of a gene translated into the
RNA alphabet. It is used to transfer information from the nuclear genome to the ribosomes to
direct protein synthesis.
18. This is not to say that bacterial gene prediction is a trivial task but rather to indicate that
eukaryotic gene finding is very difficult.
19. If genes are separated into exons interspersed with introns, then the RNA that is transcribed
from DNA (i.e., the complementary copy of a gene) should be longer than the mRNA that is
used as a template for protein synthesis. Therefore, some biological process needs to remove
the introns in the pre-mRNA and concatenate the exons into a single mRNA string. This process
is known as splicing, and the resulting mRNA is used as a template for protein synthesis in
cytoplasm.
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Figure 6.23 An electron microscopy experiment led to the discovery of split genes.
When mRNA (below) is hybridized against the DNA that generated it, three dis-
tinct loops can be seen (above). Because the loops are present in the DNA and are
not present in mRNA, certain parts (introns) must be removed during the process of
mRNA formation called splicing.

Exon 1

Intron 1

Exon 2

Intron 2

Exon 3GT AG GT AG

Figure 6.24 Exons typically are flanked by the dinucleotides AG and GT.

nately, using profiles to detect splice sites has met with limited success since

these profiles are quite weak and tend to match frequently in the genome at

nonsplice sites. Attempts to improve the accuracy of gene prediction led to

the second category of approaches for gene finding: those based on similar-

ity.

The similarity-based approach to gene prediction relies on the observation

that a newly sequenced gene has a good chance of being related to one that
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is already known. For example, 99% of mouse genes have human analogs.

However, one cannot simply look for a similar sequence in one organism’s

genome based on the genes known in another, for the reasons outlined above:

both the exon sequence and the exon structure of the related gene in differ-

ent species are different. The commonality between the related genes in both

organisms is that they produce similar proteins. Accordingly, instead of em-

ploying a statistical analysis of exons, similarity-based methods attempt to

solve a combinatorial puzzle: find a set of substrings (putative exons) in a

genomic sequence (say, mouse) whose concatenation fits a known human

protein. In this scenario, we suppose we know a human protein, and we

want to discover the exon structure of the related gene in the mouse genome.

The more sequence data we collect, the more accurate and reliable similarity-

based methods become. Consequently, the trend in gene prediction has re-

cently shifted from statistically motivated approaches to similarity-based al-

gorithms.

6.12 Statistical Approaches to Gene Prediction

As mentioned above, statistical approaches to finding genes rely on detecting

subtle statistical variations between coding (exons) and non-coding regions.

The simplest way to detect potential coding regions is to look at open reading

frames, or ORFs. One can represent a genome of length n as a sequence of n
3

codons.20 The three “stop” codons, (TAA, TAG, and TGA) break this sequence

into segments, one between every two consecutive stop codons. The subseg-

ments of these that start from a start codon, ATG, are ORFs. ORFs within a

single genomic sequence may overlap since there are six possible “reading

frames”: three on one strand starting at positions 1, 2, and 3, and three on

the reverse strand, as shown in figure 6.25.

One would expect to find frequent stop codons in noncoding DNA, since

the average number of codons between two consecutive stop codons in “ran-

dom” DNA should be 64
3 ≈ 21.21 This is much smaller than the number of

codons in an average protein, which is roughly 300. Therefore, ORFs longer

than some threshold length indicate potential genes. However, gene predic-

tion algorithms based on selecting significantly long ORFs may fail to detect

short genes or genes with short exons.

20. In fact, there are three such representations for each DNA strand: one starting at position 1,
another at 2 (ignoring the first base), and the third one at 3 (ignoring the first two bases).
21. There are 43 = 64 codons, and three of them are Stop codons.
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Leu

Thr

Tyr

AUGGCACCGUCGGUGAGUAACGCAUUG

TACCGTGGCAGCCACTCATTGCGTAAC

Met

Met

Ala

Pro

Pro

Ser

SerSer
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Arg Arg

Leu Trp

Trp

His

His

Stop
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StopGly Gly

GlyGly

Thr

Glu
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Asn

Gln

Cys

Figure 6.25 The six reading frames for the sequence ATGCTTAGTCTG. The string
may be read forward or backward, and there are three frame shifts in each direction.

Many statistical gene prediction algorithms rely on statistical features in

protein-coding regions, such as biases in codon usage. We can enter the fre-

quency of occurrence of each codon within a given sequence into a 64-element

codon usage array, as in table 6.1. The codon usage arrays for coding regions

are different than the codon usage arrays for non-coding regions, enabling

one to use them for gene prediction. For example, in human genes codons

CGC and AGG code for the same amino acid (Arg) but have very different

frequencies: CGC is 12 times more likely to be used in genes than AGG (ta-

ble 6.1). Therefore, an ORF that “prefers” CGC over AGG while coding for

Arg is a likely candidate gene. One can use a likelihood ratio approach22 to

compute the conditional probabilities of the DNA sequence in a window, un-

der the hypothesis that the window contains a coding sequence, and under

the hypothesis that the window contains a noncoding sequence. If we slide

this window along the genomic DNA sequence (and calculate the likelihood

22. The likelihood ratio technique allows one to test the applicability of two distinct hypotheses;
when the likelihood ratio is large, the first hypothesis is more likely to be true than the second
one.
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Table 6.1 The genetic code and codon usage in Homo sapiens. The codon for methio-
nine, or AUG, also acts as a start codon; all proteins begin with Met. The numbers
next to each codon reflects the frequency of that codon’s occurrence while coding for
an amino acid. For example, among all lysine (Lys) residues in all the proteins in a
genome, the codon AAG generates 25% of them while the codon AAG generates 75%.
These frequencies differ across species.

U C A G

U

UUU Phe 57
UUC Phe 43
UUA Leu 13
UUG Leu 13

UCU Ser 16
UCC Ser 15
UCA Ser 13
UCG Ser 15

UAU Tyr 58
UAC Tyr 42
UAA Stp 62
UAG Stp 8

UGU Cys 45
UGC Cys 55
UGA Stp 30
UGG Trp 100

C

CUU Leu 11
CUC Leu 10
CUA Leu 4
CUG Leu 49

CCU Pro 17
CCC Pro 17
CCA Pro 20
CCG Pro 51

CAU His 57
CAC His 43
CAA Gln 45
CAG Gln 66

CGU Arg 37
CGC Arg 38
CGA Arg 7
CGG Arg 10

A

AUU Ile 50
AUC Ile 41
AUA Ile 9
AUG Met 100

ACU Thr 18
ACC Thr 42
ACA Thr 15
ACG Thr 26

AAU Asn 46
AAC Asn 54
AAA Lys 75
AAG Lys 25

AGU Ser 15
AGC Ser 26
AGA Arg 5
AGG Arg 3

G

GUU Val 27
GUC Val 21
GUA Val 16
GUG Val 36

GCU Ala 17
GCC Ala 27
GCA Ala 22
GCG Ala 34

GAU Asp 63
GAC Asp 37
GAA Glu 68
GAG Glu 32

GGU Gly 34
GGC Gly 39
GGA Gly 12
GGG Gly 15

ratio at each point), genes are often revealed as peaks in the likelihood ratio

plots.

An even better coding sensor is the in-frame hexamer count23 proposed by

Mark Borodovsky and colleagues. Gene prediction in bacterial genomes also

takes advantage of several conserved sequence motifs often found in the re-

gions around the start of transcription. Unfortunately, such sequence motifs

are more elusive in eukaryotes.

While the described approaches are successful in prokaryotes, their appli-

cation to eukaryotes is complicated by the exon-intron structure. The average

length of exons in vertebrates is 130 nucleotides, and exons of this length are

too short to produce reliable peaks in the likelihood ratio plot while analyz-

ing ORFs because they do not differ enough from random fluctuations to be

detectable. Moreover, codon usage and other statistical parameters proba-

23. The in-frame hexamer count reflects frequencies of pairs of consecutive codons.
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bly have nothing in common with the way the splicing machinery actually

recognizes exons. Many researchers have used a more biologically oriented

approach and have attempted to recognize the locations of splicing signals

at exon-intron junctions. There exists a (weakly) conserved sequence of eight

nucleotides at the boundary of an exon and an intron (donor splice site) and a

sequence of four nucleotides at the boundary of an intron and exon (acceptor

splice site). Since profiles for splice sites are weak, these approaches have had

limited success and have been supplanted by hidden Markov model (HMM)

approaches24 that capture statistical dependencies between sites. A popular

example of this latter approach is GENSCAN, which was developed in 1997

by Chris Burge and Samuel Karlin. GENSCAN combines coding region and

splicing signal predictions into a single framework. For example, a splice site

prediction is more believable if signs of a coding region appear on one side

of the site but not on the other. Many such statistics are used in the HMM

framework of GENSCAN that merges splicing site statistics, coding region

statistics, and motifs near the start of the gene, among others. However, the

accuracy of GENSCAN decreases for genes with many short exons or with

unusual codon usage.

6.13 Similarity-Based Approaches to Gene Prediction

A similarity-based approach to gene prediction uses previously sequenced

genes and their protein products as a template for the recognition of un-

known genes in newly sequenced DNA fragments. Instead of employing

statistical properties of exons, this method attempts to solve the following

combinatorial puzzle: given a known target protein and a genomic sequence,

find a set of substrings (candidate exons) of the genomic sequence whose

concatenation (splicing) best fits the target.

A naive brute force approach to the spliced alignment problem is to find

all local similarities between the genomic sequence and the target protein

sequence. Each substring from the genomic sequence that exhibits sufficient

similarity to the target protein could be considered a putative exon.25 The

putative exons so chosen may lack the canonical exon-flanking dinucleotides

AG and GT but we can extend or shorten them slightly to make sure that

they are flanked by AG and GT. The resulting set may contain overlapping

24. Hidden Markov models are described in chapter 11.
25. Putative here means that the sequence might be an exon, even though we have no proof of
this.
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substrings, and the problem is to choose the best subset of nonoverlapping

substrings as a putative exon structure.26

We will model a putative exon with a weighted interval in the genomic se-

quence, which is described by three parameters (l, r, w), as in figure 6.26.

Here, l is the left-hand position, r is the right-hand position, and w is the

weight of the putative exon. The weight w may reflect the local alignment

score for the genomic interval against the target protein sequence, or the

strength of flanking acceptor and donor sites, or any combination of these

and other measures; it reflects the likelihood that this interval is an exon. A

chain is any set of nonoverlapping weighted intervals. The total weight of a

chain is the sum of the weights of the intervals in the chain. A maximum chain

is a chain with maximum total weight among all possible chains. Below we

assume that the weights of all intervals are positive (w > 0).

Exon Chaining Problem:

Given a set of putative exons, find a maximum set of nonoverlapping

putative exons.

Input: A set of weighted intervals (putative exons).

Output: A maximum chain of intervals from this set.

The Exon Chaining problem for n intervals can be solved by dynamic pro-

gramming in a graph G on 2n vertices, n of which represent starting (left)

positions of intervals and n of which represent ending (right) positions of in-

tervals, as in figure 6.26. We assume that the set of left and right interval ends

is sorted into increasing order and that all positions are distinct, forming an

ordered array of vertices (v1, . . . v2n) in graph G.27 There are 3n− 1 edges in

this graph: there is an edge between each li and ri of weight wi for i from 1

to n, and 2n− 1 additional edges of weight 0 which simply connect adjacent

vertices (vi, vi+1) forming a path in the graph from v1 to v2n. In the algo-

rithm below, si represents the length of the longest path in the graph ending

at vertex vi. Thus, s2n is the solution to the Exon Chaining problem.

26. We choose nonoverlapping substrings because exons in real genes do not overlap.
27. In particular, we are assuming that no interval starts exactly where another ends.
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Figure 6.26 A short “genomic” sequence, a set of nine weighted intervals, and the
graph used for the dynamic programming solution to the Exon Chaining problem.
Five weighted intervals, (2, 3, 3), (4, 8, 6), (9, 10, 1), (11, 15, 7), and (16, 18, 4), shown
by bold edges, form an optimal solution to the Exon Chaining problem. The array at
the bottom shows the values s1, s2, . . . , s2n generated by the EXONCHANING algo-
rithm.

EXONCHAINING(G, n)

1 for i← 1 to 2n

2 si ← 0

3 for i← 1 to 2n

4 if vertex vi in G corresponds to the right end of an interval I

5 j ← index of vertex for left end of the interval I

6 w ← weight of the interval I

7 si ← max {sj + w, si−1}

8 else

9 si ← si−1

10 return s2n

One shortcoming of this approach is that the endpoints of putative exons

are not very well defined, and this assembly method does not allow for any

flexibility at these points. More importantly, the optimal chain of intervals

may not correspond to any valid alignment. For example, the first interval in

the optimal chain may be similar to a suffix of the protein, while the second

interval in the optimal chain may be similar to a prefix. In this case, the

putative exons corresponding to the valid chain of these two intervals cannot
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DNA

Protein

Exon 1 Exon 2

Figure 6.27 An infeasible chain that might have a maximal score. The first exon
corresponds to a region at the end of the target protein, while the second exon cor-
responds to a region at the beginning of the target protein. These exons cannot be
combined into a valid global DNA-protein alignment.

be combined into a valid alignment (figure 6.27).

6.14 Spliced Alignment

In 1996, Mikhail Gelfand and colleagues proposed the spliced alignment ap-

proach to find genes in eukaryotes: use a related protein within one genome

to reconstruct the exon-intron structure of a gene in another genome. The

spliced alignment begins by selecting either all putative exons between po-

tential acceptor and donor sites (e.g., between AG and GT dinucleotides), or

by finding all substrings similar to the target protein, as in the Exon Chaining

problem. By filtering this set in a way that attempts not to lose true exons,

one is left with a set of candidate exons that may contains many false exons,

but definitely contains all the true ones. While it is difficult to distinguish the

good (true exons) from the bad (false exons) by a statistical procedure alone,

we can use the alignment with the target protein to aid us in our search. In

theory, only the true exons will form a coherent representation of a protein.

Given the set of candidate exons and a target protein sequence, we explore

all possible chains (assemblies) of the candidate exon set to find the assembly

with the highest similarity score to the target protein. The number of differ-

ent assemblies may be huge, but the spliced alignment algorithm is able to

find the best assembly among all of them in polynomial time. For simplicity

we will assume that the protein sequence is expressed in the same alphabet

as the geneome. Of course, this is not the case in nature, and a problem at the

end of this chapter asks you to modify the recurrence relations accordingly.

Let G = g1 . . . gn be the genomic sequence, T = t1 . . . tm be the target

sequence, and B be the set of candidate exons (blocks). As above, a chain Γ is

any sequence of nonoverlapping blocks, and the string formed by a chain is
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just the concatenation of all the blocks in the chain. We will use Γ∗ to denote

the string formed by the chain Γ. The chain that we are searching for is the

one whose concatenation forms the string with the highest similarity to the

target sequence.28

Spliced Alignment Problem:

Find a chain of candidate exons in a genomic sequence that best fits a

target sequence.

Input: Genomic sequence G, target sequence T , and a set of

candidate exons (blocks) B.

Output: A chain of candidate exons Γ such that the global

alignment score s(Γ∗, T ) is maximum among all chains of

candidate exons from B.

As an example, consider the “genomic” sequence “It was brilliant thrilling

morning and the slimy, hellish, lithe doves gyrated and gambled nimbly in

the waves” with the set of blocks shown in figure 6.28 (top) by overlapping

rectangles. If our target is the famous Lewis Carroll line “’twas brillig, and

the slithy toves did gyre and gimble in the wabe” then figure 6.28 illustrates

the spliced alignment problem of choosing the best “exons” (or blocks, in this

case) that can be assembled into the target.

The spliced alignment problem can be cast as finding a path in a directed

acyclic graph [fig. 6.28 (middle)]. Vertices in this graph (shown as rectangles)

correspond to blocks (candidate exons), and directed edges connect nonover-

lapping blocks. A vertex corresponding to a block B is labeled by a string

represented by this block. Therefore, every path in the spliced alignment

graph spells out the string obtained by concatenation of labels of its vertices.

The weight of a path in this graph is defined as the score of the optimal align-

ment between the concatenated blocks of this path and the target sequence.

Note that we have defined the weight of an entire path in the graph, but

we have not defined weights for individual edges. This makes the Spliced

Alignment problem different from the standard Longest Path problem. Nev-

ertheless, we can leverage dynamic programming to solve the problem.

28. We emphasize the difference between the scoring functions for the Exon Chaining prob-
lem and the Spliced Alignment problem. In contrast to the Spliced Alignment problem, the
set of nonoverlapping substrings representing the solution of the Exon Chaining problem does
not necessarily correspond to a valid alignment between the genomic sequence and the target
protein sequence.
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ation and taking a nonresearch job at a small school in Idaho, my work

in iteration led to my first summer visit to Los Alamos National labs.

Later I met Temple Smith there in 1973 and was drawn into problems

from biology. Later I wrote in my book of New Mexico essays Skiing

the Sun (107):



206 6 Dynamic Programming Algorithms

right (the words left and right are used here as indices). If the chain Γ =

(B1, B2, . . . , B) ends at block B, define Γ∗(i) to be the concatenation of all

candidate exons in the chain up to (and excluding) B, plus all the characters

in B up to i. That is, Γ∗(i) = B1 ◦B2 ◦ · · · ◦B(i).30 Finally, let

S(i, j, B) = max
all chains Γ ending in B

s(Γ∗(i), T (j)).

That is, given i, j, and a candidate exon B that covers position i, S(i, j, B)

is the score of the optimal spliced alignment between the i-prefix of G and

the j-prefix of T under the assumption that this alignment ends in block B.

The following recurrence allows us to efficiently compute S(i, j, B). For

the sake of simplicity we consider sequence alignment with linear gap penal-

ties for insertion or deletion equal to −σ, and use the scoring matrix δ for

matches and mismatches.

The dynamic programming recurrence for the Spliced Alignment problem

is broken into two cases depending on whether i is the starting vertex of

block B or not. In the latter case, the recurrence is similar to the canonical

sequence alignment:

S(i, j, B) = max

8<
:

S(i− 1, j, B)− σ

S(i, j − 1, B)− σ

S(i− 1, j − 1, B) + δ(gi, tj)

On the other hand, if i is the starting position of block B, then

S(i, j, B) = max

8><
>:

S(i, j − 1, B)− σ

maxall blocks B′ preceding B
S(end(B′), j − 1, B′) + δ(gi, tj),

maxall blocks B′ preceding B
S(end(B′), j, B′)− σ,

After computing this three-dimensional table S(i, j, B), the score of the

optimal spliced alignment is

max
B

S(end(B), m, B),

where the maximum is taken over all possible blocks. One can further reduce

the number of edges in the spliced alignment graph by making a transfor-

30. The notation x ◦ y denotes concatenation of strings x and y.
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mation of the graph in figure 6.28 (middle) into a graph shown in figure 6.28

(bottom). The details of the corresponding recurrences are left as a problem

at the end of this chapter.

The above description hides some important details of block generation.

The simplest approach to the construction of the candidate exon set is to gen-

erate all fragments between potential acceptor sites represented by AG and

potential donor sites represented by GT, removing possible exons with stop

codons in all three frames. However, this approach does not work well since

it generates many short blocks. Experiments with the spliced alignment al-

gorithm have shown that incorrect predictions are frequently associated with

the mosaic effect caused by very short potential exons. The difficulty is that

these short exons can be easily combined to fit any target protein, simply be-

cause it is easier to construct a given sentence from a thousand random short

strings than from the same number of random long strings. For example,

with high probability, the phrase “filtration of candidate exons” can be made

up from a sample of a thousand random two-letter strings (“fi,” “lt,” “ra,”

etc. are likely to be present in this sample). The probability that the same

phrase can be made up from a sample of the same number of random five-

letter strings is close to zero (even finding the string “filtr” in this sample is

unlikely). This observation explains the mosaic effect: if the number of short

blocks is high, chains of these blocks can replace actual exons in spliced align-

ments, thus leading to predictions with an unusually large number of short

exons. To avoid the mosaic effect, the candidate exons should be subjected

to some filtering procedure.

6.15 Notes

Although the first dynamic programming algorithm for DNA sequence com-

parison was published as early as 1970 by Saul Needleman and Christian

Wunsch (79), Russell Doolittle and colleagues used heuristic algorithms to

establish the similarity between cancer-causing genes and the PDGF gene in

1983 (28). When Needleman and Wunsch published their paper in 1970, they

did not know that a very similar algorithm had been published two years

earlier in a pioneering paper on automatic speech recognition (105) (though

the details of the algorithms are slightly different, they are both variations

of dynamic programming). Earlier still, Vladimir Levenshtein introduced

the notion of edit distance in 1966 (64), albeit without an algorithm for com-

puting it. The local alignment algorithm introduced by Temple Smith and
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Michael Waterman in 1981 (96) quickly became the most popular alignment

tool in computational biology. Later Michael Waterman and Mark Eggert

developed an algorithm for finding the k best nonoverlapping local align-

ments (109). The algorithm for alignment with affine gap penalties was the

work of Osamu Gotoh (42).

The progressive multiple alignment approach, initially explored by Da-Fei

Feng and Russell Doolittle [Feng and Doolittle, 1987 (36)], resulted in many

practical algorithms, with CLUSTAL (48) one of the most popular.

The cellular process of splicing was discovered in the laboratories of Phillip

Sharp (12) and Richard Roberts (21). Applications of both Markov models

and in-frame hexamer count statistics for gene prediction were proposed by

Borodovsky and McInnich (14). Chris Burge and Samuel Karlin developed

an HMM approach to gene prediction that resulted in the popular GEN-
SCAN algorithm in 1997 (20). In 1995 Snyder and Stormo (97) developed a

similarity-based gene prediction algorithm that amounts to the solution of a

problem that is similar to the Exon Chaining problem. The spliced alignment

algorithm was developed by Mikhail Gelfand and colleagues in 1996 (41).
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I was an innocent mathematician until the summer of 1974. It

was then than I met Temple Ferris Smith and for two months

was cooped up with him in an office at Los Alamos National

Laboratories. That experience transformed my research, my life,

and perhaps my sanity. Soon after we met, he pulled out a little

blackboard and started lecturing me about biology: what it was,

what was important, what was going on. Somewhere in there

by implication was what we should work on, but the truth be

told he didn’t know what that was either. I was totally confused:

amino acids, nucleosides, beta sheets. What were these things?

Where was the mathematics?

I knew no modern biology, but studying alignment and evolution was

quite attractive to me. The most fun was formulating problems, and

in my opinion that remains the most important aspect of our subject.

Temple and I spent days and weeks trying to puzzle out what we

should be working on. Charles DeLisi, a biophysicist who went on

to play a key role in jump-starting the Human Genome Project, was

in T-10 (theoretical biology) at the lab. When he saw the progress we

had made on alignment problems, he came to me and said there was

another problem which should interest me. This was the RNA folding

problem which was almost untouched. Tinoco had published the idea

of making a base-pair matrix for a sequence and that was it. By the fall

of 1974 I had seen the neat connection between alignment and folding,

and the following summer I wrote a long manuscript that defined the

objects of study, established some of their properties, explicitly stated

the basic problem of folding (which included free energies for all struc-

tural components), and finally gave algorithms for its solution. I had

previously wondered what such a discovery might feel like, and it was

wonderfully satisfying. However it felt entirely like exploration and

not a grand triumph of creation as I had expected. In fact I had always

wanted to be an explorer and regretted the end of the American fron-

tier; wandering about this new RNA landscape was a great joy, just as

I had thought when I was a child trying to transport myself by day-

dreams out of my family’s fields into some new and unsettled country.
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6.16 Problems

In 1879, Lewis Carroll proposed the following puzzle to the readers of Vanity Fair: transform one

English word into another by going through a series of intermediate English words, where each

word in the sequence differs from the next by only one substitution. To transform head into tail

one can use four intermediates: head → heal → teal → tell → tall → tail. We say that two

words v and w are equivalent if v can be transformed into w by substituting individual letters

in such a way that all intermediate words are English words present in an English dictionary.

Problem 6.1

Find an algorithm to solve the following Equivalent Words problem.

Equivalent Words Problem:

Given two words and a dictionary, find out whether the words are equivalent.

Input: The dictionary, D (a set of words), and two words v and w

from the dictionary.

Output: A transformation of v into w by substitutions such that all

intermediate words belong to D. If no transformation is possible,

output “v and w are not equivalent.”

Given a dictionary D, the Lewis Carroll distance, dLC(v,w), between words v and w is defined

as the smallest number of substitutions needed to transform v into w in such a way that all

intermediate words in the transformation are in the dictionary D. We define dLC(v, w) = ∞ if

v and w are not equivalent.

Problem 6.2

Find an algorithm to solve the following Lewis Carroll problem.

Lewis Carroll Problem:

Given two words and a dictionary, find the Lewis Carroll distance between these

words.

Input: The dictionaryD, and two words v and w from the diction-

ary.

Output: dLC(v,w)

Problem 6.3

Find an algorithm to solve a generalization of the Lewis Carroll problem when inser-
tions, deletions, and substitutions are allowed (rather than only substitutions).
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Problem 6.4

Modify DPCHANGE to return not only the smallest number of coins but also the cor-
rect combination of coins.

Problem 6.5

Let s(v,w) be the length of a longest common subsequence of the strings v and w and
d(v,w) be the edit distance between v and w under the assumption that insertions
and deletions are the only allowed operations. Prove that d(v,w) = n+m−2s(v,w),
where n is the length of v and m is the length of w.

Problem 6.6

Find the number of different paths from source (0, 0) to sink (n, m) in an n × m
rectangular grid.

Problem 6.7

Can you find an approximation ratio of the greedy algorithm for the Manhattan
Tourist problem?

Problem 6.8

Let v = v1v2 · · · vn be a string, and let P be a 4×m profile. Generalize the sequence
alignment algorithm for aligning a sequence against a profile. Write the correspond-
ing recurrence (in lieu of pseudocode), and estimate the amount of time that your
algorithm will take with respect to n and m.

Problem 6.9

There are only two buttons inside an elevator in a building with 50 floors. The ele-
vator goes 11 floors up if the first button is pressed and 6 floors down if the second
button is pressed. Is it possible to get from floor 32 to floor 33? What is the minimum
number of buttons one has to press to do so? What is the shortest time one needs
to get from floor 32 to floor 33 (time is proportional to the number of floors that are
passed on the way)?

� � � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

Problem 6.10

A rook stands on the upper left square of a chessboard. Two players make turns
moving the rook either horizontally to the right or vertically downward (as many
squares as they want). The player who can place the rook on the lower right square
of the chessboard wins. Who will win? Describe the winning strategy.
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Problem 6.11

A queen stands on the third square of the uppermost row of a chessboard. Two play-
ers take turns moving the queen either horizontally to the right or vertically down-
ward or diagonally in the southeast direction (as many squares as they want). The
player who can place the queen on the lower right square of the chessboard wins.
Who will win? Describe the winning strategy.

Problem 6.12

Two players play the following game with two “chromosomes” of length n and m
nucleotides. At every turn a player can destroy one of the chromosomes and break
another one into two nonempty parts. For example, the first player can destroy a
chromosome of length n and break another chromosome into two chromosomes of
length m

3
and m− m

3
. The player left with two single-nucleotide chromosomes loses.

Who will win? Describe the winning strategy for each n and m.

Problem 6.13

Two players play the following game with two sequences of length n and m nu-
cleotides. At every turn a player can either delete an arbitrary number of nucleotides
from one sequence or an equal (but still arbitrary) number of nucleotides from both
sequences. The player who deletes the last nucleotide wins. Who will win? Describe
the winning strategy for each n and m.

Problem 6.14

Two players play the following game with two sequences of length n and m nu-
cleotides. At every turn a player must delete two nucleotides from one sequence
(either the first or the second) and one nucleotide from the other. The player who
cannot move loses. Who will win? Describe the winning strategy for each n and m.

Problem 6.15

Two players play the following game with a nucleotide sequence of length n. At
every turn a player may delete either one or two nucleotides from the sequence. The
player who deletes the last letter wins. Who will win? Describe the winning strategy
for each n.
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Problem 6.16

Two players play the following game with a nucleotide sequence of length n = nA +
nT + nC + nG, where nA, nT , nC , and nG are the number of A,T,C, and G in the
sequence. At every turn a player may delete either one or two nucleotides from the
sequence. The player who is left with a uni-nucleotide sequence of an arbitrary length
(i.e., the sequence containing only one of 4 possible nucleotides) loses. Who will win?
Describe the winning strategy for each nA, nT , nC , and nG.

Problem 6.17

What is the optimal global alignment for APPLE and HAPPE? Show all optimal align-
ments and the corresponding paths under the match premium +1, mismatch penalty
−1, and indel penalty −1.

Problem 6.18

What is the optimal global alignment for MOAT and BOAST? Show all optimal align-
ments and the corresponding paths under the scoring matrix below and indel penalty
−1.

A B M O S T
A 1 -1 -1 -2 -2 -3
B 1 -1 -1 -2 -2

M 2 -1 -1 -2
O 1 -1 -1
S 1 -1
T 2

Problem 6.19

Fill the global alignment dynamic programming matrix for strings AT and AAGT with
affine scoring function defined by match premium 0, mismatch penalty−1, gap open-
ing penalty −1, and gap extension penalty −1. Find all optimal global alignments.

Problem 6.20

Consider the sequences v = TACGGGTAT and w = GGACGTACG. Assume that the
match premium is +1 and that the mismatch and indel penalties are −1.

• Fill out the dynamic programming table for a global alignment between v and w.
Draw arrows in the cells to store the backtrack information. What is the score of
the optimal global alignment and what alignment does this score correspond to?

• Fill out the dynamic programming table for a local alignment between v and w.
Draw arrows in the cells to store the backtrack information. What is the score of
the optimal local alignment in this case and what alignment achieves this score?

• Suppose we use an affine gap penalty where it costs−20 to open a gap, and −1 to
extend it. Scores of matches and mismatches are unchanged. What is the optimal
global alignment in this case and what score does it achieve?
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Problem 6.21

For a pair of strings v = v1 . . . vn and w = w1 . . . wm, define M(v, w) to be the
matrix whose (i, j)th entry is the score of the optimal global alignment which aligns
the character vi with the character wj . Give an O(nm) algorithm which computes
M(v,w).

Define an overlap alignment between two sequences v = v1 . . . vn and w = w1 . . . wm to be

an alignment between a suffix of v and a prefix of w. For example, if v = TATATA and w =

AAATTT, then a (not necessarily optimal) overlap alignment between v and w is

ATA
AAA

Optimal overlap alignment is an alignment that maximizes the global alignment score between

vi, . . . , vn and w1, . . . wj , where the maximum is taken over all suffixes vi, . . . , vn of v and all

prefixes w1, . . . wj of w.

Problem 6.22

Give an algorithm which computes the optimal overlap alignment, and runs in time
O(nm).

Suppose that we have sequences v = v1 . . . vn and w = w1 . . . wm, where v is longer than w.

We wish to find a substring of v which best matches all of w. Global alignment won’t work

because it would try to align all of v. Local alignment won’t work because it may not align all

of w. Therefore this is a distinct problem which we call the Fitting problem. Fitting a sequence

w into a sequence v is a problem of finding a substring v′ of v that maximizes the score of

alignment s(v′,w) among all substrings of v. For example, if v = GTAGGCTTAAGGTTA and

w = TAGATA, the best alignments might be

global local fitting

v GTAGGCTTAAGGTTA TAG TAGGCTTA
w -TAG----A---T-A TAG TAGA--TA

score −3 3 2

The scores are computed as 1 for match, −1 for mismatch or indel. Note that the optimal local

alignment is not a valid fitting alignment. On the other hand, the optimal global alignment con-

tains a valid fitting alignment, but it achieves a suboptimal score among all fitting alignments.

Problem 6.23

Give an algorithm which computes the optimal fitting alignment. Explain how to fill
in the first row and column of the dynamic programming table and give a recurrence
to fill in the rest of the table. Give a method to find the best alignment once the table
is filled in. The algorithm should run in time O(nm).
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We have studied two approaches to sequence alignment: global and local alignment. There is a

middle ground: an approach known as semiglobal alignment. In semiglobal alignment, the entire

sequences are aligned (as in global alignment). What makes it semiglobal is that the “internal

gaps” of the alignment are counted, but the “gaps on the end” are not. For example, consider

the following two alternative alignments:

Sequence 1: CAGCA-CTTGGATTCTCGG
Sequence 2: ---CAGCGTGG--------

Sequence 1: CAGCACTTGGATTCTCGG
Sequence 2: CAGC-----G-T----GG

The first alignment has 6 matches, 1 mismatch, and 12 gaps. The second alignment has 8

matches, no mismatches, and 10 gaps. Using the simplest scoring scheme (+1 match, −1 mis-

match, −1 gap), the score for the first alignment is −7, and the score for the second alignment is

−2, so we would prefer the second alignment. However, the first alignment is more biologically

realistic. To get an algorithm which prefers the first alignment to the second, we can not count

the gaps “on the ends.”

Under this new (“semiglobal”) approach, the first alignment would have 6 matches, 1 mismatch,

and 1 gap, while the second alignment would still have 8 matches, no mismatches, and 10 gaps.

Now the first alignment would have a score of 4, and the second alignment would have a score

of −2, so the first alignment would have a better score.

Note the similarities and the differences between the Fitting problem and the Semiglobal Align-

ment problem as illustrated by the semiglobal—but not fitting—alignment of ACGTCAT against

TCATGCA:

Sequence 1: ACGTCAT---
Sequence 2: ---TCATGCA

Problem 6.24

Devise an efficient algorithm for the Semiglobal Alignment problem and illustrate its
work on the sequences ACAGATA and AGT. For scoring, use the match premium +1,
mismatch penalty −1, and indel penalty −1.

Define a NoDeletion global alignment to be an alignment between two sequences v = v1v2 . . . vn

and w = w1w2 . . . wm, where only matches, mismatches, and insertions are allowed. That is,

there can be no deletions from v to w (i.e., all letters of w occur in the alignment with no spaces).

Clearly we must have m ≥ n and let k = m − n.

Problem 6.25

Give an O(nk) algorithm to find the optimal NoDeletion global alignment (note the
improvement over the O(nm) algorithm when k is small).
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Problem 6.26

Substrings vi, . . . , vi+k and vi′ , . . . , vi′+k of the string v1, . . . , vn form a substring pair
if i′−i+k > MinGap, where MinGap is a parameter. Define the substring pair score
as the (global) alignment score of vi, . . . , vi+k and vi′ , . . . , vi′+k. Design an algorithm
that finds a substring pair with maximum score.

Problem 6.27

For a parameter k, compute the global alignment between two strings, subject to the
constraint that the alignment contains at most k gaps (blocks of consecutive indels).

Nucleotide sequences are sometimes written in an alphabet with five characters: A, T, G, C,

and N, where N stands for an unspecified nucleotide (in essence, a wild-card). Biologists may

use N when sequencing does not allow one to unambiguously infer the identity of a nucleotide

at a specific position. A sequence with an N is referred to as a degenerate string; for example,

ATTNG may correspond to four different interpretations: ATTAG, ATTTG, ATTGG, and ATTCG.

In general, a sequence with k unspecified nucleotides N will have 4k different interpretations.

Problem 6.28

Given a non-degenerate string, v, and a degenerate string w that contains k Ns, devise

a method to find the best interpretation of w according to v. That is, out of all 4k

possible interpretations of w, find w′ with the minimum alignment score s(w′,v).

Problem 6.29

Given a non-degenerate string, v, and a degenerate string w that contains k Ns, devise

a method to find the worst interpretation of w according to v. That is, out of all 4k

possible interpretations of w, find w′ with the minimum alignment score s(w′,v).

Problem 6.30

Given two strings v1 and v2, explain how to construct a string w minimizing

|d(v1, w)− d(v2,w)|

such that
d(v1, w) + d(v2,w) = d(v1,v2).

d(·, ·) is the edit distance between two strings.

Problem 6.31

Given two strings v1 and v2 and a text w, find whether there is an occurrence of v1

and v2 interwoven (without spaces) in w. For example, the strings abac and bbc
occur interwoven in cabbabccdw. Give an efficient algorithm for this problem.

A string x is called a supersequence of a string v if v is a subsequence of x. For example, ABLUE
is a supersequence for BLUE and ABLE.

Problem 6.32

Given strings v and w, devise an algorithm to find the shortest supersequence for
both v and w.
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A tandem repeat P k of a pattern P = p1 . . . pn is a pattern of length n ·k formed by concatenation

of k copies of P . Let P be a pattern and T be a text of length m. The Tandem Repeat problem is

to find a best local alignment of T with some tandem repeat of P . This amounts to aligning P k

against T and the standard local alignment algorithm solves this problem in O(km2) time.

Problem 6.33

Devise a faster algorithm for solving the tandem repeat problem.

An alignment of circular strings is defined as an alignment of linear strings formed by cutting

(linearizing) these circular strings at arbitrary positions. The following problem asks to find the

cut points of two circular strings that maximize the alignment of the resulting linear strings.

Problem 6.34

Devise an efficient algorithm to find an optimal alignment (local and global) of circu-
lar strings.

The early graphical method for comparing nucleotide sequences—dot matrices—still yields one

of the best visual representations of sequence similarities. The axes in a dot matrix correspond to

the two sequences v = v1 . . . vn and w = w1 . . . wm. A dot is placed at coordinates (i, j) if the

substrings si . . . si+k and tj . . . tj+k are sufficiently similar. Two such substrings are considered

to be sufficiently similar if the Hamming distance between them is at most d.

When the sequences are very long, it is not necessary to show exact coordinates; figure 6.29 is

based on the sequences corresponding to the β-globin gene in human and mouse. In these plots

each axis is on the order of 1000 base pairs long, k = 10 and d = 2.

Problem 6.35

Use figure 6.29 to answer the following questions:

• How many exons are in the human β-globulin gene?

• The dot matrix in figure 6.29 (top) is between the mouse and human genes (i.e.,
all introns and exons are present). Do you think the number of exons in the
β-globulin gene is different in the human genome as compared to the mouse
genome?

• Label segments of the axes of the human and mouse genes in figure 6.29 to show
where the introns and exons would be located.

A local alignment between two different strings v and w finds a pair of substrings, one in v

and the other in w, with maximum similarity. Suppose that we want to find a pair of (nonover-

lapping) substrings within string v with maximum similarity (Optimal Inexact Repeat problem).

Computing an optimal local alignment between v and v does not solve the problem, since the

resulting alignment may correspond to overlapping substrings.

Problem 6.36

Devise an algorithm for the Optimal Inexact Repeat problem.
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Figure 6.29 Human β-globulin cDNA vs. the gene sequence in two organisms.

In the chimeric alignment problem, a string v and a set of strings {w1, . . . , wN} are given, and

the problem is to find max1≤i,j≤N s(v, wi ◦wj) where wi ◦wj is the concatenation of wi and

wj (s(·, ·) stand for the score of optimal global alignment).

Problem 6.37

Devise an efficient algorithm for the chimeric alignment problem.

A virus infects a bacterium, and modifies a replication process in the bacterium by inserting

at every A, a polyA of length 1 to 5.

at every C, a polyC of length 1 to 10.

at every G, a polyG of arbitrary length ≥ 1.

at every T, a polyT of arbitrary length ≥ 1.

No gaps or other insertions are allowed in the virally modified DNA. For example, the sequence

AAATAAAGGGGCCCCCTTTTTTTCC is an infected version of ATAGCTC.

Problem 6.38

Given sequences v and w, describe an efficient algorithm that will determine if v

could be an infected version of w.



220 6 Dynamic Programming Algorithms

Problem 6.39

Now assume that for each nucleotide (A, C, G, T) the virus will either delete a letter
or insert a run of the letter of arbitrary length. Give an efficient algorithm to detect if
v could be an infected version of w under these circumstances.

Problem 6.40

Define homodeletion as an operation of deleting a run of the same nucleotide and
homoinsertion as an operation of inserting a run of the same nucleotide. For exam-
ple, ACAAAAAAGCTTTTA is obtained from ACGCTTTTA by a homoinsertions of a
run of six A, while ACGCTA is obtained from ACGCTTTTA by homodeletion of a run
of three T. The homo-edit distance between two sequences is defined as the mini-
mum number of homodeletions and homoinsertions to transform one sequence into
another. Give an efficient algorithm to compute the homoedit distance between two
arbitrary strings.

Problem 6.41

Suppose we wish to find an optimal global alignment using a scoring scheme with
an affine mismatch penalty. That is, the premium for a match is +1, the penalty for
an indel is −ρ, and the penalty for x consecutive mismatches is −(ρ + σx). Give an
O(nm) algorithm to align two sequences of length n and m with an affine mismatch
penalty. Explain how to construct an appropriate “Manhattan” graph and estimate
the running time of your algorithm.

Problem 6.42

Define a NoDiagonal global alignment to be an alignment where we disallow matches
and mismatches. That is, only indels are allowed. Give a Θ(nm) algorithm to de-
termine the number of NoDiagonal alignments between a sequence of length n and
a sequence of length m. Give a closed-form formula for the number of NoDiagonal

global alignments (e.g., something of the form f(n, m) = n2m−√n! + πnm).

Problem 6.43

Estimate the number of different (not necessarily optimal) global alignments between
two n-letter sequences.

Problem 6.44

Devise an algorithm to compute the number of distinct optimal global alignments
(optimal paths in edit graph) between a pair of strings.

Problem 6.45

Estimate the number of different (not necessarily optimal) local alignments between
two n-letter sequences.

Problem 6.46

Devise an algorithm to compute the number of distinct optimal local alignments (op-
timal paths in local alignment edit graph) between a pair of strings.
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Problem 6.47

Let si,j be a dynamic programming matrix computed for the LCS problem. Prove
that for any i and j, the difference between si+1,j and si,j is at most 1.

Let i1, . . . , in be a sequence of numbers. A subsequence of i1, . . . , in is called an increasing

subsequence if elements of this subsequence go in increasing order. Decreasing subsequences are

defined similarly. For example, elements 2, 6, 7, 9 of the sequence 8, 2, 1, 6, 5, 7, 4, 3, 9 form an

increasing subsequence, while elements 8, 7, 4, 3 form a decreasing subsequence.

Problem 6.48

Devise an efficient algorithm for finding longest increasing and decreasing subse-
quences in a permutation of integers.

Problem 6.49

Show that in any permutation of n distinct integers, there is either an increasing sub-
sequence of length at least

√
n or a decreasing subsequence of length at least

√
n.

A subsequence σ of permutation π is 2-increasing if, as a set, it can be written as

σ = σ1 ∪ σ2

where σ1 and σ2 are increasing subsequences of π. For example, 1, 5, 7, 9 and 2, 6 are increasing

subsequences of π = 821657439 forming a 2-increasing subsequence 2, 1, 6, 5, 7, 9 consisting of

six elements.

Problem 6.50

Devise an algorithm to find a longest 2-increasing subsequence.

RNAs adopt complex three-dimensional structures that are important for many biological func-

tions. Pairs of positions in RNA with complementary nucleotides can form bonds. Bonds (i, j)

and (i′, j′) are interleaving if i < i′ < j < j′ and noninterleaving otherwise (fig. 6.30). Every

set of noninterleaving bonds corresponds to a potential RNA structure. In a very naive formu-

lation of the RNA folding problem, one tries to find a maximum set of noninterleaving bonds.

The more adequate model, attempting to find a fold with the minimum energy, is much more

difficult.

Problem 6.51

Develop a dynamic programming algorithm for finding the largest set of noninter-
leaving bonds given an RNA sequences.

The human genome can be viewed as a string of n (≈ 3 billion) nucleotides, partitioned into

substrings representing chromosomes. However, for many decades, biologists used a different

band representation of the genome that is obtained via traditional light microscopy. Figure 6.31

shows 48 bands (as seen on chromosme 4) out of 862 observable bands for the entire human

genome. Although several factors (e.g., local G/C frequency) have been postulated to govern

the formation of these banding patterns, the mechanism behind their formation remains poorly

understood. A mapping between the human genomic sequence (which itself only became avail-

able in 2001) and the banding pattern representation would be useful to leverage sequence level
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(a) Interleaving bonds

AA GG U G U CC

AA GG U G U CC
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GG UU

C CA A

G U

G U
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A C

G

(b) Non-interleaving bonds

Figure 6.30 Interleaving and noninterleaving bonds in RNA folding.

Figure 6.31 Band patterns on human chromosome 4.
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gene information against diseases that have been associated with certain band positions. How-

ever, until recently, no mapping between these two representations of the genome has been

known.

The Band Positioning problem is to find the starting and ending nucleotide positions for each

band in the genome (for simplicity we assume that all chromosomes are concatenated to form a

single coordinate system). In other words, the Band Positioning problem is to find an increasing

array start(b), that contains the starting nucleotide position for each band b in the genome. Each

band b begins at the nucleotide given by start(b) and ends at start(b + 1) − 1.31

A naive approach to this problem would be to use observed band width data to compute the

nucleotide positions. However, this solution is inaccurate because it assumes that band width is

perfectly correlated with its length in nucleotides. In reality, this correlation is often quite poor

and a different approach is needed.

In the last decade biologists have performed a large number of FISH (fluorescent in situ hybridiza-

tion) experiments that can help to solve the Band Positioning problem. FISH data consist of

pairs (x, b), where x is a position in the genome, and b is the index of the band that contains x .

FISH data are often subject to experimental error, so some FISH data points may contradict each

other.

Given a solution start(b) (1 ≤ b ≤ 862) of the Band Positioning problem, we define its FISH

quality as the number of FISH experiments that it supports, that is, the number of FISH experi-

ments (x, b) such that start(b) ≤ x < start(b + 1).

Problem 6.52

Find a solution to the Band Positioning problem that maximizes its FISH quality.

The FISH quality parameter ignores the width of the bands. A more adequate formulation is

to find an optimal solution of the Band Positioning problem that is consistent with band width

data, that is, the solution that minimizes

862X

b=1

|width(i) − (start(b + 1) − start(b))|

, where width(i) is the estimated width of the ith band.

Problem 6.53

Find an optimal solution of the Band Positioning problem that minimizes

862X
b=1

|width(i)− (start(b + 1)− start(b))|

Problem 6.54

Describe recurrence relations for multiple alignment of 4 sequences under the SP
(sum-of-pairs) scoring rule.

31. For simplicity we assume that start(863) = n + 1 thus implying that the last 862th band
starts at the nucleotide start(862) and ends at n.
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Problem 6.55

Develop a likelihood ratio approach and design an algorithm that utilizes codon us-
age arrays for gene prediction.

Problem 6.56

Consider the Exon Chaining problem in the case when all intervals have the same
weight. Design a greedy algorithm that finds an optimal solution for this limited case
of the problem.

Problem 6.57

Estimate the running time of the spliced alignment algorithm. Improve the running
time by transforming the spliced alignment graph into a graph with a smaller number
of edges. This transformation is hinted at in figure 6.28.

Introns are spliced out of pre-mRNA during mRNA processing and biologists can perform

cDNA sequencing that provides the nucleotide sequence complementary to the mRNA. The

cDNA, therefore, represents the concatenation of exons of a gene. Consequently the exon-intron

structure can be determined by aligning the cDNA against the genomic DNA with the aligned

regions representing the exons and the large gaps representing the introns. This alignment can

be aided by the knowledge of the conserved donor and acceptor splice site sequences (GT at the

5’ splice site and AG at the 3’ splice site).

While a spliced alignment can be used to solve this cDNA Alignment problem there exists a faster

algorithm to align cDNA against genomic sequence. One approach is to introduce gap penalties

that would adequately account for gaps in the cDNA Alignment problem. When aligning cDNA

against genomic sequences we want to allow long internal gaps in the cDNA sequence. In

addition, long gaps that respect the consensus sequences at the intron-exon junctions are favored

over gaps that do not satisfy this property. Such gaps that exceed a given length threshold and

respect the donor and acceptor sites should be assigned a constant penalty. This penalty is lower

than the affine penalty for long gaps that do not respect the splice site consensus. The input to

the cDNA Alignment problem is genomic sequence v, cDNA sequence w, match, mismatch,

gap opening and gap extension parameters, as well as L (minimum intron length) and δL (fixed

penalty for gaps longer than L that respect the consensus sequences). The output is an alignment

of v and w where aligned regions represent putative exons and gaps in v represent putative

introns.

Problem 6.58

Devise an efficient algorithm for the cDNA Alignment problem.

The spliced alignment algorithm finds exons in genomic DNA by using a related protein as a

template. What if a template is not a protein but another (uninterpreted) genomic DNA se-

quence? Or, in other words, can (unannotated) mouse genomic DNA be used to predict human

genes?

Problem 6.59

Generalize the spliced alignment algorithm for alignment of one genomic sequence
against another.
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Problem 6.60

For simplicity, the Spliced Alignment problem assumes that the genomic sequence
and the target protein sequence are both written in the same alphabet. Modify the
recurrence relations to handle the case when they are written in different alphabets
(specifically, proteins are written in a twenty letter alphabet, and DNA is written in a
four letter alphabet).



7 Divide-and-Conquer Algorithms

As the name implies, a divide-and-conquer algorithm proceeds in two dis-

tinct phases: a divide phase in which the algorithm splits a problem instance

into smaller problem instances and solves them; and a conquer phase in

which it stitches the solutions to the smaller problems into a solution to the

bigger one. This strategy often works when a solution to a large problem

can be built from the solutions of smaller problem instances. Divide-and-

conquer algorithms are often used to improve the efficiency of a polynomial

algorithm, for example, by solving a problem in O(n log n) time that would

otherwise require quadratic time.

7.1 Divide-and-Conquer Approach to Sorting

In chapter 2 we introduced the Sorting problem, and developed an algorithm

that required O(n2) time to sort a list of integers. The divide-and-conquer

approach gives us a faster sorting algorithm.

Suppose that instead of a single list of n integers in an arbitrary order, we

have two lists, a of length n1 and b of length n2, each with approximately n/2

elements, but these two lists are both sorted. How could we make a sorted

list of n elements from these? A reasonable approach is to traverse each list

simultaneously as if each were a sorted stack of cards, picking the smaller

element on the top of either pile. The MERGE algorithm below combines two

sorted lists into a single sorted list in O(n1 + n2) time.
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MERGE(a,b)

1 n1← size of a

2 n2← size of b

3 an1+1 ←∞

4 bn2+1 ←∞

5 i← 1

6 j ← 1

7 for k← 1 to n1 + n2

8 if ai < bj

9 ck ← ai

10 i← i + 1

11 else

12 ck ← bj

13 j ← j + 1

14 return c

In order to use MERGE to sort an arbitrary list, we made an inductive

leap: somehow we were presented with two half-size lists that were already

sorted. It would seem to be impossible to get this input without actually

solving the Sorting problem to begin with. However, the MERGE algorithm

is easily applied if we have a list c with only two elements: break c into two

lists, each list with one element. Since those sublists are sorted—a list of one

element is always sorted—then we can merge them into a sorted 2-element

list. If c has four elements, we can still break it into two lists, each with two

elements, sort each of the two element lists, and merge the resulting sorted

lists afterward. In fact, the same general idea applies to an arbitrary list and

gives rise to the MERGESORT algorithm.

MERGESORT(c)

1 n← size of c

2 if n = 1

3 return c

4 left← list of first n/2 elements of c

5 right← list of last n− n/2 elements of c

6 sortedLeft← MERGESORT(left)

7 sortedRight← MERGESORT(right)

8 sortedList← MERGE(sortedLeft, sortedRight)

9 return sortedList
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MERGESORT comprises two distinct phases: a divide phase in lines 4–7

where its input is split into parts and sorted; and a conquer phase in line 8,

where the sorted sublists are then combined into a sorted version of the input

list. In order to calculate the efficiency of this algorithm we need to account

for the time spent by MERGESORT in each phase.

We will use T (n) to represent the amount of time spent in a call to MERGE-

SORT for a list with n elements; this involves two calls to MERGESORT on

lists of size n/2, as well as a single call to MERGE. If MERGE is called on two

lists each of size n/2, it will require O(n/2+n/2) = O(n) time to merge them.

This leads to the following recurrence relation, where c is used to denote a
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positive constant:

T (n) = 2T (n/2) + cn

T (1) = 1

The solution to this recurrence relation is T (n) = O(n log n), a fact that

can be verified through mathematical induction. Another way to establish

the O(n log n) running time of MERGESORT is to construct the recursion tree

(fig. 7.1) and to notice that it consists of log n levels.1 At the top level, you

have to merge two lists each with n
2 elements, requiring O(n

2 + n
2 ) = O(n)

time. At the second level, there are four lists, each with n
4 elements, requiring

O(n
4 + n

4 + n
4 + n

4 ) = O(n) time. At the ith level, there are 2i lists, each with
n
2i elements, again requiring O(n) time. Therefore, merging requires overall

O(n log n) time since there are log n levels in the recursion tree.

7.2 Space-Efficient Sequence Alignment

As another illustration of divide-and-conquer algorithms, we revisit the Se-

quence Alignment problem from chapter 6.

When comparing long DNA fragments, the limiting resource is usually

not the running time of the algorithm, but the space required to store the

dynamic programming table. In 1975 Daniel Hirschberg proposed a divide-

and-conquer approach that performs alignment in linear space, at the ex-

pense of doubling the computational time.

The time complexity of the dynamic programming algorithm for aligning

sequences of lengths n and m respectively is proportional to the number of

edges in the edit graph, or O(nm). On the other hand, the space complex-

ity is proportional to the number of vertices in the edit graph, which is also

O(nm). However, if we only want to compute the score of the alignment

rather than the alignment itself, then the space can be reduced to just twice

the number of vertices in a single column of the edit graph, that is, O(n).

This reduction comes from the observation that the only values needed to

compute the alignment scores in column j are the alignment scores in col-

umn j − 1 (fig. 7.2). Therefore, the alignment scores in the columns before

j − 1 can be discarded while computing the alignment scores for columns

j, j + 1, . . . , m. Unfortunately, to find the longest path in the edit graph re-

1. How many times do you need to divide an array in half before you get to single-element sets?
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Figure 7.1 The recursion tree for MERGESORT. The divide (upper) part consists of
log 8 = 3 levels (not counting the root) where the input is split into pieces. The
conquer (lower) part consists of the same number of levels where the split pieces are
merged back together.
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Figure 7.2 Calculating an alignment score requires no more than 2n space for an
n× n alignment problem. Computing the alignment scores in each column requires
only the scores in the preceding column. We show here the dynamic programming
array–the data structure that holds the score at each vertex—instead of the graph.

quires backtracking pointers for the entire edit graph. Therefore, the entire

backtracking matrix b = (bi,j) needs to be stored, causing the O(nm) space

requirement. However, we can finesse this to require only O(n) space.

The longest path in the edit graph connects the source vertex (0, 0) with

the sink vertex (n, m) and passes through some (unknown) middle vertex

(mid, m
2 ), that is, the vertex somewhere on the middle column (m

2 ) of the

graph (fig. 7.3). The key observation is that we can find this middle ver-

tex without actually knowing the longest path in the edit graph. We define
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length(i) as the length of the longest path from (0, 0) to (n, m) that passes

through the vertex (i, m
2 ). In other words, out of all paths from (0, 0) to

(n, m), length(i) is the length of the longest of the ones that pass through

(i, m
2 ). Since the middle vertex, (mid, m

2 ), lies on the longest path from the

source to the sink, length(mid) = max0≤i≤n length(i). Below we show that

length(i) can be efficiently computed without knowing the longest path. We

will assume for simplicity that m is even and concentrate on finding only the

middle vertex rather than the entire longest path.

Vertex (i, m
2 ) splits the length(i)-long path into two subpaths, which we

will call prefix and suffix. The prefix subpath runs from the source to (i, m
2 ),

and has length prefix(i). The suffix subpath runs from (i, m
2 ) to the sink, and

has length suffix(i). It can be seen that length(i) = prefix(i) + suffix(i), and

an important observation is that prefix(i) and suffix(i) are actually very easy

to compute in linear space. Indeed, prefix(i) is simply the length of the

longest path from (0, 0) to (i, m
2 ) and is given by si, m

2
. Also, suffix(i) is the

length of the longest path from (i, m
2 ) to (n, m), or, equivalently, the length

of the longest path from the sink (n, m) to (i, m
2 ) in the graph with all edges

reversed. Therefore, suffix(i) can be computed as a longest path in this “re-

versed” edit graph.

Computing length(i) for 0 ≤ i ≤ n can be done in linear space by com-

puting the scores si, m
2

(lengths of the prefix paths from (0, 0) to (i, m
2 ) for

0 ≤ i ≤ n) and the scores of the paths from (i, m
2 ) to (n, m), which can be

computed as the score sreverse
i, m

2
of the path from (n, m) to (i, m

2 ) in the reversed

edit graph. The value length(i) = prefix(i) + suffix(i) = si, m
2

+ sreverse
i, m

2
is the

length of the longest path from (0, 0) to (n, m) passing through the vertex

(i, m
2 ). Therefore, max0≤i≤n length(i) computes the length of the longest path

and determines mid.

Computing all length(i) values requires time equal to the area of the left

rectangle (from column 1 to m
2 ) plus the area of the right rectangle (from col-

umn m
2 +1 to m) and the space O(n), as shown in figure 7.3. After the middle

vertex (mid, m
2 ) is found, the problem of finding the longest path from (0, 0)

to (n, m) can be partitioned into two subproblems: finding the longest path

from (0, 0) to the middle vertex (mid, m
2 ) and finding the longest path from

the middle vertex (mid, m
2 ) to (n, m). Instead of trying to find these paths, we

first try to find the middle vertices in the corresponding smaller rectangles

(fig. 7.3). This can be done in the time equal to the area of these rectangles,

which is half as large as the area of the original rectangle. Proceeding in this

way, we will find the middle vertices of all rectangles in time proportional to

area + area
2 + area

4 + . . . ≤ 2× area, and therefore compute the longest path
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in time O(nm) and space O(n):

PATH(source, sink)

1 if source and sink are in consecutive columns

2 output longest path from source to sink

3 else

4 mid← middle vertex (i, m
2 ) with largest score length(i)

5 PATH(source, mid)

6 PATH(mid, sink)

7.3 Block Alignment and the Four-Russians Speedup

We began our analysis of sorting with the quadratic SELECTIONSORT algo-

rithm and later developed the MERGESORT algorithm with O(n log n) run-

ning time. A natural question to ask is whether one could design an even

faster sorting algorithm, perhaps a linear one. Alas, for the Sorting prob-

lem there exists a lower bound for the complexity of any sorting algorithm,

essentially stating that it will require at least Ω(n log n) operations.2 There-

fore, it makes no sense to improve upon MERGESORT with the expectation

of improving the worst-case running time (though improving the practical

running time is worth the effort).

Similarly, we began our analysis of the Global Alignment problem from

the dynamic programming algorithm that requires O(n2) time to align two

n-nucleotide sequences, but never asked whether an even faster alignment

algorithm existed. Could it be possible to reduce the running time of the

alignment algorithm from O(n2) to O(n log n)? Nobody has an answer to this

question because nontrivial lower bounds for the Global Alignment problem

remain unknown.3 An O(n log n) alignment algorithm would revolutionize

bioinformatics and would likely be the demise of the popular BLAST algo-

rithm. Although nobody knows how to design an O(n log n) algorithm for

global alignment, there exists a subquadratic O( n2

log n
) algorithm for a similar

Longest Common Subsequence (LCS) problem.

2. This result relies on certain assumptions about the nature of computation, which are not
really germane to this book. As an example, if you had an unlimited supply of computers
sorting a list in parallel, you could perhaps sort faster.
3. One cannot simply argue that the problem requires O(n2) time since one has to traverse the
entire dynamic programming table, because the problem might be solved by some ingenious
technique that does not rely on a dynamic programming recurrency.
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Figure 7.3 Space-efficient sequence alignment. The computational time (i.e., the
area of the solid rectangles) decreases by a factor of 2 at every iteration.
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(a)

(b)

Figure 7.4 Two paths in a 40 × 40 grid partitioned into 16 subgrids of size 10 × 10.
The black path (a) is a block path, while the gray path (b) is not.

Let u = u1 . . . un and v = v1 . . . vn be two DNA sequences partitioned into

blocks of length t, that is, u = |u1 . . . ut| |ut+1 . . . u2t| . . . |un−t+1 . . . un| and

v = |v1 . . . vt| |vt+1 . . . v2t| . . . |vn−t+1 . . . vn|. For simplicity we assume that

u and v have the same length and that it is divisible by t. For example, if t

were 3 one could view u and v as DNA sequences of genes partitioned into

codons. The block alignment of u and v is an alignment in which every block

in one sequence is either aligned against an entire block in the other sequence

or is inserted or deleted as a whole. To be sure, the alignment path within

a block can be completely arbitrary—it simply needs to enter and leave the

block through vertices on the corners.

Figure 7.4 shows an n×n grid partitioned into t×t subgrids. A path in this

edit graph is called a block path if it traverses every t × t square through its

corners (i.e., enters and leaves every block at bold vertices). An equivalent

statement of this definition is that a block path contains at least two bold
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vertices from every square that it passes through—it cannot, for example,

lop off a corner of a square. Block alignments correspond to block paths in

the edit graph and the Block Alignment problem is to find the highest-scoring,

or longest, block path through this graph. We will see below that when t

is on the order of the logarithm of the overall sequence length—neither too

small nor too large–we can solve this problem in less than quadratic n2 time.

Block Alignment Problem:

Find the longest block path through an edit graph.

Input: Two sequences, u and v partitioned into blocks of

size t.

Output: The block alignment of u and v with the maximum

score (i.e., the longest block path through the edit graph).

One can consider n
t
× n

t
pairs of blocks (each pair defines a square in the

edit graph) and compute the alignment score βi,j for each pair of blocks

|u(i−1)·t+1 . . . ui·t| and |v(j−1)·t+1 . . . vj·t|. This amounts to solving n
t
× n

t
mini

alignment problems of size t× t each and takes O(n
t
· n

t
· t · t) = O(n2) time.

If si,j denotes the optimal block alignment score between the first i blocks of

u and the first j blocks of v, then

si,j = max

⎧
⎨

⎩

si−1,j − σblock

si,j−1 − σblock

si−1,j−1 + βi,j

,

where σblock is the penalty for inserting or deleting the entire block.4 The

indices i and j in this recurrence vary from 0 to n
t

and therefore, the running

time of this algorithm is O(n2

t2
) if we do not count time to precompute βi,j

for 0 ≤ i, j ≤ n
t

. This approach allows one to solve the Block Alignment

problem for any value of t, but as we saw before, precomputing all βi,j takes

the same O(n2) time that the dynamic programming algorithm takes.

The speed reduction we promised is achieved by the Four-Russians tech-

nique when t is roughly log n.5 Instead of constructing n
t
× n

t
minialignments

for all pairs of blocks from u and v we will construct 4t × 4t minialignments

4. In the simplest case σblock = σt , where σ is the penalty for the insertion or deletion of a
nucleotide.
5. Since the Block Alignment problem takes a partitioned grid as input, the algorithm does not
get to make a choice for the value of t.
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for all pairs of t-nucleotide strings and store their alignment scores in a large

lookup table. At first glance this looks counterproductive, but if t = log n
4

then 4t × 4t = n
1
2 × n

1
2 = n, which is much smaller than n

t
× n

t
.

The resulting lookup table, which we will call Score, has only 4t × 4t = n

entries. Computing each of the entries takes O(log n · log n) time, so the over-

all running time to compute all entries of this table is only O(n · (log n)2).

We emphasize that the resulting two-dimensional lookup table Score is in-

dexed by a pair of t-nucleotide strings, thus leading to a slightly different

recurrence:

si,j = max

⎧
⎨

⎩

si−1,j − σblock

si,j−1 − σblock

si−1,j−1 + Score(ith block of v, jth block of u)

Since the time to precompute the lookup table Score in this case is rel-

atively small, the overall running time is dominated by the dynamic pro-

gramming step, for example, by the n
t
× n

t
accesses it makes to the lookup

table. Since each access takes O(log n) time, the overall running time of this

algorithm is O( n2

log n
).

7.4 Constructing Alignments in Subquadratic Time

So now we have an algorithm for the Block Alignment problem that is sub-

quadratic for convenient values of one of its input parameters, but it is not

clear whether similar ideas could be used to solve any of the problems from

chapter 6. In this section we show how to design a O( n2

log n
) algorithm for

finding the longest common subsequence of two strings, again using the

Four-Russians speedup.

Unlike the block path in a partitioned edit graph, the path corresponding

to a longest common subsequence can traverse the edit graph arbitrarily and

does not have to pass through the bold vertices of figure 7.4. Therefore, pre-

computing the length of paths between the upper left corner and lower right

corner of every t× t subsequence is not going to help.

Instead we will select all vertices at the borders of the squares (shown by

bold vertices in figure 7.5) rather than just the vertices at the corners, as in

figure 7.4. This results in a significantly larger number of bold vertices than

in the case of block alignments but we can keep the number subquadratic.

Taken together, these vertices form n
t

whole rows and n
t

whole columns in

the edit graph; the total number of bold vertices is O(n2

t
). We will perform
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Figure 7.5 The partitioned edit graph for the LCS problem.

dynamic programming on only the O(n2

t
) bold vertices, effectively ignoring

the internal vertices in the edit graph.

In essence we are interested in the following problem: given the alignment

scores si,∗ in the first row and the alignment scores s∗,j in the first column of

a t× t minisquare, compute the alignment scores in the last row and column

of the minisquare. The values of s in the last row and last column depend

entirely on four variables: the values si,∗ in the first row of the square, the

values s∗,j in the first column of the square, and the two t-long substrings

corresponding to the rows and columns of the square. Of course, we could

use this information to fill in the entire dynamic programming matrix for a

t× t square but we cannot afford doing this (timewise) if we want to have a

subquadratic algorithm.

To use the Four-Russians technique, we again rely on the brute force men-

tality and build a lookup table on all possible values of the four variables:

all pairs of t-nucleotide sequences and all pairs of possible scores for the first
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row si,∗ and the first column s∗,j . For each such quadruple, we store the

precomputed scores for the last row and last column. However, this will be

an enormous table since there may be a large number of possible scores for

the first row and first column. Therefore, we perform some trickery. A care-

ful analysis of the LCS problem shows that the possible alignment scores in

the first row (or first column) are not entirely arbitrary: 0, 1, 2, 2, 2, 3, 4 is a

possible sequence of scores, but 0, 1, 2, 4, 5, 8, 9, 10 is not. Not only does the

progression of scores have to be monotonically increasing, but adjacent ele-

ments cannot differ by more than 1 (see problem 6.47). We can encode this as

a binary vector of differences; the above example 0, 1, 2, 2, 2, 3, 4 would be en-

coded as 1, 1, 0, 0, 1, 1.6 Thus, since there are 2t possible scores and 4t possible

strings, the entire lookup table will require 2t · 2t · 4t · 4t = 26t space. Again,

we set t = log n
4 to make the size of the table collapse down to 26 log n

4 = n1.5.

Alas, this allows the precomputation step to be subquadratic, and the run-

ning time of the algorithm is dominated by the process of filling in the scores

for the bold vertices in figure 7.5 which takes O
(

n2

log n

)
time.

7.5 Notes

MERGESORT was invented in 1945 by the legendary John von Neumann

while he was designing EDVAC, the world’s first stored-program electronic

computer. The idea of using a divide-and-conquer approach for sequence

comparison was proposed first by Daniel Hirschberg in 1975 for the LCS

problem (49), and then in 1988 by Eugene Myers and Webb Miller for the

Local Alignment problem (77). The Four-Russians speedup was proposed

by Vladimir Arlazarov, Efim Dinic, Mikhail Kronrod, and Igor Faradzev in

1970 (6) and first applied to sequence comparison by William Masek and

Michael Paterson (73).

6. (1, 1, 0, 0, 1, 1) is (1 − 0, 2 − 1, 2 − 2, 2 − 2, 3 − 2, 4 − 3).
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Webb Miller (born 1943 in Washing-

ton State) is professor in the Depart-

ments of Biology and of Computer Sci-

ence and Engineering at Pennsylvania

State University. He holds a PhD in

mathematics from the University of Wash-

ington. He is a pioneer and a leader in

the area of DNA and protein sequence

comparison, and in comparing whole

genomes in particular.

For a number of years Miller worked

on computational techniques for under-

standing the behavior of computer pro-

grams that use floating-point arithmetic.

In 1987 he completely changed his re-

search focus, after picking bioinformat-

ics as his new field. He says:

My reason for wanting a complete change was simply to bring more

adventure and excitement into my life. Bioinformatics was attractive

because I had no idea what the field was all about, and because neither

did anyone else at that time.

The catalyst was his friendship with Gene Myers, who was already work-

ing in the new area. It wasn’t even called “bioinformatics" then; Miller was

switching to a field without a name. He loved the frontier spirit of the emerg-

ing discipline and the possibility of doing something useful for mankind.

The change was difficult for me because I was completely ignorant of

biology and statistics. It took a number of years before I really started

to understand biology. I’m now on the faculty of a biology department,

so in some sense I successfully made the transition. (Unfortunately, I’m

still basically ignorant of statistics.) In another respect, the change was

easy because there was so little already known about the field. I read

a few papers by Mike Waterman and David Sankoff, and was off and

running.

Miller came to the new field armed with two skills that proved very use-

ful, and with a couple of ideas that helped focus his research initially. The
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skills were his mathematical training and his experience writing computer

programs. The first idea that he brought to the field was that an optimal

alignment between two sequences can be computed in space proportional

to the length of the longer sequence. It is straightforward to compute the

score of an optimal alignment in that amount of space, but it is much less

obvious how to produce an alignment with that score. A very clever linear-

space alignment algorithm had been discovered by Dan Hirschberg around

1975. The other idea was that when two sequences are very similar and when

alignments are scored rather simply, an optimal alignment can be computed

much more quickly than by dynamic programming, using a greedy algo-

rithm. That idea was discovered independently by Gene Myers (with some

prodding from Miller) and Esko Ukkonen in the mid-1980s. Miller hoped

that these two ideas, or variants of them, would get him started in the new

field; he had “solutions in search of biological problems” rather than “bio-

logical problems in search of solutions.” Indeed, this is a common mode of

entry into bioinformatics for scientists trained in a quantitative field.

During his first decade in bioinformatics, Miller coauthored a few papers

about linear-space alignment methods. Finding a niche for greedy algo-

rithms took longer, but for comparing very similar DNA sequences, partic-

ularly when the difference between them is due to sequencing errors rather

than evolutionary mutations, they are quite useful; they deserve wider recog-

nition in the bioinformatics community than they now have.

The most successful of Miller’s bioinformatics projects have involved ideas

other than the ones he brought with him to the field. His most widely known

project was the collaboration to develop the BLAST program, where it was

David Lipman’s insights that drove the project in the right direction. How-

ever, it is Miller’s work on comparison methods for long DNA sequences that

brought him closer to biology and made Miller’s algorithms a household

name among teams of scientists analyzing mammalian and other whole-

genome sequences. Miller picked this theme as his Holy Grail around 1989,

and he has stuck with it ever since. When he started, there were only two

people in the world brave—or foolish—enough to publicly advocate sequenc-

ing the mouse genome and comparing it with the human genome: Miller

and his long-term collaborator, the biologist Ross Hardison. They occasion-

ally went so far as to tout the sequencing of several additional mammals.

Nowadays, it looks to everyone like the genome sequencing of mouse, rat,

chimpanzee, dog, and so on, was inevitable, but perhaps Miller’s many years

of working on programs to compare genome sequences made the inevitable

happen sooner.
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What worked best for Miller was to envision an advance in bioinformat-

ics that would foster new biological discoveries – namely, that development

of methods to compare complete mammalian genome sequences would lead

to a better understanding of evolution and of gene regulation – and to do

everything he could think of to make it happen. This included developing

algorithms that would easily align the longest sequences he could find, and

helping Ross Hardison to verify experimentally that these alignments are

useful for studying gene regulation. When Miller and Hardison decided to

show how alignments and data from biological experiments could be linked

through a database, they learned about databases. When they wanted to set

up a network server to align DNA sequences, they learned about network

servers. When nobody in his lab was available to write software that they

needed, Miller wrote it himself. When inventing and analyzing a new al-

gorithm seemed important, he worked on it. The methods changed but the

biological motivation remained constant.

Miller has been more successful pursuing “a biological problem in search

of solutions than the other way around. His colleague, David Haussler, has

had somewhat the same experience; his considerable achievements bringing

hidden Markov models and other machine learning techniques to bioinfor-

matics have recently been eclipsed by his monumental success with the Hu-

man Genome Browser, which has directly helped a far wider community of

scientists.

The most exciting point so far in my career is today, with a new verte-

brate genome sequence coming my way every year. Some day, I hope

to look back with pride at my best achievement in bioinformatics, but

perhaps it hasn’t happened yet.
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7.6 Problems

Problem 7.1

Construct the recursion tree for MERGESORT on the input (2, 5, 7, 4, 3, 6, 1, 8).

Problem 7.2

How much memory does MERGESORT need overall? Modify the algorithm to use as
little as possible.

Problem 7.3

Suppose that you are given an array A of n words sorted in lexicographic order and
want to search this list for some arbitrary word, perhaps w (we write the number of
characters in w as |w|). Design three algorithms to determine if w is in the list: one
should have O(n |w|) running time; another should have O(|w| log n) running time
but use no space (except for A and w); and the third should have O(|w|) running time
but can use as much additional space as needed.

Problem 7.4

We normally consider multiplication to be a very fast operation on a computer. How-
ever, if the numbers that we are multiplying are very large (say, 1000 digits), then
multiplication by the naive grade-school algorithm will take a long time. How long
does it take? Write a faster divide-and-conquer algorithm for multiplication.

Problem 7.5

Develop a linear-space version of the local alignment algorithm.

Problem 7.6

Develop a linear-space version of global sequence alignment with affine gap penal-
ties.

In the space-efficient approach to sequence alignment, the original problem of size n × n is

reduced to two subproblems of sizes i × n
2

and (n − i) × n
2

(for the sake of simplicity, we

assume that both sequences have the same length). In a fast parallel implementation of sequence

alignment, it is desirable to have a balanced partitioning that breaks the original problem into

subproblems of equal sizes.

Problem 7.7

Design a space-efficient alignment algorithm with balanced partitioning.

Problem 7.8

Design a divide-and-conquer algorithm for the Motif Finding problem and estimate
its running time. Have you improved the running time of the exhaustive search algo-
rithm?

Problem 7.9

Explore the possibilities of using a divide-and-conquer approach for the Median String
problem. Can you split the problem into subproblems? Can you combine the solu-
tions of the subproblem into a solution to the main problem?
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Problem 7.10

Devise a space-efficient dynamic programming algorithm for multiple alignment of
three sequences. Write the corresponding recurrence relations. For three n-nucleotide
sequences your algorithm should use at most quadratic O(n2) memory. Write the
recursive algorithm that outputs the resulting alignment.

Problem 7.11

Design a linear-space algorithm for the Block Alignment problem.

Problem 7.12

Write a pseudocode for constructing the LCS in subquadratic time.
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Many bioinformatics algorithms may be formulated in the language of graph

theory. The use of the word “graph” here is different than in many physical

science contexts: we do not mean a chart of data in a Cartesian coordinate

system. In order to work with graphs, we will need to define a few concepts

that may not appear at first to be particularly well motivated by biological

examples, but after introducing some of the mathematical theory we will

show how powerful they can be in such bioinformatics applications as DNA

sequencing and protein identification.

8.1 Graphs

Figure 8.1 (a) shows two white and two black knights on a 3× 3 chessboard.

Can they move, using the usual chess knight’s moves,1 to occupy the posi-

tions shown in figure 8.1 (b)? Needless to say, two knights cannot occupy the

same square while they are moving.

Figure 8.2b represents the chessboard as a set of nine points. Two points

are connected by a line if moving from one point to another is a valid knight

move. Figure 8.2c shows an equivalent representation of the resulting dia-

gram that reveals that knights move around a “cycle” formed by points 1,

6, 7, 2, 9, 4, 3, and 8. Every knight’s move on the chessboard corresponds

to moving to a neighboring point in the diagram, in either a clockwise or

counterclockwise direction. Therefore the white-white-black-black knight

arrangement cannot be transformed into the alternating white-black-white-

black arrangement.

1. In the game of chess, knights (the “horses”) can move two steps in any of four directions (left,
right, up, and down) followed by one step in a perpendicular direction, as shown in figure 8.1
(c).
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(a) (b)

(c)

Figure 8.1 Two configurations of four knights on a chessboard. Can you use valid
knight moves to turn the configuration in (a) into the configuration in (b)? Valid
knight moves are shown in (c).

Diagrams with collections of points connected by lines are examples of

graphs. The points are called vertices and lines are called edges. A simple

graph shown in figure 8.3, consists of five vertices and six edges. We de-

note a graph by G = G(V, E) and describe it by its set of vertices V and set

of edges E (every edge can be written as a pair of vertices). The graph in

figure 8.3 is described by the vertex set V = {a, b, c, d, e} and the edge set

E = {(a, b), (a, c), (b, c), (b, d), (c, d), (c, e)}.

The way the graph is actually drawn is irrelevant; two graphs with the

same vertex and edge sets are equivalent, even if the particular pictures that

represent the graph appear different (see figure 8.3). The only important

feature of a graph is which vertices are connected and which are not.
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Figure 8.2 A graph representation of a chessboard. A knight sitting on some square
can reach any of the squares attached to that square by an edge.



250 8 Graph Algorithms

a e

b c

d

a

c b

d e

Figure 8.3 Two equivalent representations of a simple graph with five vertices and
six edges.

Figure 8.4 represents another chessboard obtained from a 4×4 chessboard

by removing the four corner squares. Can a knight travel around this board,

pass through each square exactly once, and return to the same square it

started on? Figure 8.4 (b) shows a rather complex graph with twelve vertices

and sixteen edges revealing all possible knight moves. However, rearrang-

ing the vertices (fig. 8.4c) reveals the cycle that describes the correct sequence

of moves.

The number of edges incident to a given vertex v is called the degree of

the vertex and is denoted d(v). For example, vertex 2 in figure 8.4 (c) has

degree 3 while vertex 4 has degree 2. The sum of degrees of all 12 vertices

is, in this case, 32 (8 vertices of degree 3 and 4 vertices of degree 2), twice

the number of edges in the graph. This is not a coincidence: for every graph

G with vertex set V and edge set E,
∑

v∈V d(v) = 2 · |E|. Indeed, an edge

connecting vertices v and w is counted in the sum
∑

v∈V d(v) twice: first in

the term d(v) and again in the term d(w). The equality
∑

v∈V d(v) = 2 · |E|

explains why you cannot connect fifteen phones such that each is connected

to exactly seven others, and why a country with exactly three roads out of

every city cannot have precisely 1000 roads.

Many bioinformatics problems make use of directed graphs, in which ev-

ery edge is directed from one vertex to another, as shown by the arrows in

figure 8.5. Every vertex v in a directed graph is characterized by indegree(v)

(the number of incoming edges) and outdegree(v) (the number of outgoing
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Figure 8.4 The knight’s tour through the twelve squares in part (a) can be seen by
constructing a graph (b) and rearranging its vertices in a clever way (c).
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Figure 8.5 A directed graph.

edges). For every directed graph G(V, E),

∑

v∈V

indegree(v) =
∑

v∈V

outdegree(v),

since every edge is counted once on the right-hand side of the equation and

once on the left-hand side.

A graph is called connected if all pairs of vertices can be connected by a

path, which is a continuous sequence of edges, where each successive edge

begins where the previous one left off. Paths that start and end at the same

vertex are referred to as cycles. For example, the paths (3-2-10-11-3) and (3-2-

8-6-12-7-5-11-3) in figure 8.4 (c) are cycles.

Graphs that are not connected are disconnected (fig. 8.6). Disconnected

graphs can be partitioned into connected components. One can think of a

graph as a map showing cities (vertices) and the freeways (edges) that con-

nect them. Not all cities are connected by freeways: for example, you cannot

drive from Miami to Honolulu. These two cities belong to two different con-

nected components of the graph. A graph is called complete if there is an edge

between every two vertices.

Graph theory was born in the eighteenth century when Leonhard Euler

solved the famous Königsberg Bridge problem. Königsberg is located on

the banks of the Pregel River, with a small island in the middle. The various

parts of the city are connected by bridges (fig. 8.7) and Euler was interested

in whether he could arrange a tour of the city in such a way that the tour vis-

its each bridge exactly once. For Königsberg this turned out to be impossible,

but Euler basically invented an algorithm to solve this problem for any city.
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(a)

(b)

Figure 8.6 A connected (a) and a disconnected (b) graph.

Kneiphoff

Island
Pregel River

Figure 8.7 Bridges of Königsberg.
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Bridge Obsession Problem:

Find a tour through a city (located on n islands connected by m bridges)

that starts on one of the islands, visits every bridge exactly once, and

returns to the originating island.

Input: A map of the city with n islands and m bridges.

Output: A tour through the city that visits every bridge ex-

actly once and returns to the starting island.

Figure 8.8 shows a city map with ten islands and sixteen bridges, as well

as the transformation of the map into a graph with ten vertices and sixteen

edges (every island corresponds to a vertex and every bridge corresponds

to an edge). After this transformation, the Bridge Obsession problem turns

into the Eulerian Cycle problem that was solved by Euler and later found

thousands of applications in different areas of science and engineering:

Eulerian Cycle Problem:

Find a cycle in a graph that visits every edge exactly once.

Input: A graph G.

Output: A cycle in G that visits every edge exactly once.

After the Königsberg Bridge problem was solved, graph theory was for-

gotten for a century before it was rediscovered by Arthur Cayley who stud-

ied the chemical structures of (noncyclic) saturated hydrocarbons CnH2n+2

(fig. 8.9). Structures of this type of hydrocarbon are examples of trees, which

are simply connected graphs with no cycles. It is not hard to show that every

tree has at least one vertex with degree 1, or leaf.2 This observation immedi-

ately implies that every tree on n vertices has n − 1 edges, regardless of the

structure of the tree. Indeed, since every tree has a leaf, we can remove it and

its attached edge, resulting in another tree. So far we have removed one edge

and one vertex. In this smaller tree there exists a leaf that we, again, remove.

So far, we have removed two vertices and two edges. We keep this up until

we are left with a graph with a single vertex and no edges. Since we have

removed n− 1 vertices and n− 1 edges, the number of edges in every tree is

n− 1 (fig. 8.10).

2. Actually, every tree has at least two leaves, except for the trivial single-vertex tree.
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Figure 8.8 A more complicated version of Königsberg (a). To solve the Bridge Ob-
session problem, Euler transformed the map of Königsberg into a graph (b) and found
an Eulerian cycle. The path that runs through vertices 1-2-3-4-5-6-3-7-2-9-11-8-7-12-11-
10-9-1 is an Eulerian cycle.
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Figure 8.9 Hydrocarbons (the saturated, nonaromatic variety) as chemists see them
(left), and their graph representation (right). Two different molecules with the same
number of the same types of atoms are called structural isomers.
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Figure 8.10 Proving that a tree with n vertices has n− 1 edges.
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Figure 8.11 Can you travel from any one of the vertices in this graph, visit every
other vertex exactly once, and end up at the original vertex?

Shortly after Cayley’s work on tree enumeration, Sir William Hamilton in-

vented a game corresponding to a graph whose twenty vertices were labeled

with the names of twenty famous cities (fig. 8.11). The goal is to visit all

twenty cities in such a way that every city is visited exactly once before re-

turning back to the city where the tour started. As the story goes, Hamilton

sold the game for 25 pounds to a London game dealer and it failed miserably.

Despite the commercial failure of a great idea, the more general problem of
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finding “Hamiltonian cycles” in arbitrary graphs is of critical importance to

many scientific and engineering disciplines. The problem of finding Hamil-

tonian cycles looks deceivingly simple and somehow similar to the Eulerian

Cycle problem. However, it turns out to beNP-complete while the Eulerian

Cycle problem can be solved in linear time.3

Hamiltonian Cycle Problem:

Find a cycle in a graph that visits every vertex exactly once.

Input: A graph G.

Output: A cycle in G that visits every vertex exactly once (if

such a cycle exists).

Graphs, like many freeway maps, often give some sort of weight to every

edge, as in the Manhattan Tourist problem in chapter 6. The weight of an

edge may reflect, depending on the context, different attributes. For exam-

ple, the length of a freeway segment connecting two cities, the number of

tourist attractions along a city block, and the alignment score between two

amino acids are all natural weighting schemes. Weighted graphs are often

formally represented as an ordered triple, G = (V, E, w), where V is the set

of vertices in the graph, E is the set of edges, and w is a weight function de-

fined for every edge e in E (i.e., w(e) is a number reflecting the weight of edge

e). Given a weighted graph, one may be interested in finding some shortest

path between two vertices (e.g., a shortest path between San Diego and New

York). Though this problem may sound difficult if you were given a com-

plicated road map, it turns out that there exist fast algorithms to answer this

question.

Shortest Path Problem:

Given a weighted graph and two vertices, find the shortest distance

between them.

Input: A weighted graph, G = (V, E, w), and two distin-

guished vertices s and t.

Output: The shortest path between s and t in graph G.

3. The Hamiltonian Cycle problem is equivalent in complexity to the Traveling Salesman prob-
lem mentioned in chapter 2 and is therefore NP-complete.
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Figure 8.12 Two different hypothetical structures of a gene. (a) Linear structures ex-
hibit very different interval graphs than the graphs exhibited by (b) branched struc-
tures. It is impossible to construct a linear sequence of overlapping intervals that
gives rise to the graph in (b).
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We emphasize that this problem is different—and somewhat more comp-

licated—than the Longest Path in a Directed Acyclic Graph (DAG) problem

that we considered in chapter 6.

Graphs are powerful tools in many applied studies and their role goes

well beyond analysis of maps of freeways. For example, at first glance, the

following “basketball” problem has nothing to do with graph theory:

Fifteen teams play a basketball tournament in which each team plays with each other team.

Prove that the teams can always be numbered from 1 to 15 in such a way that team 1 defeated

team 2, team 2 defeated team 3, ... , team 14 defeated team 15.

A careful analysis reduces this problem to finding a Hamiltonian path in a

directed graph on fifteen vertices.

8.2 Graphs and Genetics

Conceived by Euler, Cayley, and Hamilton, graph theory flourished in the

twentieth century to become a critical component of discrete mathematics.

In the 1950s, Seymour Benzer applied graph theory to show that genes are

linear.

At that time, it was known that genes behaved as functional units of DNA,

much like pearls on a necklace, but the chemical structure and organization

of the genes was not clear. Were genes broken into still smaller components?

If so, how were they organized? Prior to Watson and Crick’s elucidation

of the DNA double helix, it seemed a reasonable hypothesis that the DNA

content of genes was branched, as in figure 8.12, or even looped, rather than

linear. These two organizations have very different topological implications,

which Benzer exploited in an ingenious experiment.

Benzer studied a large number of bacteriophage4 T4 mutants, which hap-

pened to have a continuous interval deleted from an important gene. In their

“normal” state, nonmutant T4 phages will kill a bacterium. The mutant T4

phages that were missing a segment of their genome could not kill the bac-

terium. Different mutants had different intervals deleted from the gene, and

Benzer had to determine which interval had been deleted in each mutant.

Though Benzer did not know exactly where in the gene the mutant’s dele-

tion was, he had a way to test whether two deletions (i.e., their intervals)

overlapped, relying on how two phages with two different deletions behave

4. A bacteriophage is a virus that attacks bacteria.



8.2 Graphs and Genetics 261

a

b c

e d

a

b

c

d

e

(a)

a

b c

e d

?

(b)

Figure 8.13 An interval graph (a) and a graph that is not an interval graph (b).

inside a bacterial host cell. When two mutant phages with two different dele-

tions infect a bacterium, two outcomes are possible depending on whether

the deleted intervals overlap or not. If they do not overlap, then two phages

combined have all the genetic material of one normal phage. However, if two

deleted intervals overlap, some genetic material is absent in both phages.

The Benzer experiment was based on the observation that in the former case

(all genetic material of a normal phage is present), two mutants are able to

kill the bacterium; and in the latter case (where some genetic material is re-

moved in both phages) the bacterium survives.

Benzer infected bacteria with each pair of mutant strains from his T4 phage

and simply noted which pairs killed the bacterial host. Pairs which were
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lethal to the host were mutants whose deleted intervals did not overlap. Ben-

zer constructed a graph5 where each strain was a vertex and two vertices

were connected when a double infection of a bacterial host was nonlethal.

He reasoned that if genes were linear [fig. 8.12 (a)], he would probably see

one type of graph, but if the genes were branched [fig. 8.12 (b)] he would see

another.

Given a set of n intervals on a line segment, the interval graph is defined

as a graph with n vertices that correspond to the intervals. There is an

edge between vertices v and w if and only if the intervals v and w over-

lap. Interval graphs have several important properties that make them easy

to recognize— for example, the graph in figure 8.13 (a) is an interval graph,

whereas the “house” graph in figure 8.13 (b) is not. Benzer’s problem was

equivalent to deciding whether the graph obtained from his bacteriophage

experiment represented an interval graph. Had the experiment resulted in a

graph like the “house” graph, then the genes could not have been organized

as linear structures. As it turned out, the graph was indeed an interval graph,

indicating that genes were composed of linearly organized functional units.

8.3 DNA Sequencing

Imagine several copies of a magazine cut into millions of pieces. Each copy

is cut in a different way, so a piece from one copy may overlap pieces from

another. Assuming that some large number of pieces are just sort of lost,

and the remaining pieces are splashed with ink, can you recover the original

text? This, essentially, is the problem of fragment assembly in DNA sequenc-

ing. Classic DNA sequencing technology allows one to read short 500- to

700-nucleotide sequences per experiment, each fragment corresponding to

one of the many magazine pieces. Assembling the entire genome from these

short fragments is like reassembling the magazine from the millions of tiny

slips of paper.6 Both problems are complicated by unavoidable experimental

errors—ink splashes on the magazine, and mistakes in reading nucleotides.

Furthermore, the data are frequently incomplete—some magazine pieces get

lost, while some DNA fragments never make it into the sequencing ma-

chine. Nevertheless, efforts to determine the DNA sequence of organisms

have been remarkably successful, even in the face of these difficulties.

5. It is not clear that he actually knew anything about graph theory at the time, but graph theo-
rists eventually noticed his work.
6. We emphasize that biologists reading these 500- to 700-nucleotide sequences have no idea
where they are located within the entire DNA string.
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Two DNA sequencing methods were invented independently and simul-

taneously in Cambridge, England by Fred Sanger and in Cambridge, Mas-

sachusetts by Walter Gilbert. Sanger’s method takes advantage of how cells

make copies of DNA. Cells copy a strand of DNA nucleotide by nucleotide

in a reaction that adds one base at a time. Sanger realized that he could make

copies of DNA fragments of different lengths if he starved the reaction of

one of the four bases: a cell can only copy its DNA while it has all of the

bases in supply. For a sequence ACGTAAGCTA, starving at T would produce

a mixture of the fragments ACG and ACGTAAGC. By running one starvation

experiment for each of A, T, G, and C and then separating the resulting DNA

fragments by length, one can read the DNA sequence.7 Each of four star-

vation experiments produces a ladder of fragments of varying lengths called

the Sanger ladder.8 This approach culminated in the sequencing of a 5386-

nucleotide virus in 1977 and a Nobel Prize shortly thereafter. Since then the

amount of DNA sequence data has been increasing exponentially, particu-

larly after the launch of the Human Genome Project in 1989. By 2001, it had

produced the roughly 3 billion-nucleotide sequence of the human genome.

Within the past twenty years, DNA sequencing technology has been de-

veloped to the point where modern sequencing machines can sequence 500-

to 700-nucleotide DNA fragments, called sequencing reads. These reads then

have to be assembled into a continuous genome, which turns out to be a

very hard problem. Even though the DNA reading process has become quite

automated, these machines are not microscope-like devices that simply scan

500 nucleotides as if they were a sentence in a book. The DNA sequencing

machines measure the lengths of DNA fragments in the Sanger ladder, but

even this task is difficult; we cannot measure a single DNA fragment, but

must measure billions of identical fragments.

Shotgun sequencing starts with a large sample of genomic DNA. The sam-

ple is sonicated, a process which randomly partitions each piece of DNA in

the sample into inserts; the inserts that are smaller than 500 nucleotides are

removed from further consideration. Before the inserts can be read, each one

must be multiplied billions of times so that it is possible to read the ladders

produced by Sanger’s technique. To amplify the inserts, a sample is cloned

into a vector, and this vector used to infect a bacterial host. As the bacterium

reproduces, it creates a colony that contains billions of copies of the vector

7. Later Sanger found chemicals—so-called dideoxynucleotides—that could be inserted in place
of A, T, G, or C, and cause a growing DNA chain to end.
8. The Sanger ladder for T shows the lengths of all sub-fragments ending at T and therefore
reveals the set of positions where T occurs.
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and its associated insert. As a result, the cloning process results in the pro-

duction of a large sample of one particular insert that can then be sequenced

by the Sanger method. Usually, only the first 500 to 700 nucleotides of the in-

sert can be interpreted from this experiment. DNA sequencing is therefore a

two stage process including both experimental (reading 500–700 nucleotide

sequences form different inserts) and computational (assembling these reads

into a single long sequence) components.

8.4 Shortest Superstring Problem

Since every string, or read, that we sequence came from the much longer ge-

nomic string, we are interested in a superstring of the reads—that is, we want

a long string that “explains” all the reads we generated. However, there are

many possible superstrings to choose from—for example, we could concate-

nate all the reads together to get a (not very helpful) superstring. We choose

to be most interested in the shortest one, which turns out to be a reasonable

first approximation to the unknown genomic DNA sequence. With this in

mind, the simplest approximation of DNA sequencing corresponds to the

following problem.

Shortest Superstring Problem:

Given a set of strings, find a shortest string that contains all of them.

Input: Strings s1, s2, . . . , sn.

Output: A string s that contains all strings s1, s2, . . . , sn as

substrings, such that the length of s is as small as possible.

Figure 8.14 presents two superstrings for the set of all eight three-letter

strings in a 0–1 alphabet. The first (trivial) superstring is obtained by the

concatenation of all eight strings, while the second one is a shortest super-

string.

Define overlap(si, sj) to be the length of the longest prefix of sj that matches

a suffix of si. The Shortest Superstring problem can be cast as a Traveling

Salesman problem in a complete directed graph with n vertices correspond-

ing to strings s1, . . . , sn and edges of length −overlap(si, sj) (fig. 8.15). This

reduction, of course, does not lead to an efficient algorithm since the TSP is

NP-complete. Moreover it is known that the Shortest Superstring problem

is itselfNP-complete, so that a polynomial algorithm for this problem is un-
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The Shortest Superstring problem

Concatenation
Superstring

Set of strings:   {000, 001, 010, 011, 100, 101, 110, 111}

 000 001 010 011 100 101 110 111

Shortest
superstring 0 0 0 1 1 1 0 1 0 0

000

011

110

010

001

111

101

100

Figure 8.14 Superstrings for the set of eight three-letter strings in a 0–1 alphabet.
Concatenating all eight strings results in a 24-letter superstring, while the shortest
superstring contains only 10 letters. The shortest superstring in this case represents a
solution of the Clever Thief problem—it is the minimum string of tests a thief has to
conduct to try all possible k-letter passwords for a combination lock.

likely. The early DNA sequencing algorithms used a simple greedy strategy:

repeatedly merge a pair of strings with maximum overlap until only one

string remains. It has been conjectured, but not yet proved, that this greedy

algorithm has performance guarantee 2.

8.5 DNA Arrays as an Alternative Sequencing Technique

When the Human Genome Project started, DNA sequencing was a routine

but time-consuming and hard-to-automate procedure. In 1988 four groups of

biologists independently and simultaneously suggested a different sequenc-

ing technique called Sequencing by Hybridization. SBH involves building a

miniature DNA array, also known as a DNA chip, that contains thousands of

short DNA fragments called probes. Each of these short fragments reveals
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Figure 8.15 The overlap graph for the eight strings in figure 8.14.

whether or not a known—but short—sequence occurs in the unknown DNA

sequence; all these pieces of information together should reveal the identity

of the target DNA sequence.

Given a short probe (an 8- to 30-nucleotide single-stranded synthetic DNA

fragment) and a single-stranded target DNA fragment, the target will hy-

bridize with the probe if the probe is a substring of the target’s Watson-Crick

complement. When the probe and the target are mixed together, they form a

weak chemical bond and stick together. For example, a probe ACCGTGGA
will hybridize to a target CCCTGGCACCTA since it is complementary to the
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substring TGGCACCT of the target.

In 1988 almost nobody believed that the idea of using DNA probes to se-

quence long genomes would work, because both the biochemical problem of

synthesizing thousands of short DNA fragments and the combinatorial prob-

lem of sequence reconstruction appeared too complicated. Shortly after the

first paper describing DNA arrays was published, the journal Science wrote

that given the amount of work required to synthesize a DNA array, “[using

DNA arrays for sequencing] would simply be substituting one horrendous

task for another.” A major breakthrough in DNA array technology was made

by Steve Fodor and colleagues in 1991. Their approach to array manufac-

turing relies on light-directed polymer synthesis,9 which has many similarities

to computer chip manufacturing (fig. 8.16). Using this technique, building

an array with all 4l probes of length l requires just 4 · l separate reactions,

rather than the presumed 4l reactions. With this method, a California-based

biotechnology company, Affymetrix, built the first 64-kb DNA array in 1994.

Today, building 1-Mb or larger arrays is routine, and the use of DNA arrays

has become one of the most widespread new biotechnologies.

SBH relies on the hybridization of the target DNA fragment against a very

large array of short probes. In this manner, probes can be used to test the

unknown target DNA to determine its l-mer composition.10 The universal DNA

array contains all 4l probes of length l and is applied as follows (fig. 8.17):

• Attach all possible probes of length l (l=8 in the first SBH papers) to a flat

surface, each probe at a distinct and known location. This set of probes is

called the DNA array.

• Apply a solution containing fluorescently labeled DNA fragment to the

array.

• The DNA fragment hybridizes with those probes that are complementary

to substrings of length l of the fragment.

• Using a spectroscopic detector, determine which probes hybridize to the

DNA fragment to obtain the l-mer composition of the target DNA frag-

ment.

• Apply the combinatorial algorithm described below to reconstruct the se-

quence of the target DNA fragment from the l-mer composition.

9. Light as in photons, not light as in “not heavy.”
10. The l-mer composition of a string is simply the set of all l-mers present
in the string. For example, the 8-mer composition of CCCTGGCACCTA is
{CCCTGGCA, CCTGGCAC, CTGGCACC, TGGCACCT, GGCACCTA}.
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Figure 8.16 A GeneChip, produced by Affymetrix. (Picture courtesy of Affymetrix,
Inc.)

8.6 Sequencing by Hybridization

Given an unknown DNA sequence, an array provides information about

all strings of length l that the sequence contains, but does not provide in-

formation about their positions in the sequence. For a string s of length

n, the l-mer composition, or spectrum, of s, is the multiset of n − l + 1 l-

mers in s and is written Spectrum(s, l). If l = 3 and s = TATGGTGC, then

Spectrum(s, l) = {TAT, ATG, TGG, GGT, GTG, TGC}.11 We can now formu-

late the problem of sequencing a target DNA fragment from its DNA array

data.

11. The l-mers in this spectrum are listed in the order of their appearance in s creating the
impression that we know which nucleotide occur at each position. We emphasize that the order
of these l-mers in s is unknown and it is probably more appropriate to list them in lexicographic
order, like ATG, GGT, GTG, TAT, TGC, TGG.
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AA AT AG AC TA TT TG TC GA GT GG GC CA CT CG CC

AA

AG

AT

AC

TA

TT

TG

TC

GA

GT

GG

GC

CT

CG

CA

CC

ATAG

GCAA

TAGG

ACGC

GGCA

CAAA

DNA target TATCCGTTT (complement of ATAGGCAAA)

hybridizes to the array of all 4-mers: 

A T G G C A A A
A T G

T G
G
G

G
G
G
G

C
C
C
C

A
A
A

A
A A

Universal DNA Array

A
A
A
A

Figure 8.17 Hybridization of TATCCGTTT with the universal DNA array consisting
of all 44 4-mers.
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Sequencing by Hybridization (SBH) Problem:

Reconstruct a string from its l-mer composition.

Input: A set, S, representing all l-mers from an (unknown)

string s.

Output: String s such that Spectrum(s, l) = S.

Although conventional DNA sequencing and SBH are very different ex-

perimental approaches, you can see that the corresponding computational

problems are quite similar. In fact, SBH is a particular case of the Shortest

Superstring problem when the strings s1, . . . , sn represent the set of all sub-

strings of s of fixed size. However, in contrast to the Shortest Superstring

problem, there exists a simple linear-time algorithm for the SBH problem.

Notice that it is not a contradiction that the Shortest Superstring problem

is NP-complete, yet we claim to have a linear-time algorithm for the SBH

problem, since the Shortest Superstring problem is more general than the

SBH problem.

Although DNA arrays were originally proposed as an alternative to con-

ventional DNA sequencing, de novo sequencing with DNA arrays remains

an unsolved problem in practice. The primary obstacle to applying DNA

arrays for sequencing is the inaccuracy in interpreting hybridization data to

distinguish between perfect matches [i.e., l-mers present in Spectrum(s, l)]

and highly stable mismatches (i.e, l-mers not present in Spectrum(s, l), but

with sufficient chemical bonding potential to generate a strong hybridiza-

tion signal). This is a particularly difficult problem for the short probes used

in universal arrays. As a result, DNA arrays have become more popular in

gene expression analysis12 and studies of genetic variations—both of which

are done with longer probes—than in de novo sequencing. In contrast to SBH

where the target DNA sequence is unknown, these approaches assume that

the DNA sequence is either known or “almost” known (i.e., known up to a

small number of mutations). For example, to detect genetic variations one

can design twenty- to thirty-nucleotide probes to reliably detect mutations,

bypassing the still unsolved problem of distinguishing perfect matches from

highly stable mismatches in the case of short probes. To detect mutations in

12. In gene expression analysis, a solution containing mRNA (rather than DNA) is applied to
the array with the goal of figuring out whether a given gene is switched on or switched off. In
this case, absence of a hybridization signal indicates that a gene is not being transcribed into an
mRNA, and is therefore switched off.
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ATGS={ TCC GTC GCA CAG }TGC

Vertices: l-tuples from the spectrum S.   Edges: overlapping l-tuples.

Path visiting ALL VERTICES corresponds to sequence reconstruction

AGG GGT

ATGCAGGTCC

H

Sequence reconstruction (Hamiltonian path approach)

Figure 8.18 SBH and the Hamiltonian path problem.

the (known) sequence S, an array should contain all 25-mers from S, as well

as selected mutated versions of these 25-mers.13

8.7 SBH as a Hamiltonian Path Problem

Two l-mers p and q overlap if overlap(p, q) = l − 1, that is, the last l − 1

letters of p coincide with the first l − 1 letters of q. Given the measured

spectrum Spectrum(s, l) of a DNA fragment s, construct a directed graph,

H , by introducing a vertex for every l-mer in Spectrum(s, l), and connect

every two vertices p and q by the directed edge (p, q) if p and q overlap.

There is a one-to-one correspondence between paths that visit each vertex of

H exactly once and DNA fragments with the spectrum Spectrum(s, l). The

spectrum presented in figure 8.18 corresponds to the sequence reconstruction

ATGCAGGTCC, which is the only path visiting all vertices of H :

ATG→ TGC→ GCA→ CAG→ AGG→ GGT→ GTC→ TCC

The spectrum shown in figure 8.19 yields a more complicated graph with

two Hamiltonian paths, each path corresponding to two possible reconstruc-

tions: ATGCGTGGCA and ATGGCGTGCA. As the overlap graph becomes

13. In practice, the mutated versions of an l-mer are often limited to the 3 l-mers with mutations
at the middle position. Arrays constructed in this manner are called tiling arrays.



272 8 Graph Algorithms

ATGS={ }TGC GTG GGC GCG CGT

H

ATGCGTGGCA

ATGGCGTGCA

TGG GCA

Multiple sequence reconstructions (Hamiltonian path approach)

Figure 8.19 Spectrum S yields two possible reconstructions corresponding to dis-
tinct Hamiltonian paths.

larger, this approach ceases to be practically useful since the Hamiltonian

Path problem is NP-complete.

8.8 SBH as an Eulerian Path Problem

As we have seen, reducing the SBH problem to a Hamiltonian Path problem

does not lead to an efficient algorithm. Fortunately, reducing SBH to the

Eulerian Path problem in a directed graph,14 which leads to the simple linear-

time algorithm for sequence reconstruction mentioned earlier.

14. A directed path is a path v1 → v2 → . . . → vn from vertex v1 to vertex vn in which every
edge (vi, vi+1) is directed from vi to vi+1.
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The reduction of the SBH problem to an Eulerian Path problem is to con-

struct a graph whose edges—rather than vertices—correspond to l-mers from

Spectrum(s, l), and then to find a path in this graph visiting every edge ex-

actly once. In this approach we build a graph G on the set of all (l− 1)-mers,

rather than on the set of all l-mers as in the previous section. An (l − 1)-mer

v is joined by a directed edge with an (l − 1)-mer w if the spectrum contains

an l-mer for which the first l − 1 nucleotides coincide with v and the last

l − 1 nucleotides coincide with w (fig. 8.20). Each l-mer from the spectrum

corresponds to a directed edge in G rather than to a vertex as it does in H ;

compare figures 8.19 and 8.20. Therefore, finding a DNA fragment contain-

ing all l-mers from the spectrum corresponds to finding a path visiting all

edges of G, which is the problem of finding an Eulerian path. Superficially,

finding an Eulerian path looks just as hard as finding a Hamiltonian path,

but, as we show below, finding Eulerian paths turns out to be simple.

We will first consider Eulerian cycles, that is, Eulerian paths in which the

first and the last vertices are the same. A directed graph G is Eulerian if

it contains an Eulerian cycle. A vertex v in a graph is balanced if the num-

ber of edges entering v equals the number of edges leaving v, that is, if

indegree(v) = outdegree(v). For any given vertex v in an Eulerian graph,

the number of times the Eulerian cycle enters v is exactly the same as the

number of times it leaves v. Thus, indegree(v) = outdegree(v) for every ver-

tex v in an Eulerian graph, motivating the following theorem characterizing

Eulerian graphs.

Theorem 8.1 A connected graph is Eulerian if and only if each of its vertices is

balanced.

Proof First, it is easy to see that if a graph is Eulerian, then each vertex must

be balanced. We show that if each vertex in a connected graph is balanced,

then the graph is Eulerian.

To construct an Eulerian cycle, we start from an arbitrary vertex v and form

any arbitrary path by traversing edges that have not already been used. We

stop the path when we encounter a vertex with no way out, that is, a ver-

tex whose outgoing edges have already been used in the path. In a balanced

graph, the only vertex where this can happen is the starting vertex v since for

any other vertex, the balance condition ensures that for every incoming edge

there is an outgoing edge that has not yet been used. Therefore, the resulting

path will end at the same vertex where it started, and with some luck will be

Eulerian. However, if the path is not Eulerian, it must contain a vertex w that

still has some number of untraversed edges. The cycle we just constructed
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AT CA
GT CG

TG GC

GG

AT CA
GT CG

TG GC

GG

ATGGCGTGCA ATGCGTGGCA

AT CA
GT CG

TG GC

GG

Paths visiting ALL EDGES correspond to sequence reconstructions 

S={ATG, TGG,  GCGTGC, GTG, GGC, GCA,

Edges correspond to l-tuples from the spectrum

Vertices correspond to (l-1)-tuples. 

, CGT}

Multiple sequence reconstructions (the Eulerian path approach)

Figure 8.20 SBH and the Eulerian path problem.

forms a balanced subgraph.15 Since the original graph was balanced, then

the edges that were not traversed in the first cycle also form a balanced sub-

graph. Since all vertices in the graph with untraversed edges are balanced

there must exist some other path starting and ending at w, containing only

untraversed edges. This process is shown in figures 8.21 and 8.22.

One can now combine the two paths into a single one as follows. Traverse

the first path from v to w, then traverse the second path from w back to itself,

and then traverse the remainder of the first path from w back to v. Repeating

this until there are no more vertices with unused edges will eventually yield

an Eulerian cycle. This algorithm can be implemented in time linear in the

number of edges in the graph. �

15. A subgraph is a graph obtained by removing some edges from the original graph.
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v

w

(a)

v

w

(b)

v

w

(c)

Figure 8.21 Constructing an Eulerian cycle in an Eulerian graph.

Notice that we have described Eulerian graphs as containing an Eulerian

cycle, rather than an Eulerian path, but we have said that the SBH problem

reduces to that of finding an Eulerian path. A vertex v in a graph is called

semibalanced if |indegree(v) − outdegree(v)| = 1. If a graph has an Eulerian

path starting at vertex s and ending at vertex t, then all its vertices are bal-

anced, with the possible exception of s and t, which may be semibalanced.

The Eulerian path problem can be reduced to the Eulerian cycle problem

by adding an edge between two semibalanced vertices. This transformation

balances all vertices in the graph and therefore guarantees the existence of an

Eulerian cycle in the graph with the added edge. Removing the added edge

from the Eulerian cycle transforms it into an Eulerian path. The following

theorem characterizes all graphs that contain Eulerian paths.

Theorem 8.2 A connected graph has an Eulerian path if and only if it contains at

most two semibalanced vertices and all other vertices are balanced.

8.9 Fragment Assembly in DNA Sequencing

As we mentioned previously, after the short 500- to 700-bp DNA reads are se-

quenced, biologists need to assemble them together to reconstruct the entire

genomic DNA sequence. This is known as fragment assembly. The Shortest

Superstring problem described above is an overly simplified abstraction that

does not adequately capture the essence of the fragment assembly problem,
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Figure 8.22 Constructing an Eulerian cycle. Untraversed edges are shown in gray.

since it assumes error-free reads. The error rate in DNA reads produced by

modern sequencing machines varies from 1% to 3%. A further complication

in fragment assembly is the fact that one does not know a priori which of

two DNA strands a read came from. DNA is double-stranded, and which

of the two strands was sequenced by a read depends on how the insert was

oriented in the vector. Since this is essentially arbitrary, one never knows

whether a read came from a target strand DNA sequence or from its Watson-

Crick complement.

However, sequencing errors and assignments of reads to one of two strands

are just minor annoyances compared to the major problem in fragment as-

sembly: repeats in DNA. The human genome contains many sequences that

repeat themselves throughout the genome a surprisingly large number of

times. For example, the roughly 300 nucleotide Alu sequence is repeated

more than a million times throughout the genome, with only 5% to 15% se-

quence variation. Even more troublesome for fragment assembly algorithms

is the fact that repeats occur at several scales. The human T-cell receptor lo-

cus contains five closely located repeats of the trypsinogen gene, which is 4

kb long and varies only by 3% to 5% between copies. These long repeats are

particularly difficult to assemble, since there are no reads with unique por-
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tions flanking the repeat region. The human genome contains more than 1

million Alu repeats (≈ 300 bp) and 200,000 LINE repeats (≈ 1000 bp), not

to mention that an estimated 25% of genes in the human genome have du-

plicated copies. A little arithmetic shows that these repeats and duplicated

genes represent about half the human genome.16

If one models the genome as a 3 billion-letter sequence produced by a ran-

dom number generator, then assembling it from 500-letter reads is actually

relatively simple. However, because of the large number of repeats, it is the-

oretically impossible to uniquely assemble real reads as long as some repeats

are longer than the typical read length. Increasing the length of the reads

(to make them longer than most repeats) would solve the problem, but the

sequencing technology has not significantly improved the read length yet.

Figure 8.23 (upper) presents a puzzle that looks deceivingly simple and

has only sixteen triangular pieces. People usually assemble puzzles by con-

necting matching pieces. In this case, for every triangle in the puzzle, there

is a variety of potentially matching triangles (every frog in the puzzle is re-

peated several times). As a result, you cannot know which of the potentially

matching triangles is the correct one to use at any step. If you proceed with-

out some sort of guidance, you are likely to end up in the situation shown

in figure 8.23 (lower). Fourteen of the pieces have been placed completely

consistently, but the two remaining pieces are impossible to place. It is dif-

ficult to design a strategy that can avoid such dead ends for this particular

puzzle, and it is even more difficult to design strategies for the linear puzzle

presented by repeats in a genome.

Since repeats present such a challenge in assembling long genomes, the

original strategy for sequencing the human genome was first to clone it into

BACs,17 each BAC carrying an approximately 150, 000 bp long insert. Af-

ter constructing a library of overlapping BACs that covers the entire human

genome (which requires approximately 30,000 BACs), each one can be se-

quenced as if it were a separate minigenome. This BAC-by-BAC sequenc-

ing strategy significantly simplifies the computational assembly problem (by

virtue of the fact that the number of repeats present within a BAC is 30,000

times smaller than the number of repeats in the entire genome) but makes

the sequencing project substantially more cumbersome. Although the Hu-

man Genome project demonstrated that this BAC-by-BAC strategy can be

successful, recent large-scale sequencing projects (including the 2002 mouse

16. Fortunately, as different copies of these repeats have evolved differently over time, they are
not exact repeats.
17. Bacterial Artificial Chromosomes.
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Figure 8.23 Repeats are not just a problem in DNA sequence assembly. This puzzle
has deceptively few pieces but is harder than many jigsaw puzzles that have thou-
sands of pieces. (With permission of Dan Gilbert Art Group, Inc.)
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genome assembly) mainly follow the whole-genome assembly paradigm ad-

vocated by James Weber and Gene Myers in 1997. Myers led the fragment

assembly efforts at Celera Genomics, the company that announced the com-

pletion of a (draft) human genomic sequence in 2001.18 Weber and Myers

suggested a virtual increase in the length of a read, by pairing reads that

were separated by a fixed-size gap. This suggestion resulted in the so-called

mate-pair reads sequencing technique. In this method, inserts of length ap-

proximately L (where L is much longer than the length of a read) are se-

lected, and both ends of the insert are sequenced. This produces a pair of

reads called mates at a known (approximate) distance, L, from each other.

The insert length L is chosen in such a way that it is larger than the length of

most repeats in the human genome. The advantage of mate-pair reads is that

it is unlikely that both reads of the mate-pair will lie in a large-scale DNA re-

peat. Thus, the read that lies in a unique portion of DNA determines which

copy of a repeat its mate is in.

Most fragment assembly algorithms consist of the following three steps:

• Overlap: Finding potentially overlapping reads

• Layout: Finding the order of reads along DNA

• Consensus: Deriving the DNA sequence from the layout

The overlap problem is to find the best match between the suffix of one

read and the prefix of another. In the absence of sequencing errors, we could

simply find the longest suffix of one string that exactly matches the prefix of

another string. However, sequencing errors force us to use a variation of the

dynamic programming algorithm for sequence alignment. Since errors are

small (1% to 3%), the common practice is to filter out pairs of fragments that

do not share a significantly long common substring, an idea we will return

to in chapter 9 when we discuss combinatorial pattern matching.

Constructing the layout is the hardest step in fragment assembly. The dif-

ficulty is in deciding whether two fragments really overlap (i.e., their differ-

ences are caused by sequencing errors) or actually come from two different

copies of a repeat. Repeats represent a major challenge for whole-genome

shotgun sequencing and make the layout problem very difficult.

The final consensus step of fragment assembly amounts to correcting er-

rors in sequence reads. The simplest way to build the consensus is to report

18. The human genome sequence was sequenced in 2001 by both the publicly-funded Human
Genome Consortium and the privately-financed Celera Genomics. As a result, there exist two
slightly different versions of the human genome.
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the most frequent character in the layout constructed in the layout step. This

assumes that each position in the genome was represented by a sufficiently

large number of reads to ensure that experimental errors are reduced to mi-

nor noise.

8.10 Protein Sequencing and Identification

Few people remember that before DNA sequencing had even been seriously

suggested, scientists routinely sequenced proteins. Frederick Sanger was

awarded his first (of two) Nobel prize for determining the amino acid se-

quence of insulin, the protein needed by people suffering from diabetes. Se-

quencing the 52-amino acid bovine insulin in the late 1940s seemed more

challenging than sequencing an entire genome seems today. The compu-

tational problem facing protein sequencing at that time was similar to that

facing modern DNA sequencing; the main difference was in the length of

the sequenced fragments. In the late 1940s, biologists discovered how to ap-

ply the Edman degradation reaction to chop off one terminal amino acid at a

time from the end of a protein and read it. Unfortunately, this only works

for a few terminal amino acids before the results become impossible to in-

terpret. To get around this problem, Sanger digested insulin with proteases

(enzymes that cleave proteins) into peptides (short protein fragments) and se-

quenced each of the resulting fragments independently. He then used these

overlapping fragments to reconstruct the entire sequence, exactly like the

DNA sequencing “break—read the fragments—assemble” method today, as

shown in figure 8.24.

The Edman degradation reaction became the predominant protein sequenc-

ing method for the next twenty years, and by the late 1960s protein sequenc-

ing machines were on the market. Despite these advances, protein sequenc-

ing ceased to be of central interest in the field as DNA sequencing technol-

ogy underwent rapid improvements in the late 1970s. In DNA sequencing,

obtaining reads is relatively easy; it is the assembly that is difficult. In pro-

tein sequencing, obtaining reads is the primary problem, while assembly is

easy.19

Having DNA sequence data for a cell is critical to understanding the molec-

ular processes that the cell goes through. However, it is not the only impor-

19. Modern protein sequencing machines are capable of reading more than fifty residues from
a peptide fragment. However, these machines work best when the protein is perfectly purified,
which is hard to achieve in biological experiments.
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Figure 8.24 The peptide fragments that Frederick Sanger obtained from insulin
through a variety of methods. The protein is split into two parts, the A-chain (shown
on the left) and the B-chain (shown on the right) as a result of an enzymatic digestion
process. Sanger’s further elucidation of the disulfide bridges linking the various cys-
tein residues was the result of years of painstaking laboratory work. The sequence
was published in three parts: the A-chain, the B-chain, and then the disulfide link-
ages. Insulin is not a particularly large protein, so better techniques would be useful.
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tant component: one also needs to know what proteins the cell produces and

what they do. On the one hand, we do not yet know the full set of proteins

that cells produce, so we need a way to discover the sequence of previously

unknown proteins. On the other hand, it is important to identify which spe-

cific proteins interact in a biological system (e.g., those proteins involved in

DNA replication). Lastly, different cells in an organism have different reper-

toires of expressed proteins. Brain cells need different proteins to function

than liver cells do, and an important problem is to identify proteins that are

present or absent in each biological tissue under different conditions.

There are two types of computational problems motivated by protein se-

quencing. De novo protein sequencing is the elucidation of a protein’s sequence

in the case when a biological sample contains a protein that is either not

present in a database or differs from a canonical version present in a database

(e.g., mutated proteins or proteins with biochemical modifications). The

other problem is the identification of a protein that is present in a database;

this is usually referred to as protein identification. The main difference be-

tween protein sequencing algorithms and protein identification algorithms

is the difficulty of the underlying computational problems.

Perhaps the easiest way to illustrate the distinction between protein identi-

fication and sequencing is with a gedanken experiment. Suppose a biologist

wants to determine which proteins form the DNA polymerase complex in

rats. Having the complete rat genome sequence and knowing the location of

all the rat genes does not yet allow a biologist to determine what chemical

reactions occur during the DNA replication process. However, isolating a

rat’s DNA polymerase complex, breaking it apart, and sequencing the pro-

teins that form parts of the complex will yield a fairly direct answer to the

researcher’s question. Of course, if we presume that the biologist has the

complete rat genome sequence and all of its gene products, he may not actu-

ally have to sequence every amino acid in every protein in the DNA poly-

merase complex—just enough to figure out which proteins are present. This

is protein identification. On the other hand, if the researcher decides to study

an organism for which complete genome data are not available (perhaps an

obscure species of ant), then the researcher will need to perform de novo

protein sequencing.20

20. As usual with gedanken experiments, reality is more complicated. Even if the complete
genomic sequence of a species is known and annotated, the repertoire of all possible proteins
usually is not, due to the myriad alternative splicings (different ways of constructing mRNA
from the gene’s transcript) and post-translational modifications that occur in a living cell.



8.10 Protein Sequencing and Identification 283

For many problems, protein sequencing and identification remain the only

ways to probe a biological process. For example, gene splicing (see chap-

ter 6) is a complex process performed by the large molecular complex called

the spliceosome, which consists of over 100 different proteins complexed with

some functional RNA. Biologists want to determine the “parts list” of the

spliceosome, that is, the identity of proteins that form the complex. DNA

sequencing is not capable of solving this problem directly: even if all the

proteins in the genome were known, it is not clear which of them are parts

of the spliceosome. Protein sequencing and identification, on the other hand,

are very helpful in discovering this parts list. Recently, Matthias Mann and

colleagues purified the spliceosome complex and used protein sequencing

and protein identification techniques to find a detailed parts list for it.

Another application of these technologies is the study of proteins involved

in programmed cell death, or apoptosis. In the development of many organisms

cells must die at specific times. A cell dies if it fails to acquire certain survival

factors, and the death process can be initiated by the expression of certain

genes. In a developing nematode, for example, the death of individual cells

in the nervous system may be prevented by mutations in several genes that

are the subject of active investigation. DNA sequence data alone are not

sufficient to find the genes involved in programmed cell death, and until

recently, nobody knew the identity of these proteins. Protein analysis by mass

spectrometry allowed the sequencing of proteins involved in programmed cell

death, and the discovery of some proteins involved in the death-inducing

signaling complex.

The exceptional sensitivity of mass spectrometry has opened up new ex-

perimental and computational possibilities for protein studies. A protein can

be digested into peptides by proteases like trypsin. In a matter of seconds,

a tandem mass spectrometer breaks a peptide into even smaller fragments and

measures the mass of each. The mass spectrum of a peptide is a collection of

masses of these fragments. The protein sequencing problem is to derive the

sequence of a peptide given its mass spectrum. For an ideal fragmentation

process where every fragment of a peptide is generated, and in an ideal mass

spectrometer, the peptide sequencing problem is simple. However, the frag-

mentation process is not ideal, and mass spectrometers measure mass with

some imprecision. These details make peptide sequencing difficult.

A mass spectrometer works like a charged sieve. A large molecule (pep-

tide) gets broken into smaller fragments that have an electrical charge. These

fragments are then spun around and accelerated in a magnetic field until

they hit a detector. Because large fragments are harder to spin than small
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ones, one can distinguish between fragments with different masses based

on the amount of energy required to fling the different fragments around. It

happens that most molecules can be broken in several places, generating sev-

eral different ion types. The problem is to reconstruct the amino acid sequence

of the peptide from the masses of these broken pieces.

8.11 The Peptide Sequencing Problem

Let A = {a1, a2, . . . , a20} be the set of amino acids, each with molecular

masses m(ai). A peptide P = p1 · · · pn is a sequence of amino acids, with par-

ent mass m(P ) =
∑n

i=1 m(pi). We will denote the partial N-terminal peptide

p1, . . . , pi of mass mi =
∑i

j=1 m(pj) as Pi and the partial C-terminal peptide

pi+1, . . . , pn of mass m(P )−mi as P−
i , for 1 ≤ i ≤ n. Mass spectra obtained

by tandem mass spectrometry (MS/MS) consist predominantly of partial N-

terminal peptides and C-terminal peptides.21

A mass spectrometer typically breaks a peptide p1p2 · · · pn at different pep-

tide bonds and detects the masses of the resulting partial N-terminal and

C-terminal peptides.22 For example, the peptide GPFNA may be broken into

the N-terminal peptides G, GP, GPF, GPFN, and C-terminal peptides PFNA,

FNA, NA, A. Moreover, while breaking GPFNA into GP and FNA, it may

lose some small parts of GP and FNA, resulting in fragments of a lower mass.

For example, the peptide GP might lose a water (H2O), and the peptide FNA

might lose an ammonia (NH3). The resulting masses detected by the spec-

trometer will be equal to the mass of GP minus the mass of water (water

happens to weigh 1 + 1 + 16 = 18 daltons) , and the mass of FNA minus the

mass of ammonia (1 + 1 + 1 + 14 = 17 daltons). Peptides missing water and

ammonia are two different ion types that can occur in fragmenting a peptide

in a mass spectrometer.23

21. Every protein is a linear chain of amino acids, connected by a peptide bond. The peptide
bond starts with a nitrogen (N) and ends with a carbon (C); therefore, every protein begins
with an “unstarted” peptide bond that begins with N and another “unfinished” peptide bond
that ends with C. An N-terminal peptide is a fragment of a protein that includes the “leftmost”
end (i.e., the N-terminus). A C-terminal peptide is a fragment of a protein that includes the
“rightmost” end (i.e., the C-terminus).
22. Biologists typically work with billions of identical peptides in a solution. A mass spectrome-
try machine breaks different peptide molecules at different peptide bonds (some peptide bonds
are more prone to breakage than others). As a result, many N-terminal and C-terminal peptide
may be detected by a mass spectrometer.
23. This is a simplified description of the complex and messy fragmentation process. In this
section we intentionally hide many of the technical details and focus only on the computational
challenges.
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Peptide fragmentation in a tandem mass spectrometer can be character-

ized by a set of numbers ∆ = {δ1, . . . , δk} representing the different types of

ions that correspond to the removal of a certain chemical group from a pep-

tide fragment. We will call ∆ the set of ion types. A δ-ion of an N-terminal

partial peptide Pi is a modification of Pi that has mass mi − δ, correspond-

ing to the loss of a (typically small) chemical group of mass δ when P was

fragmented into Pi. The δ-ion of C-terminal peptides is defined similarly.

The most frequent N-terminal ions are called b-ions (ion bi corresponds to Pi

with δ = −1) and the most frequent C-terminal ions are called y-ions (ion yi

corresponds to P−
i with δ = 19), shown in figure 8.25 (a). Examples of other

frequent N-terminal ions are represented by b-H2O (a b-fragment that loses a

water) or y-NH3 and some others like b-H2O-NH3.

For tandem mass spectrometry, the theoretical spectrum T (P ) of peptide

P can be calculated by subtracting all possible ion types δ1, . . . , δk from the

masses of all partial peptides of P , such that every partial peptide generates

k masses in the theoretical spectrum, as in figure 8.25 (b).24

An experimental spectrum S = {s1, . . . , sq} is a set of numbers obtained in

a mass spectrometry experiment that includes masses of some fragment ions

as well as chemical noise.25 Note that the distinction between the theoretical

spectrum T (P ) and the experimental spectrum S is that you mathematically

generate T (P ) given the peptide sequence P , but you experimentally gener-

ate S without knowing what the peptide sequence is that generated it.

The match between the experimentally measured spectrum S and peptide

P is the number of masses in S that are equal to masses in T (P ). This is often

referred to as the shared peaks count. In reality, peptide sequencing algorithms

use more sophisticated objective functions than a simple shared peaks count,

incorporating different weighting functions for the matching masses. We

formulate the Peptide Sequencing problem as follows.

24. A theoretical spectrum of a peptide may contain as many as 2nk masses but it sometimes
contains less since some of these masses are not unique.
25. In reality, a mass spectrometer detects charged ions and measures mass-to-charge ratios. As a
result, an experimental spectrum contains the values m

z
where m is the mass and z is an integer

(typically, 1 or 2) equal to the charge of a fragment ion. For simplicity we assume that z = 1
through the remainder of this chapter.
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(a) The fragmentation pattern of the peptide
GPFNA.

Sequence mass less H2O less NH3 less both
GPFNA 498 480 481 463

b1 G 58 40 41 23
y4 PFNA 442 424 425 405
b2 GP 149 131 132 114
y3 FNA 351 333 334 316
b3 GPF 296 278 279 261
y2 NA 204 186 187 169
b4 GPFN 410 392 393 375
yl A 90 72 73 55

(b) A theoretical mass spectrum of GPFNA.
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(c) An “experimental” mass spectrum of GPFNA.

Figure 8.25 Tandem MS of the peptide GPFNA. Two different types of fragment
ions, b-ions and y-ions are created (a) when the carbon-nitrogen bond breaks in the
spectrometer. Each of these ion types can also lose H2O or NH3, or both, resulting in
the masses presented in (b). Many other ion types are seen in typical experiments. If
we were to measure the mass spectrum of this peptide, we would see a result similar
to (c), where some peaks are missing and other noise peaks are present.
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Peptide Sequencing Problem:

Find a peptide whose theoretical spectrum has a maximum match to a

measured experimental spectrum.

Input: Experimental spectrum S, the set of possible ion

types ∆, and the parent mass m.

Output: A peptide P of mass m whose theoretical spectrum

matches S better than any other peptide of mass m.

In reality, mass spectrometers measure both mass and intensity, which re-

flects the number of fragment ions of a given mass are detected in the mass

spectrometer. As a result, mass spectrometrists often represent spectra in two

dimensions, as in figure 8.25 (c), and refer to the masses in the spectrum as

“peaks.”26

8.12 Spectrum Graphs

There are two main approaches to solving the Peptide Sequencing prob-

lem that researchers have tried: either through exhaustive search among all

amino acid sequences of a certain length, or by analyzing the spectrum graph

which we define below. The former approach involves the generation of

all 20l amino acid sequences of length l and their corresponding theoretical

spectra, with the goal of finding a sequence with the best match between

the experimental spectrum and the sequence’s theoretical spectrum. Since

the number of sequences grows exponentially with the length of the pep-

tide, different branch-and-bound techniques have been designed to limit the

combinatorial explosion in these methods. Prefix pruning restricts the compu-

tational space to sequences whose prefixes match the experimental spectrum

well. The difficulty with the prefix pruning is that it frequently discards the

correct sequence if its prefixes are poorly represented in the spectrum.

The spectrum graph approach, on the other hand, does not involve gen-

erating all amino acid sequences, and leads to a fast algorithm for peptide

sequencing. In this approach, we construct a graph from the experimen-

tal spectrum. Assume for simplicity that an experimental spectrum S =

26. A match of a theoretical spectrum against an experimental spectrum with varying intensity,
then, needs to reflect the intensity of the fragment ions. While accounting for intensities is im-
portant for statistical analysis, it does not seriously affect the algorithmic details and we ignore
intensities in the remainder of this chapter.
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{s1, . . . , sq} consists of N-terminal ions and we will ignore the C-terminal

ions for a while. Every mass s ∈ S may have been created from a partial

peptide by one of the k different ion types. Since we do not know which ion

type from ∆ = (δ1, . . . , δk) created the mass s in the experimental spectrum,

we generate k different “guesses” for each of masses in the experimental

spectrum. Every guess corresponds to the hypothesis that s = x− δj , where

x is the mass of some partial peptide and 1 ≤ j ≤ k. Therefore, for every

mass s in the experimental spectrum, there are k guesses for the mass x of

some partial peptide: s + δ1, s + δ2, . . . , s + δk. As a result, each mass in the

experimental spectrum is transformed into a set of k vertices in the spectrum

graph, one for each possible ion type. The vertex for δi for the mass s is la-

beled with mass s + δi. We connect any two vertices u and v in the graph by

the directed edge (u, v) if the mass of v is larger than that of u by the mass of

a single amino acid. If we add a vertex at 0 and a vertex at the parent mass

m (connecting them to other vertices as before), then the Peptide Sequencing

problem can be cast as finding a path from 0 to m in the resulting DAG.27

In summary, the vertex set of the resulting spectrum graph is a set of num-

bers si + δj representing potential masses of N-terminal peptides adjusted

by the ion type δj . Every mass si of spectrum S generates k distinct ver-

tices Vi(s) = {si + δ1, . . . , si + δk}, though the sets Vi and Vj may overlap

if si and sj are close. The set of vertices in a spectrum graph is therefore

{sinitial} ∪ V1 ∪ · · · ∪ Vq ∪ {sfinal}, where sinitial = 0 and sfinal = m. The

spectrum graph may have at most qk + 2 vertices. We label the edges of

the spectrum graph by the amino acid whose mass is equal to difference be-

tween vertex masses. If we look at vertices as putative N-terminal peptides,28

the edge from u to v implies that the N-terminal sequence corresponding to

v may be obtained by extending the sequence at u by the amino acid that

labels (u, v).

A spectrum S of a peptide P = p1 . . . pn is called complete if S contains at

least one ion type corresponding to every N-terminal partial peptide Pi for

every 1 ≤ i ≤ n. The use of a spectrum graph is based on the observation

that for a complete spectrum there exists a path of length n+1 from sinitial to

sfinal in the spectrum graph that is labeled by P . This observation casts the

Peptide Sequencing problem as one of finding the “correct” path in the set

of all paths between two vertices in a directed acyclic graph. If the spectrum

27. In addition to the experimental spectrum, every mass spectrometry experiment always pro-
duces the parent mass m of a peptide.
28. Although we ignored C-terminal ions in this simplified construction of the spectrum graph,
these ions can be taken into account by combining the spectrum S with its “reversed” version.
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is complete, then the correct path that we are looking for is often the path

with the maximum number of edges, the familiar Longest Path in a DAG

problem.

Unfortunately, experimental spectra are frequently incomplete. Moreover,

even if the experimental spectrum is complete, there are often many paths

in the spectrum graph to choose from that have the same (or even larger)

length, preventing one from unambiguously reconstructing the peptide.

The problem with choosing a path with a maximum number of edges is

that it does not adequately reflect the “importance” of different vertices. For

example, a vertex in the spectrum graph obtained by a shift of +1 as si + 1

(corresponding to the most frequent b-ions) should be scored higher than a

vertex obtained by a shift of the rare b-H2O-NH3 ion (si+1−18−17 = si−34).

Further, whenever there are two peaks si and si′ such that si + δj=si′ + δj′ ,

the vertex corresponding to that mass should also get a higher score than a

vertex obtained by a single shift.

In the probabilistic approach to peptide sequencing, each ion type δi has

some probability of occurring, which we write as p(δi). Under the simplest

assumption, the probability that δi occurs for some partial peptide is inde-

pendent of whether δj also occurs for the same partial peptide. Under this

assumption, any given partial peptide may contribute as many as k masses in

the spectrum [this happens with probability
∏k

i=1 p(δi)] and as few as 0 [this

happens with probability
∏k

i=1(1 − p(δi))]. The probabilistic model below

scores the vertices of the spectrum graph based on these simple assumptions.

Suppose that an N-terminal partial peptide Pi with mass mi produces ions

δ1, . . . , δl (“present” ions of mass mi − δ1, mi − δ2, . . . , mi − δl ) but fails to

produce ions δl+1, . . . , δk (“missing” ions) in the experimental spectrum. All

l present ions will result in a vertex in the spectrum graph at mass mi, corre-

sponding to Pi. How should we score this vertex? A naive approach would

be to reward Pi for every ion type that explains it, suggesting a score of∏l
i=1 p(δi). However, this approach has the disadvantage of not consider-

ing the missing ions, so we combine those in by defining the score for the

partial peptide to be

(
l∏

i=1

p(δi)

)(
k∏

i=l+1

(1− p(δi))

)

.

However, there is some inherent probability of chemical noise, that is, it can

produce any mass (that has nothing to do with a peptide of interest) with
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certain probability pR. Therefore, we adjust the probabilistic score as

(
l∏

i=1

p(δi)

pR

)(
k∏

i=l+1

1− p(δi)

1− pR

)

.

8.13 Protein Identification via Database Search

De novo protein sequencing algorithms are invaluable for identification of

(both known and unknown) proteins, but they are most useful when work-

ing with complete or nearly complete high-quality spectra. Many spectra are

far from complete, and de novo peptide sequencing algorithms often pro-

duce ambiguous solutions for such spectra. If we had access to a database of

all proteins from a genome, then we would no longer need to consider all 20l

peptide sequences to interpret an MS/MS spectrum, but could instead limit

our search to peptides present in this database.

Currently, most proteins are identified by database search— effectively

looking the answer up in “the back of a book.” Indeed, an experimental

spectrum can be compared with the theoretical spectrum for each peptide

in such a database, and the entry in the database that best matches the ob-

served spectrum usually provides the sequence of the experimental peptide.

This forms the basis of the popular SEQUEST algorithm developed by John

Yates and colleagues. We formulate the Protein Identification problem as

follows.

Protein Identification Problem:

Find a protein from a database that best matches the experimental

spectrum.

Input: A database of proteins, an experimental spectrum S,

a set of ion types ∆, and a parent mass m.

Output: A protein of mass m from the database with the

best match to spectrum S.

Though the logic that SEQUEST uses to determine whether a database

entry matches an experimental spectrum is somewhat involved, the basic

approach of the algorithm is just a linear search through the database. One

drawback to MS/MS database search algorithms like SEQUEST is that pep-

tides in a cell are often slightly different from the “canonical” peptides present
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in databases. The synthesis of proteins on ribosomes is not the final step in

a protein’s life: many proteins are subject to further modifications that reg-

ulate protein activities and these modifications may be either permanent or

reversible. For example, the enzymatic activity of some proteins is regulated

by the addition or removal of a phosphate group at a specific residue.29 Phos-

phorylation is a reversible process: protein kinases add phosphate groups while

phosphatases remove them.

Proteins form complex systems necessary for cellular signaling and meta-

bolic regulation, and are therefore often subject to a large number of bio-

chemical modifications (e.g., phosphorylation and glycosylation). In fact,

almost all protein sequences are modified after they have been constructed

from their mRNA template, and as many as 200 distinct types of modifica-

tions of amino acid residues are known. Since we are unable to predict these

post-translational modifications from DNA sequences, finding naturally occur-

ring modifications remains an important open problem. Computationally,

a chemical modification of the protein p1p2 · · · pi · · · pn at position i results

in increased mass of the N-terminal peptides Pi, Pi+1, . . . , Pn and increased

mass of the C-terminal peptides P−
1 , P−

2 , . . . , P−
i−1.

The computational analysis of modified peptides was also pioneered by

John Yates, who suggested an exhaustive search approach that (implicitly)

generates a virtual database of all modified peptides from a small set of po-

tential modifications, and matches the experimental spectrum against this

virtual database. It leads to a large combinatorial problem, even for a small

set of modification types.

Modified Protein Identification Problem:

Find a peptide from the database that best matches the experimental

spectrum with up to k modifications.

Input: A database of proteins, an experimental spectrum S,

a set of ion types ∆, a parent mass m, and a parameter k

capping the number of modifications.

Output: A protein of mass m with the best match to spec-

trum S that is at most k modifications away from an entry

in the database.

The major difficulty with the Modified Protein Identification problem is

29. Phosphorylation uses serine, threonine, or tyrosine residues to add a phosphate group.
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that very similar peptides P1 and P2 may have very different spectra S1 and

S2.30 Our goal is to define a notion of spectral similarity that correlates well

with sequence similarity. In other words, if P1 and P2 are a few modifica-

tions apart, the spectral similarity between S1 and S2 should be high. The

shared peaks count is, of course, an intuitive measure of spectral similarity.

However, this measure diminishes very quickly as the number of mutations

increases, thus leading to limitations in detecting similarities by database

search. Moreover, there are many correlations between the spectra of related

peptides, and only a small proportion of these correlations is captured by the

shared peaks count.

The spectral convolution algorithm, below, reveals potential peptide mod-

ifications without an exhaustive search and therefore does not require gener-

ating a virtual database of modified peptides.

8.14 Spectral Convolution

Let S1 and S2 be two spectra. Define the spectral convolution to be the multiset

S2�S1 = {s2 − s1 : s1 ∈ S1, s2 ∈ S2} and let (S2�S1)(x) be the multiplicity

of element x in this multiset. In other words, (S2 � S1)(x) is the number of

pairs (s1 ∈ S1, s2 ∈ S2) such that s2 − s1 = x (fig. 8.26).

The shared peak count that we introduced earlier in this chapter is the

number of masses common to both S1 and S2, and is simply (S2 � S1)(0).

MS/MS database search algorithms that maximize the shared peak count

find a peptide in the database that maximizes (S2 � S1)(0), where S2 is an

experimental spectrum and S1 is the theoretical spectrum of a peptide in

the database. However, if S1 and S2 correspond to peptides that differ by

k mutations or modifications, the value of (S2 � S1)(0) may be too small to

determine that S1 and S2 really were generated by similar peptides. As a

result, the power of the shared peak count to discern that two peptides are

similar diminishes rapidly as the number of modifications increases—it is

bad at k = 1, and nearly useless for k > 1.

The peaks in the spectral convolution allow us to detect mutations and

modifications, even if the shared peak count is small. If peptides P2 and P1

(corresponding to spectra S2 and S1) differ by only one mutation (k = 1)

with amino acid difference δ = m(P2) −m(P1), then S2 � S1 is expected to

have two approximately equal peaks at x = 0 and x = δ. If the mutation

30. P1 corresponds to a peptide from the database, while P2 corresponds to the modified ver-
sion of P1, whose experimental spectrum is being used to search the database.
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occurs at position t in the peptide, then the peak at (S2 � S1)(0) corresponds

to N-terminal peptides Pi for i < t and C-terminal peptides P−
i for i ≥ t.

The peak at (S2� S1)(δ) corresponds to N-terminal peptides Pi for i ≥ t and

C-terminal peptides P−
i for i < t.

Now assume that P2 and P1 are two substitutions apart, one with mass

difference δ′ and another with mass difference δ − δ′, where δ denotes the

difference between the parent masses of P1 and P2. These modifications

generate two new peaks in the spectral convolution at (S2 � S1)(δ
′) and at

(S2 � S1)(δ − δ′). It is therefore reasonable to define the similarity between

spectra S1 and S2 as the overall height of the k highest peaks in S2 � S1.

Although spectral convolution helps to identify modified peptides, it does

have a limitation. Let

S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

be a spectrum of peptide P , and assume for simplicity that P produces only

b-ions. Let

S′ = {10, 20, 30, 40, 50, 55, 65, 75, 85, 95}

and

S′′ = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}

be two theoretical spectra corresponding to peptides P ′ and P ′′ from the

database. Which of the two peptides fits S better? The shared peaks count

does not allow one to answer this question, since both S′ and S′′ have five

peaks in common with S. Moreover, the spectral convolution also does not

answer this question, since both S � S′ and S � S′′ reveal strong peaks of

the same height at 0 and 5. This suggests that both P ′ and P ′′ can be ob-

tained from P by a single mutation with mass difference 5. However, a more

careful analysis shows that although this mutation can be realized for P ′ by

introducing a shift 5 after mass 50, it cannot be realized for P ′′. The major

difference between S′ and S′′ is that the matching positions in S′ come in

clumps while the matching positions in S′′ do not. Below we describe the

spectral alignment approach, which addresses this problem.

8.15 Spectral Alignment

Let A = {a1, . . . , an} be an ordered set of integers a1 < a2 < · · · < an.

A shift ∆i transforms A into {a1, . . . ai−1, ai + ∆i, . . . , an + ∆i}. That is, ∆i

alters all elements in the sequence except for the first i− 1 elements. We only
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Figure 8.26 Detecting modifications of the peptide PRTEIN . (a) Elements of the
spectral convolution S2 � S1 represented as elements of a difference matrix. S1 and
S2 are the theoretical spectra of the peptides PRTEIN and PRTEY N , respectively.
Elements in the spectral convolution that have multiplicity larger than 2 are shaded,
while the elements with multiplicity exactly 2 are shown circled. The high multiplic-
ity element 0 corresponds to all of the shared masses between the two spectra, while
another high multiplicity element (50) corresponds to the shift of masses by δ = 50,
due to the mutation of I to Y in PRTEIN (the difference in mass between Y and
I is 50). In (b), two mutations have occurred in PRTEIN : R → W with δ′ = 30,
and I → Y with δ′′ = 50. Spectral alignments for (a) and (b) are shown in (c) and
(d), respectively. The main diagonals represent the paths for k = 0. The lines parallel
to the main diagonals represent the paths for k > 0. Every jump between diagonals
corresponds to an increase in k. Mutations and modifications to a peptide can be
detected as jumps between the diagonals.
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consider shifts that do not change the order of elements, that is, the shifts

with ∆i ≥ ai−1 − ai. The k-similarity, D(k), between sets A and B is defined

as the maximum number of elements in common between these sets after k

shifts. For example, a shift −56 transforms

S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

into

S′ = {10, 20, 30, 40, 50,55,65,75,85,95} .

Therefore D(1) = 10 for these sets. The set

S′′ = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}

has five elements in common with S (the same as S′) but there is no single

shift transforming S into S′′ (D(1) = 6). Below we analyze and solve the

following Spectral Alignment problem:

Spectral Alignment Problem:

Find the k-similarity between two sets.

Input: Sets A and B, which represent the two spectra, and a

number k (number of shifts).

Output: The k-similarity, D(k), between sets A and B.

One can represent sets A = {a1, . . . , an} and B = {b1, . . . , bm} as 0–1 ar-

rays a and b of length an and bm correspondingly. The array a will contain n

ones (at positions a1, . . . , an) and an− n zeros, while the array b will contain

m ones (at positions b1, . . . , bm) and bm −m zeros.31 In such a model, a shift

∆i < 0 is simply a deletion of ∆i zeros from a, while a shift ∆i > 0 is simply

an insertion of ∆i zeros in a. With this model in mind, the Spectral Align-

ment problem is simply to find the edit distance between a and b when the

elementary operations are deletions and insertions of blocks of zeros. As we

saw in chapter 6, these operations can be modeled by long horizontal and

vertical edges in a Manhattan-like graph. The only differences between the

traditional Edit Distance problem and the Spectral Alignment problem are a

somewhat unusual alphabet and the scoring of paths in the resulting graph.

The analogy between the Edit Distance problem and the Spectral Alignment

31. We remark that this is not a particularly dense encoding of the spectrum.
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problem leads us to frame spectral alignment as a type of longest path prob-

lem.

Define a spectral product A ⊗ B to be the an × bm two-dimensional matrix

with nm ones corresponding to all pairs of indices (ai, bj) and all remaining

elements zero. The number of ones on the main diagonal of this matrix de-

scribes the shared peaks count between spectra A and B, or in other words,

0-similarity between A and B. Figure 8.27 shows the spectral products S⊗S′

and S⊗S′′ for the example from the previous section. In both cases the num-

ber of ones on the main diagonal is the same, and D(0) = 5. The δ-shifted

peaks count is the number of ones on the diagonal that is δ away from the

main diagonal. The limitation of the spectral convolution is that it considers

diagonals separately without combining them into feasible mutation scenar-

ios. The k-Similarity between spectra is defined as the maximum number

of ones on a path through the spectral matrix that uses at most k + 1 di-

agonals, and the k-optimal spectral alignment is defined as the path that uses

these k + 1 diagonals. For example, 1-similarity is defined by the maximum

number of ones on a path through this matrix that uses at most two diago-

nals. Figure 8.27 demonstrates the notion that 1-similarity shows that S is

closer to S′ than to S′′; in the first case the optimal two-diagonal path covers

ten 1s (left matrix), versus six in the second case (right matrix). Figure 8.28

illustrates that the spectral alignment detects more and more subtle similar-

ities between spectra, simply by increasing k [compare figures 8.26 (c) and

(d)].32 Below we describe a dynamic programming algorithm for spectral

alignment.

Let Ai and Bj be the i-prefix of A and j-prefix of B, respectively. Define

Dij(k) as the k-similarity between Ai and Bj such that the last elements of

Ai and Bj are matched. In other words, Dij(k) is the maximum number of

ones on a path to (ai, bj) that uses at most k + 1 different diagonals. We say

that (i′, j′) and (i, j) are codiagonal if ai− ai′ = bj − bj′ and that (i′, j′) < (i, j)

if i′ < i and j′ < j. To take care of the initial conditions, we introduce a

fictitious element (0, 0) with D0,0(k) = 0 and assume that (0, 0) is codiagonal

with any other (i, j). The dynamic programming recurrence for Dij(k) is

then

Dij(k) = max
(i′,j′)<(i,j)

{
Di′j′ (k) + 1, if (i′, j′) and (i, j) are codiagonal

Di′j′ (k − 1) + 1, otherwise.

The k-similarity between A and B is given by D(k) = maxij Dij(k).

32. To a limit, of course. When k is too large, the spectral alignment is not very useful.
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Figure 8.27 Spectral products S ⊗ S′ (left) and S ⊗ S′′ (right), where S =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, S′ = {10, 20, 30, 40, 50, 55, 65, 75, 85, 95}, and
S′′ = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}. The matrices have dimensions 100 × 95,
with ones shown by circles (zeros are too numerous to show). The spectrum S can be
transformed into S′ by a single shift and D(1) = 10. However, the spectrum S cannot
be transformed into S′′ by a single shift and D(1) = 6.

The above dynamic programming algorithm for spectral alignment is rather

slow, with a running time of O(n4k) for two n-element spectra, and below we

describe an O(n2k) algorithm for solving this problem. Define diag(i, j) as

the maximal codiagonal pair of (i, j) such that diag(i, j) < (i, j). In other

words, diag(i, j) is the position of the previous “1” on the same diagonal as

(ai, bj) or (0, 0) if such a position does not exist. Define

Mij(k) = max(i′,j′)≤(i,j)Di′j′(k).

Then the recurrence for Dij(k) can be re-written as

Dij(k) = max

{
Ddiag(i,j)(k) + 1,

Mi−1,j−1(k − 1) + 1.
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Figure 8.28 Aligning spectra. The shared peaks count reveals only D(0) = 3 match-
ing peaks on the main diagonal, while spectral alignment reveals more hidden sim-
ilarities between spectra (D(1) = 5 and D(2) = 8) and detects the corresponding
mutations.

The recurrence for Mij(k) is given by

Mij(k) = max

⎧
⎨

⎩

Dij(k),

Mi−1,j(k),

Mi,j−1(k).

The transformation of the dynamic programming graph can be achieved by

introducing horizontal and vertical edges that provide the ability to switch

between diagonals (fig. 8.29). The score of a path is the number of ones on

this path, while k corresponds to the number of switches (number of used

diagonals minus 1).

The simple dynamic programming algorithm outlined above hides many

details that make the spectral alignment problem difficult. A spectrum can

be thought of as a combination of two series of numbers, one increasing (the

N-terminal ions) and the other decreasing (the C-terminal ions). These two
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Figure 8.29 Modification of a dynamic programming graph leads to a fast spectral
alignment algorithm.

series form diagonals in the spectral product S ⊗ S, the main diagonal and

the perpendicular diagonal. These correspond, respectively, to pairings of N-

terminal and C-terminal ions. The algorithm we have described deals with

the main diagonal only. Finding post-translationally modified proteins via

mass spectrometry remains a difficult problem that nobody has yet solved,

and significant efforts are underway to extend the Spectral Alignment algo-

rithm to handle these complications and to develop new algorithmic ideas

for protein identification.

8.16 Notes

The earliest paper on graph theory seems to be that of Leonhard Euler, who,

in 1736, discussed whether or not it was possible to stroll around Königs-

berg crossing each of its bridges across the Pregel River exactly once. Euler

remains one of the most prolific writers in mathematics: aside from graph

theory, we owe him the notation f(x) for a function, i for the square root of

−1, and π for pi. He worked hard throughout his entire life only to become
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blind. He commented: “Now I will have fewer distractions,” and proceeded

to write hundreds of papers more.

Graph theory was forgotten for a century, but was revived in the second

half of the nineteenth century by prominent scientists such as Sir William

Hamilton (who, among many other things, invented quaternions) and Gus-

tav Kirchhoff (who is responsible for Kirchhoff’s laws).

DNA arrays were proposed simultaneously and independently in 1988 by

Radoje Drmanac and colleagues in Yugoslavia (29), Andrey Mirzabenov and

colleagues in Russia (69), and Ed Southern in the United Kingdom (100).

The inventors of DNA arrays suggested using them for DNA sequencing,

and the original name for this technology was sequencing by hybridization.

A major breakthrough in DNA array technology was made by Steve Fodor

and colleagues in 1991 (38) when they adapted photolithography (a process

similar to computer chip manufacturing) to DNA synthesis. The Eulerian

path approach to SBH was described in (83).

Sanger’s approach to protein sequencing influenced work on RNA se-

quencing. Before biologists figured out how to sequence DNA, they rou-

tinely sequenced RNA. The first RNA sequencing project resulted in seventy-

seven ribonucleotides and took seven years to complete, though in 1965

RNA sequencing used the same “break—read the fragments—assemble” ap-

proach that is used for DNA sequencing today. For many years, DNA se-

quencing was done by first transcribing DNA to RNA and then sequencing

the RNA.

DNA sequencing methods were invented independently and simultane-

ously in 1977 by Frederick Sanger and colleagues (91) and Walter Gilbert and

colleagues (74). The overlap-layout-consensus approach to DNA sequenc-

ing was first outlined in 1984 (82) and further developed by John Kececioglu

and Eugene Myers in 1995 (55). DNA sequencing progressed to handle the

entire 1800 kb H. influenzae bacterium genome in the mid-1990s. In 1997, in-

spired by this breakthrough, James Weber and Eugene Myers (110) proposed

the whole-genome shotgun approach (first outlined by Jared Roach and col-

leagues in 1995 (87)) to sequence the entire human genome. The human

genome was sequenced in 2001 by J. Craig Venter and his team at Celera Ge-

nomics (104) with the whole genome shotgun approach, and independently

by Eric Lander and his colleagues at the Human Genome Consortium (62)

using the BAC-by-BAC approach.

Early approaches to protein sequencing by mass spectrometry were based

on manual peptide reconstruction and the assembly of those peptides into

protein sequences (51). The description of the spectrum graph approach pre-
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sented in this chapter is from Vlado Dancik and colleagues (25). Searching

a database for the purposes of protein identification in mass spectrometry

was pioneered by Matthias Mann and John Yates in 1994 (71; 34). In 1995

Yates (112) extended his original SEQUEST algorithm to search for modified

peptides based on a virtual database of all modified peptides. The spectral

alignment algorithm was introduced five years later (84).
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8.17 Problems

Problem 8.1

Can 99 phones be connected by wires in such a way that each phone is connected
with exactly 11 others?

Problem 8.2

Can a kingdom in which 7 roads lead out of each city have exactly 100 roads?

� � � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

Problem 8.3

Can a knight travel around a chessboard pass through every square exactly once, and
end on the same square it started on?

Problem 8.4

Can a knight travel around a chessboard, start at the upper left corner, pass through
every square exactly once, and end on the lower right corner?

Problem 8.5

Can one use a 12-inch-long wire to form a cube (each of the 12 cube edges is 1-inch
long). If not, what is the smallest number of cuts one must make to form this cube?

Problem 8.6

Find the shortest common superstring for eight 3-mers:

{AGT, AAA, ACT, AAC, CTT, GTA, TTT, TAA}
and solve the following two problems:

• Construct the graph with 8 vertices corresponding to these 3-mers (Hamiltonian
path approach) and find a Hamiltonian path (7 edges) which visits each vertex
exactly once. Does this path visit every edge of the graph? Write the superstring
corresponding to this Hamiltonian path.

• Construct the graph with 8 edges corresponding to these 3-mers (Eulerian path
approach) and find an Eulerian path (8 edges) which visits each edge exactly once.
Does this path visit every vertex of the graph exactly once? Write the superstring
corresponding to this Eulerian path.
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Problem 8.7

Find the shortest common superstring for all 100 2-digit numbers from 00 to 99.

Problem 8.8

Find the shortest common superstring for all 16 3-digit binary numbers in 0-1 alpha-
bet.

Problem 8.9

Use the Eulerian path approach to solve the SBH problem for the following spectrum:

S = {ATG, GGG, GGT, GTA, GTG, TAT, TGG}

Label edges and vertices of the graph, and give all possible sequences s such that
Spectrum(s, 3) = S .

Problem 8.10

The SBH problem is to reconstruct a DNA sequence from its l-mer composition

• Suppose that instead of a single target DNA fragment, we have two target DNA
fragments and we simultaneously analyze both of them with a universal DNA
array. Give a precise formulation of the resulting problem (something like the
formulation of the SBH problem).

• Give an approach to the above problem which resembles the Hamiltonian Path
approach to SBH.

• Give an approach to the above problem which resembles the Eulerian Path ap-
proach to SBH.

Problem 8.11

Suppose we have k target DNA fragments, and that we are able to measure the overall
multiplicity of each l-mer in these strings. Give an algorithm to reconstruct these k
strings from the overall l-mer composition of these strings.

Problem 8.12

Prove that if n random reads of length L are chosen from a genome of length G,
then the expected fraction of the genome represented in these reads is approximately
1− ec, where c = nL

G
is the average coverage of the genome by reads.

The simplest heuristic for the Shortest Superstring problem is an obvious greedy algorithm:

repeatedly merge a pair of strings with maximum overlap until only one string remains. The

compression of an approximation algorithm for the Shortest Superstring problem is defined as the

number of symbols saved by this algorithm compared to plainly concatenating all the strings.

Problem 8.13

Prove that the greedy algorithm achieves at least 1
2

the compression of an optimal
superstring, that is,

greedy compression

optimal compression
≥ 1

2



304 8 Graph Algorithms

Figure 8.30 A mask used in the synthesis of a DNA array.

Let P = {s1, . . . , sm} be a set of positive strings and N = {t1, . . . , tk} be a set of negative

strings. We assume that no negative string ti is a substring of any positive string sj . A consistent

superstring is a string s such that each si is a substring of s and no ti is a substring of s.

Problem 8.14

Design an approximation algorithm for the shortest consistent superstring problem.

Problem 8.15

DNA sequencing reads contain errors that lead to complications in fragment assem-
bly. Fragment assembly with sequencing errors motivates the Shortest k-Approximate
Superstring problem: Given a set of strings S , find a shortest string s such that each
string in S matches some substring of s with at most k errors. Design an approxima-
tion algorithm for this problem.

DNA arrays can be manufactured with the use of a photolithographic process that grows probes

one nucleotide at a time through a series of chemical steps. Every nucleotide carries a photo-

labile protection group protecting the probe from further growth. This group can be removed

by illuminating the probe. In each step, a predefined region of the array is illuminated, thus

removing a photolabile protecting group from that region and “activating” it for further nu-

cleotide growth. The entire array is then exposed to a particular nucleotide (which bears its own

photolabile protecting group), but reactions only occur in the activated region. Each time the

process is repeated, a new region is activated and a single nucleotide is appended to each probe

in that region. By appending nucleotides to the proper regions in the appropriate sequence, it is

possible to grow a complete set of l-mer probes in as few as 4 · l steps. The light-directed synthe-

sis allows random access to all positions of the array and can be used to make arrays with any

probes at any site (fig. 8.30).

The proper regions are activated by illuminating the array through a series of masks, like those

in figure 8.31. White areas of a mask correspond to the region of the array to be illuminated,
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Figure 8.31 Two masks with different border lengths (only 3-mers starting with A
are shown).

and black areas correspond to the region to be shadowed. Unfortunately, because of diffrac-

tion and light scattering, points that are close to the border between an illuminated region and

a shadowed region are often subject to unintended illumination. In such a region, it is uncer-

tain whether a nucleotide will be appended or not. This uncertainty gives rise to probes with

unknown sequences and unknown lengths, that may hybridize to a target DNA strand, thus

complicating interpretation of the experimental data. Methods are being sought to minimize

the lengths of these borders so that the level of uncertainty is reduced.

Figure 8.31 presents two universal arrays with different arrangements of 3-mers and masks for

synthesizing the first nucleotide A (only probes with first nucleotide A are shown). The border

length of the mask at the bottom of figure 8.31 is significantly smaller than the border length

of the mask at the top of figure 8.31. Companies producing DNA arrays try to arrange the 4l

probes on the universal array in such a way that the overall border length of all 4 × l masks is

minimal.
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Problem 8.16

Find a lower bound on the overall border length of the universal array with 4l l-mers.

For two l-mers x and y, let dH(x, y) be the Hamming distance between x and y, that is, the

number of positions in which x and y differ. The overall border length of all masks equals

2
P

dH(x, y), where the sum is taken over all pairs of neighboring probes on the array. This

observation establishes the connection between minimization of border length and Gray codes.

An l-bit Gray code is defined as a permutation of the binary numbers from 000 · · · 0 to 111 · · · 1,

each containing l binary digits, such that neighboring numbers have exactly one differing bit,

as do the first and last numbers. For example, the arrangement of sixteen 4-mers in a 4-bit Gray

code is shown below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

This Gray code can be generated recursively, starting with the 1-bit Gray code

G1 = {0, 1},

as follows. For an l-bit Gray code,

Gl = {g1, g2, ..., g2l−1, g2l},

define an (l + 1)-bit Gray code as follows:

Gl+1 = {0g1, 0g2, ...,0g2l−1, 0g2l , 1g2l , 1g2l−1, ...,1g2, 1g1}.

The elements of Gl are simply copied with 0s added to the front, then reversed with 1s added

to the front. Clearly, all elements in Gl+1 are distinct, and consecutive elements in Gl+1 differ

by exactly one bit. For example, the 2-bit Gray code is {00, 01, 11, 10}, and the 3-bit Gray code

is {000, 001, 011, 010, 110, 111, 101, 100}.

Problem 8.17

Design a Gray code for all 4-digit decimal numbers from 0000 to 9999.

We are interested in a two-dimensional Gray code composed of strings of length l over a four-

letter alphabet. In other words, we would like to generate a 2l-by-2l matrix in which each of

the 4l l-mers in a universal array is present at some position, and each pair of adjacent l-mers

(horizontally or vertically) differs in exactly one position. Constructing such a two-dimensional

Gray code is equivalent to minimizing the border length of the universal array.

Problem 8.18

Find the arrangement of probes on a universal array minimizing the border length.

Accurate determination of the peptide parent mass is very important in de novo peptide se-

quencing. An error in parent mass leads to systematic errors in the construction of the spectrum
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graph when both N-terminal and C-terminal fragment ions are considered (wrong pairing of

N-terminal and C-terminal fragment ions).

Problem 8.19

Given an MS/MS spectrum (without parent mass), devise an algorithm that estimates
the parent mass.

Problem 8.20

Develop an algorithm for combining N-terminal and C-terminal series together in the
spectral alignment algorithm.

Problem 8.21

Develop a version of the spectral alignment algorithm that is geared to mutations
rather than modifications. In this case the jumps between diagonals are not arbitrary
and one has to limit the possible shifts between diagonals to mass differences between
amino acids participating in the mutation.

The i-th prefix mass of protein P = p1 . . . pn is mi =
Pi

j=1 m(pj) where m(pj) is the mass

of amino acid pj . The prefix spectrum of protein P is the increasing sequence m1, . . . , mn of its

prefix masses. For example, the prefix spectrum of protein CSE is {103, 103 + 87, 103 + 87 +

129} = {103, 190, 319}. A peptide is any substring pi . . . pj of P for 1 ≤ i ≤ j ≤ n. The prefix

spectrum of a peptide pi . . . pj contains j − i+1 masses, for example, the prefix spectrum of CS

is {103, 190}, while the prefix spectrum of SE is {87, 216}. For simplicity we assume that every

amino acid has an unique mass.

Problem 8.22

(Spectral Assembly problem) Given a set of prefix spectra from a set of (overlap-
ping) peptides extracted from an (unknown) protein P , reconstruct the amino acid
sequence of P .

The Spectral Assembly problem is equivalent to the classic Shortest Common Superstring problem.

Assume that the protein P and the set of its peptides P satisfy the following conditions:

• pipi+1 �= pjpj+1 for 1 ≤ i < j ≤ n − 1, that is, every amino acid 2-mer (dipeptide) occurs

at most once in protein P .

• For every two consecutive amino acids pipi+1 in protein P there exists a peptide in P con-

taining dipeptide pipi+1.

For example, a protein STRAND and the set of peptides STR, TR, TRAN, RA, and AND satisfy

these conditions.

Problem 8.23

Design an algorithm to solve the Spectral Assembly problem under the above condi-
tions. Does the problem have a unique solution? If your answer is “no,” then also
provide an algorithm to find all possible protein reconstructions.



308 8 Graph Algorithms

Problem 8.24

Extend this algorithm to solve the spectral assembly problem under the following
conditions:

• pipi+1 . . . pi+l−1 �= pjpj+1 . . . pj+l−1 for 1 ≤ i < j ≤ n− l +1, that is, every amino
acid l-mer (l-peptide) occurs at most once in protein P .

• For every l consecutive amino acids pipi+1 . . . pi+l−1 in protein P there exists a
peptide in P containing l-peptide pipi+1 . . . pi+l−1.

Problem 8.25

Consider two proteins P1 and P2. The combined prefix spectrum of proteins P1 and
P2 is defined as the union of their prefix spectra. Describe an algorithm for recon-
structing P1 and P2 from their combined prefix spectrum. Give an example when
such a reconstruction is non-unique. Generalize this algorithm for three and more
proteins.

When analyzing a protein p1 . . . pn, a mass spectrometer measures the masses of both the pre-

fix peptides p1 . . . pi and of the suffix peptides pi . . . pn, for 1 ≤ i ≤ n. The prefix-suffix

mass spectrum includes the masses of all prefix and suffix peptides. For example, CSE pro-

duces the following prefix-suffix spectrum {103, 129, 103 + 87, 129 + 87, 103 + 87 + 129} =

{103, 129, 190, 216, 319} and it remains unknown which masses in the prefix-suffix spectrum

are derived from the prefix peptides and which are derived from the suffix peptides.

The prefix-suffix spectrum may contain as few as n masses (for palindromic peptides with every

suffix mass matched by a prefix mass) and as many as 2n−1 masses (if the overall peptide mass

is the only match between suffix and prefix masses).

Problem 8.26

Reconstruct a peptide given its prefix-suffix spectrum. Devise an efficient algorithm
for this problem under the assumption that the prefix-suffix spectrum of a peptide of
length n contains 2n− 1 masses.

In 1993 David Schwartz and colleagues developed the optical mapping technique for construction

of restriction maps. In optical mapping, single copies of DNA molecules are stretched and

attached to a glass under a microscope. When restriction enzymes are activated, they cleave

the DNA molecules at their restriction sites. The molecules remain attached to the surface, but

the elasticity of the stretched DNA pulls back the molecule ends at the cleaved sites. These can

be identified under the microscope as tiny gaps in the fluorescent line of the molecule. Thus a

“photograph” of the DNA molecule with gaps at the positions of cleavage sites gives a snapshot

of the restriction map.

Optical mapping bypasses the problem of reconstructing the order of restriction fragments,

but raises new computational challenges. The problem is that not all sites are cleaved in each

molecule and that some may incorrectly appear to be cut. In addition, inaccuracies in measur-

ing the length of fragments and the unknown orientation of each molecule (left to right or vice

versa) make the reconstruction difficult. In practice, data from many molecules are gathered to

build a consensus restriction map.
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The input to the optical mapping problem is a 0-1 n × m matrix S = (sij) where each row

corresponds to a DNA molecule (straight or reversed), each column corresponds to a position

in that molecule, and sij = 1 if (and only if) there is a cut in position j of molecule i. The goal is

to reverse the orientation of a subset of molecules (subset of rows in S) and to declare a subset

of the t columns “real cut sites” so that the number of ones in cut site columns is maximized.

A naive approach to this problem is to find t columns with a large proportion of ones and

declare them potential cut sites. However, in this approach every real site will have a reversed

twin (since each “photograph” corresponds to either straight or reversed DNA molecules with

equal probabilities). Let w(i, j) be the number of molecules with both cut sites i and j present

(in either direct or reverse orientation). In a different approach, a graph on vertices {1, . . . , m}

is constructed and two vertices are connected by an edge (i, j) of weight w(i, j).

Problem 8.27

Establish a connection between optical mapping and finding paths in graphs.
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In chapter 5, we considered the Motif Finding problem, which is to find some

overrepresented pattern in a DNA sample. We are not given any particular

pattern to search for; rather we must infer it from the sample. Combinatorial

pattern matching, on the other hand, looks for exact or approximate occur-

rences of given patterns in a long text. Although pattern matching is in some

ways simpler than motif finding since we actually know what we are looking

for, the large size of genomes makes the problem, in practice, difficult. The

alignment techniques of chapter 6 become impractical for whole genomes,

particularly when one searches for approximate occurrences of many long

patterns at one time. In this chapter we develop a number of ways to make

pattern matching in a long string practical.

One recurring theme in this chapter is how to organize data into efficient

data structures, often a crucial part of solving a problem. For example, sup-

pose you were in a library with 2 million volumes in no discernible order

and you needed to find one particular title. The only way to guarantee find-

ing the title would be to check every book in the library. However, if the

books in the library were sorted by title, then the check becomes very easy.

A sorted list is only one of many types of data structures, and in this chapter

we discuss significantly more sophisticated ways of organizing data.

9.1 Repeat Finding

Many genetic diseases are associated with deletions, duplications, and rear-

rangements of long chromosomal regions. These are dramatic events that

affect the large-scale genomic architecture and may involve millions of nu-

cleotides. For example, DiGeorge syndrome, which commonly results in an

impaired immune system and heart defects, is associated with a large 3 Mb
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deletion on human chromosome 22. A deletion of this size is likely to remove

important genes and lead to disease.

Such dramatic changes in genomic architecture often require—as in the

case of DiGeorge syndrome—a pair of very similar sequences flanking the

deleted segment. These similar sequences form a repeat in DNA, and it is

important to find all repeats in a genome.

Repeats in DNA hold many evolutionary secrets. A striking and still un-

explained phenomenon is the large number of repeats in many genomes: for

example, repeats account for about 50% of the human genome. Algorithms

that search for repeats in the human genome need to analyze a 3 billion nu-

cleotide genome, and quadratic sequence alignment algorithms are too slow

for this. The simplest approach to finding exact repeats is to construct a ta-

ble that holds, for each l-mer, all the positions where the l-mer is located in

the genomic DNA sequence. Such a table would contain 4l bins, each bin

containing some number between 0 and M of positions, where M is the fre-

quency of occurrence of the most common l-mer in the genome. The average

number of elements in each bin is n
4l , where n is the length of the genome.

In many applications, the parameter l varies from 10 to 13, so this table is

not unmanageably large. Although this tabulation approach allows one to

quickly find all repeats of length l, such short repeats are not very interesting

for DNA analysis. Biologists instead are interested in long maximal repeats,

that is, repeats that cannot be extended to the left or to the right. To find

maximal repeats that are longer than a predefined parameter L, each exact

repeat of length l must be extended to the left or to the right to see whether it

is embedded in a repeat longer than L. Since typically l << L, there are many

more repeats to be extended than there are maximal repeats to be found. For

example, the bacterial Escherichia coli genome of 4.6 million nucleotides has

millions of repeats of length l = 12 but only about 8000 maximal repeats of

length L = 20 or longer.1 Thus, most of the work in this approach to repeat

finding is wasted trying to pointlessly extend short repeats. The popular RE-
Puter algorithm gets around this by using a suffix tree, a data structure that

we describe in a later section.

1. It may seem confusing at first that a genome of size 4.6 million base pairs has more than a mil-
lion repeats. A repeat is defined as a pair of positions in the genome, and there are

`
n
2

´
potential

pairs of positions in a genome of size n. The most frequent 12-mer in E. coli (ACGCCGCATCCG)
appears ninety-four times and corresponds to (94 · 93)/2 = 4376 repeats.
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9.2 Hash Tables

Consider the problem of listing all unique elements from a list.

Duplicate Removal Problem:

Find all unique entries in a list of integers.

Input: A list a of n integers.

Output: List a with all duplicates removed.

For example, the list (8, 1, 5, 1, 0, 4, 5, 10, 1) has the elements 1 and 5 re-

peated multiple times, so the resulting list would be (8, 1, 5, 0, 4, 10) or (0, 1, 4,

5, 8, 10)–the order of elements in the list does not matter. If the list was al-

ready sorted, one could simply traverse it and remove identical consecutive

elements. This approach requires O(n log n) time to sort the list of size n, and

then O(n) time to traverse the sorted version.

Another approach is to use the elements in array a as addresses into an-

other array b. That is, we can construct another array b consisting of 0s and

1s such that bi = 1 if i is in a (any number of times), and bi = 0 otherwise. For

a = (8, 1, 5, 1, 0, 4, 5, 10, 1), elements b0, b1, b4, b5, b8, and b10 are all equal to 1

and all other elements of b are equal to 0, as in b = (1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1).

After b is constructed, simply traversing b solves the Duplicate Removal

problem as in the DUPLICATEREMOVAL algorithm below.2

DUPLICATEREMOVAL(a, n)

1 m← largest element of a

2 for i← 0 to m

3 bi ← 0

4 for i← 0 to n

5 bai
← 1

6 for i← 0 to m

7 if bi = 1

8 output i

9 return

The array b can be created and traversed in time proportional to its length,

so this algorithm is linear in the length of b.3 Superficially, this sounds better

2. This assumes that all elements of a are non-negative.
3. We remark that DUPLICATEREMOVAL can be viewed as a sorting algorithm.
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than an O(n log n) algorithm, which is not linear in n. However, one critical

difficulty is that the entries in a can be arbitrarily large. If a = (1, 5, 1023),

then b will have 1023 elements. Creation and traversing of a list with 1023

elements is certainly not efficient, and probably not even possible.

To work around this problem, we can introduce a function that operates

on any integer and maps it to some integer in a small range (shown schemat-

ically in figure 9.1). For example, suppose we wanted the list b to contain

fewer than 1000 entries. If we could take any integer (even 1023) and map

it to some number between 1 and 1000, then we could apply this “binning”

strategy efficiently. The function that performs this mapping is often referred

to as a hash function, and the list b is generally referred to as a hash table. The

hash function, h, must be easy to calculate and integer-valued.4 A fairly sim-

ple hash function is to take h(x) to the integer remainder of x/ |b|, where |b|

is the size of b. Usually the size of b is selected to fit into computer memory.

For the Duplicate Remove problem, the hash table b is built according to the

rule bi = 1 if h(aj) = i for some element aj from a, and bi = 0 otherwise.

If |b| = 10, then h(1) = 1, h(5) = 5, and h(1023) = 0, and a = (1, 5, 1023)

results in the array b = (1, 1, 0, 0, 1, 0, 0, 0, 0, 0). However, this approach will

not immediately work for duplicate removal since different elements, ai and

aj , may collapse to the same bin, that is, h(ai) = h(aj).

Ideally, we would like different integers in the array a to map to different

integers in b, but this is clearly impossible when the number of unique values

in a is larger than the length of b. Even when the number of unique values in

a is smaller than the length of b, it can be particularly tricky to design a hash

function h such that different values map to different bins. Furthermore, you

would rather not have to redesign h for every different input. For example,

if h(x) = x
1000 , then elements 3, 1003, 2003, and so on, collide and fall into the

same bin. A common technique to deal with collision is chaining. Elements

collapsing to the same bin are often organized into a linked list5 (fig. 9.2).

Further analysis of the elements that collapsed to the same bin can reveal

duplicate elements and leads to a fast algorithm for the Duplicate Removal

problem.

While we have been concerned with removing duplicate integers from lists

in this section, it is relatively easy to extend the concept of hashing to many

other problems. For example, to find exact repeats of l-mers in a genome we

treated the genome as a list of l-mers and relied on a hash table; it just hap-

4. Integer valued functions return only integers, regardless of their input.
5. For more about data structures, see (24).



9.2 Hash Tables 315

x h(x)
Penguin 1
Octopus 4
Turtle 3
Mouse 2
Snake 3
Heron 1
Tiger 2
Iguana 3
Ape 2
Cricket 4
Sparrow 1

Figure 9.1 An illustration of hashing: birds eat at Birdseed King [h(x) = 1]; mam-
mals eat at Mammal Express [h(x) = 2]; reptiles, snakes, and turtles eat at McScales
[h(x) = 3], and all other animals eat at Fred’s [h(x) = 4].
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10 20 100 20 400 450

2 32

3 1003 2003 503 43

15 15 125

Figure 9.2 Chaining in a hash table.

pened that the hash table had exactly as many elements as we could possibly

have seen, so we needed no strategy to deal with collision. On the other

hand, if we wanted to find exact repeats for large values of l (say, l = 40),

then we could not construct a hash table of 440 entries. Instead, we could

design a suitable hashing function and use a table of much smaller size.

9.3 Exact Pattern Matching

A common problem in bioinformatics is to search a database of sequences

for a known sequence. Given a pattern string p = p1 · · · pn and a longer

text string t = t1 · · · tm, the Pattern Matching problem is to find any and all

occurrences of pattern p in text t.
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Pattern Matching Problem:

Given a pattern and a text, find all occurrences of the pattern in the text.

Input: Pattern p = p1 . . . pn and text t = t1 . . . tm.

Output: All positions 1 ≤ i ≤ m − n + 1 such that the

n-letter substring of t starting at i coincides with p (i.e,

ti . . . ti+n−1 = p1 . . . pn).

For example, if t = ATGGTCGGT and p = GGT, then the result of an

algorithm that solves the Pattern Matching problem would be positions 3

and 7.

We will use the notation ti = ti . . . ti+n−1 to denote a substring of length

n from t starting at position i. If ti = p, then we have found an occurrence

of the pattern in the text. By checking all possible values of i in increasing

order, we are in effect scanning t by sliding a window of length n from left to

right, and noting where the window is when the pattern p appears. A brute

force algorithm for solving the Pattern Matching problem does exactly this.

PATTERNMATCHING(p, t)

1 n← length of pattern p

2 m← length of text t

3 for i← 1 to m− n + 1

4 if ti = p

5 output i

At every position i, PATTERNMATCHING(p, t) may need up to n oper-

ations to verify whether p is in the window by testing whether ti = p1,

ti+1 = p2, and so on. For typical instances, PATTERNMATCHING spends

the bulk of its time discovering that the pattern does not appear at position i

in the text. This test may take a single operation (if ti �= p1), showing con-

clusively that p does not appear in t at position i; however, we may need as

many as n operations to conduct this test. Therefore, the worst-case running

time of PATTERNMATCHING can be estimated as O(nm). Such a worst-case

scenario can be seen by searching for p = AAAAT in t =AAAA. . .AAAAA. If

m is 1 million, not only does the search take roughly 5 million operations,

but it completes with no output, which is a bit disappointing.

One can evaluate the running time of PATTERNMATCHING in the case of

finding a pattern in a “random” text. First, there is a good chance that the

very first test (comparing t1 with p1) will be a mismatch, thus saving us the
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trouble of checking the remaining n − 1 letters of p. In general, the prob-

ability that the first letter of the pattern matches the text at position i is 1
A

,

while the probability that it does not match is A−1
A

. Similarly, the probability

that the first two letters of the pattern match the text is 1
A2 , while the prob-

ability that the first letter matches and the second letter does not match is
A−1
A2 . The probability that PATTERNMATCHING matches exactly j out of n

characters from p starting at ti is A−1
Aj for j between 1 and n − 1. Since this

number shrinks rapidly as j increases, one can see that the probability that

PATTERNMATCHING performs long tests gets to be quite small. Therefore,

we would expect that, when presented with a text generated uniformly at

random, the amount of work that PATTERNMATCHING will really need to

perform when checking for p is somewhat closer to O(m) than the rather

pessimistic worst-case O(nm) running time.

In 1973 Peter Weiner invented an ingenious data structure called a suffix

tree that solves the Pattern Matching problem in linear-time O(m) for any text

and any pattern. The surprising thing about Weiner’s result is that the size

of the pattern does not seem to matter at all when it comes to the complexity

of the Pattern Matching problem. Before we introduce suffix trees, we will

first describe keyword trees used in a generalization of the Pattern Matching

problem to multiple patterns.

9.4 Keyword Trees

Multiple Pattern Matching Problem:

Given a set of patterns and a text, find all occurrences of any of the

patterns in the text.

Input: A set of k patterns p1,p2, . . . ,pk and text t =

t1 . . . tm.

Output: All positions 1 ≤ i ≤ m such that a substring of t

starting at position i coincides with a pattern pj for 1 ≤ j ≤

k.

For example, if t = ATGGTCGGT and p1 = GGT, p2 = GGG, p3 = ATG,

and p4 = CG, then the result of an algorithm that solves the Multiple Pattern

Matching problem would be positions 1, 3, 6, and 7.
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Of course, the Multiple Pattern Matching problem with k patterns can be

reduced to k individual Pattern Matching problems and solved in O(knm)

time, where n is the length of the longest of the k patterns, by k applications

of the PATTERNMATCHING algorithm.6 If one substitutes PATTERNMATCH-

ING by a linear-time pattern matching algorithm, the Multiple Pattern Match-

ing problem could be solved in just O(km) time. However, there exists an

even faster way to solve this problem in O(N + m) time where N is the total

length of patterns p1,p2, . . . ,pk.

In 1975 Alfred Aho and Margaret Corasick proposed using the keyword

tree data structure to solve the Multiple Pattern Matching problem. The key-

word tree for the set of patterns apple, apropos, banana, bandana, and

orange is shown in figure 9.3. More formally, the keyword tree for a set of

patterns p1,p2, . . . ,pk is a rooted labeled tree satisfying the following condi-

tions, assuming for simplicity that no pattern in the set is a prefix of another

pattern:

• Each edge of the tree is labeled with a letter of the alphabet,

• Any two edges out of the same vertex have distinct labels,

• Every pattern pi (1 ≤ i ≤ k) from the set of patterns is spelled on some

path from the root to a leaf.

Clearly, the keyword tree has at most N vertices where N is the total length

of all patterns, but may have fewer. One can construct the keyword tree in

O(N) time by progressively extending the keyword tree for the first j pat-

terns into the keyword tree for j + 1 patterns.

The keyword tree can be used for finding whether there is a pattern in the

set p1,p2, . . . ,pk that matches the text starting at a fixed position i of the

text. To do this, one should simply traverse the keyword tree using letters

titi+1ti+2 . . . of the text to decide where to move at each step as in figure 9.4.

This process either ends in a leaf, in which case there is a match to a pattern

represented by the leaf, or interrupts before arriving at a leaf, in which case

there is no match starting at position i. If the length of the longest pattern

is n, then the Multiple Pattern Matching problem can be solved in O(N +

nm) time to construct the keyword tree and then use it to search through

the text. The Aho-Corasick algorithm, which we do not give the details for,

further reduces the running time for the Multiple Pattern Matching problem

to O(N + m).

6. More correctly, O(Nm), where N is the total length of patterns p1, p2, . . . , pk.
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Figure 9.3 The keyword tree for apple, apropos, banana, bandana, and orange.

9.5 Suffix Trees

Suffix trees allow one to preprocess a text in such a way that for any pattern

of length n, one can answer whether or not it occurs in the text, using only

O(n) time, regardless of how long the text is. That is, if you created one

gigantic book out of all the issues of the journal Science, you could search for

a pattern p in time proportional to the length of p. If you concatenated all the

books ever written, it would take the same amount of time to search for p.

Of course, the amount of time it takes to construct the suffix tree is different

for the two texts.
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Patterns: proud, perfect, muggle, ugly, rivet

t = “mr and mrs dursley of number 4 privet
drive were proud to say that they were perfectly
normal thank you very much”
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t = “mr and mrs dursley of number 4 privet
drive were proud to say that they were perfectly

normal thank you very much”

root

m

u

g

g

l

e

p

r

o

u

d

e

r

f

e

c

t

r

i

v

e

t

u

g

l

y

Figure 9.4 Searching for keywords proud, perfect, ugly, rivet, muggle in
the text “mr and mrs dursley of number 4 privet drive were proud
to say that they were perfectly normal thank you very much.”
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It turns out that a suffix tree for a text of length m can be constructed in

O(m) time, which leads immediately to a linear O(n + m) algorithm for the

Pattern Matching problem: construct the suffix tree for t, in O(m) time, and

then check whether p occurs in the tree, which requires O(n) time.

Figure 9.5 (a) shows the keyword tree for all six suffixes of the string AT-
CATG: G, TG, ATG, CATG, TCATG, and ATCATG. The suffix tree of a text can

be obtained from the keyword tree of its suffixes by collapsing every path

of nonbranching vertices into a single edge, as in figure 9.5 (b). Although

one can use the keyword tree construction to build the suffix tree, it does not

lend itself to an efficient algorithm for the suffix trees construction. Indeed,

the keyword tree for k patterns can be constructed in O(N) time where N is

the total length of all these patterns. A text of length m has m suffixes vary-

ing in length from 1 to m and therefore the total length of these suffixes is

1+2+ · · ·+m = m(m+1)
2 , quadratic in the length of the text. Weiner’s contri-

bution to the construction of suffix trees in O(m) time bypasses the keyword

tree construction step altogether.7

The suffix tree for a text t = t1 . . . tm is a rooted labeled tree with m leaves

(numbered from 1 to m) satisfying the following conditions8:

• Each edge is labeled with a substring of the text,9

• Each internal vertex (except possibly the root) has at least 2 children,

• Any two edges out of the same vertex start with a different letter,

• Every suffix of text t is spelled out on a path from the root to some leaf.

Suffix trees immediately lead to a fast algorithm for pattern matching. We

define the threading of a pattern p through a suffix tree T as the matching of

characters from p along the unique path in T until either all characters of p

are matched, which is a complete threading, or until no more matches are

possible, which is an incomplete threading. If the threading of a pattern is

complete, it ends at some vertex or edge of T and we define the p-matching

leaves as all of the leaves that are descendants of that vertex or edge. Every p-

matching leaf in the tree corresponds to an occurrence of p in t. An example

of a complete threading, and the p-matching leaves is shown in figure 9.6.

7. The linear-time algorithm for suffix tree construction is rather complicated and is beyond the
scope of this book. See (44) for an excellent review of suffix trees.
8. For simplicity we assume that the last letter of t does not appear anywhere in the text so that
no suffix string is a prefix of another suffix string. If this is not the case, we can add an extra
letter (like $) to the end of the text to satisfy this condition.
9. Note the difference between this and keyword trees.
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Figure 9.5 The difference between a keyword tree and a suffix tree for the string
ATCATG. The suffix starting at position i corresponds to the leaf labeled by i.

SUFFIXTREEPATTERNMATCHING(p, t)

1 Build the suffix tree for text t

2 Thread pattern p through the suffix tree.

3 if threading is complete

4 output positions of every p-matching leaf in the tree

5 else

6 output “pattern does not appear anywhere in the text”
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Figure 9.6 Threading the pattern ATG through the suffix tree for the text ATGCATA-
CATGG. The suffixes ATGCATACATGG and ATGG both match, as noted by the gray
vertices in the tree (the p-matching leaves). Each p-matching leaf corresponds to a
position in the text where p occurs.

We stress that SUFFIXTREEPATTERNMATCHING searches for exact occur-

rences of p in t. Below we describe a few algorithms for inexact matching.

9.6 Heuristic Similarity Search Algorithms

Twenty years ago, it was surprising to find similarities between a newly se-

quenced cancer-causing gene and a gene involved in normal growth and

development. Today, it would be even more surprising not to find a match

for a newly sequenced gene, given the huge size of the GenBank database.10

However, searching the GenBank database is not as easy as it was twenty

years ago. The suffix tree algorithm above, while fast, can only find exact,

rather than approximate, occurrences of a gene in a database. When we are

trying to find an approximate match to a gene of length 103 in a database of

size 1010, the quadratic dynamic programming algorithms (like the Smith-

Waterman local alignment algorithm) may be too slow. The situation gets

10. The number of nucleotides in GenBank already exceeds 1010 .
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even worse when one tries to find all similarities between two mammalian

genomes, each with about 3×109 nucleotides. Starting in the early 1990s biol-

ogists had no choice but to use fast heuristics11 as an alternative to quadratic

sequence alignment algorithms.

Many heuristics for fast database search in molecular biology use the same

filtration idea. Filtration is based on the observation that a good alignment

usually includes short identical or highly similar fragments. Thus one can

search for short exact matches, for example, by using a hash table or a suf-

fix tree, and use these short matches as seeds for further analysis. In 1973

Donald Knuth suggested a method for pattern matching with one mismatch

based on the observation that strings differing by a single mismatch must

match exactly in either the first or second half. For example, matching 9-mers

with one allowable error can be reduced to exactly matching 4-mers, fol-

lowed by extending the 4-mer exact matches into 9-mer approximate matches.

This provides us with an opportunity to filter out positions that do not share

common 4-mers, which is a large portion of all pairs of positions. In 1985

the idea of filtration in computational molecular biology was used by David

Lipman and Bill Pearson, in their FASTA algorithm. It was further developed

in BLAST, now the dominant database search tool in molecular biology.

Biologists frequently depict similarities between two sequences in the form

of dot matrices. A dot matrix is simply a matrix with each entry either 0 or 1,

where a 1 at position (i, j) indicates some similarity between the ith position

of the first sequence and the jth position of the second sequence, as in fig-

ure 9.7. The similarity criteria may vary; for example, many dot matrices are

based on matches of length t with at most k mismatches in an alignment of

position i of the first sequence to position j of the second. However, no cri-

terion is perfect in its ability to distinguish biologically relevant similarities

from chance similarities. In biological applications, noise often disguises the

real similarity, creating the problem of filtering the noise from dot matrices

without filtering the biologically relevant similarity.

The positions of l-mers shared by a sequence and a database form an im-

plicit dot matrix representation of the similarities between these strings. The

popular FASTA protein database search tool uses exact matches of length l to

construct a dot matrix. From this dot matrix, it selects some diagonal with a

high concentration of 1s, and groups runs of 1s on this diagonal into longer

runs.

11. A heuristic is an algorithm that will yield reasonable results, even if it is not provably opti-
mal or lacks even a performance guarantee.
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G A T T C G C T T A G T
C * *
T * * * * *
G * * *
A * *
T * * * * *
T * * * * *
C * *
C * *
T * * * * *
T * * * * *
A * *
G * * *
T * * * * *
C * *
A * *
G * * *

G A T T C G C T T A G T
C *
T
G * *
A *
T * *
T *
C
C *
T * *
T *
A *
G *
T *
C
A *
G

Figure 9.7 Two dot matrices for the strings CTGATTCCTTAGTCAG and
GATTCGCTTAGT. A dot in position (i, j) of the first matrix indicates that the ith
nucleotide of the first sequence matches the jth nucleotide of the second. A dot in
position (i, j) of the second matrix indicates that the ith dinucleotide in the first se-
quence and jth dinucleotide in the second sequence are the same, i.e., the ith and
(i + 1)-th symbols of the first sequence match the jth and (j + 1)-th symbols of the
second sequence. The second matrix reveals a nearly diagonal run of 9 dots that
points to an approximate match (with one insertion) between substring GATTCCT-
TAGT in the first sequence and substring GATTCGCTTAG of the second one. The
same diagonal run is present in the first matrix but disguised by many spurious dots.

9.7 Approximate Pattern Matching

Finding approximate matches of a pattern in a text (i.e., all substrings in the

text with k or fewer mismatches from the pattern) is an important problem

in computational molecular biology.
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pattern (p)

text (t)

n{
(a) Approximate Pattern Matching

query (q)

text (t)

n{
(b) Query Matching

Figure 9.8 The difference between the Approximate Pattern Matching problem and
the Query Matching problem is that the Approximate Pattern Matching problem
matches the entire pattern of length n against the text, while the Query Matching
problem matches all substrings of length n in the query against the text.

Approximate Pattern Matching Problem:

Find all approximate occurrences of a pattern in a text.

Input: A pattern p = p1p2 . . . pn, text t = t1t2 . . . tm, and

parameter k, the maximum number of mismatches.

Output: All positions 1 ≤ i ≤ m − n + 1 such that

titi+1 . . . ti+n−1 and p1p2 . . . pn have at most k mismatches

(i.e., dH(ti,p) ≤ k).

The naive brute force algorithm for approximate pattern matching runs in

O(nm) time. The following algorithm will output all locations in t where p

occurs with no more than k mismatches.
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APPROXIMATEPATTERNMATCHING(p, t, k)

1 n← length of pattern p

2 m← length of text t

3 for i← 1 to m− n + 1

4 dist← 0

5 for j ← 1 to n

6 if ti+j−1 �= pj

7 dist← dist + 1

8 if dist ≤ k

9 output i

In 1985 Gadi Landau and Udi Vishkin found an algorithm for approximate

string matching with O(km) worst-case running time. Although this algo-

rithm yields the best known worst-case performance, it is not necessarily the

best in practice. Consequently, several filtration-based approaches have bet-

ter running times in practice, even though their worst-case running times are

worse.

The Query Matching problem further generalizes the Approximate Pattern

Matching problem. The difference between these two problems is illustrated

in figure 9.8. Query matching with k mismatches involves a text t, a query se-

quence q, and a parameter k to limit the Hamming distance between some

portion of the query and some portion of the text. We are also given a pa-

rameter n, which is the overall length of the match. Rather than looking for

approximate matches between an entire string (p) and all substrings of length

n from t, the Query Matching problem seeks approximate matches between

any substrings of length n from the query and all other substrings of length

n from the text.

Query Matching Problem:

Find all substrings of the query that approximately match the text.

Input: Query q = q1 . . . qp, text t = t1 . . . tm, and integers n

and k.

Output: All pairs of positions (i, j) where 1 ≤ i ≤ p− n + 1

and 1 ≤ j ≤ m − n + 1 such that the n-letter substring of q

starting at i approximately matches the n-letter substring of

t starting at j, with at most k mismatches.

When p = n, the Query Matching problem becomes the Approximate
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String Matching problem with k mismatches.

Using filtration algorithms for approximate query matching involves a

two-stage process. The first stage preselects a set of positions in the text that

are potentially similar to the query. The second stage verifies each potential

position, rejecting potential matches with more than k mismatches. If the

number of potential matches is small and potential match verification is not

too slow, this method yields a fast query matching algorithm on most inputs

that arise in practice.

The l-mer filtration technique is based on the simple observation that if an

n-letter substring of a query approximately matches an n-letter substring of

the text, then the two substrings share at least one l-mer for a sufficiently

large value of l. All l-mers shared by the query and the text can be found

easily by hashing. If the number of shared l-mers is relatively small, they can

be verified, and all real matches with k mismatches can be located rapidly.

The following theorem guides our choice of l, based on n and k:

Theorem 9.1 If the strings x1 . . . xn and y1 . . . yn match with at most k mismatches,

then they share an l-mer for l = � n
k+1�, that is, xi+1 . . . xi+l = yi+1 . . . yi+l for

some 1 ≤ i ≤ n− l + 1.

Proof: Partition the set of positions from 1 to n into k + 1 groups {1, . . . , l},

{l + 1, . . . , 2l}, {2l + 1, . . . , 3l}, and so on, with l = � n
k+1� positions in each

group (the k + 1st group may have more than l positions). Observe that k

mismatches distributed among x1 . . . xn and y1 . . . yn may affect at most k of

these k + 1 groups and therefore at least one of them will remain unaffected

by these mismatches. �

This theorem motivates the following l-mer filtration algorithm for query

matching with k mismatches:

• Potential match detection. Find all matches of l-mers in both the query and

the text for l = � n
k+1�.

• Potential match verification. Verify each potential match by extending it to

the left and to the right until the first k + 1 mismatches are found (or the

beginning or end of the query or the text is found).

Potential match detection in this algorithm can be implemented either by

hashing or by the suffix tree approach. For most practical values of n and

k, the number of potential matches between the text and the query is small,

yielding a fast algorithm.
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9.8 BLAST: Comparing a Sequence against a Database

Using shared l-mers for finding similarities, as FASTA does, has some disad-

vantages. For example, two proteins can have different amino acid sequences

but still be biologically similar. This frequently occurs when the genes that

code for the two proteins evolve, but continue to produce proteins with a

particular function. A common construct in many heuristic similarity search

algorithms, including BLAST, is that of a scoring matrix similar to the scoring

matrices introduced in chapter 6. These scoring matrices reveal similarities

between proteins even if they do not share a single l-mer.

BLAST, the dominant database search tool in molecular biology, uses scor-

ing matrices to improve the efficiency of filtration and to introduce more

accurate rules for locating potential matches. Another powerful feature of

BLAST is the use of Altschul-Dembo-Karlin statistics for estimating the sta-

tistical significance of found matches. For any two l-mers x1 . . . xl and y1 . . . yl,

BLAST defines the segment score as
∑l

i=1 δ(xi, yi), where δ(x, y) is the simi-

larity score between amino acids x and y. A segment pair is just a pair of

l-mers, one from each sequence. The maximal segment pair is a segment pair

with the best score over all segment pairs in the two sequences. A segment

pair is locally maximal if its score cannot be improved either by extending or

by shortening both segments. A researcher is typically interested in all sta-

tistically significant locally maximal segments, rather than only the highest

scoring segment pair.

BLAST attempts to find all locally maximal segment pairs in the query and

database sequences with scores above some set threshold. It finds all l-mers

in the text that have scores above a threshold when scored against some l-

mer in the query sequence. A fast algorithm for finding such l-mers is the

key ingredient of BLAST. An important observation is that if the threshold is

high enough, then the set of all l-mers that have scores above a threshold is

not too large. In this case the database can be searched for exact occurrences

of the strings from this set. This is a Multiple Pattern Matching problem,

and the Aho-Corasick algorithm finds the location of any of these strings in

the database.12 After the potential matches are located, BLAST attempts to

extend them to see whether the resulting score is above the threshold. In

recent years BLAST has been further improved by allowing insertions and

deletions and combining matches on the same and close diagonals.

12. BLAST has evolved in the last fifteen years and has become significantly more involved than
this simple description.
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The choice of the threshold in BLAST is guided by the Altschul-Dembo-

Karlin statistics, which allow one to identify the smallest value of the seg-

ment score that is unlikely to happen by chance. BLAST reports matches

to sequences that either have one segment score above the threshold or that

have several closely located segment pairs that are statistically significant

when combined. According to the Altschul-Dembo-Karlin statistics, the num-

ber of matches with scores above θ is approximately Poisson-distributed,

with mean

E(θ) = Kmne−λθ,

where m and n are the lengths of compared sequences, and K is a constant.

Parameter λ is a positive root of the equation

∑

x,y∈A

pxpyeλδ(x,y) = 1

where px and py are frequencies of amino acids x and y from the twenty-

letter alphabet A and δ is the scoring matrix. The probability that there is a

match of score greater that θ between two “random” sequences of length n

and m is computed as 1− eE(θ). This probability guides the choice of BLAST
parameters and allows one to evaluate the statistical significance of found

matches.

9.9 Notes

Linear-time algorithms for exact pattern matching were discovered in the

late 1970s (58; 16). The linear-time algorithm for approximate pattern match-

ing with k mismatches was discovered by Gadi Landau and Udi Vishkin (61)

in 1985. Although this algorithm yields the best worst-case performance, it

is not the best in practice. Consequently, several filtration-based approaches

have emphasized the expected running time, rather than the worst-case run-

ning time. The idea of filtration was first described by Richard Karp and

Michael Rabin in 1987 (54) for exact pattern matching. The filtration ap-

proach presented in this chapter was described in (86).

Keyword trees were used to develop a multiple pattern matching algo-

rithm by Alfred Aho and Margaret Corasick in 1975 (2). Suffix trees were

invented by Peter Weiner (111), who also proposed the linear-time algorithm

for their construction. The REPUTER algorithm (60) uses an efficient imple-

mentation of suffix tree to find all repeats in a text.
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FASTA was developed by David Lipman and William Pearson in 1985 (67).

BLAST, the dominant database search tool in molecular biology, was devel-

oped by Steven Altschul, Warren Gish, Webb Miller, Gene Myers, and David

Lipman in 1990 (4). BLAST uses Altschul-Dembo-Karlin statistics (52; 27) to

estimate the statistical significance of found similarities. Currently there ex-

ist many variations and improvements of the BLAST tool, each tuned to a

particular application (5).
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Gene Myers (born 1953 in Idaho) is

currently a professor at the University

of California at Berkeley and a member

of the National Academy of Engineer-

ing. He has contributed fundamental al-

gorithmic methods for pattern matching

and computational biology. He made

key contributions to the development

of BLAST, the most widely used biose-

quence search engine, and both proposed

to shotgun-sequence the human genome

and developed an assembler that did it.

Myers spent his youth in the Far East—

Pakistan, India, Indonesia, Japan, and

Hong Kong—following his father from

post to post for Exxon. He believes this

early exposure to diverse cultures and

mindsets contributed to his interest in interdisciplinary work. He was fas-

cinated by science and recalls studying a Gray’s Anatomy, which he still

has, and reading everything by Asimov, Heinlein, and Bradbury. As an

undergraduate at Caltech, Myers was indoctrinated in a “can do" attitude

toward science that has stayed with him. As a computer science graduate

student at the University of Colorado, he became fascinated with algorithm

design. By chance he fell in with an eclectic discussion group led by An-

drzej Ehrenfeucht, that included future bioinformaticians David Haussler

and Gary Stormo. Myers was attracted to Ehrenfeucht because of his broad

range of interests that included psychology, artificial intelligence, formal lan-

guage theory, and computational molecular biology, even though it had no

name back then.

In 1981 Myers took a position at the University of Arizona where he com-

pletely forgot about his early foray into computational biology and worked

on traditional computer science problems for the next few years. In 1984,

David Mount needed a computer science partner for a proposal for a com-

putational biology center he envisioned at Arizona. Myers was working on

comparing files at the time (the algorithm at the heart of GNU diff is his).

The work was the closest topic in the computer science department to DNA

sequence comparison, so he joined the project. He recalls picking the prob-

lem of DNA fragment assembly and also of finding complex patterns in se-
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quences as topics for the proposal. A stellar review panel, including David

Sankoff, Temple Smith, and Rich Roberts, visited Arizona and were so im-

pressed with Myers’ preliminary work that he was invited to a meeting at

Waterville Valley, the first ever big bioinformatics meeting. Myers says:

I loved interacting with the biologists and the mathematicians and the

sense of excitement that something big was in the making. So in 1984

I became a computational biologist. Well, truthfully, a computer scien-

tist interested in problems motivated by computational biology. Over

the next twenty years that changed.

In the 1980s Myers worked a great deal with Webb Miller, another bioin-

formatics pioneer, and they developed some fundamental ideas for sequence

comparison, for example, linear-space alignment. He says:

It was Miller that mentored me and really helped me to develop as a

young researcher. I had been struggling with my ability to write and

with my confidence in the quality of my own work. Webb, ten years se-

nior to me, encouraged me and introduced me to the craft of technical

writing.

In 1989, Myers was working on how to find approximate matches to strings

in less than quadratic time in response to a challenge from Zvi Galil. He was

a smoker at the time and recalls talking with David Lipman outside the NIH

while on a cigarette break about his ideas. David, the coinventor of FASTA,

felt that a heuristic reformulation of the concepts would make for a fast and

practical protein search tool. Over the next few months, Miller and Myers

took turns coding different versions of the idea, with Lipman always driving

and challenging. As the work developed Steven Altschul contributed new

statistical work he had been doing with Sam Karlin, and Warren Gish, a real

code ace, built the final product. BLAST was published in 1990 and put on

the NCBI web server. It quickly became the most used tool in bioinformatics

and the most cited paper in science for several years after.

Myers did finally achieve his subquadratic algorithm in 1994 and contin-

ued to work on similarity search and fragment assembly. In 1994, at the same

meeting, Waterman and Idury, and Myers both presented fundamentally

new ideas for fragment assembly, one based on the idea of an Euler string

graph and the other on collapsing maximal uncontested interval subgraphs.

But despite being significant algorithmic advances, Phil Green’s beautifully

engineered and tuned PHRAP assembler became the mainstay of the ever



9.9 Notes 335

growing sequencing centers as they prepared for the assault on the human

genome. Myers thought he was out of the race. In 1995, Craig Venter and his

team shotgun sequenced Haemophilus influenzae, a 1.8 Mbp bacterium and

assembled it with a program written by the then very young Granger Sut-

ton. This was a rather startling success as most bioinformaticians viewed a

large clone, such as a BAC at 150 kbp, as the limit of what could be success-

fully shotgun-sequenced. Indeed the entire human genome program was

gearing up around the production of a collection of such BACs that spanned

the genome, and then shotgun-sequencing each of these in a hierarchical ap-

proach. Much of this impression was based on a misinterpretation of the

implication of a statistical theorem by Lander and Waterman about DNA

mapping. Myers says:

I recall beginning to rethink what this theorem was really saying about

shotgun-sequencing. At the same time, geneticist Jim Weber was think-

ing about shotgunning as a way to accelerate the Human Genome

Project, as he wanted to get to human genetic variation as quickly as

possible for his research. Weber called Lipman, looking for a bioinfor-

matician to help him put together a proposal. Lipman referred Weber

to me. I said yes, let’s think about it and in 1996 we began pushing the

idea and trying to publish simulation results showing that it was, in

principle, possible. The reaction to the proposal was incredibly nega-

tive; we were basically accused of being fools.

After several rejections, a very condensed version of their proposal and

Myers’ simulation was finally published in 1997 under the condition that a

rebuttal, by Phil Green, be published with it. Myers figured the proposal was

dead, but he continued to work on it at a simulation level with his students

because he found it intellectually interesting. He says:

I kept giving talks about it, hoping someone might get excited enough

to fund a $10 million pilot project. In 1998, Applied Biosystems, the

prime manufacturer of sequencing machines, and Craig Venter announced

that they would be forming a company to sequence the human genome

using a shotgun approach. To me it was as if someone had decided to

spend $300 million to try “my" project.

Myers had known Venter for ten years and quickly came to the decision

to join the company, Celera, at its inception in August 1998. With more re-

sources than he imagined, his problem became to deliver on the promise. He

says:
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It was an incredible time of my life. I thought I could do it, but I didn’t

yet know I could do it. The pressure was incredible, but so was the

excitement.

A year and a half-million lines of code later a team of ten, including Granger

Sutton, achieved their first assembly of the Drosophila genome and presented

the results in October 1999. Myers had his 120 Mbp pilot project and it

was a success. The race for the human genome was then on. The Celera

team’s main obstacle was in how to scale up another 30-fold for the human

genome—computer memory and time were real problems. In 20,000 CPU

hours and a month’s time, a first assembly of the human genome was ac-

complished in May 2000. Subsequent refinements took place and the first

reconstructions of the genome were published by Celera and the public con-

sortium in February 2001. Today, whole-genome shotgun sequence is not

really debatable: it is the way that every genome is being sequenced. Myers

says:

Now at Berkeley, I have become fascinated with how cells work from

the level of particle systems and in particular how multicellular or-

ganisms develop. I figure the next great challenge is to “decode the

cell.” I am driven by the intellectual curiosity to have some sense of

understanding the cell as a system before the end of my career. Biol-

ogy drives what I do today; my skills as an algorithmist are tools to

this end as opposed to my primary focus, although I still get pretty

excited when I come up with a tricky new way to solve a particular

computational problem.
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9.10 Problems

Problem 9.1

Derive the expectation and the variance of the number of occurrences of patterns AA
and AT in a random text of length n. Are the expectations and variances for AA and
AT the same?

Problem 9.2

Derive the expectation and the variance of the number of occurrences of a given pat-
tern of length l in a random text of length n.

Let X be the set of all l-mers. Given an l-mer x and a text t, define x(t) as the number of

occurrences of x in t. Statistical distance between texts t and u is defined as

d(t, u) =

s X

x∈X
(x(t) − x(u))2.

Although statistical distance can be computed very fast, it can miss weak similarities that do not

preserve shared l-mers.

Problem 9.3

Evaluate an expected statistical distance between two random n-letter strings.

Problem 9.4

Prove that the average time that PATTERNMATCHING takes to check whether a pat-
tern of length n appears at a given position in a random text is 2− n+1

An + n

An+1 (A is
the size of alphabet).

Problem 9.5

Write an efficient algorithm that will construct a keyword tree given a list of patterns

p1, p2, . . . ,pk.

Problem 9.6

Design an algorithm for a generalization of the Approximate Pattern Matching prob-
lem in the case where the pattern can match a text with up to k mismatches, insertions,
or deletions (rather than the mismatch-only model as before).

Problem 9.7

A string p = p1 . . . pn is a palindrome if it spells the same string when read backward,
that is, pi = pn+1−i for 1 ≤ i ≤ n. Design an efficient algorithm for finding all
palindromes (of all lengths) in a text.

Problem 9.8

Design an efficient algorithm for finding the longest exact repeat within a text.

Problem 9.9

Design an efficient algorithm for finding the longest exact tandem repeat within a
text.
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Problem 9.10

Design an efficient algorithm for finding the longest exact repeat with at most one
mismatch in a text.

Problem 9.11

Design an efficient algorithm for finding the longest string shared by two given texts.

Problem 9.12

Design an efficient algorithm for finding a shortest nonrepeated string in a text, that
is, a shortest string that appears in the text only once.

Problem 9.13

Design an efficient algorithm that finds a shortest string in text t1 that does not appear
in text t2.

Problem 9.14

Implement an l-tuple filtration algorithm for the Query Matching problem.



10 Clustering and Trees

A common problem in biology is to partition a set of experimental data into

groups (clusters) in such a way that the data points within the same clus-

ter are highly similar while data points in different clusters are very differ-

ent. This problem is far from simple, and this chapter covers several algo-

rithms that perform different types of clustering. There is no simple recipe

for choosing one particular approach over another for a particular clustering

problem, just as there is no universal notion of what constitutes a “good clus-

ter.” Nonetheless, these algorithms can yield significant insight into data and

allow one, for example, to identify clusters of genes with similar functions

even when it is not clear what particular role these genes play. We conclude

this chapter with studies of evolutionary tree reconstruction, which is closely

related to clustering.

10.1 Gene Expression Analysis

Sequence comparison often helps to discover the function of a newly se-

quenced gene by finding similarities between the new gene and previously

sequenced genes with known functions. However, for many genes, the se-

quence similarity of genes in a functional family is so weak that one cannot

reliably derive the function of the newly sequenced gene based on sequence

alone. Moreover, genes with the same function sometimes have no sequence

similarity at all. As a result, the functions of more than 40% of the genes in

sequenced genomes are still unknown.

In the last decade, a new approach to analyzing gene functions has emerged.

DNA arrays allow one to analyze the expression levels (amount of mRNA pro-

duced in the cell) of many genes under many time points and conditions and
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to reveal which genes are switched on and switched off in the cell.1 The

outcome of this type of study is an n × m expression matrix I, with the n

rows corresponding to genes, and the m columns corresponding to differ-

ent time points and different conditions. The expression matrix I represents

intensities of hybridization signals as provided by a DNA array. In reality, ex-

pression matrices usually represent transformed and normalized intensities

rather than the raw intensities obtained as a result of a DNA array experi-

ment, but we will not discuss this transformation.

The element Ii,j of the expression matrix represents the expression level of

gene i in experiment j; the entire ith row of the expression matrix is called

the expression pattern of gene i. One can look for pairs of genes in an expres-

sion matrix with similar expression patterns, which would be manifested as

two similar rows. Therefore, if the expression patterns of two genes are sim-

ilar, there is a good chance that these genes are somehow related, that is,

they either perform similar functions or are involved in the same biological

process.2 Accordingly, if the expression pattern of a newly sequenced gene

is similar to the expression pattern of a gene with known function, a biolo-

gist may have reason to suspect that these genes perform similar or related

functions. Another important application of expression analysis is in the de-

ciphering of regulatory pathways; similar expression patterns usually imply

coregulation. However, expression analysis should be done with caution

since DNA arrays typically produce noisy data with high error rates.

Clustering algorithms group genes with similar expression patterns into clus-

ters with the hope that these clusters correspond to groups of functionally

related genes. To cluster the expression data, the n×m expression matrix is

often transformed into an n × n distance matrix d = (di,j) where di,j reflects

how similar the expression patterns of genes i and j are (see figure 10.1).3

The goal of clustering is to group genes into clusters satisfying the following

two conditions:

• Homogeneity. Genes (rather, their expression patterns) within a cluster

1. Expression analysis studies implicitly assume that the amount of mRNA (as measured by a
DNA array) is correlated with the amount of its protein produced by the cell. We emphasize that
a number of processes affect the production of proteins in the cell (transcription, splicing, trans-
lation, post-translational modifications, protein degradation, etc.) and therefore this correlation
may not be straightforward, but it is still significant.
2. Of course, we do not exclude the possibility that expression patterns of two genes may look
similar simply by chance, but the probability of such a chance similarity decreases as we increase
the number of time points.
3. The distance matrix is typically larger than the expression matrix since n � m in most ex-
pression studies.
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Time 1 hr 2 hr 3 hr
g1 10.0 8.0 10.0
g2 10.0 0.0 9.0
g3 4.0 8.5 3.0
g4 9.5 0.5 8.5
g5 4.5 8.5 2.5
g6 10.5 9.0 12.0
g7 5.0 8.5 11.0
g8 2.7 8.7 2.0
g9 9.7 2.0 9.0
g10 10.2 1.0 9.2

(a) Intensity matrix, I

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0
g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0
g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5
g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1
g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6
g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5
g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3
g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4
g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1
g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

(b) Distance matrix, d

g1g2

g3

g4

g5

g6

g7

g8

g9g10

(c) Expression patterns as points in three-dimentsional
space.

Figure 10.1 An “expression” matrix of ten genes measured at three time points, and
the corresponding distance matrix. Distances are calculated as the Euclidean distance
in three-dimensional space.
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Figure 10.2 Data can be grouped into clusters. Some clusters are better than others:
the two clusters in a) exhibit good homogeneity and separation, while the clusters in
b) do not.

should be highly similar to each other. That is, di,j should be small if i

and j belong to the same cluster.

• Separation. Genes from different clusters should be very different. That is,

di,j should be large if i and j belong to different clusters.

An example of clustering is shown in figure 10.2. Figure 10.2 (a) shows a

good partition according to the above two properties, while (b) shows a bad

one. Clustering algorithms try to find a good partition.

A “good” clustering of data is one that adheres to these goals. While we

hope that a better clustering of genes gives rise to a better grouping of genes

on a functional level, the final analysis of resulting clusters is left to biolo-

gists.

Different tissues express different genes, and there are typically over 10,000

genes expressed in any one tissue. Since there are about 100 different tissue

types, and since expression levels are often measured over many time points,

gene expression experiments can generate vast amounts of data which can

be hard to interpret. Compounding these difficulties, expression levels of

related genes may vary by several orders of magnitude, thus creating the

problem of achieving accurate measurements over a large range of expres-

sion levels; genes with low expression levels may be related to genes with

high expression levels.
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Figure 10.3 A schematic of hierarchical clustering.

10.2 Hierarchical Clustering

In many cases clusters have subclusters, these have subsubclusters, and so

on. For example, mammals can be broken down into primates, carnivora,

bats, marsupials, and many other orders. The order carnivora can be further

broken down into cats, hyenas, bears, seals, and many others. Finally, cats

can be broken into thirty seven species.4

4. Lions, tigers, leopards, jaguars, lynx, cheetahs, pumas, golden cats, domestic cats, small wild-
cats, ocelots, and many others.
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g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g3, g5, g8}

{g2, g4}

{g2, g4, g10}

{g2, g4, g9, g10}

{g1, g6}

{g1, g6, g7}

{g1, g2, g4, g6, g7, g8, g9, g10}

{g1, g2, g3, g4, g5, g6, g7, g8, g9, g10}

Figure 10.4 A hierarchical clustering of the data in figure 10.1

Hierarchical clustering (fig. 10.3) is a technique that organizes elements into

a tree, rather than forming an explicit partitioning of the elements into clus-

ters. In this case, the genes are represented as the leaves of a tree. The edges

of the trees are assigned lengths and the distances between leaves—that is,

the length of the path in the tree that connects two leaves—correlate with

entries in the distance matrix. Such trees are used in both the analysis of ex-

pression data and in studies of molecular evolution which we will discuss

below.

Figure 10.4 shows a tree that represents clustering of the data in figure 10.1.

This tree actually describes a family of different partitions into clusters, each

with a different number of clusters (one for each value from 1 to n). You can

see what these partitions by drawing a horizontal line through the tree. Each

line crosses the tree at i points (1 ≤ i ≤ k) and correspond to i clusters.
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The HIERARCHICALCLUSTERING algorithm below takes an n×n distance

matrix d as an input, and progressively generates n different partitions of the

data as the tree it outputs. The largest partition has n single-element clusters,

with every element forming its own cluster. The second-largest partition

combines the two closest clusters from the largest partition, and thus has

n− 1 clusters. In general, the ith partition combines the two closest clusters

from the (i− 1)th partition and has n− i + 1 clusters.

HIERARCHICALCLUSTERING(d, n)

1 Form n clusters, each with 1 element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 while there is more than 1 cluster

4 Find the two closest clusters C1 and C2

5 Merge C1 and C2 into new cluster C with |C1|+ |C2| elements

6 Compute distance from C to all other clusters

7 Add a new vertex C to T and connect to vertices C1 and C2

8 Remove rows and columns of d corresponding to C1 and C2

9 Add a row and column to d for the new cluster C

10 return T

Line 6 in the algorithm is (intentionally) left ambiguous; clustering algo-

rithms vary in how they compute the distance between the newly formed

cluster and any other cluster. Different formulas for recomputing distances

yield different answers from the same hierarchical clustering algorithm. For

example, one can define the distance between two clusters as the smallest

distance between any pair of their elements

dmin(C∗, C) = min
x∈C∗,y∈C

d(x, y)

or the average distance between their elements

davg(C∗, C) =
1

|C∗||C|

∑

x∈C∗,y∈C

d(x, y).

Another distance function estimates distance based on the separation of C1

and C2 in HIERARCHICALCLUSTERING:

d(C∗, C) =
d(C∗, C1) + d(C∗, C2)− d(C1, C2)

2



346 10 Clustering and Trees

In one of the first expression analysis studies, Michael Eisen and colleagues

used hierarchical clustering to analyze the expression profiles of 8600 genes

over thirteen time points to find the genes responsible for the growth re-

sponse of starved human cells. The HIERARCHICALCLUSTERING resulted

in a tree consisting of five main subtrees and many smaller subtrees. The

genes within these five clusters had similar functions, thus confirming that

the resulting clusters are biologically sensible.

10.3 k-Means Clustering

One can view the n rows of the n×m expression matrix as a set of n points

in m-dimensional space and partition them into k subsets, pretending that

k—the number of clusters—is known in advance.

One of the most popular clustering methods for points in multidimen-

sional spaces is called k-Means clustering. Given a set of n data points in

m-dimensional space and an integer k, the problem is to determine a set

of k points, or centers, in m-dimensional space that minimize the squared

error distortion defined below. Given a data point v and a set of k centers

X = {x1, . . . xk}, define the distance from v to the centers X as the distance

from v to the closest point in X , that is, d(v,X ) = min1≤i≤k d(v, xi). We will

assume for now that d(v, xi) is just the Euclidean5 distance in m dimensions.

The squared error distortion for a set of n points V = {v1, . . . vn}, and a set

of k centers X = {x1, . . . xk}, is defined as the mean squared distance from

each data point to its nearest center:

d(V ,X ) =

∑n
i=1 d(vi,X )2

n

k-Means Clustering Problem:

Given n data points, find k center points minimizing the squared error

distortion.

Input: A set, V , consisting of n points and a parameter k.

Output: A set X consisting of k points (called centers) that

minimizes d(V ,X ) over all possible choices of X .

5. Chapter 2 contains a sample algorithm to calculate this when m is 2.
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While the above formulation does not explicitly address clustering n points

into k clusters, a clustering can be obtained by simply assigning each point to

its closest center. Although the k-Means Clustering problem looks relatively

simple, there are no efficient (polynomial) algorithms known for it. The Lloyd

k-Means clustering algorithm is one of the most popular clustering heuristics

that often generates good solutions in gene expression analysis. The Lloyd

algorithm randomly selects an arbitrary partition of points into k clusters and

tries to improve this partition by moving some points between clusters. In

the beginning one can choose arbitrary k points as “cluster representatives.”

The algorithm iteratively performs the following two steps until either it con-

verges or until the fluctuations become very small:

• Assign each data point to the cluster Ci corresponding to the closest clus-

ter representative xi (1 ≤ i ≤ k)

• After the assignments of all n data points, compute new cluster represen-

tatives according to the center of gravity of each cluster, that is, the new

cluster representative is
P

v∈C
v

|C| for every cluster C.

The Lloyd algorithm often converges to a local minimum of the squared

error distortion function rather than the global minimum. Unfortunately, in-

teresting objective functions other than the squared error distortion lead to

similarly difficult problems. For example, finding a good clustering can be

quite difficult if, instead of the squared error distortion (
∑n

i=1 d(vi,X )2), one

tries to minimize
∑n

i=1 d(vi,X ) (k-Median problem) or max1≤i≤n d(vi,X ) (k-

Center problem). We remark that all of these definitions of clustering cost em-

phasize the homogeneity condition and more or less ignore the other impor-

tant goal of clustering, the separation condition. Moreover, in some unlucky

instances of the k-Means Clustering problem, the algorithm may converge

to a local minimum that is arbitrarily bad compared to an optimal solution (a

problem at the end of this chapter).

While the Lloyd algorithm is very fast, it can significantly rearrange every

cluster in every iteration. A more conservative approach is to move only one

element between clusters in each iteration. We assume that every partition

P of the n-element set into k clusters has an associated clustering cost, de-

noted cost(P ), that measures the quality of the partition P : the smaller the

clustering cost of a partition, the better that clustering is.6 The squared error

distortion is one particular choice of cost(P ) and assumes that each center

6. “Better” here is better clustering, not a better biological grouping of genes.
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point is the center of gravity of its cluster. The pseudocode below implicitly

assumes that cost(P ) can be efficiently computed based either on the dis-

tance matrix or on the expression matrix. Given a partition P , a cluster C

within this partition, and an element i outside C, Pi→C denotes the partition

obtained from P by moving the element i from its cluster to C. This move

improves the clustering cost only if ∆(i → C) = cost(P ) − cost(Pi→C) > 0,

and the PROGRESSIVEGREEDYK-MEANS algorithm searches for the “best”

move in each step (i.e., a move that maximizes ∆(i→ C) for all C and for all

i �∈ C).

PROGRESSIVEGREEDYK-MEANS(k)

1 Select an arbitrary partition P into k clusters.

2 while forever

3 bestChange← 0

4 for every cluster C

5 for every element i �∈ C

6 if moving i to cluster C reduces the clustering cost

7 if ∆(i→ C) > bestChange

8 bestChange← ∆(i→ C)

9 i∗ ← i

10 C∗ ← C

11 if bestChange > 0

12 change partition P by moving i∗ to C∗

13 else

14 return P

Even though line 2 makes an impression that this algorithm may loop end-

lessly, the return statement on line 14 saves us from an infinitely long wait.

We stop iterating when no move allows for an improvement in the score; this

eventually has to happen.7

10.4 Clustering and Corrupted Cliques

A complete graph, written Kn, is an (undirected) graph on n vertices with

every two vertices connected by an edge. A clique graph is a graph in which

every connected component is a complete graph. Figure 10.5 (a) shows a

7. What would be the natural implication if there could always be an improvement in the score?
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(a)

1 2 3

7 6 5 4

(b)

Figure 10.5 a) A clique graph consisting of the three connected components K3, K5,
and K6. b) A graph with 7 vertices that has 4 cliques formed by vertices {1, 2, 6, 7},
{2, 3}, {5, 6}, and {3, 4, 5}.

clique graph consisting of three connected components, K3, K5, and K6. Ev-

ery partition of n elements into k clusters can be represented by a clique

graph on n vertices with k cliques. A subset of vertices V ′ ⊂ V in a graph

G(V, E) forms a complete subgraph if the induced subgraph on these vertices is

complete, that is, every two vertices v and w in V ′ are connected by an edge

in the graph. For example, vertices 1, 6, and 7 form a complete subgraph

of the graph in figure 10.5 (b). A clique in the graph is a maximal complete

subgraph, that is, a complete subgraph that is not contained inside any other

complete subgraph. For example, in figure 10.5 (b), vertices 1, 6, and 7 form

a complete subgraph but do not form a clique, but vertices 1, 2, 6, and 7 do.
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In expression analysis studies, the distance matrix (di,j) is often further

transformed into a distance graph G = G(θ), where the vertices are genes

and there is an edge between genes i and j if and only if the distance be-

tween them is below the threshold θ, that is, if di,j < θ. A clustering of

genes that satisfies the homogeneity and separation principles for an appro-

priately chosen θ will correspond to a distance graph that is also a clique

graph. However, errors in expression data, and the absence of a “univer-

sally good” threshold θ often results in distance graphs that do not quite

form clique graphs (fig. 10.6). Some elements of the distance matrix may

fall below the distance threshold for unrelated genes (adding edges between

different clusters), while other elements of the distance matrix exceed the

distance threshold for related genes (removing edges within clusters). Such

erroneous edges corrupt the clique graph, raising the question of how to

transform the distance graph into a clique graph using the smallest number

of edge removals and edge additions.

Corrupted Cliques Problem:

Determine the smallest number of edges that need to be added or

removed to transform a graph into a clique graph.

Input: A graph G.

Output: The smallest number of additions and removals of

edges that will transform G into a clique graph.

It turns out that the Corrupted Cliques problem is NP-hard, so some

heuristics have been proposed to approximately solve it. Below we describe

the time-consuming PCC (Parallel Classification with Cores) algorithm, and

the less theoretically sound, but practical, CAST (Cluster Affinity Search Tech-

nique) algorithm inspired by PCC.

Suppose we attempt to cluster a set of genes S, and suppose further that

S′ is a subset of S. If we are somehow magically given the correct clustering8

{C1, . . . , Ck} of S′, could we extend this clustering of S′ into a clustering of

the entire gene set S? Let S \ S′ be the set of unclustered genes, and N(j, Ci)

be the number of edges between gene j ∈ S\S′ and genes from the cluster Ci

in the distance graph. We define the affinity of gene j to cluster Ci as N(j,Ci)
|Ci|

.

8. By the “correct clustering of S′,” we mean the classification of elements of S′ (which is a
subset of the entire gene set) into the same clusters as they would be in the clustering of S that
has the optimal clustering score.



10.4 Clustering and Corrupted Cliques 351

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0
g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0
g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5
g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1
g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6
g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5
g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3
g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4
g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1
g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

(a) Distance matrix, d (distances shorter than 7 are shown in
bold).

g2

g9

g10g1

g6

g7

g8

g5 g3

g4

(b) Distance graph for θ = 7.

g2

g9

g10g1

g6

g7

g8

g5 g3

g4

(c) Clique graph.

Figure 10.6 The distance graph (b) for θ = 7 is not quite a clique graph. However, it
can be transformed into a clique graph (c) by removing edges (g1, g10) and (g1, g9).
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A natural maximal affinity approach would be to put every unclustered gene

j into the cluster Ci with the highest affinity to j, that is, the cluster that

maximizes N(j,Ci)
|Ci|

. In this way, the clustering of S′ can be extended into

clustering of the entire gene set S. In 1999, Amir Ben-Dor and colleagues

developed the PCC clustering algorithm, which relies on the assumption that

if S′ is sufficiently large and the clustering of S′ is correct, then the clustering

of the entire gene set is likely to to be correct.

The only problem is that the correct clustering of S′ is unknown! The way

around this is to generate all possible clusterings of S′, extend them into a

clustering of the entire gene set S, and select the resulting clustering with

the best clustering score. As attractive as it may sound, this is not practical

(unless S′ is very small) since the number of possible partitions of a set S′ into

k clusters is k|S′|. The PCC algorithm gets around this problem by making

S′ extremely small and generating all partitions of this set into k clusters.

It then extends each of these k|S′| partitions into a partition of the entire n-

element gene set by the two-stage procedure described below. The distance

graph G guides these extensions based on the maximal affinity approach.

The function score(P ) is defined to be the number of edges necessary to add

or remove to turn G into a clique graph according to the partition P .9 The

PCC algorithm below clusters the set of elements S into k clusters according

to the graph G by extending partitions of subsets of S using the maximal

affinity approach:

PCC(G, k)

1 S ← set of vertices in the distance graph G

2 n← number of elements in S

3 bestScore←∞

4 Randomly select a “very small” set S′ ⊂ S, where |S′| = log log n

5 Randomly select a “small” set S′′ ⊂ (S \ S′), where |S′′| = log n.

6 for every partition P ′ of S′ into k clusters

7 Extend P ′ into a partition P ′′ of S′′

8 Extend P ′′ into a partition P of S

9 if score(P ) < bestScore

10 bestScore← score(P )

11 bestPartition← P

12 return bestPartition

9. Computing this number is an easy (rather than NP-complete) problem, since we are given
P . To search for the minimum score without P , we would need to search over all partitions.
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The number of iterations that PCC requires is given by the number of par-

titions of set S′, which is k|S
′| = klog log n = (log n)log2 k = (log n)c. The

amount of work done in each iteration is O(n2), resulting in a running time

of O
(
n2(log n)c

)
. Since this is too slow for most applications, a more practi-

cal heuristic called CAST is often used.

Define the distance between gene i and cluster C as the average distance

between i and all genes in the cluster C: d(i, C) =
P

j∈C
d(i,j)

|C| . Given a thresh-

old θ, a gene i is close to cluster C if d(i, C) < θ and distant otherwise. The

CAST algorithm below clusters set S according to the distance graph G and

the threshold θ. CAST iteratively builds the partition P of the set S by find-

ing a cluster C such that no gene i �∈ C is close to C, and no gene i ∈ C is

distant from C. In the beginning of the routine, P is initialized to an empty

set.
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CAST(G, θ)

1 S ← set of vertices in the distance graph G

2 P ← ∅

3 while S �= ∅

4 v ← vertex of maximal degree in the distance graph G.

5 C ← {v}

6 while there exists a close gene i �∈ C or distant gene i ∈ C

7 Find the nearest close gene i �∈ C and add it to C.

8 Find the farthest distant gene i ∈ C and remove it from C.

9 Add cluster C to the partition P

10 S ← S \ C

11 Remove vertices of cluster C from the distance graph G

12 return P

Although CAST is a heuristic with no performance guarantee10 it per-

forms remarkably well with gene expression data.

10.5 Evolutionary Trees

In the past, biologists relied on morphological features, like beak shapes or

the presence or absence of fins to construct evolutionary trees. Today biol-

ogists rely on DNA sequences for the reconstruction of evolutionary trees.

Figure 10.7 represents a DNA-based evolutionary tree of bears and raccoons

that helped biologists to decide whether the giant panda belongs to the bear

family or the raccoon family. This question is not as obvious as it may at first

sound, since bears and raccoons diverged just 35 million years ago and they

share many morphological features.

For over a hundred years biologists could not agree on whether the giant

panda should be classified in the bear family or in the raccoon family. In 1870

an amateur naturalist and missionary, Père Armand David, returned to Paris

from China with the bones of the mysterious creature which he called simply

“black and white bear.” Biologists examined the bones and concluded that

they more closely resembled the bones of a red panda than those of bears.

Since red pandas were, beyond doubt, part of the raccoon family, giant pan-

das were also classified as raccoons (albeit big ones).

Although giant pandas look like bears, they have features that are unusual

for bears and typical of raccoons: they do not hibernate in the winter like

10. In fact, CAST may not even converge; see the problems at the end of the chapter.
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other bears do, their male genitalia are tiny and backward-pointing (like rac-

coons’ genitalia), and they do not roar like bears but bleat like raccoons. As

a result, Edwin Colbert wrote in 1938:

So the quest has stood for many years with the bear proponents and the

raccoon adherents and the middle-of-the-road group advancing their

several arguments with the clearest of logic, while in the meantime the

giant panda lives serenely in the mountains of Szechuan with never a

thought about the zoological controversies he is causing by just being

himself.

The giant panda classification was finally resolved in 1985 by Steven O’Brien

and colleagues who used DNA sequences and algorithms, rather than be-

havioral and anatomical features, to resolve the giant panda controversy

(fig. 10.7). The final analysis demonstrated that DNA sequences provide an

important source of information to test evolutionary hypotheses. O’Brien’s

study used about 500,000 nucleotides to construct the evolutionary tree of

bears and raccoons.

Roughly at the same time that Steven O’Brien resolved the giant panda

controversy, Rebecca Cann, Mark Stoneking and Allan Wilson constructed

an evolutionary tree of humans and instantly created a new controversy. This

tree led to the Out of Africa hypothesis, which claims that humans have a

common ancestor who lived in Africa 200,000 years ago. This study turned

the question of human origins into an algorithmic puzzle.

The tree was constructed from mitochondrial DNA (mtDNA) sequences of

people of different races and nationalities.11 Wilson and his colleagues com-

pared sequences of mtDNA from people representing African, Asian, Aus-

tralian, Caucasian, and New Guinean ethnic groups and found 133 variants

of mtDNA. Next, they constructed the evolutionary tree for these DNA se-

quences that showed a trunk splitting into two major branches. One branch

consisted only of Africans, the other included some modern Africans and

some people from everywhere else. They concluded that a population of

Africans, the first modern humans, forms the trunk and the first branch of

the tree while the second branch represents a subgroup that left Africa and

later spread out to the rest of the world. All of the mtDNA, even samples

from regions of the world far away from Africa, were strikingly similar. This

11. Unlike the bulk of the genome, mitochondrial DNA is passed solely from a mother to her
children without recombining with the father’s DNA. Thus it is well-suited for studies of recent
human evolution. In addition, it quickly accumulates mutations and thus offers a quick-ticking
molecular clock.
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Figure 10.7 An evolutionary tree showing the divergence of raccoons and bears.
Despite their difference in size and shape, these two families are closely related.
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suggested that our species is relatively young. But the African samples had

the most mutations, thus implying that the African lineage is the oldest and

that all modern humans trace their roots back to Africa. They further esti-

mated that modern man emerged from Africa 200,000 years ago with racial

differences arising only 50,000 years ago.

Shortly after Allan Wilson and colleagues constructed the human mtDNA

evolutionary tree supporting the Out of Africa hypothesis, Alan Templeton

constructed 100 distinct trees that were also consistent with data that pro-

vide evidence against the African origin hypothesis! This is a cautionary tale

suggesting that one should proceed carefully when constructing large evolu-

tionary trees12 and below we describe some algorithms for evolutionary tree

reconstruction.

Biologists use either unrooted or rooted evolutionary trees;13 the difference

between them is shown in figure 10.8. In a rooted evolutionary tree, the

root corresponds to the most ancient ancestor in the tree, and the path from

the root to a leaf in the rooted tree is called an evolutionary path. Leaves

of evolutionary trees correspond to the existing species while internal ver-

tices correspond to hypothetical ancestral species.14 In the unrooted case, we

do not make any assumption about the position of an evolutionary ancestor

(root) in the tree. We also remark that rooted trees (defined formally as undi-

rected graphs) can be viewed as directed graphs if one directs the edges of

the rooted tree from the root to the leaves.

Biologists often work with binary weighted trees where every internal ver-

tex has degree equal to 3 and every edge has an assigned positive weight

(sometimes referred to as the length). The weight of an edge (v, w) may reflect

the number of mutations on the evolutionary path from v to w or a time esti-

mate for the evolution of species v into species w. We sometimes assume the

existence of a molecular clock that assigns a time t(v) to every internal vertex

v in the tree and a length of t(w) − t(v) to an edge (v, w). Here, time corre-

sponds to the “moment” when the species v produced its descendants; every

leaf species corresponds to time 0 and every internal vertex presumably cor-

responds to some negative time.

12. Following advances in tree reconstruction algorithms, the critique of the Out of Africa hy-
pothesis has diminished in recent years and the consensus today is that this hypothesis is prob-
ably correct.
13. We remind the reader that trees are undirected connected graphs that have no cycles. Ver-
tices of degree 1 in the tree are called leaves. All other vertices are called internal vertices.
14. In rare cases like quickly evolving viruses or bacteria, the DNA of ancestral species is avail-
able (e.g., as a ten- to twenty-year-old sample stored in refrigerator) thus making sequences of
some internal vertices real rather than hypothetical.
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(a) Unrooted
tree

(b) Rooted tree (c) The
same
rooted tree

Figure 10.8 The difference between unrooted (a) and rooted (b) trees. These both
describe the same tree, but the unrooted tree makes no assumption about the origin
of species. Rooted trees are often represented with the root vertex on the top (c),
emphasizing that the root corresponds to the ancestral species.
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Figure 10.9 A weighted unrooted tree. The length of the path between any two
vertices can be calculated as the sum of the weights of the edges in the path between
them. For example, d(1, 5) = 12 + 13 + 14 + 17 + 12 = 68.

10.6 Distance-Based Tree Reconstruction

If we are given a weighted tree T with n leaves, we can compute the length

of the path between any two leaves i and j, di,j(T ) (fig. 10.9). Evolutionary

biologists often face the opposite problem: they measure the n × n distance

matrix (Di,j), and then must search for a tree T that has n leaves and fits
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i,k

Di,j

D
j,

k

Figure 10.10 A tree with three leaves.

the data,15 that is, di,j(T ) = Di,j for every two leaves i and j. There are

many ways to generate distance matrices: for example, one can sequence a

particular gene in n species and define Di,j as the edit distance between this

gene in species i and species j.

It is not difficult to construct a tree that fits any given 3 × 3 (symmetric

non-negative) matrix D. This binary unrooted tree has four vertices i, j, k as

leaves and vertex c as the center. The lengths of each edge in the tree are

defined by the following three equations with three variables di,c, dj,c, and

dk,c (fig. 10.10):

di,c + dj,c = Di,j di,c + dk,c = Di,k dj,c + dk,c = Dj,k.

The solution is given by

di,c =
Di,j + Di,k −Dj,k

2
dj,c =

Dj,i + Dj,k −Di,k

2
dk,c =

Dk,i + Dk,j −Di,j

2
.

An unrooted binary tree with n leaves has 2n − 3 edges, so fitting a given

tree to an n× n distance matrix D leads to solving a system of
(
n
2

)
equations

with 2n − 3 variables. For n = 4 this amounts to solving six equations with

only five variables. Of course, it is not always possible to solve this system,

15. We assume that all matrices in this chapter are symmetric, that is, that they satisfy the con-
ditions Di,j = Dj,i and Di,j ≥ 0 for all i and j. We also assume that the distance matrices
satisfy the triangle inequality, that is, Di,j + Dj,k ≥ Di,k for all i, j, and k.
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A B C D

A 0 2 4 4
B 2 0 4 4
C 4 4 0 2
D 4 4 2 0

A C

B D

1

1

1

1

2

(a) Additive matrix and the corresponding
tree

A B C D

A 0 2 2 2
B 2 0 3 2
C 2 3 0 2
D 2 2 2 0

?

(b) Non-additive matrix

Figure 10.11 Additive and nonadditive matrices.

making it hard or impossible to construct a tree from D. A matrix (Di,j)

is called additive if there exists a tree T with di,j(T ) = Di,j , and nonadditive

otherwise (fig. 10.11).

Distance-Based Phylogeny Problem:

Reconstruct an evolutionary tree from a distance matrix.

Input: An n× n distance matrix (Di,j).

Output: A weighted unrooted tree T with n leaves fitting D,

that is, a tree such that di,j(T ) = Di,j for all 1 ≤ i < j ≤ n if

(Di,j) is additive.



10.7 Reconstructing Trees from Additive Matrices 361

Figure 10.12 If i and j are neighboring leaves and k is their parent, then Dk,m =
Di,m+Dj,m−Di,j

2
for every other vertex m in the tree.

The Distance-Based Phylogeny problem may not have a solution, but if it

does—that is, if D is additive—there exists a simple algorithm to solve it. We

emphasize the fact that we are somehow given the matrix of evolutionary

distances between each pair of species, and we are searching for both the

shape of the tree that fits this distance matrix and the weights for each edge

in the tree.

10.7 Reconstructing Trees from Additive Matrices

A “simple” way to solve the Distance-Based Phylogeny problem for additive

trees16 is to find a pair of neighboring leaves, that is, leaves that have the same

parent vertex.17 Figure 10.12 illustrates that for a pair of neighboring leaves i

and j and their parent vertex k, the following equality holds for every other

leaf m in the tree:

Dk,m =
Di,m + Dj,m −Di,j

2

Therefore, as soon as a pair of neighboring leaves i and j is found, one can

remove the corresponding rows and columns i and j from the distance ma-

trix and add a new row and column corresponding to their parent k. Since

the distance matrix is additive, the distances from k to other leaves are re-

computed as Dk,m =
Di,m+Dj,m−Di,j

2 . This transformation leads to a sim-

ple algorithm for the Distance-Based Phylogeny problem that finds a pair of

neighboring leaves and reduces the size of the tree at every step.

One problem with the described approach is that it is not very easy to find

neighboring leaves! One might be tempted to think that a pair of closest

16. To be more precise, we mean an “additive matrix,” rather than an “additive tree”; the term
“additive” applies to matrices. We use the term “additive trees” only because it dominates the
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A B C D
A 0 4 10 9
B 4 0 8 7
C 10 8 0 9
D 9 7 9 0

A C

B D
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δ = 1

A B C D
A 0 2 8 7
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C 8 6 0 7
D 7 5 7 0
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j ← D
k ← C
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A 0 2
C 2 0
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Figure 10.14 The iterative process of shortening the hanging edges of a tree.
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vertex j should lie somewhere on the path between i and k in T .18 Another

way to state this is that j is attached to this path by an edge of weight 0, and

the attachment point for j is located at distance Di,j from vertex i. There-

fore, if an n × n additive matrix D has a degenerate triple, then it will be

reduced to an (n − 1) × (n − 1) additive matrix by simply excluding vertex

j from consideration; the position of j will be recovered during the reverse

transformations. If the matrix D does not have a degenerate triple, one can

start reducing the values of all elements in D by the same amount 2δ until

the point at which the distance matrix becomes degenerate for the first time

(i.e., δ is the minimum value for which (Di,j − 2δ) has a degenerate triple for

some i and j). Determining how to calculate the minimum value of δ (called

the trimming parameter) is left as a problem at the end of this chapter. Though

you do not have the tree T , this operation corresponds to shortening all of

the hanging edges in T by δ until one of the leaves ends up on the evolution-

ary path between two other leaves for the first time. This intuition motivates

the following recursive algorithm for finding the tree that fits the data.

ADDITIVEPHYLOGENY(D)

1 if D is a 2× 2 matrix

2 T ← the tree consisting of a single edge of length D1,2.

3 return T

4 if D is non-degenerate

5 δ ← trimming parameter of matrix D

6 for all 1 ≤ i 6= j ≤ n

7 Di,j ← Di,j − 2δ

8 else

9 δ ← 0

10 Find a triple i, j, k in D such that Dij + Djk = Dik

11 x← Di,j

12 Remove jth row and jth column from D.

13 T ← ADDITIVEPHYLOGENY(D)

14 Add a new vertex v to T at distance x from i to k

15 Add j back to T by creating an edge (v, j) of length 0

16 for every leaf l in T

17 if distance from l to v in the tree T does not equal Dl,j

18 output “Matrix D is not additive”

19 return

20 Extend hanging edges leading to all leaves by δ

21 return T

18. To be more precise, vertex j partitions the path from i to k into paths of length Di,j and
Dj,k .
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Figure 10.15 Representing three sums in a tree with 4 vertices.

The ADDITIVEPHYLOGENY algorithm above provides a way to check if

the matrix D is additive. While this algorithm is intuitive and simple, it

is not the most efficient way to construct additive trees. Another way to

check additivity is by using the following “four-point condition”. Let 1 ≤

i, j, k, l ≤ n be four distinct indices. Compute 3 sums: Di,j +Dk,l, Di,k +Dj,l,

and Di,l + Dj,k. If D is an additive matrix then these three sums can be

represented by a tree with four leaves (fig. 10.15). Moreover, two of these

sums represent the same number (the sum of lengths of all edges in the tree

plus the length of the middle edge) while the third sum represents another

smaller number (the sum of lengths of all edges in the tree minus the length

of the middle edge). We say that elements 1 ≤ i, j, k, l ≤ n satisfy the four-

point condition if two of the sums Di,j + Dk,l, Di,k + Dj,l, and Di,l + Dj,k are

the same, and the third one is smaller than these two.

Theorem 10.1 An n×n matrix D is additive if and only if the four point condition

holds for every 4 distinct elements 1 ≤ i, j, k, l ≤ n.

If the distance matrix D is not additive, one might want instead to find

a tree that approximates D using the sum of squared errors
∑

i,j(di,j(T ) −

Di,j)
2 as a measure of the quality of the approximation. This leads to the

(NP-hard) Least Squares Distance-Based Phylogeny problem:
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Least Squares Distance-Based Phylogeny Problem:

Given a distance matrix, find the evolutionary tree that minimizes

squared error.

Input: An n× n distance matrix (Di,j)

Output: A weighted tree T with n leaves minimizing∑
i,j(di,j(T )−Di,j)

2 over all weighted trees with n leaves.

10.8 Evolutionary Trees and Hierarchical Clustering

Biologists often use variants of hierarchical clustering to construct evolution-

ary trees. UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a

particularly simple clustering algorithm. The UPGMA algorithm is a vari-

ant of HIERARCHICALCLUSTERING that uses a different approach to com-

pute the distance between clusters, and assigns heights to vertices of the con-

structed tree. Thus, the length of an edge (u, v) is defined to be the difference

in heights of the vertices v and u. The height plays the role of the molecular

clock, and allows one to “date” the divergence point for every vertex in the

evolutionary tree.

Given clusters C1 and C2, UPGMA defines the distance between them to

be the average pairwise distance: D(C1, C2) = 1
|C1||C2|

∑
i∈C1

∑
j∈C2

D(i, j).

At heart, UPGMA is simply another hierarchical clustering algorithm that

“dates” vertices of the constructed tree.

UPGMA(D, n)

1 Form n clusters, each with a single element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 Assign height h(v) = 0 to every vertex v in this graph

4 while there is more than one cluster

5 Find the two closest clusters C1 and C2

6 Merge C1 and C2 into a new cluster C with |C1|+ |C2| elements

7 for every cluster C∗ 6= C

8 D(C, C∗) = 1
|C|·|C∗|

∑
i∈C

∑
j∈C∗ D(i, j)

9 Add a new vertex C to T and connect to vertices C1 and C2

10 h(C)← D(C1,C2)
2

11 Assign length h(C)− h(C1) to the edge (C1, C)

12 Assign length h(C)− h(C2) to the edge (C2, C)

13 Remove rows and columns of D corresponding to C1 and C2

14 Add a row and column to D for the new cluster C

15 return T
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UPGMA produces a special type of rooted tree19 that is known as ultra-

metric. In ultrametric trees the distance from the root to any leaf is the same.

We can now return to the “neighboring leaves” idea that we developed

and then abandoned in the previous section. In 1987 Naruya Saitou and

Masatoshi Nei developed an ingenious neighbor joining algorithm for phylo-

genetic tree reconstruction. In the case of additive trees, the neighbor joining

algorithm somehow magically finds pairs of neighboring leaves and pro-

ceeds by substituting such pairs with the leaves’ parent. However, neighbor

joining works well not only for additive distance matrices but for many oth-

ers as well: it does not assume the existence of a molecular clock and ensures

that the clusters that are merged in the course of tree reconstruction are not

only close to each other (as in UPGMA) but also are far apart from the rest.

For a cluster C, define u(C) = 1
number of clusters−2

∑
all clusters C′ D(C, C′) as a

measure of the separation of C from other clusters.20 To choose which two

clusters to merge, we look for the clusters C1 and C2 that are simultaneously

close to each other and far from others. One may try to merge clusters that

simultaneously minimize D(C1, C2) and maximize u(C1)+ u(C2). However,

it is unlikely that a pair of clusters C1 and C2 that simultaneously minimize

D(C1, C2) and maximize u(C1) + u(C2) exists. As an alternative, one opts to

minimize D(C1, C2) − u(C1) − u(C2). This approach is used in the NEIGH-

BORJOINING algorithm below.

NEIGHBORJOINING(D, n)

1 Form n clusters, each with a single element

2 Construct a graph T by assigning an isolated vertex to each cluster

3 while there is more than one cluster

4 Find clusters C1 and C2 minimizing D(C1, C2)− u(C1)− u(C2)

5 Merge C1 and C2 into a new cluster C with |C1|+ |C2| elements

6 Compute D(C, C∗) = D(C1,C)+D(C2,C)
2 to every other cluster C∗

7 Add a new vertex C to T and connect it to vertices C1 and C2

8 Assign length 1
2D(C1, C2) + 1

2 (u(C1)− u(C2)) to the edge (C1, C)

9 Assign length 1
2D(C1, C2) + 1

2 (u(C2)− u(C1)) to the edge (C2, C)

10 Remove rows and columns of D corresponding to C1 and C2

11 Add a row and column to D for the new cluster C

12 return T

19. Here, the root corresponds to the cluster created last.
20. The explanation of that mysterious term “number of clusters − 2” in this formula is beyond
the scope of this book.
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10.9 Character-Based Tree Reconstruction

Evolutionary tree reconstruction often starts by sequencing a particular gene

in each of n species. After aligning these genes, biologists end up with an

n × m alignment matrix (n species, m nucleotides in each) that can be fur-

ther transformed into an n×n distance matrix. Although the distance matrix

could be analyzed by distance-based tree reconstruction algorithms, a cer-

tain amount of information gets lost in the transformation of the alignment

matrix into the distance matrix, rendering the reverse transformation of dis-

tance matrix back into the alignment matrix impossible. A better technique

is to use the alignment matrix directly for evolutionary tree reconstruction.

Character-based tree reconstruction algorithms assume that the input data are

described by an n×m matrix (perhaps an alignment matrix), where n is the

number of species and m is the number of characters. Every row in the matrix

describes an existing species and the goal is to construct a tree whose leaves

correspond to the n existing species and whose internal vertices correspond

to ancestral species. Each internal vertex in the tree is labeled with a charac-

ter string that describes, for example, the hypothetical number of legs in that

ancestral species. We want to determine what character strings at internal

nodes would best explain the character strings for the n observed species.

The use of the word “character” to describe an attribute of a species is

potentially confusing, since we often use the word to refer to letters from

an alphabet. We are not at liberty to change the terminology that biologists

have been using for at least a century, so for the next section we will re-

fer to nucleotides as states of a character. Another possible character might

be “number of legs,” which is not very informative for mammalian evolu-

tionary studies, but could be somewhat informative for insect evolutionary

studies.

An intuitive score for a character-based evolutionary tree is the total num-

ber of mutations required to explain all of the observed character sequences.

The parsimony approach attempts to minimize this score, and follows the

philosophy of Occam’s razor: find the simplest explanation of the data (see

figure 10.16).21

21. Occam was one of the most influential philosophers of the fourteenth century. Strong op-
position to his ideas from theology professors prevented him from obtaining his masters degree
(let alone his doctorate). Occam’s razor states that “plurality should not be assumed without
necessity,” and is usually paraphrased as “keep it simple, stupid.” Occam used this principle to
eliminate many pseudoexplanatory theological arguments. Though the parsimony principle is
attributed to Occam, sixteen centuries earlier Aristotle wrote simply that Nature operates in the
shortest way possible.
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1 1

0 1 0 0

1 0

1 0 0 0

Parsimony Score=3 Parsimony Score=2(a) (b)

Figure 10.16 If we label a tree’s leaves with characters (in this case, eyebrows and
mouth, each with two states), and choose labels for each internal vertex, we implicitly
create a parsimony score for the tree. By changing the labels in (a) we are able to create
a tree with a better parsimony score in (b).

Given a tree T with every vertex labeled by an m-long string of characters,

one can set the length of an edge (v, w) to the Hamming distance dH(v, w)

between the character strings for v and w. The parsimony score of a tree T is

simply the sum of lengths of its edges
∑

All edges (v,w) of the tree dH(v, w). In

reality, the strings of characters assigned to internal vertices are unknown

and the problem is to find strings that minimize the parsimony score.

Two particular incarnations of character-based tree reconstruction are the

Small Parsimony problem and the Large Parsimony problem. The Small Par-

simony problem assumes that the tree is given but the labels of its internal

vertices are unknown, while the vastly more difficult Large Parsimony prob-

lem assumes that neither the tree structure nor the labels of its internal ver-

tices are known.
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10.10 Small Parsimony Problem

Small Parsimony Problem:

Find the most parsimonious labeling of the internal vertices in an

evolutionary tree.

Input: Tree T with each leaf labeled by an m-character

string.

Output: Labeling of internal vertices of the tree T minimiz-

ing the parsimony score.

An attentive reader should immediately notice that, because the characters

in the string are independent, the Small Parsimony problem can be solved

independently for each character. Therefore, to devise an algorithm, we can

assume that every leaf is labeled by a single character rather than by a string

of m characters.

As we have seen in previous chapters, sometimes solving a more general—

and seemingly more difficult—problem may reveal the solution to the more

specific one. In the case of the Small Parsimony Problem we will first solve

the more general Weighted Small Parsimony problem, which generalizes the

notion of parsimony by introducing a scoring matrix. The length of an edge

connecting vertices v and w in the Small Parsimony problem is defined as the

Hamming distance, dH(v, w), between the character strings for v and w. In

the case when every leaf is labeled by a single character in a k-letter alphabet,

dH(v, w) = 0 if the characters corresponding to v and w are the same, and

dH(v, w) = 1 otherwise. One can view such a scoring scheme as a k × k

scoring matrix (δi,j) with diagonal elements equal to 0 and all other elements

equal to 1. The Weighted Small Parsimony problem simply assumes that the

scoring matrix (δi,j) is an arbitrary k× k matrix and minimizes the weighted

parsimony score
∑

all edges (v, w) in the tree δv,w.

Weighted Small Parsimony Problem:

Find the minimal weighted parsimony score labeling of the internal

vertices in an evolutionary tree.

Input: Tree T with each leaf labeled by elements of a k-letter

alphabet and a k × k scoring matrix (δij).

Output: Labeling of internal vertices of the tree T minimiz-

ing the weighted parsimony score.
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v

u w

Figure 10.17 A subtree of a larger tree. The shaded vertices form a tree rooted at the
topmost shaded node.

In 1975 David Sankoff came up with the following dynamic programming

algorithm for the Weighted Small Parsimony problem. As usual in dynamic

programming, the Weighted Small Parsimony problem for T is reduced to

solving the Weighted Small Parsimony Problem for smaller subtrees of T . As

we mentioned earlier, a rooted tree can be viewed as a directed tree with all

of its edges directed away from the root toward the leaves. Every vertex v in

the tree T defines a subtree formed by the vertices beneath v (fig. 10.17), which

are all of the vertices that can be reached from v. Let st(v) be the minimum

parsimony score of the subtree of v under the assumption that vertex v has

character t. For an internal vertex v with children u and w, the score st(v)

can be computed by analyzing k scores si(u) and k scores si(w) for 1 ≤ i ≤ k

(below, i and j are characters):

st(v) = min
i
{si(u) + δi,t}+ min

j
{sj(w) + δj,t}

The initial conditions simply amount to an assignment of the scores st(v)

at the leaves according to the rule: st(v) = 0 if v is labeled by letter t and

st(v) = ∞ otherwise. The minimum weighted parsimony score is given by

the smallest score at the root, st(r) (fig. 10.18). Given the computed values
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st(v) at all of the vertices in the tree, one can reconstruct an optimal assign-

ment of labels using a backtracking approach that is similar to that used in

chapter 6. The running time of the algorithm is O(nk).

In 1971, even before David Sankoff solved the Weighted Small Parsimony

problem, Walter Fitch derived a solution of the (unweighted) Small Parsi-

mony problem. The Fitch algorithm below is essentially dynamic program-

ming in disguise. The algorithm assigns a set of letters Sv to every vertex in

the tree in the following manner. For each leaf v, Sv consists of single letter

that is the label of this leaf. For any internal vertex v with children u and w,

Sv is computed from the sets Su and Sw according to the following rule:

Sv =

{
Su ∩ Sw, if Su and Sw overlap

Su ∪ Sw, otherwise

To compute Sv, we traverse the tree in post-order as in figure 10.19, starting

from the leaves and working toward the root. After computing Sv for all

vertices in the tree, we need to decide on how to assign letters to the internal

vertices of the tree. This time we traverse the tree using preorder traversal

from the root toward the leaves. We can assign root r any letter from Sr. To

assign a letter to an internal vertex v we check if the (already assigned) label

of its parent belongs to Sv. If yes, we choose the same label for v; otherwise

we label v by an arbitrary letter from Sv (fig. 10.20). The running time of this

algorithm is also O(nk).

At first glance, Fitch’s labeling procedure and Sankoff’s dynamic program-

ming algorithm appear to have little in common. Even though Fitch probably

did not know about application of dynamic programming for evolutionary

tree reconstruction in 1971, the two algorithms are almost identical. To reveal

the similarity between these two algorithms let us return to Sankoff’s recur-

rence. We say that character t is optimal for vertex v if it yields the smallest

score, that is, if st(v) = min1≤i≤k si(v). The set of optimal letters for a ver-

tex v forms a set S(v). If u and w are children of v and if S(u) and S(w)

overlap, then it is easy to see that S(v) = S(u)
⋂

S(w). If S(u) and S(w) do

not overlap, then it is easy to see that S(v) = S(u)
⋃

S(w). Fitch’s algorithm

uses exactly the same recurrence, thus revealing that these two approaches

are algorithmic twins.
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Figure 10.18 An illustration of Sankoff’s algorithm. The leaves of the tree are labeled
by A, C, T, G in order. The minimum weighted parsimony score is given by sT(root) =
0 + 0 + 3 + 4 + 0 + 2 = 9.
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Figure 10.19 Three methods of traversing a tree. (a) Pre-order: SELF, LEFT, RIGHT.
(b) In-order: LEFT, SELF, RIGHT. (c) Post-order: LEFT, RIGHT, SELF.

10.11 Large Parsimony Problem

Large Parsimony Problem:

Find a tree with n leaves having the minimal parsimony score.

Input: An n×m matrix M describing n species, each repre-

sented by an m-character string.

Output: A tree T with n leaves labeled by the n rows of

matrix M , and a labeling of the internal vertices of this tree

such that the parsimony score is minimized over all possible

trees and over all possible labelings of internal vertices.

Not surprisingly, the Large Parsimony problem is NP-complete. In the

case n is small, one can explore all tree topologies with n leaves, solve the

Small Parsimony problem for each topology, and select the best one. How-

ever, the number of topologies grows very fast with respect to n, so biologists

often use local search heuristics (e.g., greedy algorithms) to navigate in the

space of all topologies. Nearest neighbor interchange is a local search heuristic

that defines neighbors in the space of all trees.22 Every internal edge in a tree

defines four subtrees A, B, C, and D (fig. 10.21) that can be combined into a

22. “Nearest neighbor” has nothing to do with the two closest leaves in the tree.
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Figure 10.20 An illustration of Fitch’s algorithm.
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A
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D

AB|CD

A

C
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D

AC|BD

A

D

B

C

AD|BC

Figure 10.21 Three ways of combining the four subtrees defined by an internal edge.

tree in three different ways that we denote AB|CD, AC|BD, and AD|BC.

These three trees are called neighbors under the nearest neighbor interchange

transformation. Figure 10.22 shows all trees with five leaves and connects

two trees if they are neighbors. Figure 10.23 shows two nearest neighbor in-

terchanges that transform one tree into another. A greedy approach to the

Large Parsimony problem is to start from an arbitrary tree and to move (by

nearest neighbor interchange) from one tree to another if such a move pro-

vides the best improvement in the parsimony score among all neighbors of

the tree T .
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(b) Stereo projection of graph of trees

Figure 10.22 (a) All unrooted binary trees with five leaves. (b) These can also be
considered to be vertices in a graph; two vertices are connected if and only if their re-
spective trees are interchangeable by a single nearest neighbor interchange operation.
Shown is a three dimensional view of the graph as a stereo representation.
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Figure 10.23 Two trees that are two nearest neighbor interchanges apart.



10.12 Notes 379

10.12 Notes

The literature on clustering can be traced back to the nineteenth century. The

k-Means clustering algorithm was introduced by Stuart Lloyd in 1957 (68),

popularized by MacQueen in 1965 (70), and has since inspired dozens of

variants. Applications of hierarchical clustering for gene expression analyses

were pioneered by Michael Eisen, Paul Spellman, Patrick Brown and David

Botstein in 1998 (33). The PCC and CAST algorithms were developed by

Amir Ben-Dor, Ron Shamir, and Zohar Yakhini in 1999 (11).

The molecular solution of the giant panda riddle was proposed by Stephen

O’Brien and colleagues in 1985 (81) and described in more details in O’Brien’s

book (80). The Out of Africa hypothesis was proposed by Rebecca Cann,

Mark Stoneking, and Allan Wilson in 1987. Even today it continues to be

debated by Alan Templeton and others (103).

The simple and intuitive UPGMA hierarchical clustering approach was

developed in 1958 by Charles Michener and Robert Sokal (98). The neighbor

joining algorithm was developed by Naruya Saitou and Masatoshi Nei in

1987 (90).

The algorithm to solve the Small Parsimony problem was developed by

Walter Fitch in 1971 (37), four years before David Sankoff developed a dy-

namic programming algorithm for the more general Weighted Small Parsi-

mony problem (92). The four-point condition was first formulated in 1965

(113), promptly forgotten, and rediscovered by Peter Buneman six years later (19).

The nearest neighbor interchange approach to exploring trees was proposed

in 1971 by David Robinson (88).
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Ron Shamir (born 1953 in Jerusalem)

is a professor at the School of Computer

Science at Tel Aviv University. He holds

an undergraduate degree in mathemat-

ics and physics from Hebrew Univer-

sity, Jerusalem and a PhD in operations

research from the University of Califor-

nia at Berkeley. He was a pioneer in

the application of sophisticated graph-

theoretical techniques in bioinformatics.

Shamir’s interests have always revolved

around the design and analysis of al-

gorithms and his PhD dissertation was

on studies of linear programming algo-

rithms. Later he developed a keen inter-

est in graph algorithms that eventually

brought him (in a roundabout way) to computational biology. Back in 1990

Shamir was collaborating with Martin Golumbic on problems related to tem-

poral reasoning. In these problems, one has a set of events, each modeled by

an unknown interval on the timeline, and a collection of constraints on the

relations between each two events, for example, whether two intervals over-

lap or not. One has to determine if there exists a realization of the events as

intervals on the line, satisfying all the constraints. This is a generalization

of the problem that Seymour Benzer faced trying to establish the linearity of

genes, but at the time Shamir did not know about Benzer’s work. He says:

I presented my work on temporal reasoning at a workshop in 1990

and the late Gene Lawler told me this model fits perfectly the DNA

mapping problem. I knew nothing about DNA at the time but started

reading, and I also sent a note to Eric Lander describing the temporal

reasoning result with the mapping consequences. A few weeks later

Rutgers University organized a kickoff day on computational biology

and brought Mike Waterman and Eric Lander who gave fantastic talks

on the genome project and the computational challenges. Eric even

mentioned our result as an important example of computer science

contribution to the field. I think he was exaggerating quite a bit on

this point, but the two talks sent me running to read biology textbooks

and papers. I got a lot of help during the first years from my wife
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Michal, who happens to be a biologist and patiently answered all my

trivial questions.

This chance meeting with Gene Lawler and Eric Lander converted Shamir

into a bioinformatician and since 1991 he has been devoting more and more

time to algorithmic problems in computational biology. He still keeps an

interest in graph algorithms and often applies graph-theoretical techniques

to biological problems. In recent years, he has tended to combine discrete

mathematics techniques and probabilistic reasoning. Ron says:

I still worry about the complexity of the problems and the algorithms,

and would care about (and enjoy) the NP-hardness proof of a new

problem, but biology has trained me to be “tolerant” to heuristics when

the theoretical computer science methodologies only take you so far,

and the data require more.

Shamir was an early advocate of rigorous clustering algorithms in bioin-

formatics. Although clustering theory has been under development since the

1960s, his interest in clustering started in the mid-1990s as part of a collabora-

tion with Hans Lehrach of the Max Planck Institute in Berlin. Lehrach is one

of the fathers of the oligonucleotide fingerprinting technology that predates

the DNA chips techniques. Lehrach had a “factory” in Berlin that would

array thousands of unknown cDNA clones, and then hybridize them to k-

mer probes (typically 8-mers or 9-mers). This was repeated with dozens of

different probes, giving a fingerprint for each cDNA clone. To find which

clones correspond to the same gene, one has to cluster them based on their

fingerprints, and the noise level in the data makes accurate clustering quite

a challenge.

It was this challenge that brought Shamir to think about clustering. As

clustering theory is very heterogeneous and scattered over many different

fields, he set out to develop his algorithm first, before learning the literature.

Naturally, Shamir resorted to graph algorithms, modeled the clustered ele-

ments (clones in the fingerprinting application) as vertices, and connected

clones with highly similar fingerprints by edges. It was a natural next step to

repeatedly partition the graph based on minimum cuts (sets of edges whose

removal makes the graph disconnected) and hence his first clustering algo-

rithm was born. Actually the idea looked so natural to Shamir that he and

his student Erez Hartuv searched the literature for a long time just to make

sure it had not been published before. They did not find the same approach
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but found similar lines of thinking in works a decade earlier. According to

Shamir,

Given the ubiquity of clustering, I would not be surprised to unearth

in the future an old paper with the same idea in archeology, zoology,

or some other field.

Later, after considering the pros and cons of the approach, together with

his student Roded Sharan, Shamir improved the algorithm by adding a rig-

orous probabilistic analysis and created the popular clustering algorithm

CLICK. The publication of vast data sets of microarray expression profiles

was a great opportunity and triggered Shamir to further develop PCC and

CAST together with Amir Ben-Dor and Zohar Yakhini.

Shamir is one of the very few scientists who is regarded as a leader in

both algorithms and bioinformatics and who was credited with an important

breakthrough in algorithms even before he became a bioinformatician. He

says:

Probably the most exciting moment in my scientific life was my PhD re-

sult in 1983, showing that the average complexity of the Simplex algo-

rithm is quadratic. The Simplex algorithm is one of the most commonly

used algorithms, with thousands of applications in virtually all areas

of science and engineering. Since the 1950s, the Simplex algorithm was

known to be very efficient in practice and was (and is) used ubiqui-

tously, but worst-case exponential-time examples were given for many

variants of the Simplex, and none was proved to be efficient. This was

a very embarrassing situation, and resolving it was very gratifying.

Doing it together with my supervisors Ilan Adler (a leader in convex

optimization, and a student of Dantzig, the father of the Simplex algo-

rithm) and Richard Karp (one of the great leaders of theoretical com-

puter science) was extremely exciting. Similar results were obtained

independently at the same time by other research groups. There were

some other exhilarating moments, particularly those between finding

out an amazing new result and discovering the bug on the next day,

but these are the rewards and frustrations of scientific research.

Shamir views himself as not committed to a particular problem. One of

the advantages of scientific research in the university setting is the freedom

to follow one’s interests and nose, and not be obliged to work on the same

problem for years. The exciting rapid developments in biology bring about
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a continuous flow of new problems, ideas, and data. Of course, one has to

make sure breadth does not harm the research depth. In practice, in spite of

this “uncommitted” ideology, Ron finds himself working on the same areas

for several years, and following the literature in these fields a while later. He

tends to work on several problem areas simultaneously but tries to choose

topics that are overlapping to some extent, just to save on the effort of under-

standing and following several fields. Shamir says:

In my opinion, an open mind, high antennae, a solid background in the

relevant disciplines, and hard work are the most important elements

of discovery. As a judge once said, “Inspiration only comes to the law

library at 3 AM". This is even more true in science. Flexibility and

sensitivity to the unexpected are crucial.

Shamir views the study of gene networks, that is, understanding how

genes, proteins, and other molecules work together in concert, as a long-

standing challenge.
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10.13 Problems

Problem 10.1

Determine the number of different ways to partition a set of n elements into k clus-
ters.

Problem 10.2

Construct an instance of the k-Means Clustering problem for which the Lloyd algo-
rithm produces a particularly bad solution. Derive a performance guarantee of the
Lloyd algorithm.

Problem 10.3

Find an optimal algorithm for solving the k-Means Clustering problem in the case of
k = 1. Can you find an analytical solution in this case?

Problem 10.4

Estimate the number of iterations that the Lloyd algorithm will require when k = 1.
Repeat for k = 2.

Problem 10.5

Construct an example for which the CAST algorithm does not converge.

Problem 10.6

How do you calculate the trimming parameter δ in ADDITIVEPHYLOGENY?

Problem 10.7

Prove that a connected graph in which the number of vertices exceeds the number of
edges by 1 is a tree.

Problem 10.8

Some of 8 Hawaiian islands are connected by airlines. It is known one can reach every
island from any other (probably with some intermediate stops). Prove that you can
visit all islands making no more than 12 flights.

Problem 10.9

Show that any binary tree with n leaves has 2n− 3 edges.

Problem 10.10

How many different unrooted binary trees on n vertices are there?

Problem 10.11

Prove that every binary tree has at least two neighboring leaves.

Problem 10.12

Design a backtracking procedure to reconstruct the optimal assignment of characters
in the Sankoff algorithm for the Weighted Small Parsimony problem.
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Problem 10.13

While we showed how to solve the Weighted Small Parsimony problem using dy-
namic programming, we did not show how to construct a Manhattan-like graph for
this problem. Cast the Weighted Small Parsimony problem in terms of finding a path
in an appropriate Manhattan-like directed acyclic graph.

Problem 10.14

The nearest neighbor interchange distance between two trees is defined as the minimum
number of interchanges to transform one tree into another. Design an approximation
algorithm for computing the nearest neighbor interchange distance.

Problem 10.15

Find two binary trees with six vertices that are the maximum possible nearest neigh-
bor interchange distance apart from each other.
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Hidden Markov Models are a popular machine learning approach in bioinfor-

matics. Machine learning algorithms are presented with training data, which

are used to derive important insights about the (often hidden) parameters.

Once an algorithm has been suitably trained, it can apply these insights to

the analysis of a test sample. As the amount of training data increases, the ac-

curacy of the machine learning algorithm typically increases as well. The pa-

rameters that are learned during training represent knowledge; application

of the algorithm with those parameters to new data (not used in the train-

ing phase) represents the algorithm’s use of that knowledge. The Hidden

Markov Model (HMM) approach, considered in this chapter, learns some

unknown probabilistic parameters from training samples and uses these pa-

rameters in the framework of dynamic programming (and other algorithmic

techniques) to find the best explanation for the experimental data.

11.1 CG-Islands and the “Fair Bet Casino”

The least frequent dinucleotide in many genomes is CG. The reason for this

is that the C within CG is easily methylated, and the resulting methyl-C has

a tendency to mutate into T.1 However, the methylation is often suppressed

around genes in areas called CG-islands in which CG appears relatively fre-

quently. An important problem is to define and locate CG-islands in a long

genomic text.

Finding CG-islands can be modeled after the following toy gambling prob-

lem. The “Fair Bet Casino” has a game in which a dealer flips a coin and

1. Cells often biochemically modify DNA and proteins. Methylation is the most common DNA
modification and results in the addition of a methyl (CH3) group to a nucleotide position in
DNA.
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the player bets on the outcome (heads or tails). The dealer in this (crooked)

casino uses either a fair coin (heads or tails are equally likely) or a biased

coin that will give heads with a probability of 3
4 . For security reasons, the

dealer does not like to change coins, so this happens relatively rarely, with a

probability of 0.1. Given a sequence of coin tosses, the problem is to find out

when the dealer used the biased coin and when he used the fair coin, since

this will help you, the player, learn the dealer’s psychology and enable you

to win money. Obviously, if you observe a long line of heads, it is likely that

the dealer used the biased coin, whereas if you see an even distribution of

heads and tails, he likely used the fair one. Though you can never be certain

that a long string of heads is not just a fluke, you are primarily interested in

the most probable explanation of the data. Based on this sensible intuition,

we might formulate the problem as follows:

Fair Bet Casino Problem:

Given a sequence of coin tosses, determine when the dealer used a fair

coin and when he used a biased coin.

Input: A sequence x = x1 x2 x3 . . . xn of coin tosses (either

H or T ) made by two possible coins (F or B).

Output: A sequence π = π1 π2 π3 · · ·πn, with each πi being

either F or B indicating that xi is the result of tossing the

fair or biased coin, respectively.

Unfortunately, this problem formulation simply makes no sense. The am-

biguity is that any sequence of coins could possibly have generated the ob-

served outcomes, so technically π = FFF . . . FF is a valid answer to this

problem for every observed sequence of coin flips, as is π = BBB . . .BB. We

need to incorporate a way to grade different coin sequences as being better

answers than others. Below we explain how to turn this ill-defined problem

into the Decoding problem based on HMM paradigm.

First, we consider the problem under the assumption that the dealer never

changes coins. In this case, letting 0 denote tails and 1 heads, the question is

which of the two coins he used, fair (p+(0) = p+(1) = 1
2 ) or biased (p−(0) =

1
4 , p−(1) = 3

4 ). If the resulting sequence of tosses is x = x1 . . . xn, then the
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probability that x was generated by a fair coin is2

P (x|fair coin) =
n∏

i=1

p+(xi) =
1

2n
.

On the other hand, the probability that x was generated by a biased coin is

P (x|biased coin) =

n∏

i=1

p−(xi) =

(
1

4n−k

)(
3k

4k

)
=

3k

4n
.

Here k is the number of heads in x. If P (x|fair coin) > P (x|biased coin), then

the dealer most likely used a fair coin; on the other hand, we can see that if

P (x|fair coin)<P (x|biased coin), then the dealer most likely used a biased

coin. The probabilities P (x|fair coin)= 1
2n and P (x|biased coin) = 3k

4n become

equal at k = n
log2 3 . As a result, when k < n

log2 3 , the dealer most likely used

a fair coin, and when k > n
log2 3 , he most likely used a biased coin. We can

define the log-odds ratio as follows:

log2

P (x|fair coin)

P (x|biased coin)
=

k∑

i=1

log2

p+(xi)

p−(xi)
= n− k log2 3

However, we know that the dealer does change coins, albeit rarely. One ap-

proach to making an educated guess as to which coin the dealer used at each

point would be to slide a window of some width along the sequence of coin

flips and calculate the log-odds ratio of the sequence under each window. In

effect, this is considering the log-odds ratio of short regions of the sequence.

If the log-odds ratio of the short sequence falls below 0, then the dealer most

likely used a biased coin while generating this window of sequence; other-

wise the dealer most likely used a fair coin.

Similarly, a naive approach to finding CG-islands in long DNA sequences

is to calculate log-odds ratios for a sliding window of some particular length,

and to declare windows that receive positive scores to be potential CG-islands.

Of course, the disadvantage of this approach is that we do not know the

length of CG-islands in advance and that some overlapping windows may

classify the same nucleotide differently. HMMs represent a different proba-

bilistic approach to this problem.

2. The notation P (x|y) is shorthand for the “probability of x occurring under the assumption
that (some condition) y is true.” The notation

Qn
i=1 ai means a1 · a2 · a3 · · · an.
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11.2 The Fair Bet Casino and Hidden Markov Models

An HMM can be viewed as an abstract machine that has an ability to produce

some output using coin tossing. The operation of the machine proceeds in

discrete steps: at the beginning of each step, the machine is in a hidden state of

which there are k. During the step, the HMM makes two decisions: (1) “What

state will I move to next?” and (2) “What symbol—from an alphabet Σ—will

I emit?” The HMM decides on the former by choosing randomly among the k

states; it decides on the latter by choosing randomly among the |Σ| symbols.

The choices that the HMM makes are typically biased, and may follow arbi-

trary probabilities. Moreover, the probability distributions3 that govern which

state to move to and which symbols to emit change from state to state. In

essence, if there are k states, then there are k different “next state” distribu-

tions and k different “symbol emission” distributions. An important feature

of HMMs is that an observer can see the emitted symbols but has no ability to

see what state HMM is in at any step, hence the name Hidden Markov Mod-

els. The goal of the observer is to infer the most likely states of the HMM by

analyzing the sequences of emitted symbols. Since an HMM effectively uses

dice to emit symbols, the sequence of symbols it produces does not form any

readily recognizable pattern.

Formally, an HMM M is defined by an alphabet of emitted symbols Σ,

a set of (hidden) states Q, a matrix of state transition probabilities A, and a

matrix of emission probabilities E, where

• Σ is an alphabet of symbols;

• Q is a set of states, each of which will emit symbols from the alphabet Σ;

• A = (akl) is a |Q| × |Q| matrix describing the probability of changing to

state l after the HMM is in state k; and

• E = (ek(b)) is a |Q| × |Σ|matrix describing the probability of emitting the

symbol b during a step in which the HMM is in state k.

Each row of the matrix A describes a “state die”4 with |Q| sides, while

each row of the matrix E describes a “symbol die” with |Σ| sides. The Fair

3. A probability distribution is simply an assignment of probabilities to outcomes; in this case,
the outcomes are either symbols to emit or states to move to. We have seen probability distribu-
tions, in a disguised form, in the context of motif finding. Every column of a profile, when each
element is divided by the number of sequences in the sample, forms probability distributions.
4. Singular of “dice.”
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Figure 11.1 The HMM designed for the Fair Bet Casino problem. There are two
states: F (fair) and B (biased). From each state, the HMM can emit either heads (H)
or tails (T), with the probabilities shown. The HMM will switch between F and B
with probability 1/10.

Bet Casino process corresponds to the following HMMM(Σ, Q, A, E) shown

in figure 11.1:

• Σ = {0, 1}, corresponding to tails (0) or heads (1)

• Q = {F, B}, corresponding to a fair (F ) or biased (B) coin

• aFF = aBB = 0.9, aFB = aBF = 0.1

• eF (0) = 1
2 , eF (1) = 1

2 , eB(0) = 1
4 , eB(1) = 3

4

A path π = π1 . . . πn in the HMMM is a sequence of states. For example, if

a dealer used the fair coin for the first three and the last three tosses and the

biased coin for five tosses in between, the corresponding path π would be

π = FFFBBBBBFFF. If the resulting sequence of tosses is 01011101001, then

the following shows the matching of x to π and the probability of xi being

generated by πi at each flip:

x

π

P (xi|πi)

=




0 1 0 1 1 1 0 1 0 0 1

F F F B B B B B F F F
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4
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4
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4

1
2

1
2

1
2





We write P (xi|πi) to denote the probability that symbol xi was emitted

from state πi—these values are given by the matrix E. We write P (πi → πi+1)
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to denote the probability of the transition from state πi to πi+1—these values

are given by the matrix A.

The path π = FFFBBBBBFFF includes only two switches of coins, first from

F to B (after the third step), and second from B to F (after the eighth step).

The probability of these two switches, π3 → π4 and π8 → π9, is 1
10 , while the

probability of all other transitions, πi−1 → πi, is 9
10 as shown below:5

x

π

P (xi|πi)

P (πi−1 → πi)

=
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The probability of generating x through the path π (assuming for simplic-

ity that in the first moment the dealer is equally likely to have a fair or a

biased coin) is roughly 2.66× 10−6 and is computed as:
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In the above example, we assumed that we knew π and observed x. How-

ever, in reality we do not have access to π. If you only observe that x =

01011101001, then you might ask yourself whether or not π =FFFBBBBBFFF

is the “best” explanation for x. Furthermore, if it is not the best explanation,

is it possible to reconstruct the best one? It turns out that FFFBBBBBFFF is

not the most probable path for x = 01011101001: FFFBBBFFFFF is slightly

better, with probability 3.54× 10−6.

x

π

P (xi|πi)

P (πi−1 → πi)
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The probability that sequence x was generated by the path π, given the

modelM, is

P (x|π) = P (π0 → π1)·
n∏

i=1

P (xi|πi)P (πi → πi+1) = aπ0,π1 ·
n∏

i=1

eπi
(xi)·aπi,πi+1 .

5. We have added a fictitious term, P (π0 → π1) = 1
2

to model the initial condition: the dealer
is equally likely to have either a fair or a biased coin before the first flip.
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For convenience, we have introduced π0 and πn+1 as the fictitious initial

and terminal states begin and end.

This model defines the probability P (x|π) for a given sequence x and a

given path π. Since only the dealer knows the real sequence of states π that

emitted x, we say that π is hidden and attempt to solve the following Decod-

ing problem:

Decoding Problem:

Find an optimal hidden path of states given observations.

Input: Sequence of observations x = x1 . . . xn generated by

an HMMM(
∑

, Q, A, E).

Output: A path that maximizes P (x|π) over all possible

paths π.

The Decoding problem is an improved formulation of the ill-defined Fair

Bet Casino problem.

11.3 Decoding Algorithm

In 1967 Andrew Viterbi used an HMM-inspired analog of the Manhattan grid

for the Decoding problem, and described an efficient dynamic programming

algorithm for its solution. Viterbi’s Manhattan is shown in figure 11.2 with

every choice of π1, . . . , πn corresponding to a path in this graph. One can

set the edge weights in this graph so that the product of the edge weights for

path π=π1 . . . πn equals P (x|π). There are |Q|2(n−1) edges in this graph with

the weight of an edge from (k, i) to (l, i + 1) given by el(xi+1) · akl. Unlike

the alignment approaches covered in chapter 6 where the set of valid direc-

tions was restricted to south, east, and southeast edges, the Manhattan built

to solve the decoding problem only forces the tourists to move in any east-

ward direction (e.g., northeast, east, southeast, etc.), and places no additional

restrictions (fig. 11.3). To see why the length of the edge between the vertices

(k, i) and (l, i + 1) in the corresponding graph is given by el(xi+1) · akl, one

should compare pk,i [the probability of a path ending in vertex (k, i)] with
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the probability

pl,i+1 =

i+1∏

j=1

eπj
(xj) · aπj−1,πj

=




i∏

j=1

eπj
(xj) · aπj−1,πj



 · (eπi+1(xi+1) · aπi,πi+1)

= pk,i · el(xi+1) · akl

= pk,i ·weight of edge from (k, i) to (l, i + 1)

Therefore, the decoding problem is reduced to finding a longest path in the

directed acyclic graph (DAG) shown in figure 11.2, which poses no problems

to the algorithm presented in chapter 6. We remark that, in this case, the

length of the path is defined as the product of its edges’ weights, rather than

the sum of weights used in previous examples of dynamic programming

algorithms, but the application of logarithms makes the problems the same.

The idea behind the Viterbi algorithm is that the optimal path for the (i+1)-

prefix x1 . . . xi+1 of x uses a path for x1 x2 · · ·xi that is optimal among the

paths ending in some unknown state πi. Let k be some state from Q, and let

i be between 1 and n. Define sk,i to be the probability of the most likely path

for the prefix x1 . . . xi that ends at state k. Then, for any state l,

sl,i+1 = max
k∈Q
{sk,i · weight of edge between (k, i) and (l, i + 1) }

= max
k∈Q
{sk,i · akl · el(xi+1)}

= el(xi+1) ·max
k∈Q
{sk,i · akl}

We initialize sbegin,0 = 1 and sk,0 = 0 for k 6= begin. If π∗ is an optimal

path, then the value of P (x|π∗) is

P (x|π∗) = max
k∈Q
{sk,n · ak,end}

As in chapter 6, these recurrence relations and the initial conditions deter-

mine the entire dynamic programming algorithm, so we do not provide

pseudocode here.

The Viterbi algorithm runs in O(n|Q|2) time. The computations in the

Viterbi algorithm are usually done using logarithmic scores Sk,i = log sk,i
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|Q
|

st
at

es

n columns

Figure 11.2 Manhattan, according to Viterbi, consists of |Q| rows, n columns, and
|Q|2 edges per layer (|Q| = 4 and n = 6 in the example above).

to avoid overflow6:

Sl,i+1 = log el(xi+1) + max
k∈Q
{Sk,i + log(akl)}.

As we showed above, every path π through the graph in figure 11.2 has

probability P (x|π). The Viterbi algorithm is essentially a search through the

space of all possible paths in that graph for the one that maximizes the value

of P (x|π).

We can also ask a slightly different question: given x and the HMM, what

is the probability P (πi = k|x) that the HMM was in state k at time i? In the

casino analogy, we are given a sequence of coin tosses and are interested in

the probability that the dealer was using a biased coin at a particular time.

We define P (x) =
∑

π P (x|π) as the sum of probabilities of all paths and

P (x, πi = k) =
∑

all π with πi = k P (x|π) as the sum of probabilities of all

6. Overflow occurs in real computers because there are only a finite number of bits (binary
digits) in which to hold a number.
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(a) (b)

Figure 11.3 The set of valid directions in the alignment problem (a) is usually lim-
ited to south, east, and southeast edges, while the set of valid directions in the decod-
ing problem (b) includes any eastbound edge.

paths with πi = k. The ratio P (x,πi=k)
P (x) defines the probability P (πi = k|x)

that we are trying to compute.

A simple variation of the Viterbi algorithm allows us to compute the prob-

ability P (x, πi = k). Let fk,i be the probability of emitting the prefix x1 . . . xi

and reaching the state πi = k. It can be expressed as follows.

fk,i = ek(xi) ·
∑

l∈Q

fl,i−1 · alk

The only difference between the forward algorithm that calculates fk,i and the

Viterbi algorithm is that the “max” sign in the Viterbi algorithm changes into

a “
∑

” sign in the forward algorithm.

However, forward probability fk,i is not the only factor affecting P (πi =

k|x). The sequence of transitions and emissions that the HMM undergoes

between πi+1 and πn also affects P (πi = k|x). The backward probability bk,i

is defined as the probability of being at state πi = k and emitting the suffix
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xi+1 . . . xn. The backward algorithm uses a similar recurrence:

bk,i =
∑

l∈Q

el(xi+1) · bl,i+1 · akl

Finally, the probability that the dealer had a biased coin at moment i is given

by

P (πi = k|x) =
P (x, πi = k)

P (x)
=

fk(i) · bk(i)

P (x)
.

11.4 HMM Parameter Estimation

The preceding analysis assumed that we know the state transition and emis-

sion probabilities of the HMM. Given these parameters, it is easy for an in-

telligent gambler to figure out that the dealer in the Fair Bet Casino is using a

biased coin, simply by noticing that 0 and 1 have different expected frequen-

cies ( 3
8 vs 5

8 ). If the ratio of zeros to ones in a daylong sequence of tosses is

suspiciously low, then it is likely that the dealer is using a biased coin. Un-

fortunately, the most difficult problem in the application of HMMs is that the

HMM parameters are usually unknown and therefore need to be estimated

from data. It is more difficult to estimate the transition and emission prob-

abilities of an HMM than it is to reconstruct the most probable sequence of

states it went through when you do know the probabilities. In this case, we

are given the set of states, Q, but we do not know with what probability the

HMM moves from one state to another, or with what probability it emits any

particular symbol.

Let Θ be a vector combining the unknown transition and emission proba-

bilities of the HMMM. Given an observed symbol string x that the HMM

emitted, define P (x|Θ) as the maximum probability of x given the assign-

ment of parameters Θ. Our goal is to find

max
Θ

P (x|Θ).

Usually, instead of a single string x, we can obtain a sample of training se-

quences x1, . . . , xm, so a natural goal is to find

max
Θ

m∏

j=1

P (xj |Θ).
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This results in a difficult optimization problem in the multidimensional pa-

rameter space Θ. Commonly used algorithms for this type of parameter op-

timization are heuristics that use local improvement strategies. If we know

the path π1 . . . πn corresponding to the observed states x1 . . . xn, then we can

scan the sequences and compute empirical estimates for transition and emis-

sion probabilities. If Akl is the number of transitions from state k to l and

Ek(b) is the number of times b is emitted from state k, then the reasonable

estimators are

akl =
Akl∑

q∈Q Akq

ek(b) =
Ek(b)

∑
σ∈

P Ek(σ)
.

However, we do not usually know the state sequence π = π1 . . . πn, and

in this case we can start from a wild guess for π1 . . . πn, compute empirical

estimates for transition and emission probabilities using this guess, and solve

the decoding problem to find a new, hopefully less wild, estimate for π. The

commonly used iterative local improvement strategy, called the Baum-Welch

algorithm, uses a similar approach to estimate HMM parameters.

11.5 Profile HMM Alignment

Given a family of functionally related biological sequences, one can search

for new members of the family from a database using pairwise alignments

between family members and sequences from the database. However, this

approach may fail to identify distantly related sequences because distant

cousins may have weak similarities that do not pass the statistical signifi-

cance test. However, if the sequence has weak similarities with many family

members, it is likely to belong to the family. The problem then is to somehow

align a sequence to all members of the family at once, using the whole set of

functionally related sequences in the search.

The simplest representation of a family of related proteins is given by their

multiple alignment and the corresponding profile.7 As with sequences, pro-

files can also be compared and aligned against each other since the dynamic

programming algorithm for aligning two sequences works if both of the in-

put sequences are profiles.

7. While in chapter 4 we defined profile element pij as a count of the nucleotide i in the jth
column of alignment matrix, biologists usually define pij as frequency of the nucleotide i in the
jth column of the alignment matrix, that is, they divide all of the counts by t (see figure 11.4). In
order to avoid columns that contain one or more letters with probabilities of 0, small numbers
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A .72 .14 0 0 .72 .72 0 0
T .14 .72 0 0 0 .14 .14 .86
G .14 .14 .86 .44 0 .14 0 0
C 0 0 .14 .56 .28 0 .86 .14

Figure 11.4 A profile represented in terms of frequencies of nucleotides.
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Figure 11.5 A profile HMM.

HMMs can also be used for sequence comparison, in particular for align-

ing a sequence against a profile. The simplest HMM for a profile P contains n

sequentially linked match states M1, . . . , Mn with emission probabilities ei(a)

taken from the profile P (fig. 11.5). The probability of a string x1 . . . xn given

the profile P is
∏n

i=1 ei(xi). To model insertions and deletions we add inser-

tion states I0, . . . , In and deletion states D1, . . . , Dn to the HMM and assume

that

eIj
(a) = p(a),

where p(a) is the frequency of the occurrence of the symbol a in all the se-

quences. The transition probabilities between matching and insertion states

can be defined in the affine gap penalty model by assigning aMI , aIM , and

aII in such a way that log(aMI) + log(aIM ) equals the gap initiation penalty

called pseudocounts can be added. We will not do so here, however.
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and log(aII) equals the gap extension penalty. The (silent) deletion states do

not emit any symbols.

Define vM
j (i) as the logarithmic likelihood score of the best path for match-

ing x1 . . . xi to profile HMM ending with xi emitted by the state Mj . Define

vI
j (i) and vD

j (i) similarly. The resulting dynamic programming recurrence

for the decoding problem is very similar to the standard alignment recur-

rence:

vM
j (i) = log

eMj
(xi)

p(xi)
+ max






vM
j−1(i− 1) + log(aMj−1,Mj

)

vI
j−1(i− 1) + log(aIj−1,Mj

)

vD
j−1(i− 1) + log(aDj−1,Mj

)

The values vI
j (i) and vD

j (i) are defined similarly:

vI
j (i) = log

eIj
(xi)

p(xi)
+ max






vM
j (i− 1) + log(aMj ,Ij

)

vI
j (i− 1) + log(aIj ,Ij

)

vD
j (i− 1) + log(aDj ,Ij

)

vD
j (i) = max






vM
j−1(i) + log(aMj−1,Dj

)

vI
j−1(i) + log(aIj−1,Dj

)

vD
j−1(i) + log(aDj−1,Dj

)

Figure 11.6 shows how a path in the edit graph gives instructions on how

to traverse a path in the profile HMM. The path in the edit graph can be

coded in a three-letter alphabet, namely, DDDVDDHDHV, where D, H, and

V denote the diagonal, horizontal, and vertical edges respectively. The se-

quence DDDHDDVDVH serves as an instruction for moving in a three-layer

profile HMM graph, where the HMM moves between two match states when

it encounters a D, and switches to either an insertion or deletion state when

it encounters a V or an M, respectively.

11.6 Notes

Although the roots of HMM theory can be traced back to the 1950s, the

first practical applications of HMMs had to wait until Andrew Viterbi and

Leonard Baum and colleagues developed algorithms for HMM decoding and

parameter estimation in the late 1970s (106; 9). Pierre Baldi, Gary Churchill,

David Haussler and their colleagues pioneered the application of HMMs in

computational biology (8; 22; 45; 59). Profile HMM alignments were later



11.6 Notes 401

Begin

I0

D1

I1

M1

D2

I2

M2

D3

I3

M3

D4

I4

M4

D5

I5

M5

D6

I6

M6

D7

I7

M7

D8

I8

M8 End

���������	


��������

����������

�� !"#$%&'

()*+,-./01

23456789:;

<=>?@ABCDE

FGHIJKLMNO

PQRSTUVWXY

Z[\]̂_̀abc

Figure 11.6 A path through an edit graph, and the corresponding path through a
profile HMM.
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used for developing Pfam, a database of protein domain families (99) and in

many other applications.
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David Haussler (born October 1953

in California) currently holds the Uni-

versity of California Presidential Chair

in Computer Science at the University

of California at Santa Cruz (UCSC). He

is also an investigator with the Howard

Hughes Medical Institute. He was a pio-

neer in the application of machine learn-

ing techniques to bioinformatics and he

has played a key role in sequencing the

human genome.

While an undergraduate studying math-

ematics, Haussler worked for his brother

Mark in a molecular biology laboratory

at the University of Arizona. David has fond memories of this time:

We extracted vitamin D hormone receptors from the intestines of chicks

that were deprived of vitamin D and used the extract to study the level

of vitamin D in human blood samples. My jobs were to sacrifice the

chicks, extract the vitamin D receptors from their guts, perform the as-

say with them, and finally do the mathematical analysis on the results

of these experiments. The work was quite successful, and led to a pub-

lication in Science. But it was there that I decided that I was more fond

of mathematics than I was of molecular biology.

After sacrificing many chicks, David decided to pursue his doctorate at

the University of Colorado to study with Professor Andrzej Ehrenfeucht in

the Department of Computer Science. Excited about the interaction between

computation and logic, he recognized that Ehrenfeucht was one of the lead-

ers in that area and sought him out as an advisor. While his early papers

were in various areas of mathematics he participated in a discussion group

organized by Ehrenfeucht that was dominated by discussions about DNA.

This was at a time in the early 1980s when the first complete sequences from

a few viruses had become available. Two other students in this group went

directly on to careers in bioinformatics: Gene Myers, who put together the

human genome assembly for Celera Genomics, and Gary Stormo who did

pioneering work on motif finding. While Haussler did produce a few papers

in bioinformatics in this period, at the time he felt there were not enough

data to sustain an entire field of bioinformatics. So he remained rather aloof
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from the field, waiting for technological advances that would allow it to

take off. Haussler instead followed another interest—the study of artificial

intelligence—because he wanted to try to understand how the brain works.

He became involved with building artificial neural networks and designed

adaptive computer algorithms that can improve their performance as they

encounter more data. The study of adaptation and learning theory led him

into HMMs.

By the early 1990s, molecular biologists had begun to churn out data much

more rapidly. Haussler’s interest in molecular biology was rekindled, and

he switched his scientific goal from understanding how the brain works to

understanding how cells work. He began to apply the same types of models

used for speech and formal grammar analysis to the biological sequences,

providing the foundation for further work along these lines by many other

scientists in the field. In particular, his group developed HMM approaches

to gene prediction and protein classification. The HMM vocabulary is rich

enough to allow a bioinformaticist to build a model that captures much of

the quirkiness of actual DNA. So these models caught on.

The HMM aproach did not appear from nowhere. Foundational work by

David Sankoff, Michael Waterman, and Temple Smith had formalized the

dynamic programming methods to align biosequences. David Searls had

made the analogy between biosequences and the strings produced by a for-

mal grammar. Gary Stormo and Chip Lawrence had introduced key prob-

abilistic ideas to the problem of sequence classification and motif finding.

HMMs were just begging to be introduced into the field since they combined

all these things in a simple and natural framework.

Haussler began applying HMMs to biosequence analysis when Anders

Krogh joined his group as a postdoc. Both were familiar with HMMs, and

Haussler still maintained an interest in DNA and protein sequences. One

day they began to talk about the crazy idea that HMMs might make good

models for protein sequences, and after a quick examination of the literature,

they were surprised to find that the young field of bioinformatics was then

ripe with the beginnings of this idea, but no one had really put all the pieces

together and exploited it. So they dove in and built HMMs to recognize

different protein families, demonstrating how this methodology could unify

the dynamic programming, grammatical, and maximum-likelihood methods

of statistical inference that were then becoming popular in bioinformatics.

David Haussler says:

The epiphany that Anders and I had about HMMs for protein sequences
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was certainly one of the most exciting moments in my career. How-

ever, I would have to say that the most exciting moment came later,

when my group participated in efforts to sequence the human genome,

and Jim Kent, then a graduate student at UCSC, was the first person

able to computationally assemble the public sequencing project’s data

to form a working draft. We raced with Gene Myers’ team at Celera

as they assembled their draft genome. On July 7, 2000, shortly after

Francis Collins and Craig Venter jointly announced in a White House

ceremony that their two teams had successfully assembled the human

genome, we released the public working draft onto the World Wide

Web. That moment on July 7, when the flood of A, C, T, and G of the

human genome sequence came across my computer screen, passing

across the net as they were to thousands of other people all over the

world, was the most exciting moment in my scientific life. For me, it

was symbolic of the entire Human Genome Project, both public and

private, and the boundless determination of the many scientists in-

volved. It seems unthinkable that out of a primordial soup of organic

molecules, life forms would eventually evolve whose cells would carry

their vital messages forward in DNA from generation to generation,

ever diversifying and expanding their abilities as this message became

more complex, until one day one of these species would accumulate

the facility to decode and share its own DNA message. Yet that day

had arrived.

Haussler’s approach to research has always been at the extreme interdisci-

plinary end of the spectrum. Most of his insights have come from the appli-

cation of perspectives of one field to problems encountered in another.

I’ve tried to stay focused on the big scientific questions, and never limit

my approach to conform to the norms of any well-established and nar-

row method of inquiry. I try to always listen carefully to the few best

scientists in all fields, rather than all the scientists in one field.

Haussler thinks that one key to discovery is picking the right problem.

Important scientific problems become ripe at particular times. Before that

they are unapproachable because the foundation required for their solution

has not been laid. After that they are no longer as important because the

heart of the problem has already been solved. Knowing when a scientific

problem is ripe for solution is a difficult art, however. Breadth of focus helps.

Luck doesn’t hurt either. Haussler says:
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We have not even really begun to understand how a cell works, so there

are plenty of interesting problems left for bioinformaticians. Compu-

tational models for this problem probably won’t look anything like

what we have today. Problems associated with understanding how

cells form organs, bodies, and minds that function as they do is also

likely to keep anyone from being bored in this field for quite some time.

Applying what we learn to the practice of medicine will pose further

challenging problems. However, much foundational works remains

to be done before we can do justice to the loftiest of these problems.

One important piece of foundational work where bioinformatics will

play the key role is in understanding the evolutionary history of entire

genomes. With the full genome sequences of many different species,

we can begin to try to reconstruct the key events in the evolution of

our own genome using new comparative genomics approaches. This

will require more than raw genome data. It will demand the devel-

opment of new mathematics and algorithms appropriate to the task.

People have always been fascinated with origins, and the mystery of

our own origins has been paramount among these fascinations. Thus,

I anticipate no lack of interest in such investigations.
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Figure 11.7 The HMM described in Problem 11.4.

11.7 Problems

Problem 11.1

The Decoding problem can be formulated as a longest path problem in a DAG. This
motivates a question about a space-efficient version of the decoding algorithm. Does
there exist a linear-space algorithm for the decoding problem?

Problem 11.2

To avoid suspicion, the dealer in the Fair Bet Casino keeps every coin for at least ten
tosses, regardless of whether it is fair or biased. Describe both the corresponding
HMM and how to modify the decoding algorithm for this case.

Problem 11.3

Suppose you are given the dinucleotide frequences in CG-islands and the dinucleotide
frequencies outside CG-islands. Design an HMM for finding CG-islands in genomic
sequences.

Problem 11.4

Figure 11.7 shows an HMM with two states α and β. When in the α state, it is more
likely to emit purines (A and G). When in the β state, it is more likely to emit pyrim-
idines (C and T). Decode the most likely sequence of states (α/β) for sequence GGCT.
Use log-scores, rather than straight probability scores.

Problem 11.5

Suppose a dishonest dealer has two coins, one fair and one biased; the biased coin
has heads probability 1/4. Assume that the dealer never switches the coins. Which
coin is more likely to have generated the sequence HTTTHHHTTTTHTHHTT? It may
be useful to know that log2(3) = 1.585
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Problem 11.6

Consider a different game where the dealer is not flipping a coin, but instead rolling
a three-sided die with labels 1, 2, and 3. (Try not to think about what a three-sided
die might look like.) The dealer has two loaded dice D1 and D2. For each die Di, the
probability of rolling the number i is 1/2, and the probability of each of the other two
outcomes is 1/4. At each turn, the dealer must decide whether to (1) keep the same
die, (2) switch to the other die, or (3) end the game. He chooses (1) with probability
1/2 and each of the others with probability 1/4. At the beginning the dealer chooses
one of the two dice with equal probability.

• Give an HMM for this situation. Specify the alphabet, the states, the transition
probabilities, and the emission probabilities. Include a start state start, and as-
sume that the HMM begins in state start with probability 1. Also include an end
state end.

• Suppose that you observe the following sequence of die rolls: 1 1 2 1 2 2. Find a
sequence of states which best explains the sequence of rolls. What is the proba-
bility of this sequence? Find the answer by completing the Viterbi table. Include
backtrack arrows in the cells so you can trace back the sequence of states. Some of
the following facts may be useful:

log2(0) = −∞
log2(1/4) = −2

log2(1/2) = −1

log2(1) = 0

• There are actually two optimal sequences of states for this sequence of die rolls.
What is the other sequence of states?



12 Randomized Algorithms

Randomized algorithms make random decisions throughout their operation.

At first glance, making random decisions does not seem particularly help-

ful. Basing an algorithm on random decisions sounds like a recipe for dis-

aster, but an eighteenth-century French naturalist, Comte de Buffon, proved

the opposite by developing an algorithm to accurately compute π by ran-

domly dropping needles on a sheet of paper with parallel lines. The fact that

a randomized algorithm undertakes a nondeterministic sequence of opera-

tions often means that, unlike deterministic algorithms, no input can reli-

ably produce worst-case results. Randomized algorithms are often used in

hard problems where an exact, polynomial-time algorithm is not known. In

this chapter we will see how randomized algorithms solve the Motif Finding

problem.

12.1 The Sorting Problem Revisited

The QUICKSORT algorithm below is another fast and simple sorting tech-

nique. It selects an element m (typically, the first) from an array c and simply

partitions the array into two subarrays: csmall, containing all elements from

c that are smaller than m; and clarge containing all elements larger than m.

This partitioning can be done in linear time, and by following a divide-and-

conquer strategy, QUICKSORT recursively sorts each subarray in the same

way. The sorted list is easily created by simply concatenating the sorted

csmall, element m, and the sorted clarge.
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QUICKSORT(c)

1 if c consists of a single element

2 return c

3 m← c1

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

6 QUICKSORT(csmall)

7 QUICKSORT(clarge)

8 Combine csmall, m, and clarge into a single sorted array csorted

9 return csorted

It turns out that the running time of QUICKSORT depends on how lucky

we are with our selection of the element m. If we happen to choose m in such

a way that c is split into even halves (i.e., |csmall| = |clarge|), then

T (n) = 2T (n/2) + an,

where T (n) represents the time taken by QUICKSORT to sort an array of n

numbers, and an represents the time required to split the array of size n into

two parts; a is a positive constant. This is exactly the same recurrence we

saw in MERGESORT and we already know that it leads to O(n log n) running

time. However, if we choose m in such a way that it splits c unevenly (e.g.,

an extreme case occurs when csmall is empty and clarge has n− 1 elements),

then the recurrence looks like

T (n) = T (n− 1) + an

This is exactly the recurrence we saw for SELECTIONSORT and we already

know that it leads to O(n2) running time, something we want to avoid. In-

deed, QUICKSORT takes quadratic time to sort the array (n, n − 1, . . . , 2, 1).

Worse yet, it requires O(n2) time to process (1, 2, . . . , n− 1, n), which seems

unnecessary since the array is already sorted.

The QUICKSORT algorithm so far seems like a bad imitation of MERGE-

SORT. However, if we can choose a good “splitter” m that breaks an ar-

ray into two equal parts, we might improve the running time. To achieve

O(n log n) running time, it is not actually necessary to find a perfectly equal

(50/50) split. For example, a split into approximately equal parts of size,

say, 51/49 will also work. In fact, one can prove that the algorithm will

achieve O(n log n) running time as long as the sets csmall and clarge are both
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larger in size than n
4 , which implies that, of n possible choices for m, at least

3
4n − 1

4n = 1
2n of them make good splitters! In other words, if we choose

m uniformly at random (i.e., every element of c has the same probability to

be chosen), there is at least a 50% chance that it will be a good splitter. This

observation motivates the following randomized algorithm:

RANDOMIZEDQUICKSORT(c)

1 if c consists of a single element

2 return c

3 Choose element m uniformly at random from c

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

6 RANDOMIZEDQUICKSORT(csmall)

7 RANDOMIZEDQUICKSORT(clarge)

8 Combine csmall, m, and clarge into a single sorted array csorted

9 return csorted

RANDOMIZEDQUICKSORT is a very fast algorithm in practice but its worst-

case running time remains O(n2) since there is still a possibility that it selects

bad splitters. Although the behavior of a randomized algorithm varies on

the same input from one execution to the next, one can prove that its expected

running time is O(n log n).1

The key advantage of randomized algorithms is performance: for many

practical problems randomized algorithms are faster (in the sense of expected

running time) than the best known deterministic algorithms. Another attrac-

tive feature of randomized algorithms, as illustrated by RANDOMIZEDQUICK-

SORT and other algorithms in this chapter, is their simplicity.

We emphasize that RANDOMIZEDQUICKSORT, despite making random

decisions, always returns the correct solution of the sorting problem. The

only variable from one run to another is its running time, not the result. In

contrast, other randomized algorithms we consider in this chapter usually

produce incorrect (or, more gently, approximate) solutions. Randomized al-

gorithms that always return correct answers are called Las Vegas algorithms,

while algorithms that do not are called Monte Carlo algorithms. Of course,

computer scientists prefer Las Vegas algorithms to Monte Carlo algorithms

but the former are often difficult to come by. Although for some applications

1. The running time of a randomized algorithm is a random variable, and computer scientists
are often interested in the mean value of this random variable. This is referred to as the expected
running time.
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Monte Carlo algorithms are not appropriate (when approximate solutions

are of no value), they have been popular in different applications for over a

hundred years and often provide good approximations to optimal solutions.

12.2 Gibbs Sampling

In 1993, Chip Lawrence and colleagues suggested using Gibbs sampling to

find motifs in DNA sequences. Given a set of t sequences that are each n

nucleotides long, and an integer l, the Gibbs sampler attempts to solve the

Motif Finding problem that was presented in chapter 4, that is, to find an

l-mer in each of t sequences such that the similarity between these l-mers

is maximized.2 Let s = (s1, . . . , st) be the starting positions of the chosen

l-mers in t sequences. These substrings form a t× l alignment matrix and the

corresponding 4× l profile P(s) = (pij).3

Given a profile P and an arbitrary l-mer a = a1a2 · · · al, consider the

quantity P (a|P)=
∏l

i=1 pai,i, the probability that a was generated by P. l-

mers similar to the consensus string of the profile will have higher prob-

abilities while dissimilar l-mers will have lower probabilities. For exam-

ple, for the profile P in figure 11.4, which has consensus string ATGCAACT,

P (ATGCAACT|P) = 9.6×10−2, while P (TACGCGTC|P) = 9.3×10−7. Given

a profile P, one can thus evaluate the probability of every l-mer in sequence i

and to find the l-mer that was most likely to have been generated by P—this

l-mer will be called the P-most probable l-mer in the sequence. This moti-

vates the following GREEDYPROFILEMOTIFSEARCH algorithm for the Motif

Finding problem:

GREEDYPROFILEMOTIFSEARCH(DNA, t, n, l)

1 Randomly select starting positions s = (s1, . . . , st) in DNA

2 Form profile P from s

3 bestScore← 0

4 while Score(s, DNA) > bestScore

5 bestScore← Score(s, DNA)

6 for i← 1 to t

7 Find a P-most probable l-mer a from the ith sequence

8 si ← starting position of a

9 return bestScore

2. We deliberately do not specify here which particular objective function the Gibbs sampling
algorithm optimizes.
3. As in chapter 11, we view a profile as the frequency of letters in an alignment, rather than the
count of letters. Thus, the each column in the profile matrix forms a probability distribution.
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GREEDYPROFILEMOTIFSEARCH starts from a random seed by selecting start-

ing positions s uniformly at random, and attempts to improve on it using a

greedy strategy. Since the computational space of starting positions is huge,

randomly selected seeds will rarely come close to an optimal motif, and there

is little chance that random seeds will be able to guide us to the optimal so-

lution via the greedy strategy. Thus, GREEDYPROFILEMOTIFSEARCH is typ-

ically run a large number of times with the hope that one of these thousands

of runs will generate a seed close to the optimum simply by chance. Needless

to say, GREEDYPROFILEMOTIFSEARCH is unlikely to stumble on the optimal

motif.

GREEDYPROFILEMOTIFSEARCH changes starting positions (s1, s2, . . . , st)

between every iteration, and may change as many as all t positions in a single

iteration. Gibbs sampling is an iterative procedure that at each iteration dis-

cards one l-mer from the alignment and replaces it with a new one. In other

words, it changes at most one position in s in each iteration and thus moves

with more caution in the space of all starting positions. Like GREEDYPRO-

FILEMOTIFSEARCH, Gibbs sampling starts with randomly choosing l-mers in

each of t DNA sequences but makes a random, rather than a greedy, choice

at every iteration.

1. Randomly select starting positions s = (s1, . . . , st) in DNA and form the

set of l-tuples starting at these positions.

2. Randomly choose one sequence out of t DNA sequences.

3. Create a profile P from the l-mers in the remaining t− 1 sequences.

4. For each position i in the chosen DNA sequence, calculate the probability

pi that the l-mer starting at this position is generated by profile P (1 ≤ i ≤

n− l + 1).

5. Choose the new starting position in the chosen DNA sequence randomly,

according to the distribution proportional to (p1, p2, . . . , pn−l+1).

6. Repeat until convergence.4

Although Gibbs sampling works well in many cases, it may converge to a

local optimum rather than a global one, particularly for difficult search prob-

lems with subtle motifs. Motif finding becomes particularly difficult if the

nucleotide distribution in the sample is skewed, that is, if some nucleotides in

4. We deliberately do not specify when the algorithm is considered to have converged.
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the sample are more frequent than others. In this case, searching for a signal

with the maximum number of occurrences may lead to patterns composed

from the most frequent nucleotides that may not be biologically significant.

For example, if A has a frequency of 70% and T, G, and C have frequencies

of 10%, then poly(A) may be the most frequent motif, perhaps disguising the

biologically relevant motif.

To find motifs in biased samples, some algorithms use relative entropy to

highlight the motif among the patterns composed from frequent nucleotides.

Given a profile of length l, the relative entropy is defined as

l∑

j=1

∑

r∈{A,T,G,C}

prj log2

prj

br

,

where prj is the frequency of nucleotide r in position j of the alignment and

br is the background frequency of r. Gibbs sampling can be adjusted to work

with relative entropies.

12.3 Random Projections

The RANDOMPROJECTIONS algorithm is another randomized approach to

motif finding. If an l-long pattern is “implanted” in DNA sequences with-

out mutations, then motif finding simply reduces to counting the number

of occurrences of l-mers from the sample (the most common one reveals the

implanted pattern). However, motif finding becomes very difficult when

the pattern is implanted with mutations. Could we possibly reveal mutated

patterns in the same way that we deal with nonmutated patterns, that is,

by considering the positions that were not mutated? For example, in any

instance of a pattern of length 8 with two mutated positions, six positions

remain unaffected by mutations and it is tempting to use these six positions

as a basis for motif finding.

There are two complications with this approach. First, the six constant po-

sitions do not necessarily form a contiguous string: the mutated nucleotides

may be in positions 3 and 7, leaving the other six conserved positions to

form a gapped pattern. Second, different instances of the pattern can mu-

tate in different positions. For example, three different instances of the mu-

tated pattern may differ in positions 3 and 7, 3 and 6, and 2 and 6 respec-

tively. The key observation is that although the three mutated patterns5

5. Here we use the notation “*” to represent a position that is conserved, and “X” to represent a
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**X***X*, **X**X**, *X***X** are all different, their “consensus” gapped pat-

tern *XX**XX* remains unaffected by mutations. If we knew which gapped

pattern was unaffected by mutations we could use it for motif search as if it

were an implanted gap pattern without mutations.6

The problem, however is that the locations of the four unaffected positions

in *XX**XX* are unknown. To bypass this problem, RANDOMPROJECTION

tries different randomly selected sets of k (out of l) positions to reveal the

original implanted pattern. These sets of positions are called projections.

We will define a (k, l)-template to be any set of k distinct integers 1 ≤

t1 < · · · < tk ≤ l. For a (k, l)-template t = (t1, . . . , tk) and and an l-mer

a = a1, . . . , al, define Projection(a, t) = at1 , at2 . . . atk
to be the concate-

nation of nucleotides from a as defined by the template t. For example, if

a=ATGCATT and t = (2, 5, 7), then Projection(a, t)=TAT. The RANDOMPRO-

JECTIONS algorithm, below, chooses a random (k, l)-template and projects

every l-mer in the sample onto it; the resulting k-mers are recorded via a hash

table. We expect that k-mers that correspond to projections of the implanted

pattern appear more frequently than other k-mers. Therefore, k-mers that

appear many times (e.g., whose count in the hash table is higher than a pre-

defined threshold θ) as projections of l-mers from the sample are likely to rep-

resent projections of the implanted pattern. Of course, this is subject to noise

and a single (k, l)-template does not necessarily reveal the implanted pattern.

The RANDOMPROJECTIONS algorithm repeatedly selects a given number, m,

of random (k, l)-template and aggregates the data obtained for all m itera-

tions. As RANDOMPROJECTIONS chooses different random templates, the

locations of the implanted pattern become clearer.

As compared to other motif finding algorithms, RANDOMPROJECTIONS

requires additional parameters: k (the number of positions in the template),

θ (the threshold that determines which bins in the hash table to consider after

projecting all l-mers), and m (the number of chosen random templates). The

RANDOMPROJECTIONS algorithm creates a table, Bins, of size 4k such that

every possible projection (k-mer) corresponds to a unique address in this

table. For a given (k, l)-template r, Bins(x) holds the count of l-mers a in

DNA such that Projection(a, r) = x.

position that can be mutated.
6. In real life, all l positions may be affected by a mutation in some instances of pattern. How-
ever, it is very likely that there is a relatively large set of instances that share the same nonmu-
tated positions and the RANDOMPROJECTION algorithm below uses them to find motifs.
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RANDOMPROJECTIONS(DNA, t, n, l, k, θ, m)

1 create a t× n array motifs and fill it with zeros

2 for m iterations

3 create a table Bins of size 4k and fill it with zeros

4 r← a random (k, l)-template.

5 for i← 1 to t

6 for j ← 1 to n− l + 1

7 a← jth l-mer in ith DNA sequence

8 Bins(Projection(a, r)) = Bins(Projection(a, r)) + 1

9 for i← 1 to t

10 for j ← 1 to n− l + 1

11 a← jth l-mer in ith DNA sequence

12 if Bins(Projection(a, r)) > θ

13 motifsi,j ← motifsi,j + 1

14 for i← 1 to t

15 si ← Index of the largest element in row i of motifs.

16 return s

RANDOMPROJECTIONS provides no guarantee of returning the correct pat-

tern, but one can prove that RANDOMPROJECTIONS returns the correct motif

with high probability, assuming that the parameters are chosen in a sensible

way. The main difference between this toy algorithm and the practical Pro-
jection algorithm developed by Jeremy Buhler and Martin Tompa is the way

in which this algorithm evaluates the results from hashing all the l-mer pro-

jections. The method that we have presented here to choose (s1, s2, . . . , st) is

crude, while the Projection algorithm uses a heuristic method that is harder

to trick by accidentally large counts in the array motifs.7

12.4 Notes

QUICKSORT was discovered by Tony Hoare in 1962 (50). Gibbs sampling

is a variation of Markov chain Monte Carlo methods that can be traced to

the classic paper by Nicholas Metropolis and colleagues in 1953 (75). Charles

Lawrence and colleagues pioneered applications of Gibbs sampling for motif

finding in 1993 (63). The random projections algorithm was developed by

Jeremy Buhler and Martin Tompa in 2001 (18).

7. Specifically, they use an Expectation Maximization algorithm, which is a local search tech-
nique used in many bioinformatics algorithms.
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12.5 Problems

Problem 12.1

Show how to partition an array c into arrays csmall and clarge in QUICKSORT without
requesting additional memory.

Problem 12.2

Prove that QUICKSORT takes linear time to sort an array if all splits are chosen in such

a way that 1
3

<
|clarge|
|csmall| < 3.

Problem 12.3

The Viterbi algorithm is a deterministic algorithm for solving the Decoding problem.
Design a randomized algorithm for solving the Decoding problem that starts from a
randomly chosen assignment of states and tries to improve it using coin tossing.

Problem 12.4

The k-Means clustering algorithm randomly selects an original partition into clusters
and deterministically rearranges clusters afterward. Design a randomized version of
the k-Means algorithm that uses coin tossing to rearrange clusters.

Problem 12.5

Design a randomized algorithm for solving the Large Parsimony problem that uses
coin tossing to choose among the nearest neighbor interchanges available at every
step.

Problem 12.6

The Gibbs sampler algorithm “moves slowly” in the space of all starting positions
by changing starting position si in only one DNA sequence at every iteration. In
contrast, GREEDYPROFILEMOTIFSEARCH “moves fast” and may change positions si

in all DNA sequences. Describe a version of the Gibbs sampler that may change
many positions at every iteration. Explain the advantages and disadvantages of your
algorithm as compared to the Gibbs sampler described in the book.





Using Bioinformatics Tools (www.bioalgorithms.info)

No bioinformatics textbook would be complete without some application

of the theory; we hope that you will actually use the algorithmic principles

outlined in this text. To get you started, we have compiled a number of

challenging and useful practical exercises. Each of these exercises involves

using a computer and software to solve a biological question. Unfortunately,

the tools and techniques that bioinformaticians use change so quickly that

we could not hope to present these exercises in a static book form, so we

have made them available through the book’s website at

www.bioalgorithms.info
The exercises cover a range of bioinformatics problems including motif

finding, sequence comparison, searching biological databases, applications

of HMMs, gene expression analysis, among others.

A large amount of supporting information can be found from the same

website. For example, we have made available many sets of lecture notes

that professors and students alike can use during a bioinformatics course,

a bulletin board to discuss sections of the book, a searchable index, and a

glossary.

419





Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley,

Boston, 1983.

[2] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic search.

Communication of ACM, 18:333–340, 1975.

[3] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. Molecular Biology of

the Cell. Garland Publishing, New York, 1994.

[4] S. Altschul, W. Gish, W. Miller, E. Myers, and J. Lipman. Basic local alignment search

tool. Journal of Molecular Biology, 215:403–410, 1990.

[5] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J.

Lipman. Gapped BLAST and Psi-BLAST: A new generation of protein database

search programs. Nucleic Acids Research, 25:3389–3402, 1997.

[6] V.L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical con-

struction of the transitive closure of an oriented graph. Soviet Math. Dokl., 11:1209–

1210, 1970.

[7] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. MIT Press,

Cambridge, MA, 1997.

[8] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. McClure. Hidden Markov models of

biological primary sequence information. Proceedings of the National Academy of

Sciences of the United States of America, 91:1059–1063, 1994.

[9] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring

in the statistical analysis of probabilistic functions of Markov Chains. Annals of

Mathematical Satistics, 41:164–171, 1970.

[10] A. Baxevanis and B.F. Ouellette. Bioinformatics: A Practical Guide to the Analysis of

Genes and Proteins. Wiley-Interscience, Hoboken, NJ, 1998.

[11] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal

of Computational Biology, 6:281–297, 1999.



422 Bibliography

[12] S.M. Berget, C. Moore, and P.A. Sharp. Spliced segments at the 5’ terminus of ade-

novirus 2 late mRNA. Proceedings of the National Academy of Sciences of the United

States of America, 74:3171–3175, 1977.

[13] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for

sorting by reversals. In European Symposium on Algorithms, volume 2461 of Lecture

Notes in Computer Science, pages 200–210, Rome, Italy, 2002. Springer-Verlag.

[14] M. Borodovsky and J. McIninch. Recognition of genes in DNA sequences with

ambiguities. BioSystems, 30:161–171, 1993.

[15] P. Bourne and H. Weissig (eds). Structural Bioinformatics. Wiley–Liss, Hoboken, NJ,

2002.

[16] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communication of ACM,

20:762–772, 1977.

[17] T. Brown. Genomes. John Wiley and Sons, New York, 2002.

[18] J. Buhler and M. Tompa. Finding motifs using random projections. In Proceed-

ings of the Fifth Annual International Conference on Computational Molecular Biology

(RECOMB-01), pages 69–76, Montreal, Canada, April, 2001.

[19] P. Buneman. The Recovery of Trees from Measures of Dissimilarity. Edinburgh Univer-

sity Press, Edinburgh, 1971.

[20] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic

DNA. Journal of Molecular Biology, 268:78–94, 1997.

[21] L.T. Chow, R.E. Gelinas, T.R. Broker, and R.J. Roberts. An amazing sequence ar-

rangement at the 5’ ends of adenovirus 2 messenger RNA. Cell, 12:1–8, 1977.

[22] G. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of Math-

ematical Biology, 51:79–94, 1989.

[23] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd

annual ACM Symposium on Theory of Computing, pages 151–158, Shaker Heights,

OH, 1971. ACM Press.

[24] T. H. Cormen, C. L. Leieserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, Cambridge MA, 2001.

[25] V. Dancik, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner. De novo

peptide sequencing via tandem mass spectrometry. Journal of Computational Biology,

6:327–342, 1999.

[26] K. J. Danna, G. H. Sack Jr., and D. Nathans. Studies of simian virus 40 DNA. VII. A

cleavage map of the SV40 genome. Journal of Molecular Biology, 78:363–376, 1973.

[27] A. Dembo and S. Karlin. Strong limit theorem of empirical functions for large ex-

ceedances of partial sums of i.i.d. variables. Annals of Probability, 19:1737–1755,

1991.



Bibliography 423

[28] R. F. Doolittle, M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A.

Aaronson, and H. N. Antoniades. Simian sarcoma virus oncogene, ν-sis, is de-

rived from the gene (or genes) encoding a platelet-derived growth factor. Science,

221:275–277, 1983.

[29] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of megabase plus

DNA by hybridization: Theory of the method. Genomics, 4:114–128, 1989.

[30] A. Duarat, Y. Gerard, and M. Nivat. The chords problem. Theoretical Computer

Science, 282:319–336, 2002.

[31] R. Durbin, S. Eddy, A. Krogh, and G. Mitchinson. Biological Sequence Analysis. Cam-

bridge University Press, Cambridge, England, 1998.

[32] D. Dussoix and W. Arber. Host specificity of infectious DNA from bacteriophage

lambda. Journal of Molecular Biology, 11:238–246, 1965.

[33] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy of

Sciences of the United States of America, 95:14863–14868, 1998.

[34] J. K. Eng, A. L. McCormack, and J. R. Yates (III). An approach to correlate tandem

mass spectral data of peptides with amino acid sequences in a protein database. J

Am. Soc. Mass Spectrom., 5:976–989, 1995.

[35] E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in DNA se-

quences. Bioinformatics, 18:S354–363, 2002.

[36] D. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J. Mol. Evol., 60:351–360, 1987.

[37] W. M. Fitch. Toward defining the course of evolution: Minimum change for a spe-

cific tree topology. Systematic Zoology, 20:406–416, 1971.

[38] S.P.A. Fodor, J.L. Read, M.S. Pirrung, L. Stryer, A.T. Lu, and D. Solas. Light-directed

spatially addressable parallel chemical synthesis. Science, 251:767–773, 1991.

[39] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. W. H. Freeman and Co., 1979.

[40] W. Gates and C. Papadimitriou. Bounds for sorting by prefix reversals. Discrete

Mathematics, 27:45–57, 1979.

[41] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene recognition via spliced se-

quence alignment. Proceedings of the National Academy of Sciences of the United States

of America, 93:9061–9066, 1996.

[42] O. Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162:705–708, 1982.

[43] M. Gribskov, M. McLachlan, and D. Eisenberg. Profile analysis: detection of dis-

tantly related proteins. Proceedings of the National Academy of Sciences of the United

States of America, 84:4355–4358, 1987.



424 Bibliography

[44] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Compu-

tational Biology. Cambridge University Press, Cambridge, England, 1997.

[45] D. Haussler, A. Krogh, I. S. Mian, and K. Sjölander. Protein modeling using hidden

Markov models: Analysis of globins. In Proceedings of the Hawaii International Con-

ference on System Sciences, pages 792–802, Los Alamitos, CA, 1993. IEEE Computer

Society Press.

[46] G. Z. Hertz, G. W. Hartzell 3rd, and G. D. Stormo. Identification of consensus pat-

terns in unaligned DNA sequences known to be functionally related. Computer

Applications in Bioscience, 6:81–92, 1990.

[47] G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statisti-

cally significant alignments of multiple sequences. Bioinformatics, 15:563–577, 1999.

[48] D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple se-

quence alignments. Methods in Enzymology, 266:383–402, 1996.

[49] D. Hirschberg. A linear space algorithm for computing maximal common subse-

quences. Communication of ACM, 18:341–343, 1975.

[50] C. A. R. Hoare. Quicksort. Computer Journal, 5:10–15, 1962.

[51] S. Hopper, R. S. Johnson, J. E. Vath, and K. Biemann. Glutaredoxin from rabbit bone

marrow. purification, characterization, and amino acid sequence determined by

tandem mass spectrometry. Journal of Biological Chemistry, 264:20438–20447, 1989.

[52] S. Karlin and S.F. Altschul. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proceedings of the

National Academy of Sciences of the United States of America, 87:2264–2268, 1990.

[53] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103, Yorktown Heights, NY, 1972. Plenum Press.

[54] R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development, 31:249–260, 1987.

[55] J. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA sequence assem-

bly. Algorithmica, 13:7–51, 1995.

[56] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion

distance between two permutation. Algorithmica, 13:180–210, 1995.

[57] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1998.

[58] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM

Journal on Computing, 6:323–350, 1977.

[59] A. Krogh, M. Brown, I.S. Mian, K. Sjölander, and D. Haussler. Hidden Markov

models in computational biology: Applications to protein modeling. Journal of

Molecular Biology, 235:1501–1531, 1994.



Bibliography 425

[60] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and

R. Giegerich. Reputer: the manifold applications of repeat analysis on a genomic

scale. Nucleic Acids Research, 29:4633–4642, 2001.

[61] G.M. Landau and U. Vishkin. Efficient string matching in the presence of errors.

In 26th Annual Symposium on Foundations of Computer Science, pages 126–136, Los

Angeles, October 1985.

[62] E. Lander et al. Initial sequencing and analysis of the human genome. Nature,

409:860–921, 2001.

[63] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and J.C. Woot-

ton. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple

alignment. Science, 262:208–214, 1993.

[64] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and re-

versals. Cybernetics and Control Theory, 10:707–710, 1966.

[65] L. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–

266, 1973.

[66] B. Lewin. Genes VII. Oxford University Press, Oxford, UK, 1999.

[67] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches.

Science, 227:1435–1441, 1985.

[68] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28:129–137, 1982.

[69] Y. Lysov, V. Florent’ev, A. Khorlin, K. Khrapko, V. Shik, and A. Mirzabekov. DNA

sequencing by hybridization with oligonucleotides. Doklady Academy Nauk USSR,

303:1508–1511, 1988.

[70] J. MacQueen. On convergence of k-means and partitions with minimum average

variance. Annals of Mathematical Statistics, 36:1084, 1965.

[71] M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence

databases by peptide sequence tags. Analytical Chemistry, 66:4390–4399, 1994.

[72] L. Marsan and M. F. Sagot. Algorithms for extracting structured motifs using a

suffix tree with an application to promoter and regulatory site consensus identifi-

cation. Journal of Computational Biology, 7:345–362, 2000.

[73] W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances.

Journal of Computational System Science, 20:18–31, 1980.

[74] A. M. Maxam and W. Gilbert. A new method for sequencing DNA. Proceedings of

the National Academy of Sciences of the United States of America, 74:560–564, 1977.

[75] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087–1092, 1953.



426 Bibliography

[76] D. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Press,

Cold Spring Harbor, NY, 2001.

[77] E.W. Myers and W. Miller. Optimal alignments in linear space. Computer Applica-

tions in Biosciences, 4:11–17, 1988.

[78] J. Nadeau and B. Taylor. Lengths of chromosome segments conserved since diver-

gence of man and mouse. Proceedings of the National Academy of Sciences of the United

States of America, 81:814–818, 1984.

[79] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48:443–453, 1970.

[80] S. J. O’Brien. Tears of the Cheetah. Thomas Dunne Books, New York, 2003.

[81] S. J. O’Brien, W. G. Nash, D. E. Wildt, M. E. Bush, and R. E. Benveniste. A molecular

solution to the riddle of the giant panda’s phylogeny. Nature, 317:140–144, 1985.

[82] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: A DNA sequence assembling

program based on a mathematical model. Nucleic Acids Research, 12:307–321, 1984.

[83] P.A. Pevzner. l-Tuple DNA sequencing: computer analysis. Journal of Biomolecular

Structure and Dynamics, 7:63–73, 1989.

[84] P.A. Pevzner, V. Dancik, and C.L. Tang. Mutation-tolerant protein identification by

mass-spectrometry. Journal of Computational Biology, 7:777–787, 2000.

[85] P.A. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution:

Lessons from human and mouse genomes. Genome Research, 13:37–45, 2003.

[86] P.A. Pevzner and M.S. Waterman. Multiple filtration and approximate pattern

matching. Algorithmica, 13:135–154, 1995.

[87] J.C. Roach, C. Boysen, K. Wang, and L. Hood. Pairwise end sequencing: A unified

approach to genomic mapping and sequencing. Genomics, 26:345–353, 1995.

[88] D. F. Robinson. Comparison of labeled trees with valency three. Journal of Combina-

torial Theory (B), 11:105–119, 1971.

[89] J. R. Sadler, M. S. Waterman, and T. F. Smith. Regulatory pattern identification in

nucleic acid sequences. Nucleic Acids Research, 11:2221–2231, 1983.

[90] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstruct-

ing phylogenetic trees. Molecular Biological Evolution, 4:406–425, 1987.

[91] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 74:5463–5467, 1977.

[92] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal of Applied Mathe-

matics, 28:35–42, 1975.



Bibliography 427

[93] D. Sankoff. Edit distances for genome comparisons based on non-local operations.

In Third Annual Symposium on Combinatorial Pattern Matching, volume 644 of Lecture

Notes in Computer Science, pages 121–135, Tucson, AZ, 1992. Springer-Verlag.

[94] S.S. Skiena, W.D. Smith, and P. Lemke. Reconstructing sets from interpoint dis-

tances. In Proceedings of Sixth Annual Symposium on Computational Geometry, pages

332–339, Berkeley, CA, June, 1990.

[95] H.O. Smith and K.W. Wilcox. A restriction enzyme from Hemophilus influenzae. I.

Purification and general properties. Journal of Molecular Biology, 51:379–391, 1970.

[96] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147:195–197, 1981.

[97] E.E. Snyder and G.D. Stormo. Identification of protein coding regions in genomic

DNA. Journal of Molecular Biology, 248:1–18, 1995.

[98] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic rela-

tionships. University of Kansas Science Bulletin, 38:1409–1438, 1958.

[99] E.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a comprehensive database of

protein domain families based on seed alignments. Proteins, 28:405–420, 1997.

[100] E. Southern. United Kingdom patent application GB8810400. 1988.

[101] G. Stormo, T. Schneider, L. Gold, and A. Ehrenfeucht. Use of the perceptron algo-

rithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research,

10:2997–3011, 1982.

[102] A. H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of wild

races of Drosophila pseudoobscura, and their use in the study of the history of the

species. Proceedings of the National Academy of Sciences of the United States of America,

22:448–450, 1936.

[103] A. R. Templeton. Out of Africa again and again. Nature, 416:45–51, 2002.

[104] J.C. Venter et al. The sequence of the human genome. Science, 291:1304–1351, 2001.

[105] T.K. Vintsyuk. Speech discrimination by dynamic programming. Kibernetika, 4:52–

57, 1968.

[106] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimal

decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

[107] M. S. Waterman. Skiing the Sun. (unpublished manuscript), 2004.

[108] M.S. Waterman. Introduction to Computational Biology. Chapman Hall, New York,

1995.

[109] M.S. Waterman and M. Eggert. A new algorithm for best subsequence alignments

with application to tRNA–rRNA comparisons. Journal of Molecular Biology, 197:723–

728, 1987.



428 Bibliography

[110] J. Weber and G. Myers. Whole genome shotgun sequencing. Genome Research,

7:401–409, 1997.

[111] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Sym-

posium on Switching and Automata Theory, pages 1–11, University of Iowa, October

1973.

[112] J. R. Yates III, J. K. Eng, A. L. McCormack, and D. Schieltz. Method to correlate

tandem mass spectra of modified peptides to amino acid sequences in the protein

database. Analytical Chemistry, 67:1426–1436, 1995.

[113] K. Zaretskii. Constructing a tree on the basis of a set of distances between the

hanging vertices. Uspekhi Mat. Nauk., 20:90–92, 1965.

[114] Z. Zhang. An exponential example for a partial digest mapping algorithm. Journal

of Computational Biology, 1:235–239, 1994.



Index

acceptor site, 200

additive matrix, 358

additive tree, see additive matrix

adjacency, 132

affine gap penalty, 184

Aho-Corasick algorithm, 328

algorithm, 7, 17

ADDITIVEPHYLOGENY, 362

ALLLEAVES, 103

APPROXIMATEPATTERNMATCHING,

326

approximation, 21, 131

approximation ratio, 131

Baum-Welch, 396

BETTERCHANGE, 21

BRANCHANDBOUNDMEDIANSEARCH,

114

BRANCHANDBOUNDMOTIFSEARCH,

111

BREAKPOINTREVERSALSORT, 133

BRUTEFORCECHANGE, 22

BRUTEFORCEMEDIANSEARCH, 112

BRUTEFORCEMOTIFSEARCH, 109

BRUTEFORCEPDP, 88

BYPASS, 108

CAST, 352

clustering, 338

correctness, 17, 20, 21

DPCHANGE, 151

DUPLICATEREMOVAL, 311

efficiency, 33, 151

EXONCHAINING, 202

FASTROCKS, 47

FIBONACCI, 33

Fitch’s, 370

GREEDYMOTIFSEARCH, 136

GREEDYPROFILEMOTIFSEARCH, 410

HANOITOWERS, 26

HIERARCHICALCLUSTERING, 343

IMPROVEDBREAKPOINTREVERSAL-

SORT, 135

incorrect, 21

BETTERCHANGE, 21

BREAKPOINTREVERSALSORT, 133

LCS, 176

MANHATTANTOURIST, 160

MERGE, 228

MERGESORT, 228

NEIGHBORJOINING, 365

NEXTLEAF, 103

NEXTVERTEX, 107

origins of, 51

PARTIALDIGEST, 90

PATH, 234

PATTERNMATCHING, 315

PCC, 350

PRINTLCS, 176

PROGRESSIVEGREEDYK-MEANS, 346

QUICKSORT, 408

RANDOMIZEDQUICKSORT, 409

RANDOMPROJECTIONS, 414

RECURSIVECHANGE, 150



430 Index

RECURSIVEFIBONACCI, 33

RECURSIVESELECTIONSORT, 30

ROCKS, 47

Sankoff’s, 369–370

SELECTIONSORT, 29

SIMPLEREVERSALSORT, 129

STRINGCOPY, 16

SUFFIXTREEPATTERNMATCHING, 321

UPGMA, 364

USCHANGE, 19

alignment, 168

Alu repeat, 276

amino acid, 65

anticodon, 67

apoptosis, 283

ATP binding proteins, 148

Avery, Oswald, 61

BAC, 277

backtracking pointers, 175

backward algorithm, 395

bacteriophage, 260

balanced partitioning, 244

balanced vertex, 273

Beadle, George, 60

Benzer, Seymour, 260

BLAST
maximal segment pair, 328

statistical significance, 328

block alignment, 234–237

BLOSUM matrix, 178

Bohr, Niels, 5

border length of mask, 304

Braconnot, Henry, 65

branch-and-bound algorithms, 42

breakpoint, 132

cells, 57

eukaryotic, 63

prokaryotic, 63

central dogma, 67

CG-island, 385

Chargaff rule, 62

Chargaff, Erwin, 61

chromosome, 59

cloning, 68

cloning vector, 68

CLUSTAL, 191

codon, 65

Start, 197

Stop, 197

complement, see Watson-Crick com-

plement

computer language, 7

CONSENSUS, 83, 136

consensus (in fragment assembly), 279

consensus string, 93

Crick, Francis, 5, 6, 61

cystic fibrosis, 148

DAG, see graph, DAG

David Haussler, 401

David Sankoff, 139

DDP, see problems, Double Digest Prob-

lem

degree, see vertex, degree

Delbrück, Max, 5

deletion, 169

divide-and-conquer algorithms, 48

DNA, 58

array, 265, 337

helicase, 14

nucleotides, 61

polymerase, 15

read, 275

reads, 263

repeat, 276

replication of, 14–16

discovery, 63

ligase, 15

Okazaki fragments, 15

primers and primase, 15

replication fork, 14

SSB, 14



Index 431

vector, 263

donor site, 200

dot matrix, 323

double helix, 61

Drosophila melanogaster, 59

dynamic programming, 43, 176

edge, 153, 248

edit distance, 167, 207

edit graph, 170

Edman degradation, 280

EDVAC, 240

emission probability, 388

entropy score, 193

Eulerian cycle, 258, 272–275

Eulerian graph, 273

evolution, 74

evolutionary character, 366

exhaustive search, 41

exon, 63, 194

experimental spectrum, 285

exponential algorithm, 35

FASTA, 323

Fibonacci numbers, 31

filtration

database search, 323, 327

of candidate exons, 207

Fischer, Emil Hermann, 65

fitting alignment, 215

floor function, 20

forward algorithm, 394

Four Russians technique, 237

four-point condition, 363

gap, 184

once a gap, always a gap, 191

gap penalty, 184

Gary Stormo, 116

Gates, William, 131

gel electrophoresis, 72, 85

gene, 60

Gene Myers, 331

generating function, 119

genes

immunity, 91

genetic code, 65

genetic linkage, 60

genome rearrangement, 126

reversal, 127, 128

reversal distance, 128–129

GENSCAN, 200

giant panda, 352

Gibbs sampling, 410

GibbsSampler, 83

Gilbert, Walter, 263

global alignment, 177

graph, 153, 248

clique, 346

complete, 252

connected, 252

connected component, 252

DAG (directed acyclic graph), 162

directed, 250

disconnected, 252

edge, see edge

interval, 262

path in a, see path

vertex, see vertex

greedy algorithms, 43

Hamiltonian cycle, 258, 272

Hamming distance, 98, 167

total, 98

hexamer count, 199

Hidden Markov Model, see HMM

hidden state, 388

hierarchical clustering, 342

HMM, 388

parameter estimation, 395

path, 389

profile HMM, 396–398

homeobox genes, 180

homometric sets, 87

Hooke, Robert, 57



432 Index

Human Diversity Project, 73

Hurwitz, Jerard, 64

hybridization, 72, 267

indel, 169

insert (DNA), 263

insertion, 169

insulin, 280

intron, 63, 195

ion type, 285

b-ion, 285

y-ion, 285

junk DNA, 194

k-similarity, 295

l-mer composition, 267

layout, 279

layout of DNA fragments, 279

Leonhard Euler, 299

Levenshtein distance, see edit distance

light-directed array synthesis, 303

likelihood ratio test, 198

LINE repeat, 277

Linear B, 75

local alignment, 181

machine learning, 48

mask for array synthesis, 303

mass spectrometry, 283

description, 283

MS/MS, see mass spectrometry, tan-

dem

tandem, 284

mass spectrum, 283

match, 169

mates, 279

maximization algorithm, 131

Mendel, Gregor, 59

Michael Waterman, 209

Miescher, Johann Friedrich, 61

minimization algorithm, 131

mismatch, 169

Morgan, Thomas, 59

mosaic effect, 207

multiple alignment, 188

multiset, 84

mutation, 184

mutations, 93

NF-κB binding motif, 92

nonadditive matrix, 358

ν-sis oncogene, 147

O-notation, 37

Occam’s razor, 366

open reading frame, 197

optical mapping, 307

ORF, see open reading frame

Out of Africa hypothesis, 353

overlap, 279

PAM matrix, 178

Papadimitriou, Christos, 131

path, 153, 252

cycle, 252

path length, 153

pattern-driven approach, 93

PCR, 67

PCR primer, 68

peptide

C-terminal, 284

N-terminal, 284

performance guarantee, 131

permutation, 127

Poe, Edgar Allan, 92

polynomial algorithm, 35

post-translational modification, 291, 338

glycosylation, 291

phosphorylation, 291

probe, 73

problem, 7

complexity, 151

input, 7

instance, 17



Index 433

output, 7

problems

k-Means Clustering Problem, 344

Approximate Pattern Matching Prob-

lem, 325

Block Alignment Problem, 237

Bridge Obsession Problem, 254

Change Problem, 21

Chimeric Alignment Problem, 219

Corrupted Cliques Problem, 348

Decoding Problem, 391

Distance-Based Phylogeny Problem,

358

Double Digest Problem, 121

Duplicate Removal Problem, 311

Equivalent Words Problem, 211

Eulerian Cycle Problem, 254

Exon Chaining Problem, 201

Fair Bet Casino Problem, 386

Fibonacci Problem, 31

Global Alignment Problem, 177

Hamiltonian Cycle Problem, 258

Inexact Repeat Problem, 218

Knights Tour problem, 250

Large Parsimony Problem, 372

Least Squares Distance-Based Phy-

logeny Problem, 364

Lewis Carroll Problem, 211

Local Alignment Problem, 181

Longest Common Subsequence Prob-

lem, 173

Longest Path in a DAG Problem, 162,

288, 289

Manhattan Tourist Problem, 154

Median String Problem, 99

Modified Protein Identification Prob-

lem, 291

Motif Finding Problem, 98

Multiple Breakpoint Distance Prob-

lem, 145

Multiple Pattern Matching Problem,

316

NP-complete, 49, 348, 372

Pancake Flipping Problem, 130

Partial Digest Problem, 86

Pattern Matching Problem, 315

Peptide Sequencing Problem, 287

Probed Partial Digest Problem, 121

Protein Identification Problem, 290

Query Matching Problem, 326

Reversal Distance Problem, 128

Sequencing by Hybridization (SBH)

Problem, 270

Shortest Path Problem, 258

Shortest Superstring Problem, 264

Small Parsimony Problem, 368

Sorting by Reversals Problem, 129

Sorting Problem, 29

Spectral Alignment Problem, 295

Spliced Alignment Problem, 204

String Duplication Problem, 16

Tandem Repeat Problem, 218

Towers of Hanoi Problem, 24

Traveling Salesman Problem, 50, 258,

264

Turnpike Problem, 86

United States Change Problem, 19

Weighted Small Parsimony Problem,

368

profile, 396

profile HMM alignment, 396

protein, 58

protein complex, 66

protein sequencing, 300

pseudocode, 8

argument, 8

array, 8

operations, 8–11

subroutine, 8, 13

variable, 8, 13

pumpkin pie, 11

quadratic algorithm, 35

randomized algorithms, 48



434 Index

RandomProjections, 83

rearrangement scenario, 127

red panda, 352

restriction enzyme, 71, 83

restriction fragment, 83

restriction fragments, 71

restriction map, 83

ribosome, 66

Richard Karp, 52

RNA, 58

folding, 221

messenger RNA (mRNA), 64

Rocks game, 1

Ron Shamir, 378

Rosetta stone, 77

Russell Doolittle, 79

Sanger, Frederick, 263, 280

SBH, see Sequencing by Hybridization

Schleiden, Matthias, 57

Schrödinger, Erwin, 5

Schwann, Theodor, 57

score of multiple alignment, 188

scoring matrix, 153, 178–180

semibalanced graph, 275

Sequencing by Hybridization, 265

SEQUEST, 290

shared peaks count, 285

shotgun sequencing, 263

simian sarcoma virus, 147

similarity score, 176

Smith, Hamilton, 83

Smith, Temple, 180

SP-score (Sum-of-Pairs), 193

spectral alignment, 293

spectral convolution, 292

spectral product, 296

spectrum graph, 287

spliced alignment graph, 205

splicing, 64, 195

alternative, 66

state transition probability, 388

statistical distance, 335

strip, 133

decreasing, 133

increasing, 133

Sturtevant, Alfred, 60

subsequence, 172

supersequence, 217

superstring, 264

synteny blocks, 126

Tatum, Edward, 60

test data, 385

theoretical spectrum, 285

tiling arrays, 271n

topological ordering, 164

Towers of Hanoi, 24

training data, 385

translation, 67

tree, see DAG

tree traversal

ALLLEAVES, 103

BYPASS, 108

in-order, 370

NEXTLEAF, 103

NEXTVERTEX, 107

post-order, 370

pre-order, 370

pruning, 107

triplet rule, 65

universal DNA array, 267

vertex, 153, 248

degree, 250

indegree, 162, 250

outdegree, 162, 252

predecessor, 163

von Neumann, John, 240

Waardenburg’s syndrome, 125

Waterman, Michael, 180

Watson, James, 5, 6, 61

Watson-Crick complement, 266



Index 435

Webb Miller, 241

weighted interval, 201

Weiss, Samuel, 64

worst case efficiency, 37

Zamecnik, Paul, 63




