The Processor Status
and the FLAGS Registers

REFERENCES:

ASSEMBLY LANGUAGE
PROGRAMMING AND ORGANIZATION
OF THE IBM PC — CHARLES MARUT

CHAPTER 5

Flag Registers of 8086
(Bit-wise Positions)

15 14 1512 1110 2 8 7 & 5 4 3 2 1 0

LT fer

OF

IF

TF

sF

z¢ [ar [P [

— Carry Flag

Parity Flag
Auxiliary Flag

Zero Flag

sign Flag

Trap Flag

Interrupt Enable Flag
Direction Flag
Overflow Flag

The FLAGS
Register

* Carry Flag (CF) : CF = 1 if there is a carry out from the most
significant bit (msb) on addition, or there Is a borrow into the
msb on subtraction; otherwise, it is 0. CF is also affected by
shift and rotate Instructions.

* Parity Flag (PF) : PF = 1 if the low byte of a result has an even
number of one bits (even parity). It is O if the low byte has,
odd parity. For example, if the result of a word addition is
FFFEh, then the low byte contains 7 one bits, so PF=0.

* Auxiliary Carry Flag (AF) : AF = 1 if there is a carry out from
bit 3 on addition, or a borrow into bit 3 on subtraction.

The FLAGS
Register

e Sign Flag (SF) : SF = 1 if the msb of a result is
1; it means the result is negative if you are
giving a signed interpretation. SF = 0 if the
msb is 0.

* Overflow Flag (OF) : OF = | if signed overflow
occurred, othcrwise it is O.

e Zero Flag (ZF) : ZF = 1 for a zero result, and ZF
= 0 for a nonzero result.

Overflow

* Signed and unsigned overflows are
independent phenomena. When we perform
an arithmetic operation such as addition,
there are four possible outcomes:

(1) no overflow,

(2) signed overflow only,

(3) unsigned overflow only, and

(4) both signed and unsigned overflows.

Unsigned Overflow

* As an example of unsigned overflow but not signed
overflow, suppose AX contains FFFFh, BX contains 0001

h, and ADD AX,BX is executed. The binary result is-

TE3? 311 31111 1111
+ QO GO0 OO0 CHOODT

1 OO00 OOO00 OO0 (R0

* |f we are giving an unsigned interpretation, the correct
ans is 10000h = 65536, but this is out of range for a
word operation. A 1 is carried out of the msb and the
answer stored in AX, OOOONh, is wrong, so unsigned
overflow occurred. But the stored answer is correct as
a signed number, for FFFFh =-1. O001h =1, and FFFFh
+ 0001h =-1+1 =0, so signed overflow did not occur.

Signed Overflow

* As an example of signed but not unsigned overflow,
suppose AX and BX both contain 7FFFh, and we execute
ADD AX,BX. The binary result is

OXT11 F111 T1IL 2113
+ 2111 1111 ¥F1T1 1111

1111 171173 3111 1100 =FFFlh

 The signed and unsigned decimal interpretation of
7FFFh is 32767. Thus for both signed and unsigned
addition, 7FFFh + 7FFFh = 32767 + 32767 = 65534,

* This is out of range for signed numbers; the signed
interpretation of the stored answer FFFEh is 2. so
signed overflow occurred. However, the unsigned
interpretation of FFFEh is 65534, which is the right
answer, so there no unsigned overflow.

Unsigned Overflow

— On addition, unsigned overflow occurs when there
Is a carry out of the msb. This means that the
correct answer is larger than the biggest unsigned
number; that is, FFFFh for a word and FFh for a
byte .

— on subtraction, unsigned overflow occurs when
there is a borrow into the msb. This means that
the correct answer is smaller than O.

Signed Overflow

* On addition of numbers with the same sign, signed
overflow occurs when the sum has a different sign.
This happened in the preceding example when we
were adding 7FFFh. and 7FFFh (two positive
numbers), but got FFFEh (a negative result).

e Subtraction of numbers with different signs is like
adding numbers of the same sign. For example, A -(-
B)=A+ B and-A -(+B) = -A + -B. Signed overflow
occurs if the result has a different sign than
expected.

Signed Overflow

* |n addition of numbers with different signs, overflow is
impossible, because a sum like A + (-B) is really A - B,
and because A and B are small enough to fit in the
destination, so is A - B. For exactly the same reason,
subtraction of numbers with the' same sign cannot give
overflow.

e Actually, the processor. uses the following method to
set the OF: If the carries into and out of the msb don't
match-that is, there is a carry into the msb but no carry
out, -or if there is a carry out but no carry in-then
signed overflow has occurred, and OF is set to 1.

How Instructions Effect the Flags

Instruction Affects flags

MOV KCHG, | NGne

ADD/SUB al

IH:‘:{ DEC all except CF

NEY Al {CF = 1 unless result i 0,

OF = 1 i word >gerand 1s B0OGh,
or byte operand is A0h)

Examples

FExample 5.1 ADD AX DX, where AX contains FEFFh, B containms
FFFFh. ' |

Solution: I FFFh
+ I'FI'Fh

1 FICER
The result stored In AX is FFFEh = 11100 1301 S bl 10 kb

SF = 1 because the msbh is 1.

o Pl = O because there are 7 (odd noumiber) of 1 bits in the low byte
of the result,

ZF = 0 because the result is nonzere.
k=1 I:I-L_'cuu.'-'.c there 1s @ carry out of the msh on addition.

OF = 0 Because the sign Of the stored result is the same as that of

Lhe nuanbers being added (as o binary addition, there is a
carry into the msh and also a carry out).

Examples

E:nmn':ple §.2 ADD ALBL, where AL contains 80h, Bl contains 80h.

Solution: ' 80h
+ Rih.

1 0h

The result stored in Al is 00h,

SF = 0 because the msb is 0,
PF = 1 because all the bits in the result are 0.
ZF = 1 because the result is 0,

CF = 1 because there is a carry out of the msb on addition.

OF = 1 because the numbers being added are both negative, but
the result is O {as a binary addition, there is no carry into
the msb but there is a carry out).

Examples

Example §.3 SUB AX,BX, where AX contains 8000h and BX contains
001 h.

Solution:) BOOOh
- 0001h

JFFFh=0111 111111111111

The result stored in AX i ?f;FFh.
SF = O because the msb is 0. .
I’F = 1 because there are _E (even number) one bits in the low byte
of the result.
LZF = 0 because the result is nonzero.
CF = 0 because a smaller unsigned number is being subtracted
from a larger one.

MNow for OF. In a signed sense, we are subtracting a positive number from
a negative one, which is like adding two ncgatives. Because the result is
positive {the wrong sign), OF = 1.

Examples

Example 5.4 INC Al, where AL contains FFh.

S5olution: IFIFh
+ 1h

, T00h
The result stored in AL is 00h. 5F = 0, PF = 1, ZF = 1. BEven though there

is a carry out, CF is unatfected by INC. This means that if CF = 0 before
the execution of the instruction, CF will still be O afterward.

OF = 0 because numbers of unlike sign are bElng added (there is a carry
into the msb and also a carry out).

Example 5.5 MOV AX, -5
Solution: The result stored in AX 15 =5 = FFIFRNL,

None of the flags are alfected by MOV,

Exercises

Do Exercise

1. For cach of the following instructions, give the new destination
contents and the new settings of CF, SE ZF, PE, and OF. Suppose
-that the flags are initially O in each part of this question.

a.

b.

ADD AX, BX
SUB AL, BL

DEC AL

NEG AL
XCHG AX,BX

ADD AL.BL
SUB AX,BX

NEG 'AX

where AX contains 7FFFh and BX
contains 0CO1h :

r;hete AL contains O1h and‘BL contains
h .

where AL contains OCh

where Al contains 7Fh

where AX contains 1ABCh and BX '
contains 712Ah

v;here Al contams 80h and BL contains
FFn

where AX contains O000h and BX
contans 8000h

where AX contains 0001h

