

Computer Arithmetic

Dr. Sheak Rashed Haider Noori

Learning Objectives

In this lecture you will learn about:

- Reasons for using binary instead of decimal numbers
- ✓ Basic arithmetic operations using binary numbers
- ✓ Addition (+)
- ✓ Subtraction (-)
- ✓Multiplication (*)
- ✓ Division (/)

Binary over Decimal

- Information is handled in a computer by electronic/ electrical components
- Electronic components operate in binary mode (can only indicate two states – ON (1) or OFF (0)
- Binary number system has only two digits (0 and 1), and is suitable for expressing two possible states
- In binary system, computer circuits only have to handle two binary digits rather than ten decimal digits causing:
 - Simpler internal circuit design
 - Less expensive
 - More reliable circuits
- Arithmetic rules/processes possible with binary numbers

Examples of a Few Devices that work in Binary Mode Binary

Binary State	On (1)	Off (0)
Bulb		
Switch		
Circuit Pulse		

Binary Number System

- System Digits: 0 and 1
- Bit (short for binary digit): A single binary digit
- LSB (least significant bit): The rightmost bit
- MSB (most significant bit): The leftmost bit
- Upper Byte (or nybble): The right-hand byte (or nybble) of a pair
- Lower Byte (or nybble): The left-hand byte (or nybble) of a pair
- The term **nibble** used for 4 bits being a subset of byte.

Binary Number System

Binary Equivalents

- 1 Nybble (or nibble) = 4 bits
- I Byte = 2 nybbles = 8 bits
- 1 Kilobyte (KB) = 1024 bytes
- Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes
- I Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes

Binary Arithmetic

- Binary arithmetic is simple to learn as binary number system has only two digits – 0 and 1
- Following slides show rules and example for the four basic arithmetic operations using binary numbers

Binary Addition

Rule for binary addition is as follows:

- $(1) \quad 0 + 0 = 0$
- $(2) \quad 0+1=1$
- (3) 1 + 0 = 1
- (4) 1 + 1 = 0 plus a carry of 1 to next higher column

Binary Addition

Example 1: $00011010_2 + 00001100_2 = 00100110_2$

Binary Addition

• Example 2: $00010011_2 + 00111110_2 = 01010001_2$

Binary Addition (Example 3)

Example

Solution

	Binary	Decimal
carry	11111	carry 1
	100111 +11011	39 +27
	1000010	66

The addition of three 1s can be broken up into two steps. First, we add only two 1s giving 10 (1 + 1 =10). The third 1 is now added to this result to obtain 11 (a 1 sum with a 1 carry). Hence, 1 + 1 + 1 =1, plus a carry of 1 to next higher column.

Binary Subtraction

Rule for binary subtraction is as follows:
1 0 - 0 = 0
2 0 - 1 = 1 with a borrow from the next column
3 1 - 0 = 1

$$(4)$$
 1 - 1 = 0

Binary Subtraction

Binary Subtraction

Example 2: $00110011_2 - 00010110_2 = 00011101_2$

- Table for binary multiplication is as follows:
 - $\underbrace{1}_{0} \quad 0 \times 0 = 0$
 - (2) $0 \times 1 = 0$
 - (3) $1 \times 0 = 0$
 - (4) $1 \times 1 = 1$

• Example 1: $00101001_2 \times 00000110_2 = 11110110_2$

		0	0	1	0	1	0	0	1	=	41 _(base 10)
	×	0	0	0	0	0	1	1	0	=	6 _(base 10)
		0	0	0	0	0	0	0	0		
	0	0	1	0	1	0	0	1			
0	0	1	0	1	0	0	1				
0	0	1	1	1	1	0	1	1	0	=	246 _(base 10)

• Example 2: $00010111_2 \times 00000011_2 = 01000101_2$

Example 3: Multiply the binary numbers 1010 and 1001

Solution

1010	Multiplicand
x1001	Multiplier
1010 0000 0000 1010	Partial Product Partial Product Partial Product Partial Product
1011010	Final Product

Example 4:

Whenever a 0 appears in the multiplier, a separate partial product consisting of a string of zeros need not be generated (only a shift will do). Hence,

 $\begin{array}{r}
 1010 \\
 \times 1001 \\
 1010 \\
 1010SS \quad (S = left shift)
 \end{array}$

1011010

Binary Division

Table for binary division is as follows:

1
$$0 \div 0 = \text{Divide by zero error}$$

 $2 \quad 0 \div 1 = 0$

$$3$$
 1 ÷ 0 = Divide by zero error

(4) 1 ÷ 1 = 1

- As in the decimal number system (or in any other number system), division by zero is meaningless
- The computer deals with this problem by raising an error condition called 'Divide by zero' error

Rules for Binary Division

1 Start from the left of the dividend

- 2 Perform a series of subtractions in which the divisor is subtracted from the dividend
- (3) If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
- (4) If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
- 5 Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division

Binary Division (Example 1)

Example

Divide 100001₂ by 110₂

Solution 0101 (Quotient)

- 110) 100001 (Dividend)
 - 110 1 ← Divisor greater than 100, so put 0 in quotient
 - 1000 2 ← Add digit from dividend to group used above
 - 110 3 ← Subtraction possible, so put 1 in quotient
 - 100 4 Remainder from subtraction plus digit from dividend
 - 110 5 ← Divisor greater, so put 0 in quotient
 - 1001 6 Add digit from dividend to group
 - 110 7 Subtraction possible, so put 1 in quotient
 - 11 Remainder

Binary Division (Example 2)

• Example: $00101010_2 \div 00000110_2 = 00000111_2$

Binary Division (Example 3)

• Example: $10000111_2 \div 00000101_2 = 00011011_2$

$$1 \ 1 \ 0 \ 1 \ 1 = 27_{(base 10)}$$

$$1 \ 0 \ 1 \ 1 = 135_{(base 10)}$$

$$- \ 1 \ 0 \ 1 = 5_{(base 10)}$$

$$- \ 1 \ 0 \ 1 = 5_{(base 10)}$$

$$- \ 1 \ 0 \ 1 = 11$$

$$- \ 0 = 5_{(base 10)}$$

$$- \ 1 \ 0 \ 1 = 11$$

$$- \ 0 = 1$$

$$- \ 0 = 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

$$- \ 1 \ 0 \ 1$$

0

Complement of a Number

Complement of a Decimal Number

Example

Find the complement of 37₁₀

Solution

Since the number has 2 digits and the value of base is 10, (Base)ⁿ - 1 = 10^2 - 1 = 99 Now 99 - 37 = 62

Hence, complement of $37_{10} = 62_{10}$

Complement of a Octal Number

Example

Find the complement of 68

Solution

Since the number has 1 digit and the value of base is 8, (Base)ⁿ - 1 = 8¹ - 1 = 7₁₀ = 7₈ Now 7₈ - 6₈ = 1₈

Hence, complement of $6_8 = 1_8$

Complement of a Binary Number

Complement of a binary number can be obtained by transforming all its 0's to 1's and all its 1's to 0's

Example

Complement of	1	0	1	1	0	1	0	is
	↓	↓	↓	Ļ	Ļ	↓	ļ	
	0	1	0	0	1	0	1	

Note: Verify by conventional complement

Complementary Method of Subtraction

- Step 1: Find the complement of the number you are subtracting (subtrahend)
- Step 2: Add this to the number from which you are taking away (minuend)
- Step 3: If there is a carry of 1, add it to obtain the result; if there is no carry, recomplement the sum and attach a negative sign
- Complementary subtraction is an additive approach of subtraction

Complementary Subtraction (Example 1)

Example:

Subtract 56₁₀ from 92₁₀ using complementary method.

Solution

Step 1: Complement of 56_{10} = $10^2 - 1 - 56 = 99 - 56 = 43_{10}$

Step 2: 92 + 43 (complement of 56) = 135 (note 1 as carry) The result may be verified using the method of normal subtraction:

92 - 56 = 36

Step 3: 35 + 1 (add 1 carry to sum)

Result = 36

Complementary Subtraction (Example 2)

Example

Subtract 35_{10} from 18_{10} using complementary method.

Solution

- Step 1: Complement of 35_{10} = $10^2 - 1 - 35$ = 99 - 35= 64_{10} Step 2: 18 + 64 (complement of 35) 82
- Step 3: Since there is no carry, re-complement the sum and attach a negative sign to obtain the result.

Result =
$$-(99 - 82)$$

= -17

The result may be verified using normal subtraction:

18 - 35 = -17

Binary Subtraction Using Complementary Method (Example 1) Example

Subtract 0111000_2 (56₁₀) from 1011100_2 (92₁₀) using complementary method.

Solution

1011100 +1000111 (complement of 0111000)

10100011

→ 1 (add the carry of 1)

0100100

Result = $0100100_2 = 36_{10}$

Binary Subtraction Using Complementary Method (Example 2)

Example

Subtract 100011_2 (35₁₀) from 010010_2 (18₁₀) using complementary method.

Solution

010010 +011100 (complement of 100011)

101110

Since there is no carry, we have to complement the sum and attach a negative sign to it. Hence,

```
Result = -010001_2 (complement of 101110_2)
= -17_{10}
```

Addition/Subtraction of Numbers in 2's Complement Notation

- Represent all negative numbers in 2's complement form.
- Now we have the same procedure for addition and subtraction.
- Subtraction of a number is achieved by adding the 2's complement of the number.
- This is illustrated in the following example where the carry, if any, from the most significant bit, during addition, should be ignored.
- The result has to be interpreted appropriately using the same convention.

Addition/Subtraction of Numbers in 2's Complement Notation...

Example 6.4

Using 2's complement representation, (a) subtract 3 from 5; (b) subtract (-3) from (-5); (c) add (- 5) and (- 2); and (d) add 5 and 4.

SOLUTION;

(a) 5	- 0101	(b)	- 5	1011
— 3	1101		+ 3	0011
	10010			1110
	ignore carry			Answer = -2
	Answer $= +2$			
(c) - 5	1011	(d)	5	0101
- 2	1110		4	0100
	11001			1001
	ignore carry			incorrect answer
	Answer = -7			

In the last example we get an incorrect answer because the sum 9 exceeds the range of numbers (0 to 7) we had stipulated in the beginning.

Key Words/Phrases

- Additive method of division
- Additive method of multiplication
- Additive method of subtraction
- Binary arithmetic
- Binary multiplication
- Complementary subtraction
- Computer arithmetic

Binary addition Binary division Binary subtraction Complement

