Spring 2019

CSE 112 (Computer Fundamentals

Topic: Computer Arithmetic

Department of Computer Science and Engineering Daffodil International University

References

© Computer Fundamentals by Pradeep K. Sinha, 6th Edition. [Chapter 5]

Computer Fundamentals and ICT by M. Lutfar Rahman, M. Shamim Kaiser, M. Ariful Rahman, M. Alamgir Hossain.

[Chapter 2]

- Information is handled in a computer by electronic/ electrical components
- Electronic components operate in binary mode (can only indicate two states ON (1) or OFF (0)
- Binary number system has only two digits (0 and 1), and is suitable for expressing two possible states
- In binary system, computer circuits only have to handle two binary digits rather than ten decimal digits causing:
 - Simpler internal circuit design
 - Less expensive
 - More reliable circuits
- Arithmetic rules/processes possible with binary numbers

Examples of a Few Devices That Work in Binary Mode Binary

Binary State	On (1)	Off (0)
Bulb		
Switch		
Circuit Pulse		

Binary Number System

- System Digits: 0 and 1
- Bit (short for binary digit): A single binary digit
- LSB (least significant bit): The rightmost bit
- MSB (most significant bit): The leftmost bit
- Upper Byte (or nybble): The right-hand byte (or nybble) of a pair
- Lower Byte (or nybble): The left-hand byte (or nybble) of a pair
- The term **nibble** used for 4 bits being a subset of byte.

Binary Number System

- 1 Nybble (or nibble) = 4 bits
- 1 Byte = 2 nybbles = 8 bits
- 1 Kilobyte (KB) = 2^{10} or 1024 bytes
- 1 Megabyte (MB) = 2^{10} or 1024 kilobytes = 2^{20} or 1,048,576 bytes
- 1 Gigabyte (GB) = 2^{10} or 1024 megabytes = 2^{30} or 1,073,741,824 bytes

- ■Binary arithmetic is simple to learn as binary number system has only two digits 0 and 1
- Following slides show rules and example for the four basic arithmetic operations using binary numbers

- Rule for binary addition is as follows:
 - $(1) \quad 0 + 0 = 0$
 - (2) 0 + 1 = 1
 - (3) 1 + 0 = 1
 - 4 1 + 1 = 0 plus a carry of 1 to next higher column

Binary Addition

Example 1: $00011010_2 + 00001100_2 = 00100110_2$

Binary Addition

Example 2: $00010011_2 + 001111110_2 = 01010001_2$

Example

Add binary numbers 100111 and 11011 in both decimal and binary form

Solution

	Binary	Decima
carry	11111	carry 1
	100111	39
	+11011	+27
	1000010	66

The addition of three 1s can be broken up into two steps. First, we add only two 1s giving 10 (1 + 1 = 10). The third 1 is now added to this result to obtain 11 (a 1 sum with a 1 carry). Hence, 1 + 1 + 1 = 1, plus a carry of 1 to next higher column.

Binary Subtraction

- ■Rule for binary subtraction is as follows:
 - (1) 0 0 = 0
 - (2) 0 1 = 1 with a borrow from the next column
 - \bigcirc 1 0 = 1
 - (4) 1 1 = 0

Example 1: $00100101_2 - 00010001_2 = 00010100_2$

0 0 1 10 0 1 =
$$37_{\text{(base 10)}}$$

- 0 0 0 1 0 0 0 1 = $17_{\text{(base 10)}}$
0 0 0 1 0 1 0 0 = $20_{\text{(base 10)}}$

Example 2: $00110011_2 - 00010110_2 = 00011101_2$

Binary Multiplication

- Table for binary multiplication is as follows:
 - (1) $0 \times 0 = 0$
 - (2) 0 x 1 = 0
 - (3) 1 x 0 = 0
 - (4) 1 x 1 = 1

Binary Multiplication

Example 1: $00101001_2 \times 00000110_2 = 11110110_2$

Example 2: $00010111_2 \times 00000011_2 = 01000101_2$

Binary Multiplication

Example 3: Multiply the binary numbers 1010 and 1001

Solution

1010	Multiplicand
×1001	Multiplier
1010 0000 0000 1010	Partial Product Partial Product Partial Product Partial Product
1011010	Final Product

Binary Division

- Table for binary division is as follows:
 - $(1) 0 \div 0 = Divide by zero error$
 - $(2) \quad 0 \div 1 = 0$
 - 3 $1 \div 0 = Divide by zero error$
 - $(4) \quad 1 \div 1 = 1$
- As in the decimal number system (or in any other number system), division by zero is meaningless
- The computer deals with this problem by raising an error condition called 'Divide by zero' error

Rules for Binary Division

- 1) Start from the left of the dividend
- 2 Perform a series of subtractions in which the divisor is subtracted from the dividend
- 3 If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
- 4 If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
- 5 Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division

Binary Division (Example 1)

Example

Divide 100001₂ by 110₂

```
Solution
             0101
                    (Quotient)
                    (Dividend)
                               Divisor greater than 100, so put 0 in quotient
           110
           1000
                               Add digit from dividend to group used above
             110
                                Subtraction possible, so put 1 in quotient
                                Remainder from subtraction plus digit from dividend
              100
              110
                                Divisor greater, so put 0 in quotient
                                Add digit from dividend to group
              1001
                                Subtraction possible, so put 1 in quotient
                 11
                       Remainder
```

Binary Division (Example 2)

Example: $00101010_2 \div 00000110_2 = 00000111_2$

Binary Division (Example 3)

Example: $10000111_2 \div 00000101_2 = 00011011_2$


```
27<sub>(base 10)</sub>
     (base 10)
```


The End