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Binary over Decimal

m |nformation is handled in a computer by electronic/ electrical components

m Electronic components operate in binary mode (can only indicate two states —
ON (1) or OFF (0)

® Binary number system has only two digits (0 and 1), and is suitable for
expressing two possible states

® |n binary system, computer circuits only have to handle two binary digits
rather than ten decimal digits causing:

m Simpler internal circuit design
m |_ess expensive
m More reliable circuits

m Arithmetic rules/processes possible with binary numbers



Examples of a Few Devices That
Work in Binary Mode Binary

Binary On (1) Off (0)
State
_x ! ,f_ —~
Bulb f@“ N4
Switch — o0—0O_ o//-:;_
Circuit

Pulse



Binary Number System

m System Digits: 0and 1

m Bit (short for binary digit): A single binary digit
m | SB (least significant bit): The rightmost bit

® MSB (most significant bit): The leftmost bit

m Upper Byte (or nybble): The right-hand byte (or nybble) of a pair
m | ower Byte (or nybble): The left-hand byte (or nybble) of a pair

® The term nibble used for 4 bits being a subset of byte.



Binary Number System

Most Significant Bit Least Significant Bit
(MSE) Bit (LSB)
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Binary Equivalents

m 1 Nybble (or nibble) = 4 bits

m 1 Byte = 2 nybbles = 8 bits

= 1 Kilobyte (KB) =210 0or 1024 bytes

= 1 Megabyte (MB) = 2100r 1024 kilobytes = 220 or 1,048,576 bytes

= 1 Gigabyte (GB) = 20 or 1024 megabytes = 230 or 1,073,741,824 bytes



Binary Arithmetic

mBinary arithmetic is simple to learn as binary number
system has only two digits — 0 and 1

m Following slides show rules and example for the four
basic arithmetic operations using binary numbers



Binary Addition

m Rule for binary addition is as follows:

0+0=0

0+1=1

1+0=1

1+1=0 plusacarry of 1to next higher column

®H@OO



Binary Addition

m Example 1:

00011010, + 00001100, = 00100110,

carries
0 O I 1 O 1 O ==
—26(baseIO)
+ 0 0 0 1 1 0 0 = 12
(base 10)
0 0 0 0 1 1 0 = 38

(base 10)
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Binary Addition

= Example 2: 00010011, + 00111110, = 01010001,

1 1 1 1 1 carries
0 0 0 1 0 0 1 1 = {9
(base 10)
+0 0 1 1 1 1 1 0 =
Z 62(base 10)

0 1 0 1 0 0 0 1 = R1
(base 10)
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Binary Addition (Example 3)

Example

Add binary numbers 100111 and 11011 in both decimal
and binary form

Solution
- . | The addition of three 1s
Binary Decima can be broken up into two
steps. First, we add only
carry 11111 carry 1 two 1s giving 10 (1 + 1 =
10). The third 1 is now
1??&%]]: 397 added to this result to
+ + obtain 11 (a 1 sum with a 1
carry). Hence, 1 + 1 + 1 =
1000010 66 1, plus a carry of 1 to next

higher column.



Binary Subtraction

mRule for binary subtraction is as follows:

(1) 0-0=0

(2) 0 -1 =1 with a borrow from the next column
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Binary Subtraction

= Example 1: 00100101, - 00010001, = 00010100,

0 borrows
o0 0 2% 0 1 0 1 = 37(bm 10)
=0 0 0 0 0 0 1 = 17(base 10)
0 0 01 0 1 o0 o0 = 20

(base 10)
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Binary Subtraction

m Example 2: 00110011, - 00010110, = 00011101,

0 ‘0 1 borrows
0 0 1 1 8% 1 1 = 51(base10)
-0 0 0 1 O 1 0 = 22(base 10)
0 0 0 :F ¥ A O Fo=GlY

(base 10)
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Binary Multiplication
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Binary Multiplication

= Example 1: 00101001, x 00000110, = 11110110,

0 0 1 0 1 0 0 1 = 41
(base 10)
x0 0 0 0 0 1 1 0 6
(base 10)
0O 0 O 0 O
0 1 4 A 1
0 0 L O 1 0 0 1

O 0 b W 0 % & 0=
246(bas¢310)
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Binary Multiplication

23(base 10)

3(base 10)

carries

69(base 10)
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Binary Multiplication

m Example 3:

Multiply the binary numbers 1010 and 1001

Solution
1010 Multiplicand
x1001 Multiplier

1010 Partial Product
0000 Partial Product
0000 Partial Product
1010 Partial Product

1011010 Final Product
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Binary Division

m Table for binary division is as follows:
(1) 0+ 0= Divide by zero error

2 0+1=0

(3) 1+ 0=Divide by zero error
4 1+1=1

m As In the decimal number system (or in any other number
system), division by zero Is meaningless

® The computer deals with this problem by raising an error
condition called ‘Divide by zero’ error
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Rules for Binary Division

(1) Start from the left of the dividend

(2) Perform a series of subtractions in which the divisor is
subtracted from the dividend

(3) If subtraction is possible, put a 1 in the quotient and subtract
the divisor from the corresponding digits of dividend

(4) If subtraction is not possible (divisor greater than remainder),
record a O in the quotient

(5) Bring down the next digit to add to the remainder digits.
Proceed as before in a manner similar to long division
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Binary Division (Example 1)

Example
Divide 100001, by 110,

Solution 0101 (Quotient)
110) 100001 (Dividend)

110 1l e—— Divisor greater than 100, so put 0 in quotient

1000 2+——  Add digit from dividend to group used above
110 3+— Subtraction possible, so put 1 in quotient

100 4 «— Remainder from subtraction plus digit from dividend
110 s5<«—  Divisor greater, so put 0 in quotient

1001 6 +—  Add digit from dividend to group
110 7 +——  Subtraction possible, so put 1 in quotient

11 Remainder
22



Binary Division (Example 2)

= Example: 00101010, + 00000110, = 000001118

L G & =

(base 10)
1 -
110)00401010_42@&10)
- ¥ SE A -
6(base 10)
1 borrows
1 0 1y
- 1 X
1 0
- 1 0
0
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Binary Division (Example 3)

= Example: 10000111, + 00000101, = 00011011,

101);0

1

27

135

(base 10)

(base 10)

5(base 10)
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The End
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