Bipartite Graphs Discrete Mathematics

・ロト ・回ト ・ヨト ・ヨト

Э

Definition: Bipartite Graphs

Definition

A simple graph G is called **bipartite** if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (or, there is no edge between vertices of subset V_1 and between vertices of subset V_2).

Showing that C_6 is bipartite

Is This Graph Bipartite?

E.

We label one vertex of the graph with the color blue. How to choose this first vertex? Simply choose the first one in lexicographic order.

Level 1 (Blue) : a

Answer: Step 2 of 3

The adjacent vertices b, f and g of the first vertex a must be of the other color. We label them with the red color.

Level 1 (Blue) : aLevel 2 (Red) : b, f and g

Answer: Step 3 of 3

The adjacent vertices to b, f and g must be of the other color. We label them with the blue color.

Level 1 (Blue) : aLevel 2 (Red) : b, f and gLevel 3 (Blue) : c, d and e

At the end of the process, if all the vertices have one **unique** label, then the graph is bipartite.

Is This Graph Bipartite?

<ロ> <同> <同> <巨> <巨> <

臣

We label one vertex of the graph with the color blue. For this, we choose the first vertex in lexicographic order.

Level 1 (Blue) : a

8

The adjacent vertices b, d and f of the first vertex a must be of the other color. We label them with the red color.

Level 1 (Blue) : aLevel 2 (Red) : b, d and f

Answer: Step 3 of 3

The adjacent vertices to vertices b, d and f must be of the other color. We label them with the blue color.

Level 1 (Blue) : aLevel 2 (Red) : b, d and fLevel 2 (Red) : c, d ???

As soon as one vertex must have two different colors, the graph is **not** bipartite.

Definition

The **complete bipartite graph** $K_{m,n}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex in the second subset.

