Bipartite Graphs
 Discrete Mathematics

Definition: Bipartite Graphs

Definition

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (or, there is no edge between vertices of subset V_{1} and between vertices of subset V_{2}).

Showing that C_{6} is bipartite

Is This Graph Bipartite?

Answer：Step 1 of 3

We label one vertex of the graph with the color blue．How to choose this first vertex？Simply choose the first one in lexicographic order．

Level 1 （Blue）：a

Answer：Step 2 of 3

The adjacent vertices b, f and g of the first vertex a must be of the other color．We label them with the red color．

Level 1 （Blue）：a
Level 2 （Red）：b, f and g

Answer：Step 3 of 3

The adjacent vertices to b, f and g must be of the other color．
We label them with the blue color．

Level 1 （Blue）：a
Level 2 （Red）：b, f and g
Level 3 （Blue）：c，d and e
At the end of the process，if all the vertices have one unique label， then the graph is bipartite．

Is This Graph Bipartite?

Answer: Step 1 of 3

We label one vertex of the graph with the color blue. For this, we choose the first vertex in lexicographic order.

Level 1 (Blue) : a

Answer: Step 2 of 3

The adjacent vertices b, d and f of the first vertex a must be of the other color. We label them with the red color.

Level 1 (Blue) : a
Level 2 (Red) : b, d and f

Answer: Step 3 of 3

The adjacent vertices to vertices b, d and f must be of the other color. We label them with the blue color.

Level 1 (Blue) : a
Level 2 (Red) : b, d and f
Level 2 (Red) : c, d ???
As soon as one vertex must have two different colors, the graph is not bipartite.

Definition: Complete Bipartite Graph

Definition

The complete bipartite graph $K_{m, n}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex in the second subset.

$K_{1,4}$

$K_{2,3}$

$K_{3,3}$

$K_{3,5}$

