
Professor Dr. M. Ismail Jabiullah
Professor

Department of CSE

Daffodil International University

Bangladesh

Computer Fundamentals

Flowchart



Flowchart
Topics

 Problem Analysis

 Algorithm

 Characteristics of an Algorithm

 Algorithm Build-up Process

 Some Algorithms

 Flowcharts

 Needs for drawing Flowcharts
 Rules for drawing flowcharts

 Symbols of Flowcharts

 Examples of Flowcharts

 Advantages of drawing Flowcharts

 Limitations of drawing Flowcharts

 Pseudocode

 Examples

 Advantages of pseudocode 

 Limitations of pseudocode

 Four Steps for Programming Process

 Source Program, Object Program and Executable Program



Problem Analysis
 A program is a set of instructions or command written in a computer 

programming language understandable by the computer system. 

 To prepare a program, one has to prepare an algorithm, then to 

prepare a flowchart and finally, to prepare pseudo code of that 

program. 

 The steps of the work are given below.

 Write the sequence of tasks

 Prepare the algorithm

 Prepare the flowchart

 Prepare the pseudocode

 Write the program code



Algorithm
 To prepare an algorithm, one have to first prepare a 

program logic that is the correct sequence of 

instructions or commands needed to solve the problem 

at hand. 

 The term algorithm is often used to refer to the logic of 

a program. 

 It is a step-by-step instructions or commands of the 

problem description of how to arrive at the solution of 

the given computer problem. 

 So, an algorithm is a sequence of instructions designed 

in a manner that if the instructions are executed in the 

specified sequence, the desired results will be obtained. 



Characteristics of an Algorithm

 Finiteness: It must be finite.

 Definiteness: It must be unambiguous.

 Non-intuitiveness: It must be executable.

 Input: It must have 0 or more input.

 Output: It must have 1 or more output.

 Completeness/generality: It should be general so that 

it can solve any problem of a particular type for which it 

is constructed.



Algorithm Build-up Process

There are various ways in which an algorithm can be represented. 

Programmers normally use one or more of the following ways to build-

up an algorithm:

 As programs

 As flowcharts

 As pseudo codes



Examples
Problem 1: Write an algorithm that finds the sum and the subtraction of two numbers that are given.

Algorithm

Part A:

To find the sum and subtract of two given numbers. Here, SUM and SUB are the two variables where intermediary values are put.

Part B: 

Step 1. Set the values X = 20, and Y = 15.

Step 2. Compute X + Y and put it to the variable SUM.

Step 3. Compute X - Y and put it to the variable SUB.

Step 4. Write the values of SUM and SUB.

Step 5. Stop.

Problem 2: Write an algorithm that finds the sum, subtract and product of two numbers where numbers are taken from the 

keyboard as input.

Algorithm

Part A:

To find the sum, subtract and product of two numbers X, Y taken from the keyboard as input. Take SUM, SUB and PRODUCT to store 

the intermediary values.

Part B: 

Step 1. Input two numbers X, Y.

Step 2. Compute X + Y and put it to the variable SUM.

Step 3. Compute X - Y and put it to the variable SUB.

Step 4. Compute X * Y and put it to the variable PRODUCT.

Step 5. Write the value of SUM, SUB and PRODUCT.

Step 6. Stop.



Flowcharts
 A flowchart is a pictorial representation of an algorithm. 

 It is often used by the programmers as program-

planning tool for organizing a sequence of steps 

necessary to solve a computer problem by a computer 

system. 

 It uses boxes of different shapes to denote different 

types of instructions. 

 The actual instructions are written within these boxes 

using clear and concise statements. 

 These boxes are connected by solid lines having arrow 

marks to indicate the flow of operations, that is, the 

exact sequences in the instructions are to be executed. 

 The process of drawing a flowchart for an algorithm is 

often referred to as flowcharting.



Needs for Drawing Flowcharts

Flowchart is drawn, because

 It is easier to understand at a glance than a narrative 

description.

 The flowchart assists the programmer when he 

actually starts writing the program.

 If the programmer himself or someone else wishes to 

correct or modify the program after sometime, the 

flowchart may be more clear and easy to understand 

than the actual program.

 Provide effective program documentation.



Rules for Drawing Flowcharts
There are some rules to draw flowcharts. 

To deal a good flowchart, programmers need to maintain a number of 

general rules and guidelines and they are given below:

 First chart the main line of logic, then incorporate detail.

 Maintain a consistent level of detail for a given flowchart.

 Do not chart every detail, otherwise, the flowchart will only be a step-

by-step graphic representation of the program.

 Words in the flowchart symbols should be common statements, which 

are easy to understand. 

 It is recommended to use descriptive titles written in designer’s own 

language, rather than in machine-oriented language.

 Be consistent in using names and variables in the flowchart.

 Go from left to right, and top to bottom in constructing flowcharts.

 Keep the flowchart as simple as possible. 

 The crossing of flow lines should be avoided, as far as practicable.



Symbols of Flowcharts

Shape Name

Oval Terminal

Rectangle Assertion or Process

Parallelogram Input or output

Diamond Decision

Hexagon Preparation or Group

instruction

Circle Connector

Capsule Start or stop

Line Flow



Examples of Flowchart
Example: Draw a flowchart that finds the sum and the subtraction of 

two numbers that are given.

Start

Stop

Sum = A + B

Sub = A - B

Print Sum

Print Sub

A = 30

B= 20

Flowchart of Example 1

Start

Stop

Sum = A + B

Sub = A - B

Print Sum

Print Sub

Flowchart of Example 2

Read A, B

Example: Draw a flowchart that finds the sum and the 

subtraction of two numbers that are taken from the keyboard 

as input.



Advantages of Drawing Flowcharts
Drawing flowcharts have some benefits and they are described in the following:

Better Communication: A flowchart is a pictorial representation of a program. Hence, it is 

easier for a programmer to explain the logic of a program to some other programmer, or 

his/her boss through a flowchart, rather than the program itself.

Proper Program Documentation: Program documentation involves collecting, organizing, 

storing, and otherwise maintaining a complete historical record of programs, and the other 

documents associated with a system.

Efficient Coding: Once a flowchart is ready, programmers find it very easy to write the 

corresponding program, because the flowchart acts as a road map for them. It guides 

them to go from the starting point of the program to the final point, ensuring that no steps 

are omitted. The ultimate result is an error-free program, developed at a faster rate.

Systematic Debugging: A flowchart is very helpful in detecting, locating, and removing 

mistakes or bugs in a program in a systematic manner, because programmers find it easier 

to follow the logic of the program in flowchart form.

Systematic Testing: Testing is the process of confirming whether a program will 

successfully do all the jobs for which it has been designed under the specified constraints. 

A flowchart proves to be very helpful in designing the test data for systematic testing of 

programs.



Limitations of Drawing Flowcharts
 Drawing flowcharts have some limitations and they are described 

in the following:

 Flowcharts are very time consuming, and laborious to draw with 

proper symbols and spacing, especially for large complex 

programs.

 Owing to the symbol-string nature of flowcharting, any changes or 

modifications in the program logic will usually require a completely 

new flowchart. Redrawing a flowchart being a tedious task, many 

programmers do not redraw or modify the corresponding flowchart 

when they modify the programs.

 There are no standards determining the amount of detail that 

should be included in a flowchart.



Pseudocode
 Pseudocode is the programming analysis tool which is 

used for planning program logic. 

 “Pseudo” means imitation or false, and “Code” refers to 

the instructions written in a programming language. 

 Pseudocode, therefore, is an imitation of actual 

computer instructions. 

 These pseudo-instructions are phrases written in 

ordinary natural language, which con not be understood 

by the computer.



Example of Pseudocode
Write an algorithm that finds the sum, subtract and product of two 

numbers where numbers are taken from the keyboard as input.

Pseudocode

Input two numbers X, Y.

Compute X + Y and put it to the variable SUM.

Compute X - Y and put it to the variable SUB.

Compute X * Y and put it to the variable PRODUCT.

Write the value of SUM, SUB and PRODUCT.



Advantages of Pseudocode
The identified advantages of pseudocodes are given 

below:

 Converting a Pseudocode to a programming language 

is much more easier than converting a flowchart to a 

programming language.

 As compared to a flowchart, it is easier to modify the 

pseudocode of a program logic, when program 

modifications are necessary.

 Writing of pseudocode involves much less time and 

effort than drawing an equivalent flowchart.

 Pseudocode is easier to write than an actual 

programming language, because it has only a few rules 

to follow, allowing the programmer to concentrate on 

the logic of the program.



Limitations of Pseudocode
The identified limitations of pseudocodes are given below:

 In case of pseudocode, a graphic representation of 

program logic is not available.

 There are no standard rules to follow in using 

pseudocode. 

 Different programs use their own style of writing 

pseudocode. Hence, communication problem occurs 

due to lack of standardization.

 For a beginner, it is more difficult. 



Four Steps for Programming Process
The process of program development falls within the 

implementation steps of the systems development life 

cycle. 

Parallel to the purchase, testing, and installation of 

hardware is the development of software.

The programming process follows a four-step structure of 

its own, producing application programs that implement 

the processing portion of a computer system. 

The four-steps are: 

 Designing the problem

 Writing program code

 Testing and debugging

 Documentation and training



Some Terms
Source Program 

A program written in assembly language or high level 

programming language is known as source program. 

Object Program 

Any program not written in machine language has to be 

translated before it is execute by the computer. Object 

program is a translation of source program into machine 

language program. 

Executable Program 

Any program that is to be run by the compiler or editor of 

the programming language is converted into an 

executable program that can be run in any computer to 

perform the desired tasks.



Differences between Testing and Debugging

Testing Debugging

(1) Testing is the process of validating

the correctness of a program.

(1) Debugging is the process of eliminating errors in a

program.

(2) Its objective is to demonstrate that

the program meets its design

specifications.

(2) Its objective is to detect the exact cause of, and

remove known errors in the program

(3) Testing is complete when all desired

verifications against specifications have

been performed.

(3) Debugging is complete when all known errors in the

program have been fixed. Debugging process ends only

temporarily, because it must be restarted whenever a

new error is found in the program.

(4) Testing is a definable process, which

can and should be planned and

scheduled properly.

(4) Debugging, being a reactive process, cannot be

planned ahead of time. It must be carried out as and

when errors are found in a program.

(5) Testing can begin in the early stages

of software development.

(5) Debugging can begin only after the program is

coded.



Thanks


