Summer 2022

Theory of Computing (CSE 221)

Lecture - 1: Introduction

Course Teacher: Md. Sadiqur Rahman Lecturer Department of Computer Science and Engineering Daffodil International University

Topic Contents

❖ Introduction ❑ Automata ❖ Different Forms of Proof ❑ Inductive Proof ❑ If-And-Only-If Proof ❑ Proof by Contradiction ❖ The Central Concepts of Automata Theory

Introduction

\blacksquare Automata = abstract computing devices

Fig. Automaton

Introduction

- \blacksquare Automata = abstract computing devices
- The word automata comes from the Greek word αὐτόματος, which means **"self-acting, self-willed, self-moving".**
- We will also look at **Finite State Automata** and **Grammars** and **Regular Expressions**.

Finite Automata

Finite Automata are used as a model for:

- **Software** for designing digital circuits
- **Lexical analyzer** of a compiler
- **Searching for keywords** in a file or on the web.
- Software for verifying **finite state systems**, such as communication protocols.

Examples

• Example: Finite Automaton modelling an on/off switch

• Example: Finite Automaton recognizing the string then

Inductive Proofs

Prove a statement S(X) about a family of objects X (e.g. integers, trees) in two parts:

- 1. **Basis**: Prove for one or several small values of X directly.
- 2. **Inductive Step**: Assume S(Y) for Y "smaller than" X ; prove $S(X)$ using that assumption.

Examples of Inductive Proof

- A complete binary tree with *n* leaves has 2*n*-1 nodes. **Formally** - S(T): if T is a complete binary tree with *n* leaves, then T has 2*n*-1 nodes.
	- Induction is on the size = number of nodes of T.

Basis: If T has 1 leaf, it is a one-node tree. $1 = 2 \times 1 - 1$. (Okay)

Examples of Inductive Proof Cont.

- **Induction**: Assume S(U) for trees with fewer nodes than T. In particular, assume for the subtrees of T.
	- T must be a root plus two subtrees U and V.
	- -If U and V have u and v leaves respectively and T has *t* leaves, then *u* $+ v = t$.
	- -By the inductive hypothesis, U and V have 2*u*-1 and 2*v*-1 nodes respectively.
		- Then T has $1+(2u-1)+(2v-1)$ nodes.

 $= 2(u+v) -1$ $=2t-1$, proving the inductive step.

If-And-Only-If Proof \blacksquare X if and only if Y: 1. Prove the **if-part**: Assume Y and prove X. 2. Prove the only-if part: Assume X and prove Y.

NOTE:

- The if and only-if parts are converses of each other.
- \blacksquare One part, say "If X then Y" says nothing about whether Y is true when X is false.
- An equivalent form to "if X then Y " is "if not Y then not X"; the latter is the CONTRAPOSITIVE of the former.

Proof by Contradiction Problem **• Prove by contradiction that** $\sqrt{2}$ **is an** irrational number.

Theorem 1.4 : $\sqrt{2}$ is irrational.

- **Proof :** Let us assume, to the contrary, that $\sqrt{2}$ is rational.
- So, we can find integers r and $s \neq 0$) such that $\sqrt{2} = \frac{r}{s}$.
- Suppose r and s have a common factor other than 1. Then, we divide by the common
- factor to get $\sqrt{2} = \frac{a}{b}$, where *a* and *b* are coprime. So, $b\sqrt{2} = a$.
- Squaring on both sides and rearranging, we get $2b^2 = a^2$. Therefore, 2 divides a^2 . Now, by Theorem 1.3, it follows that 2 divides a.
- So, we can write $a = 2c$ for some integer c.

Central Concepts

Alphabet: Finite, nonempty set of symbols

Example: $\Sigma = \{0, 1\}$ binary alphabet

Example: $\Sigma = \{a, b, c, \dots, z\}$ the set of all lower case letters

Example: The set of all ASCII characters

Strings: Finite sequence of symbols from an alphabet Σ , e.g. 0011001

Empty String: The string with zero occurrences of symbols from Σ

• The empty string is denoted ϵ

Central Concepts
Length of String: Number of positions for symbols in the string.

|w| denotes the length of string w

 $|0110| = 4, |\epsilon| = 0$

Powers of an Alphabet: Σ^k = the set of strings of length k with symbols from Σ

Example: $\Sigma = \{0, 1\}$

 $\Sigma^1 = \{0, 1\}$

 $\Sigma^2 = \{00, 01, 10, 11\}$

 $\Sigma^0 = \{\epsilon\}$

Question: How many strings are there in Σ^3

Central Concepts

The set of all strings over Σ is denoted Σ^*

 $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$

Also:

 $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$

 $\Sigma^* = \Sigma^+ \cup \{\epsilon\}$

Concatenation: If x and y are strings, then xy is the string obtained by placing a copy of y immediately after a copy of x

 $x = a_1 a_2 \dots a_i, y = b_1 b_2 \dots b_i$

 $xy = a_1a_2 \ldots a_ib_1b_2 \ldots b_j$

Example: $x = 01101, y = 110, xy = 01101110$

Note: For any string x

 $r \epsilon = \epsilon r = r$

Central Concepts

Type Convention for Symbols and Strings

Commonly, we shall use lower-case letters at the beginning of the alphabet (or digits) to denote symbols, and lower-case letters near the end of the alphabet, typically w, x, y , and z, to denote strings. You should try to get used to this convention, to help remind you of the types of the elements being discussed.

Central Concepts : Language

Languages:

If Σ is an alphabet, and $L \subset \Sigma^*$ then L is a language

Examples of languages:

- The set of legal English words
- The set of legal C programs
- The set of strings consisting of n 0's followed by $n\;1\mathrm{'s}$

$\{\epsilon, 01, 0011, 000111, \ldots\}$

Central Concepts
• The set of strings with equal number of 0's

and $1's$

 $\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$

• L_P = the set of binary numbers whose value is prime

```
\{10, 11, 101, 111, 1011, \ldots\}
```
- The empty language \emptyset
- The language $\{\epsilon\}$ consisting of the empty string

Note: $\emptyset \neq {\epsilon}$

Note2: The underlying alphabet Σ is always finite

Problem: Is a given string w a member of a language L ?

Let L_p be a language consisting of all binary strings whose value as a binary number is a prime.

Problems:

Does the string 11101 belong to L_{p} ? Does the string 10100 belong to L_{p} ?

Thank You