Summer 2022

Theory of Computing (CSE 221)

Lecture - 3: Conversion of DFA and NFA Page: 75

Course Teacher:

Md. Sadiqur Rahman

Lecturer

Department of Computer Science and Engineering

Daffodil International University

Equivalence of DFA and NFA

Every DFA is an NFA, but not every NFA is not an NFA. But there is an equivalent DFA for every NFA.

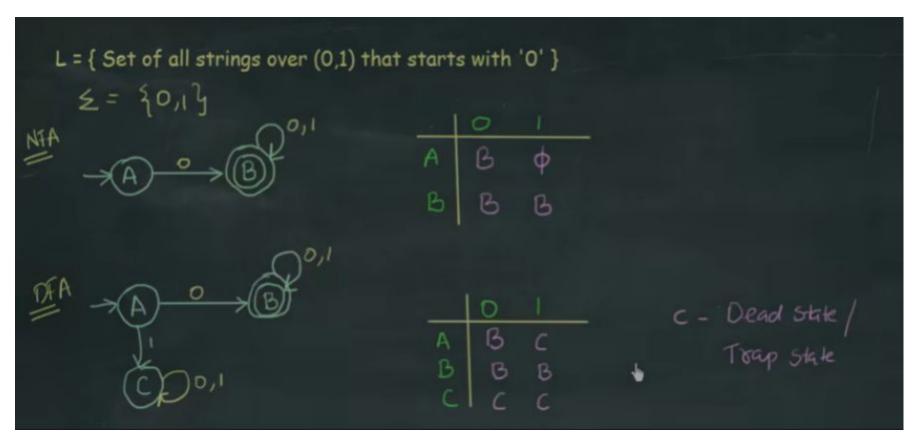
Equivalence of DFA and NFA

- NFA's are usually easier to "program" in.
- Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- ullet This involves the *subset construction*, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$


such that

$$L(D) = L(N)$$

It's a Subset Construction Method

for DFA, TF = Q X
$$\Sigma \rightarrow Q$$

for NFA, TF = Q X $\Sigma \rightarrow 2^Q$

Step 1.Create an **NFA** for the Given Rule Step 2.State Transition Table (STT) Creation the **NFA** of step 1. Step 3.Creating DFA STT from the NFA STT



Figure 2.9: An NFA accepting all strings that end in 01

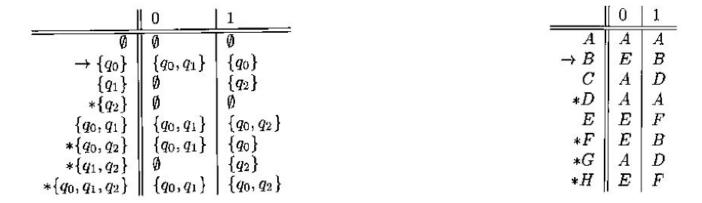


Figure 2.12: The complete subset construction from Fig. 2.9

Figure 2.13: Renaming the states of Fig. 2.12

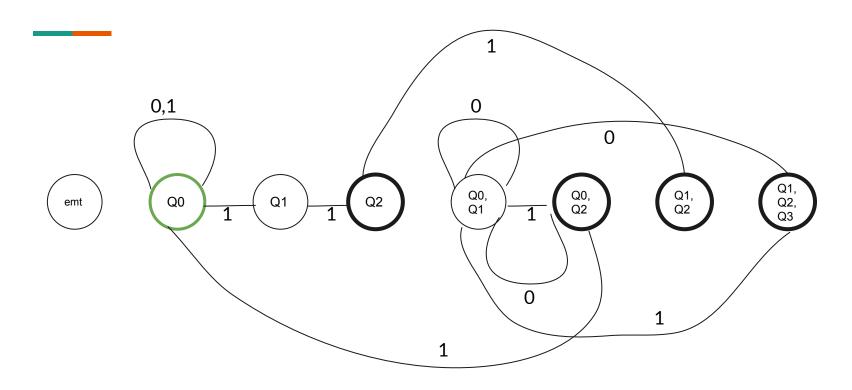
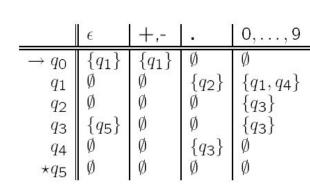


Figure 2.14: DFA of the Fig. 2.9

ε-NFA Example

An ϵ -NFA accepting decimal numbers consisting of:

- 1. An optional + or sign
- A string of digits
- 3. a decimal point
- 4. another string of digits


One of the strings (2) are (4) are entions

One of the strings (2) are (4) are optional Start
$$q_0$$
 ϵ ,+,- q_1 q_2 q_3 ϵ q_5 q_5 q_4 q_5

is a function from $Q \times \Sigma \cup \{\epsilon\}$ to the powerset of Q. Example: The ϵ -NFA from the previous slide

 $E = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, 1, \dots, 9\} \delta, q_0, \{q_5\})$

An ϵ -NFA is a quintuple $(Q, \Sigma, \delta, q_0, F)$ where δ

Thank You