
Theory of Computing (CSE 221)

LECTURE 05 - Context Free Grammar

Book
Chapter 03 : Syntax Analysis

1

Lexical Analysis vs. Syntax Analysis
2

Lexical Analysis Syntax Analysis

Splits the input into tokens Recombine those tokens

To find the structure of the input text, the syntax analysis
must also reject invalid texts by reporting syntax errors.

Here we use:
context-free grammars.

3

Like regular expressions, context-free grammars
describe sets of strings, i.e., languages.

Additionally, a context-free grammar also defines
structure on the strings in the language it defines.

CFG: Context Free Grammar

4

◻ A context-free grammar has four components: G = (V, Σ, P, S)

1. A set of nonterminals (V). Non-terminals are syntactic
variables that denote sets of strings. The non-terminals define sets
of strings that help define the language generated by the
grammar.
Ex. A → aA, A is the Nonterminal.

2. A set of tokens, known as terminals (Σ). Terminals are the basic
symbols from which strings are formed. Such as Alphabets.
Ex. A → aA, a is the Terminal.

CFG: Context Free Grammar

5

◻ A context-free grammar has four components: G = (V, Σ, P, S)

3. A set of productions (P). The productions of a grammar specify
the manner in which the terminals and nonterminals can be
combined to form strings.

Ex. N → X1 ...Xn is called the production.

4. One of the non-terminals is designated as the start symbol (S);
from where the production begins.

CFG: Context Free Grammar

Derivation
6

◻ A derivation is basically a sequence of production
rules, in order to get the input string.

◻ During parsing, we take two decisions for some
sentential form of input:
� Deciding the non-terminal which is to be replaced.
� Deciding the production rule, by which, the non-terminal

will be replaced.

◻ To decide which non-terminal to be replaced with
production rule, we can have two options.

Derivation
7

Ex. Consider the Grammar:
G1 = ({S,A}, {a,b},S,{S→aAb, aA→aaAb, A→Empty})
Generate language from this grammar.

S→aAb ~by S→aAb
S→aaAbb ~by aA→aaAb
S→aaaAbbb ~by aA→aaAb
S→aaabbb ~ by A→Empty

Practice: G2 = ({S,A,B},{a,b},S,{S→AB, A→a, B→b})

Derivation Tree
8

A Derivation Tree represents the information of strings
from a CFG.

Ex. Derivation Tree for G = {V,T,P,S} where S→OB,
A→1AA|Empty, B→OAA is shown below.

Root Vertex: Start (S)

Vertex: Nonterminal

Leaves: Terminal or Empty

Derivation Tree Types
9

◻ Left-most Derivation Tree
◻ If the sentential form of an input is scanned and

replaced from left to right, it is called left-most
derivation. The sentential form derived by the left-most
derivation is called the left-sentential form.

◻ Right-most Derivation Tree
◻ If we scan and replace the input with production rules,

from right to left, it is known as right-most derivation.
The sentential form derived from the right-most
derivation is called the right-sentential form.

Left Derivation Tree
10

★ Choose the Leftmost node to expand.
Generate string aabaa from the given grammar.
Grammar S→aAS | aSS | Empty, A→SbA | ba

Right Derivation Tree
11

★ Choose the Rightmost node to expand.
Generate string aabaa from the given grammar.
Grammar S→aAS | aSS | Empty, A→SbA | ba

Derivation Tree Example 02
12

◻ Production rules: Input string: id+id*id

E → E+E

E → E*E

E → id

The left-most derivation is:
E → E * E
E → E + E * E
E → id + E * E
E → id + id * E
E → id + id * id

The right-most derivation is:
E → E + E
E → E + E * E
E → E + E * id
E → E + id * id
E → id + id * id

Parse Tree/Derivation Tree Generation
13

◻ A parse tree is a graphical depiction of a
derivation.

◻ It is convenient to see how strings are derived from
the start symbol.

◻ The start symbol of the derivation becomes the root
of the parse tree.

Constructing the Derivation/Parse Tree
14

◻ Step 1:

E → E * E

◻ Step 2:

E → E + E * E

15

◻ Step 3:

E → id + E * E

◻ Step 4:

◻ E → id + id * E

Constructing the Parse Tree(cntd.)

16

◻ Step 5:

E → id + id * id

◻ In a parse tree:

-All leaf nodes are terminals.

-All interior nodes are non-terminals.

-In-order traversal gives original

input string

Constructing the Parse Tree(cntd.)

 Exercise
17

◻ Consider the following grammar

 S-> ABA|aaBA

 A->aBa|bA

 B->bBB|ba

Show how the string abaabbabaabaa can be
generated by the grammar (assuming A->ABA is
starting production rule) by left hand derivation and
right hand derivation.

 Exercise
18

◻ How can you derive 9-2+4 by using by using
following production rules show the steps.
list🡪 list + digit
list🡪 list - digit
list🡪 digit
digit🡪 1|2|3|4|5|6|7|8|9|0

Ambiguity
19

◻ A grammar G is said to be ambiguous if it has more
than one parse tree (two or more left/two or more
right derivation) for at least one string.

◻ Example
◻ The context free grammar
◻ A → A+A | A−A | a
◻ is ambiguous since there are two leftmost

derivations
◻ For the string a+a–a, the above grammar

generates two parse trees:

Ambiguous Parse Trees
20

Grammar: A → A + A | A − A | id Input String: a + a – a

21

Thank You

