
Theory of Automata & Computation

Left Recursion | Left Recursion Elimination

Recursion-
 

Recursion can be classified into following three types-

 

 

1. Left Recursion

2. Right Recursion

3. General Recursion

 

1. Left Recursion-
 

A production of grammar is said to have left recursion if the leftmost variable of its RHS is same as variable of its LHS.

A grammar containing a production having left recursion is called as Left Recursive Grammar.

 

Example-
 

S → Sa / ∈

(Left Recursive Grammar)

 

Left recursion is considered to be a problematic situation for Top down parsers.

Therefore, left recursion has to be eliminated from the grammar.

 

Elimination of Left Recursion

https://www.gatevidyalay.com/category/subjects/theory-of-automata-computation/
https://www.facebook.com/gatevidyalay
https://www.instagram.com/gate_vidyalay/
https://www.gatevidyalay.com/job-opportunities/
https://amzn.to/2XVBN0m
https://www.amazon.in/Introduction-Automata-Theory-Languages-Computation/dp/8131720470/ref=sr_1_fkmrnull_1?keywords=Introduction+to+Automata+Theory%2C+Languages%2C+and+Computation%2C+3e+Paperback+%E2%80%93+2008&qid=1556542223&s=gateway&sr=8-1-fkmrnull
https://www.amazon.in/Introduction-Theory-Computation-Michael-Sipser/dp/8131525295/ref=sr_1_1?keywords=Introduction+to+the+Theory+of+Computation&qid=1556542276&s=gateway&sr=8-1


 

Left recursion is eliminated by converting the grammar into a right recursive grammar.

 

If we have the left-recursive pair of productions-

A → Aα / β

(Left Recursive Grammar)

where β does not begin with an A.

 

Then, we can eliminate left recursion by replacing the pair of productions with-

A → βA’

A’ → αA’ / ∈

(Right Recursive Grammar)

 

This right recursive grammar functions same as left recursive grammar.

 

2. Right Recursion-
 

A production of grammar is said to have right recursion if the rightmost variable of its RHS is same as variable of its LHS.

A grammar containing a production having right recursion is called as Right Recursive Grammar.

 

Example-
 

S → aS / ∈

(Right Recursive Grammar)

 

Right recursion does not create any problem for the Top down parsers.

Therefore, there is no need of eliminating right recursion from the grammar.

 

Also Read- Types of Recursive Grammar

 

3. General Recursion-
 

The recursion which is neither left recursion nor right recursion is called as general recursion.

 

Example-
 

S → aSb / ∈

 

https://www.gatevidyalay.com/recursive-grammar-left-recursive-grammar/


PRACTICE PROBLEMS BASED ON LEFT RECURSION ELIMINATION-
 

Problem-01:
 

Consider the following grammar and eliminate left recursion-

A → ABd / Aa / a

B → Be / b

 

Solution-
 

The grammar after eliminating left recursion is-

A → aA’

A’ → BdA’ / aA’ / ∈

B → bB’

B’ → eB’ / ∈

 

Problem-02:
 

Consider the following grammar and eliminate left recursion-

E → E + E / E x E / a

 

Solution-
 

The grammar after eliminating left recursion is-

E → aA

A → +EA / xEA / ∈

 

Problem-03:
 

Consider the following grammar and eliminate left recursion-



E → E + T / T

T → T x F / F

F → id

 

Solution-
 

The grammar after eliminating left recursion is-

E → TE’

E’ → +TE’ / ∈

T → FT’

T’ → xFT’ / ∈

F → id

 

Problem-04:
 

Consider the following grammar and eliminate left recursion-

S → (L) / a

L → L , S / S

Solution-
 

The grammar after eliminating left recursion is-

S → (L) / a

L → SL’

L’ → ,SL’ / ∈

 

Problem-05:
 

Consider the following grammar and eliminate left recursion-

S → S0S1S / 01

 

Solution-
 

The grammar after eliminating left recursion is-

S → 01A

A → 0S1SA / ∈

 

Problem-06:
 



Consider the following grammar and eliminate left recursion-

S → A

A → Ad / Ae / aB / ac

B → bBc / f

 

Solution-
 

The grammar after eliminating left recursion is-

S → A

A → aBA’ / acA’

A’ → dA’ / eA’ / ∈

B → bBc / f

 

Problem-07:
 

Consider the following grammar and eliminate left recursion-

A → AAα / β

Solution-
 

The grammar after eliminating left recursion is-

A → βA’

A’ → AαA’ / ∈

 

Problem-08:
 

Consider the following grammar and eliminate left recursion-

A → Ba / Aa / c

B → Bb / Ab / d

 

Solution-
 

This is a case of indirect left recursion.

 

Step-01:
 

First let us eliminate left recursion from A → Ba / Aa / c

 



Eliminating left recursion from here, we get-

A → BaA’ / cA’

A’ → aA’ / ∈

 

Now, given grammar becomes-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / Ab / d

 

Step-02:
 

Substituting the productions of A in B → Ab, we get the following grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / BaA’b / cA’b / d

 

Step-03:
 

Now, eliminating left recursion from the productions of B, we get the following grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → cA’bB’ / dB’

B’ → bB’ / aA’bB’ / ∈

 

This is the final grammar after eliminating left recursion.

 

Problem-09:
 

Consider the following grammar and eliminate left recursion-

X → XSb / Sa / b

S → Sb / Xa / a

Solution-
 

This is a case of indirect left recursion.

 

Step-01:
 

First let us eliminate left recursion from X → XSb / Sa / b



 

Eliminating left recursion from here, we get-

X → SaX’ / bX’

X’ → SbX’ / ∈

 

Now, given grammar becomes-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → Sb / Xa / a

 

Step-02:
 

Substituting the productions of X in S → Xa, we get the following grammar-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → Sb / SaX’a / bX’a / a

 

Step-03:
 

Now, eliminating left recursion from the productions of S, we get the following grammar-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → bX’aS’ / aS’

S’ → bS’ / aX’aS’ / ∈

 

This is the final grammar after eliminating left recursion.

 

Problem-10:
 

Consider the following grammar and eliminate left recursion-

S → Aa / b

A → Ac / Sd / ∈

Solution-
 

This is a case of indirect left recursion.

 

Step-01:
 



First let us eliminate left recursion from S → Aa / b

This is already free from left recursion.

 

Step-02:
 

Substituting the productions of S in A → Sd, we get the following grammar-

S → Aa / b

A → Ac / Aad / bd / ∈

 

Step-03:
 

Now, eliminating left recursion from the productions of A, we get the following grammar-

S → Aa / b

A → bdA’ / A’

A’ → cA’ / adA’ / ∈

 

This is the final grammar after eliminating left recursion.

 

Also Read- Left Factoring

 

To gain better understanding about Left Recursion Elimination,

Watch this Video Lecture

 

Next Article- Types of Grammars

 

Get more notes and other study material of Theory of Automata and Computation.

Watch video lectures by visiting our YouTube channel LearnVidFun.

Summary

https://www.gatevidyalay.com/left-factoring-examples-compiler-design/
https://www.youtube.com/watch?v=ptJ2PB_zTS8
https://www.gatevidyalay.com/what-is-grammar-types-of-grammar-automata/
https://www.gatevidyalay.com/theory-of-automata-computation/
https://www.youtube.com/learnvidfun

	Left Recursion | Left Recursion Elimination
	Recursion-
	1. Left Recursion-
	Example-

	Elimination of Left Recursion
	2. Right Recursion-
	Example-

	3. General Recursion-
	Example-

	PRACTICE PROBLEMS BASED ON LEFT RECURSION ELIMINATION-
	Problem-01:
	Solution-
	Problem-02:
	Solution-
	Problem-03:
	Solution-
	Problem-04:
	Solution-
	Problem-05:
	Solution-
	Problem-06:
	Solution-
	Problem-07:
	Solution-
	Problem-08:
	Solution-
	Step-01:
	Step-02:
	Step-03:

	Problem-09:
	Solution-
	Step-01:
	Step-02:
	Step-03:

	Problem-10:
	Solution-
	Step-01:
	Step-02:
	Step-03:

	Follow us on Facebook
	Follow us on Instagram
	Automata Notes
	Deterministic Finite Automata-
	Non-Deterministic Finite Automata-
	Grammar Formalism-
	Ambiguous Grammar-
	Language of Grammar-
	Context Free Grammar-
	Normal Forms-
	Decision Algorithms of CFG-

	Choose your Subject
	Job Opportunities
	Share with your Friends
	Recommended Books
	Subscribe to get Email Notifications
	GATE 2020




