

1. Left Recursion-

- A production of grammar is said to have left recursion if the leftmost variable of its RHS is same as variable of its LHS.
- A grammar containing a production having left recursion is called as Left Recursive Grammar.

Example-

$\mathsf{S}\, \rightarrow\, \mathsf{Sa}\,/\, \in\,$

(Left Recursive Grammar)

- Left recursion is considered to be a problematic situation for Top down parsers.
- Therefore, left recursion has to be eliminated from the grammar.

Elimination of Left Recursion

Left recursion is eliminated by converting the grammar into a right recursive grammar.

If we have the left-recursive pair of productions-

$A \rightarrow A\alpha \, / \, \beta$

(Left Recursive Grammar)

where β does not begin with an A.

Then, we can eliminate left recursion by replacing the pair of productions with-

 $A \rightarrow \beta A'$

A' $\rightarrow \alpha A' / \in$

(Right Recursive Grammar)

This right recursive grammar functions same as left recursive grammar.

2. Right Recursion-

- A production of grammar is said to have right recursion if the rightmost variable of its RHS is same as variable of its LHS.
- A grammar containing a production having right recursion is called as Right Recursive Grammar.

Example-

$S \rightarrow aS / \in$

(Right Recursive Grammar)

- Right recursion does not create any problem for the Top down parsers.
- Therefore, there is no need of eliminating right recursion from the grammar.

Also Read-Types of Recursive Grammar

3. General Recursion-

• The recursion which is neither left recursion nor right recursion is called as general recursion.

Example-

PRACTICE PROBLEMS BASED ON LEFT RECURSION ELIMINATION-

Problem-01:

Consider the following grammar and eliminate left recursion-

 $A \rightarrow ABd / Aa / a$

 $B \rightarrow Be / b$

Solution-

The grammar after eliminating left recursion is-

A → aA'

 $\mathsf{A'} \to \mathsf{BdA'} \, / \, \mathsf{aA'} \, / \, \mathsf{E}$

- $\mathsf{B} \to \mathsf{b}\mathsf{B'}$
- $\mathsf{B'} \to \mathsf{eB'} \, / \, {\in} \,$

Problem-02:

Consider the following grammar and eliminate left recursion-

 $E \rightarrow E + E / E \times E / a$

Solution-

The grammar after eliminating left recursion is-

 $\mathsf{E} \ \rightarrow \ \mathsf{a}\mathsf{A}$

A \rightarrow +EA / xEA / E

Problem-03:

Consider the following grammar and eliminate left recursion-

 $E \rightarrow E + T/T$ $T \rightarrow T \times F/F$ $F \rightarrow id$

Solution-

The grammar after eliminating left recursion is-

E → TE'

 $\mathsf{E'} \to \mathsf{+TE'}/\mathsf{\in}$

 $\mathsf{T} \ \rightarrow \ \mathsf{F}\mathsf{T}'$

 $\mathsf{T'}\, \rightarrow\,\mathsf{xFT'}\,/\,{\in}$

 $\mathsf{F} \ \rightarrow \ id$

Problem-04:

Consider the following grammar and eliminate left recursion-

 $S \rightarrow (L) / a$ $L \rightarrow L, S / S$

Solution-

The grammar after eliminating left recursion is-

S → (L) / a

L → SL'

 $\mathsf{L'} \to \mathsf{,SL'} \, / \, \in \,$

Problem-05:

Consider the following grammar and eliminate left recursion-

S \rightarrow S0S1S / 01

Solution-

The grammar after eliminating left recursion is-

 $S \ \rightarrow \ 01A$

 $\mathsf{A} \to \mathsf{OS1SA} \,/\, \mathsf{E}$

Problem-06:

Consider the following grammar and eliminate left recursion-

 $S \ \rightarrow \ A$

 $A \rightarrow Ad / Ae / aB / ac$ $B \rightarrow bBc / f$

Solution-

The grammar after eliminating left recursion is-

 $S \ \rightarrow \ A$

A \rightarrow aBA' / acA'

 $\mathsf{A'} \ \rightarrow \ \mathsf{dA'} \ / \ \mathsf{eA'} \ / \ \in$

 $\mathsf{B} \ \rightarrow \ \mathsf{bBc} \ \textit{/} \ \mathsf{f}$

Problem-07:

Consider the following grammar and eliminate left recursion-

A \rightarrow AA α / β

Solution-

The grammar after eliminating left recursion is-

 $A \rightarrow \beta A'$

 $\mathsf{A'} \to \mathsf{A} \alpha \mathsf{A'} \, / \, \in \,$

Problem-08:

Consider the following grammar and eliminate left recursion-

 $A \rightarrow Ba / Aa / c$ $B \rightarrow Bb / Ab / d$

Solution-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from A $\,\rightarrow\,$ Ba / Aa / c

Eliminating left recursion from here, we get-

 $A \rightarrow BaA' / cA'$

 $A' \rightarrow aA' \, / \, \in \,$

Now, given grammar becomes-

 $A \rightarrow BaA' / cA'$

 $\mathsf{A'} \to \mathsf{aA'} \, / \, \in \,$

 $\mathsf{B}\,\rightarrow\,\mathsf{B}\mathsf{b}\,/\,\mathsf{A}\mathsf{b}\,/\,\mathsf{d}$

<u>Step-02:</u>

Substituting the productions of A in B \rightarrow Ab, we get the following grammar-

 $A \rightarrow BaA' / cA'$

 $\mathsf{A'} \to \mathsf{aA'} \, / \, \in \,$

B \rightarrow Bb / BaA'b / cA'b / d

<u>Step-03:</u>

Now, eliminating left recursion from the productions of B, we get the following grammar-

 $A \rightarrow BaA' / cA'$

 $A' \rightarrow aA' \, / \, \in \,$

- $B \rightarrow cA'bB' / dB'$
- B' \rightarrow bB' / aA'bB' / \in

This is the final grammar after eliminating left recursion.

Problem-09:

Consider the following grammar and eliminate left recursion-

 $X \rightarrow XSb / Sa / b$ $S \rightarrow Sb / Xa / a$

Solution-

This is a case of indirect left recursion.

Step-01:

Eliminating left recursion from here, we get-

 $X \rightarrow SaX' / bX'$

 $X' \ \rightarrow \ SbX' \ / \in$

Now, given grammar becomes-

- $X \rightarrow SaX' / bX'$
- $X' \to SbX' \, / \, \in \,$
- S → Sb/Xa/a

Step-02:

Substituting the productions of X in S $\, \rightarrow \,$ Xa, we get the following grammar-

- $X \rightarrow SaX' / bX'$
- $X' \to SbX' \, / \, \in \,$
- $S \rightarrow Sb / SaX'a / bX'a / a$

Step-03:

Now, eliminating left recursion from the productions of S, we get the following grammar-

- $X \rightarrow SaX' / bX'$
- $X' \to SbX' \, / \, \in \,$
- $S \rightarrow bX'aS' / aS'$
- S' \rightarrow bS' / aX'aS' / \in

This is the final grammar after eliminating left recursion.

Problem-10:

Consider the following grammar and eliminate left recursion-

 $S \rightarrow Aa / b$

A
$$\rightarrow$$
 Ac / Sd / E

Solution-

This is a case of indirect left recursion.

<u>Step-01:</u>

First let us eliminate left recursion from S $\, \rightarrow \,$ Aa / b

This is already free from left recursion.

Step-02:

Substituting the productions of S in A $\,\rightarrow\,$ Sd, we get the following grammar-

 $S \rightarrow Aa / b$

A \rightarrow Ac / Aad / bd / \in

<u>Step-03:</u>

Now, eliminating left recursion from the productions of A, we get the following grammar-

 $S \rightarrow Aa / b$

 $A \ \rightarrow \ bdA' \ / \ A'$

 $\mathsf{A'} \to \mathsf{cA'} \, / \, \mathsf{adA'} \, / \, \boldsymbol{\in}$

This is the final grammar after eliminating left recursion.

Also Read- Left Factoring

To gain better understanding about Left Recursion Elimination,

Watch this Video Lecture

Next Article- Types of Grammars

Get more notes and other study material of Theory of Automata and Computation.

Watch video lectures by visiting our YouTube channel LearnVidFun.

Summary	
	Types of Recursion
	Left Recursion Right Recursion General Recursion