

Left Factoring | Left Factoring Examples

Grammar With Common Prefixes-

If RHS of more than one production starts with the same symbol,

then such a grammar is called as

Grammar With Common Prefixes.

Example-

$A \ \rightarrow \ \alpha\beta_1 \ / \ \alpha\beta_2 \ / \ \alpha\beta_3$

(Grammar with common prefixes)

- This kind of grammar creates a problematic situation for Top down parsers.
- Top down parsers can not decide which production must be chosen to parse the string in hand.

To remove this confusion, we use left factoring.

Left Factoring-

Left factoring is a process by which the grammar with common prefixes is transformed to make it useful for Top down parsers.

How?

In left factoring,

- We make one production for each common prefixes.
- The common prefix may be a terminal or a non-terminal or a combination of both.
- Rest of the derivation is added by new productions.

The grammar obtained after the process of left factoring is called as Left Factored Grammar.

Example-

Solution-

<u>Step-01:</u>

$\label{eq:A} \begin{array}{l} A \ \rightarrow \ aA' \\ A' \ \rightarrow \ AB \ / \ Bc \ / \ Ac \end{array}$

Again, this is a grammar with common prefixes.

Step-02:

 $A \rightarrow aA'$ $A' \rightarrow AD / Bc$ $D \rightarrow B / c$

This is a left factored grammar.

Problem-03:

Do left factoring in the following grammar-

 $S \rightarrow bSSaaS / bSSaSb / bSb / a$

Solution-

Step-01:

 $S \rightarrow bSS' / a$

S' \rightarrow SaaS / SaSb / b

Again, this is a grammar with common prefixes.

Step-02:

S	→ bSS' / a
S'	→ SaA / b
A	→ aS / Sb

This is a left factored grammar.

Problem-04:

Do left factoring in the following grammar-	
	$S \rightarrow aSSbS / aSaSb / abb / b$
Solution-	
<u>Step-01:</u>	
	$S \rightarrow aS' / b$
	$S' \rightarrow SSbS / SaSb / bb$
Again, this is a grammar with common prefixes.	
<u>Step-02:</u>	
	$S \rightarrow aS' / b$
	$S' \rightarrow SA / bb$
	$A \rightarrow SbS / aSb$
This is a left factored grammar.	
Problem-05:	
Do left factoring in the following grammar-	
	$S \rightarrow a / ab / abc / abcd$
Colution	
Solution-	
0	
<u>Step-01:</u>	
	$S \rightarrow dS$
	$S' \rightarrow D/DC/DCd/ \in$
Again, this is a grammar with common prefixes.	
<u>Step-02:</u>	
	$S \rightarrow aS'$
	$S' \rightarrow bA / \in$
	A \rightarrow c / cd / \in

<u>Step-03:</u>

$S \rightarrow aS'$		
$S' \rightarrow bA / \in$		
$A \to cB / \in $		
B → d/∈		

This is a left factored grammar.

Problem-06:

Do left factoring in the following grammar-

S → a	aAd / aB
A →	a / ab
B → c	

Solution-

The left factored grammar is-

$$S \rightarrow aS'$$

 $S' \rightarrow Ad / B$
 $A \rightarrow aA'$
 $A' \rightarrow b / \in$
 $B \rightarrow ccd / ddc$

To gain better understanding about Left Factoring,

Watch this Video Lecture

Next Article- Relationship With Left Recursion

Get more notes and other study material of Compiler Design.

Watch video lectures by visiting our YouTube channel LearnVidFun.

Summary