
Bottom Up (Shift Reduce) 
Parsing





Bottom Up Parsing

• LR Parsing
– Also called “Shift-Reduce Parsing”

• Find a rightmost derivation
• Finds it in reverse order

• LR Grammars
– Can be parsed with an LR Parser

• LR Languages
– Can be described with LR Grammar
– Can be parsed with an LR Parser



LR Parsing Techniques

• LR Parsing
– Most General Approach

• SLR
– Simpler algorithm, but not as general

• LALR
– More complex, but saves space



LL vs. LR

• LR (shift reduce) is more powerful than LL 
(predictive parsing)

• Can detect a syntactic error as soon as 
possible.

• LR is difficult to do by hand (unlike LL) and 

• LL accepts a much smaller set of grammars.



Rightmost Derivation



Rightmost Derivation In reverse



Rightmost Derivation In reverse

LR parsing corresponds to rightmost derivation in reverse







Shift Reduce Parsing Example

S  a T R e

T  T b c | b

R  d

Remaining input: abbcde

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e 

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     

Shift a

Remaining input: bbcde

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e 

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Remaining input: bcde 

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e 

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b



T

Remaining input: bcde 

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b






T

b

Remaining input: cde

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c






T

b     c

Remaining input: de 

Rightmost derivation:

S  a T R e 

 a T d e 

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c

Reduce T  T b c









T

b     c

T

Remaining input: de 

Rightmost derivation:

S  a T R e 

 a T d e

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c

Reduce T  T b c

Shift d











T

b     c

T

d

Remaining input: e

Rightmost derivation:

S  a T R e 

 a T d e

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c

Reduce T  T b c

Shift d

Reduce R  d













T

b     c

T

d

R

Remaining input: e

Rightmost derivation:

S  a T R e

 a T d e

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c

Reduce T  T b c

Shift d

Reduce R  d

Shift e















T

b     c

T

d

R

e

Remaining input: 

Rightmost derivation:

S  a T R e

 a T d e

 a T b c d e

 a b b c d e



Shift Reduce Parsing

S  a T R e

T  T b c | b

R  d

a     b

Shift a, Shift b

Reduce T  b

Shift b, Shift c

Reduce T  T b c

Shift d

Reduce R  d

Shift e

Reduce S  a T R e

















T

b     c

T

d

R

e

S

Remaining input: 

Rightmost derivation:

S a T R e 

 a T d e 

 a T b c d e 

 a b b c d e





Conflicts During Shift-Reduce Parsing

• There are context-free grammars for which shift-reduce parsers cannot be 
used.

• Stack contents and the next input symbol may not decide action:

– shift/reduce conflict: Whether make a shift operation 
or a reduction.

– reduce/reduce conflict: The parser cannot decide 
which of several reductions to make.

• If a shift-reduce parser cannot be used for a grammar, that grammar is called 
as non-LR(k) grammar.

left to right    right-most k lookhead
scanning derivation

• An ambiguous grammar can never be a LR grammar.



Shift-Reduce Conflict in Ambiguous 
Grammar

stmt if expr then stmt

|  if expr then stmt else stmt

|  other

STACK INPUT

….if expr then stmt else ….$

• We can’t decide whether to shift or reduce?



Reduce-Reduce Conflict in Ambiguous 
Grammar

1. stmt id(parameter_list)
2. stmt expr:=expr
3. parameter_list parameter_list, parameter
4. parameter_list parameter
5. parameter_list id
6. expr id(expr_list)
7. expr id
8. expr_list expr_list, expr
9. expr_list expr

STACK INPUT
….id ( id , id ) …$

• We can’t decide which production will be used 
to reduce id?







LR Parsing Algorithm

Sm

Xm

Sm-1

Xm-1

.

.

S1

X1

S0

a1 ... ai ... an $

Action Table

terminals and $
s
t         four different 
a         actions
t
e
s

Goto Table

non-terminal
s
t            each item is
a           a state number
t
e
s

LR Parsing Algorithm

stack

input

output



Bottom-Up Parsing: LR(0) Table 
Construction 

















LR(0) Automation

 Start with start rule & compute initial state with closure

 Pick one of the items from the states and move “.” to the right 

one symbol (as if you parsed the symbol)

 this creates a new item..

 … and a new state when you compute the closure of the 

new item

 mark the edge between the two states with:

 a terminal T, if you moved “.” over T

 a non-terminal X, if you moved “.” over x

 Continue until there are no further ways to move “.” across 

items and generate the new states or new edges in the 

automation.



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ xS

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ xS

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ xS

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ xS

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

S ::= x @

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S
S

(

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

S ::= x @

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S
S

(

S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

S ::= x @

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S
S

(

x

S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

S ::= ( L ) @ 

S

(

x

)
S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

S ::= ( L ) @ 

S

(

x

,

)
S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

S ::= ( L ) @ 

S

(

x

,

)
S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

S

(

x

S

,

)
S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

S

(

x
(

S

,

)
S

L

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

x



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

S

(

x
(

x

S

,

)
S

L

x

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7
6

5

8

9

S

(

x
(

x

S

,

)
S

L

Assigning numbers to states:

x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



• At every point in the parse, the LR parser table 

tells us what to do next according to the 

automaton state at the top of the stack

• shift

• reduce

• accept

• error

Computing Parse table



Computing Parse table

• State i contains X ::= s @ $ ==> table[i,$] = a

• State i contains rule k: X ::= s @ ==> table[i,T] = rk for all terminals T 

• Transition from i to j marked with T ==> table[i,T] = sj

• Transition from i to j marked with X ==> table[i,X] = gj for all nonterminals X

states Terminal seen next ID, NUM, := ... Non-terminals X,Y,Z ...

1

2 sn = shift & goto state n gn = goto state n

3 rk = reduce by rule k

... a = accept

n = error



The Parse Table
• Reducing by rule k is broken into two steps:

– current stack is:

A 8 B 3 C  ....... 7 RHS 12

– rewrite the stack according to X ::= RHS:

A 8 B 3 C  ....... 7 X

– figure out state on top of stack (ie: goto 13)

A 8 B 3 C  ....... 7 X 13

states Terminal seen next ID, NUM, := ... Non-terminals X,Y,Z ...

1 gn = goto state n

2 sn = shift & goto state n

3 rk = reduce by rule k

... a = accept

n = error



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

states ( ) x , $ S L

1

2

3

4

...

x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

states ( ) x , $ S L

1 s3

2

3

4

...

2
x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

states ( ) x , $ S L

1 s3 s2

2

3

4

...

2
x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

states ( ) x , $ S L

1 s3 s2 g4

2

3

4

...

2
x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3

4

...

2
x

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

2
x

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2

4

...

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

2
x

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

...

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



S’ ::= @ S $

S ::= @ ( L )

S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= ( @ L )

L ::= @ S

L ::= @ L , S

S ::= @ ( L )

S ::= @ x

L ::= L , @ S

S ::= @ ( L )

S ::= @ x

S ::= ( L @ )

L ::= L @ , S

L ::= L , S @

S ::= ( L ) @ 

2

4

3

7 6

5

8

9

S

(

x
(

x
S

,

)
S

L

2
x

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

...

(

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

1

(  x  ,  x  )  $ 

yet to read

input:

stack:

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 x 2 

0..  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 S 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 S 7 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 , 8 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 , 8 x 2 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 , 8 S 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 , 8 S 9 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S



states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s8

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

(  x  ,  x  )  $ 

yet to read

input:

stack: 1 ( 3 L 5 

0.  S’ ::= S $

• S ::= ( L )

• S ::= x

• L ::= S

• L ::= L , S

etc ......



LR(0)
• Even though we are doing LR(0) parsing we are using 

some look ahead (there is a column for each non-terminal)

• however, we only use the terminal to figure out which state 
to go to next, not to decide whether to shift or reduce

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5



LR(0)

• Even though we are doing LR(0) parsing we are using 
some look ahead (there is a column for each non-terminal)

• however, we only use the terminal to figure out which state 
to go to next, not to decide whether to shift or reduce

states ( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

states no look-ahead S L

1 shift g4

2 reduce 2

3 shift g7 g5

ignore next automaton state



LR(0)

• Even though we are doing LR(0) parsing we are using 
some look ahead (there is a column for each non-terminal)

• however, we only use the terminal to figure out which state 
to go to next, not to decide whether to shift or reduce

• If the same row contains both shift and reduce, we will have 
a conflict ==> the grammar is not LR(0)

• Likewise if the same row contains reduce by two different 
rules

states no look-ahead S L

1 shift, reduce 5 g4

2 reduce 2, reduce 7

3 shift g7 g5



SLR

• SLR (simple LR) is a variant of LR(0) that reduces the number 

of conflicts in LR(0) tables by using a tiny bit of look ahead

• To determine when to reduce, 1 symbol of look ahead is used.  

• Only put reduce by rule (X ::= RHS) in column T if T is in 

Follow(X)

states ( ) x , $ S L

1 s3 s2 g4

2 r2 s5 r2

3 r1 r1 r5 r5 g7 g5

cuts down the number of rk slots & therefore cuts down conflicts



LR(1) & LALR

• LR(1) automata are identical to LR(0) except for the “items” that 
make up the states

• LR(0) items:
X ::= s1 . s2

• LR(1) items
X ::= s1 . s2,  T

– Idea:  sequence s1 is on stack; input stream is s2 T

• Find closure with respect to X ::= s1 . Y s2,  T by adding all 
items Y ::= s3, U when Y ::= s3 is a rule and U is in First(s2 T)

• Two states are different if they contain the same rules but the 
rules have different look-ahead symbols
– Leads to many states

– LALR(1) = LR(1) where states that are identical aside from look-ahead 
symbols have been merged

– ML-Yacc & most parser generators use LALR

• READ:  Appel 3.3 (and also all of the rest of chapter 3)

look-ahead symbol added



Grammar Relationships
Unambiguous Grammars Ambiguous Grammars

LR(0)SLRLALRLR(1) LL(0)

LL(1)



Summary

• LR parsing is more powerful than LL parsing, given the 
same look ahead

• to construct an LR parser, it is necessary to compute an 
LR parser table

• the LR parser table represents a finite automaton that 
walks over the parser stack

• ML-Yacc uses LALR, a compact variant of LR(1)


