
Code Optimization Techniques

1

2

The Back End
• At this point we could generate machine code

– What’s left to do?

• Map from lower-level IR to machine code

• Register management

• Pass off to assembler

• Why have a separate assembler?
– Handles “packing the bits”

Assembly addi <target>, <source>, <value>

Machine 0010 00ss ssst tttt iiii iiii iiii iiii

3

But First…

• The compiler “understands” the program
– IR captures program semantics

– Lowering: semantics-preserving transformation

• Compiler optimizations
– Now my program will be optimal!

• Does it make best use of computing resources

– What is an “optimization”?

4

Optimizations

• What are they?
– Code transformations with preserved semantics

– Improve some metric

• Metrics
– Performance: time, instructions, cycles

– Space: Reduce memory usage

– Code Size

– Energy

5

Optimizations

• What are they?
Optimization is a program transformation technique, which

tries to improve the code by making it consume less resources
(i.e. CPU, Memory) and deliver high speed.

 In optimization, high-level general programming constructs
are replaced by very efficient low-level programming codes.

6

Optimizations

A code optimizing process must follow the three rules given
below:

The output code must not, in any way, change the meaning of
the program.

Optimization should increase the speed of the program and if
possible, the program should demand less number of
resources.

Optimization should itself be fast and should not delay the
overall compiling process.

7

Optimizations Cont’d
Efforts for an optimized code can be made at various levels of

compiling the process.

At the beginning, users can change/rearrange the code or use
better algorithms to write the code.

After generating intermediate code, the compiler can modify
the intermediate code by address calculations and improving
loops.

While producing the target machine code, the compiler can
make use of memory hierarchy and CPU registers.

8

Why Optimize?
• High-level constructs may make some

optimizations difficult or impossible:

• High-level code may be more desirable
– Program at high level
– Focus on design; clean, modular implementation
– Let compiler worry about gory details

• Premature optimization is the root of all evil!

A[i][j] = A[i][j-1] + 1

t = A + i*row + j

s = A + i*row + j – 1

(*t) = (*s) + 1

9

Limitations

• What are optimizers good at?
– Being consistent and thorough

– Find all opportunities for an optimization

– Uniformly apply the transformation

• What are they not good at?
– Asymptotic complexity (time analysis /Big O)

– Compilers can’t fix bad algorithms

– Compilers can’t fix bad data structures

• There’s no magic

10

Requirements

• Safety
– Preserve the semantics of the program

• Profitability
– Will it help our metric?

• Risk
– How will interact with other optimizations?

– How will it affect other stages of compilation?

11

Example: Loop Unrolling

• Safety:
– Always safe; getting loop conditions right can be

tricky.

• Profitability
– Depends on hardware – usually a win

• Risk
– Increases size of code in loop

– May not fit in the instruction cache

12

Optimizations

• Many, many optimizations invented
– Constant folding, constant propagation, tail-call

elimination, redundancy elimination, dead code
elimination, loop-invariant code motion, loop splitting,
loop fusion, strength reduction, array scalarization,
inlining, cloning, data prefetching, parallelization. . .etc . .

• How do they interact?
– Optimist: we get the sum of all improvements!

– Realist: many are in direct opposition

13

Categories

• Traditional optimizations
– Transform the program to reduce work
– Don’t change the level of abstraction

• Enabling transformations
– Don’t necessarily improve code on their own
– Inlining, loop unrolling

• Resource allocation
– Map program to specific hardware properties
– Register allocation
– Instruction scheduling, parallelism
– Data streaming, prefetching

14

Constant Propagation

• Idea
– If the value of a variable is known to be a constant at compile-

time, replace the use of variable with constant

• Safety
– Prove the value is constant

• Notice:
– May interact favorably with other optimizations, like loop

unrolling – now we know the trip count

n = 10;

c = 2;

for (i=0;i<n;i++)

s = s + i*c;

n = 10;

c = 2;

for (i=0;i<10;i++)

s = s + i*2;

15

Constant Folding
• Idea

– If operands are known at compile-time, evaluate
expression at compile-time

• Propagating x yields:

r = 3.141 * 10; r = 31.41;

16

Constant Folding Cont’d
 Continuing to propagate yields the following (which would

likely be further optimized by dead code elimination of both x
and y)

17

Algebraic Simplification

• Idea:
– Apply the usual algebraic rules to simplify expressions

• Repeatedly apply to complex expressions
• Many, many possible rules

– Associativity and commutativity come into play

a * 1

a/1

a * 0

a + 0

b || false

a

a

0

a

b

18

Dead Code Elimination

• Dead code is one or more than one code statements,
which are:

 Either never executed or unreachable,

 Or if executed, their output is never used.

• Thus, dead code plays no role in any program operation
and therefore it can simply be eliminated.

19

Dead Code Elimination

• Idea:
– If the result of a computation is never used, then we can

remove the computation

• Safety
– Variable is dead if it is never used after defined
– Remove code that assigns to dead variables

• This may, in turn, create more dead code
– Dead-code elimination usually works transitively

x = y + 1;

y = 1;

x = 2 * z;

y = 1;

x = 2 * z;

20

Common Sub-Expression Elimination

• Idea:
– If program computes the same expression multiple

times, reuse the value.

• Safety:
– Subexpression can only be reused until operands are

redefined

• Often occurs in address computations
– Array indexing and struct/field accesses

a = b + c;

c = b + c;

d = b + c;

t = b + c

a = t;

c = t;

d = b + c;

21

How Do These Things Happen?

• Who would write code with:
– Dead code

– Common subexpressions

– Constant expressions

– Copies of variables

• Two ways they occur
– High-level constructs – already saw examples

– Other optimizations

• Copy propagation often leaves dead code

• Enabling transformations: inlining, loop unrolling, etc.

22

Copy Propagation

• Idea:
– After an assignment x = y, replace any uses of x with y

• Safety:
– Only apply up to another assignment to x, or
– …another assignment to y!

• What if there were an assignment y = z earlier?
– Apply transitively to all assignments

x = y;

if (x>1)

s = x+f(x);

x = y;

if (y>1)

s = y+f(y);

23

Unreachable Code Elimination

• Idea:
– Eliminate code that can never be executed

• Different Implementations
– High-level: look for if (false) or while (false)
– Low-level: more difficult

• Code is just labels and gotos
• Traverse the graph, marking reachable blocks

#define DEBUG 0

. . .

if (DEBUG)

print(“Current value = “, v);

24

Loop Optimizations

• Program hot-spots are usually in loops
– Most programs: 90% of execution time is in loops

– What are possible exceptions?

OS kernels, compilers and interpreters

• Loops are a good place to expend extra effort
– Numerous loop optimizations

– Very effective

– Many are more expensive optimizations

25

Loop-Invariant Code Motion

• Idea:
– If a computation won’t change from one loop iteration to the

next, move it outside the loop

• Safety:
– Determine when expressions are invariant

• Useful for array address computations
– Not visible at source level

for (i=0;i<N;i++)

A[i] = A[i] + x*x;

t1 = x*x;

for (i=0;i<N;i++)

A[i] = A[i] + t1;

26

Strength Reduction

• Idea:
– Replace expensive operations (mult, div) with cheaper

ones (add, sub, bit shift)

• Traditionally applied to induction variables
– Variables whose value depends linearly on loop count

– Special analysis to find such variables

27

Strength Reduction

for (i=0;i<N;i++)

v = 4*i;

A[v] = . . .

v = 0;

for (i=0;i<N;i++)

A[v] = . . .

v = v + 4;

28

Strength Reduction

• Can also be applied to simple arithmetic
operations:

– This improves execution time

• Typical example of premature optimization
– Programmers use bit-shift instead of multiplication

– “x<<2” is harder to understand

– Most compilers will get it right automatically

x * 2

x^2

2.0*x

x + x

x * x

X + x

29

Inlining

• The overhead associated with calling and returning from a
function can be eliminated by:

Expanding the body of the function inline,

and then additional opportunities for optimization may be
exposed as well.

30

Inlining
• In the code fragment below, the function add() can be

expanded inline at the call site in the function sub().

31

Inlining
• Expanding add() at the call site in sub() yields:

• which can be further optimized to:

32

Control-Flow Simplification
• High-level optimization
• Idea:

– If we know the value of a branch condition, eliminate the unused
branch

• How would that happen?
– Combination of other opts:

• Constant propagation, constant folding

• What’s the benefit?
– Straight-line code
– Easier to reason about, easier to optimize
– Better for pipelined architectures

if (10 > 5) {

...

} else {

...

}

33

Anatomy of an Optimization

• Two big parts:

• Program analysis - Pass over code to find:
– Opportunities

– Satisfy safety constraints

• Program transformation
– Change the code to exploit opportunity

34

Big Picture

• When do we apply these optimizations?
– High-level:

• Inlining, cloning

• Some algebraic simplifications

– Low-level

• Everything else

• It’s a black art
– Ordering is often arbitrary

– Many compilers just repeat the optimization passes over
and over

35

Overview

Front end Lowering Back end

Optimize

High-level

optimizations –

take advantage of

AST

Optimize

Low-level

optimizations –

expose

implementation

36

Writing Fast Programs

• In practice:
• Pick the right algorithms and data structures

– Asymptotic complexity (Big O)
– Memory usage, indirection, representation

• Turn on optimization and profile
– Run-time
– Program counters (e.g., cache misses)

• Evaluate problems

• Tweak source code
– Make the optimizer do “the right thing”

37

Optimizations
• Inlining
• Constant folding
• Algebraic simplification
• Constant propagation
• Dead code elimination
• Loop-invariant code motion
• Common sub-expression elimination
• Strength reduction
• Branch prediction/optimization
• Register allocation
• Loop unrolling
• Cache optimization

High-level IR

Low-level IR

38

Scope of Optimization

• Local (or single block)
– Confined to straight-line code

– Simplest to analyze

• Intraprocedural (or global)
– Consider the whole procedure

• Interprocedural (or whole
program)
– Consider the whole program

39

Summary

• Myriad (many) optimizations to improve
programs – particularly runtime

• Optimizations interact in both positive and
negative ways

• Primary issue: safety

40

Where are We

• We have;
– recognize tokens

– Accept true statements

– Verify meaning to statements

– Put these statements in a neutral format

– Optimize time and memory for code

• We have not;
– Matched IR to specific assembly language

– Allocated IR to memory and register

Where are We

• As first course in compilers, in 45hrs, we have
achieved allot

• As a student of language theory and compiler
design, the appetite has just been created

• Go out there, settle to;

– Under stand more theory

– Realize the theories from easiest to the furthest
you can reach

Thank You

42

