
Code Optimization Techniques

1



2

The Back End
• At this point we could generate machine code

– What’s left to do?

• Map from lower-level IR to machine code

• Register management

• Pass off to assembler

• Why have a separate assembler?
– Handles “packing the bits”

Assembly addi <target>, <source>, <value>

Machine 0010 00ss ssst tttt iiii iiii iiii iiii



3

But First…

• The compiler “understands” the program
– IR captures program semantics

– Lowering: semantics-preserving transformation

• Compiler optimizations
– Now my program will be optimal!

• Does it make best use of computing resources

– What is an “optimization”?



4

Optimizations

• What are they?
– Code transformations with preserved semantics

– Improve some metric

• Metrics
– Performance: time, instructions, cycles

– Space: Reduce memory usage

– Code Size

– Energy



5

Optimizations

• What are they?
Optimization is a program transformation technique, which

tries to improve the code by making it consume less resources
(i.e. CPU, Memory) and deliver high speed.

 In optimization, high-level general programming constructs
are replaced by very efficient low-level programming codes.



6

Optimizations

A code optimizing process must follow the three rules given
below:

The output code must not, in any way, change the meaning of
the program.

Optimization should increase the speed of the program and if
possible, the program should demand less number of
resources.

Optimization should itself be fast and should not delay the
overall compiling process.



7

Optimizations Cont’d
Efforts for an optimized code can be made at various levels of

compiling the process.

At the beginning, users can change/rearrange the code or use
better algorithms to write the code.

After generating intermediate code, the compiler can modify
the intermediate code by address calculations and improving
loops.

While producing the target machine code, the compiler can
make use of memory hierarchy and CPU registers.



8

Why Optimize?
• High-level constructs may make some 

optimizations difficult or impossible:

• High-level code may be more desirable
– Program at high level
– Focus on design; clean, modular implementation
– Let compiler worry about gory details

• Premature optimization is the root of all evil!

A[i][j] = A[i][j-1] + 1

t = A + i*row + j

s = A + i*row + j – 1

(*t) = (*s) + 1



9

Limitations

• What are optimizers good at?
– Being consistent and thorough

– Find all opportunities for an optimization

– Uniformly apply the transformation

• What are they not good at?
– Asymptotic complexity (time analysis /Big O)

– Compilers can’t fix bad algorithms

– Compilers can’t fix bad data structures

• There’s no magic



10

Requirements

• Safety
– Preserve the semantics of the program

• Profitability
– Will it help our metric?

• Risk
– How will interact with other optimizations?

– How will it affect other stages of compilation?



11

Example: Loop Unrolling

• Safety:
– Always safe; getting loop conditions right can be 

tricky.

• Profitability
– Depends on hardware – usually a win

• Risk
– Increases size of code in loop

– May not fit in the instruction cache



12

Optimizations

• Many, many optimizations invented
– Constant folding, constant propagation, tail-call 

elimination, redundancy elimination, dead code 
elimination, loop-invariant code motion, loop splitting, 
loop fusion, strength reduction, array scalarization, 
inlining, cloning, data prefetching, parallelization. . .etc . .

• How do they interact?
– Optimist: we get the sum of all improvements!

– Realist: many are in direct opposition



13

Categories

• Traditional optimizations
– Transform the program to reduce work
– Don’t change the level of abstraction

• Enabling transformations
– Don’t necessarily improve code on their own
– Inlining, loop unrolling

• Resource allocation
– Map program to specific hardware properties
– Register allocation
– Instruction scheduling, parallelism
– Data streaming, prefetching



14

Constant Propagation

• Idea
– If the value of a variable is known to be a constant at compile-

time, replace the use of variable with constant

• Safety
– Prove the value is constant

• Notice:
– May interact favorably with other optimizations, like loop 

unrolling – now we know the trip count

n = 10;

c = 2;

for (i=0;i<n;i++)

s = s + i*c;

n = 10;

c = 2;

for (i=0;i<10;i++)

s = s + i*2;



15

Constant Folding
• Idea

– If operands are known at compile-time, evaluate 
expression at compile-time

• Propagating x yields: 

r = 3.141 * 10; r = 31.41;



16

Constant Folding Cont’d
 Continuing to propagate yields the following (which would

likely be further optimized by dead code elimination of both x
and y)



17

Algebraic Simplification

• Idea:
– Apply the usual algebraic rules to simplify expressions

• Repeatedly apply to complex expressions
• Many, many possible rules

– Associativity and commutativity come into play

a * 1

a/1

a * 0

a + 0

b || false

a

a

0

a

b



18

Dead Code Elimination

• Dead code is one or more than one code statements,
which are:

 Either never executed or unreachable,

 Or if executed, their output is never used.

• Thus, dead code plays no role in any program operation
and therefore it can simply be eliminated.



19

Dead Code Elimination

• Idea:
– If the result of a computation is never used, then we can 

remove the computation

• Safety
– Variable is dead if it is never used after defined
– Remove code that assigns to dead variables

• This may, in turn, create more dead code
– Dead-code elimination usually works transitively

x = y + 1;

y = 1;

x = 2 * z;

y = 1;

x = 2 * z;



20

Common Sub-Expression Elimination

• Idea:
– If program computes the same expression multiple 

times, reuse the value.

• Safety:
– Subexpression can only be reused until operands are 

redefined 

• Often occurs in address computations
– Array indexing and struct/field accesses

a = b + c;

c = b + c;

d = b + c;

t = b + c

a = t;

c = t;

d = b + c;



21

How Do These Things Happen?

• Who would write code with:
– Dead code

– Common subexpressions

– Constant expressions

– Copies of variables

• Two ways they occur
– High-level constructs – already saw examples

– Other optimizations

• Copy propagation often leaves dead code

• Enabling transformations: inlining, loop unrolling, etc.



22

Copy Propagation

• Idea:
– After an assignment x = y, replace any uses of x with y

• Safety:
– Only apply up to another assignment to x, or
– …another assignment to y!

• What if there were an assignment y = z earlier?
– Apply transitively to all assignments

x = y;

if (x>1)

s = x+f(x);

x = y;

if (y>1)

s = y+f(y);



23

Unreachable Code Elimination

• Idea:
– Eliminate code that can never be executed

• Different Implementations
– High-level: look for if (false) or while (false)
– Low-level: more difficult

• Code is just labels and gotos
• Traverse the graph, marking reachable blocks

#define DEBUG 0

. . .

if (DEBUG)

print(“Current value = “, v);



24

Loop Optimizations

• Program hot-spots are usually in loops
– Most programs: 90% of execution time is in loops

– What are possible exceptions?

OS kernels, compilers and interpreters

• Loops are a good place to expend extra effort
– Numerous loop optimizations

– Very effective

– Many are more expensive optimizations



25

Loop-Invariant Code Motion

• Idea:
– If a computation won’t change from one loop iteration to the 

next, move it outside the loop

• Safety:
– Determine when expressions are invariant

• Useful for array address computations
– Not visible at source level

for (i=0;i<N;i++)

A[i] = A[i] + x*x;

t1 = x*x;

for (i=0;i<N;i++)

A[i] = A[i] + t1;



26

Strength Reduction

• Idea:
– Replace expensive operations (mult, div) with cheaper 

ones (add, sub, bit shift)

• Traditionally applied to induction variables
– Variables whose value depends linearly on loop count

– Special analysis to find such variables



27

Strength Reduction

for (i=0;i<N;i++)

v = 4*i;

A[v] = . . .

v = 0;

for (i=0;i<N;i++)

A[v] = . . .

v = v + 4;



28

Strength Reduction

• Can also be applied to simple arithmetic 
operations:

– This improves execution time

• Typical example of premature optimization
– Programmers use bit-shift instead of multiplication

– “x<<2” is harder to understand

– Most compilers will get it right automatically

x * 2

x^2

2.0*x

x + x

x * x

X + x



29

Inlining

• The overhead associated with calling and returning from a
function can be eliminated by:

Expanding the body of the function inline,

and then additional opportunities for optimization may be
exposed as well.



30

Inlining
• In the code fragment below, the function add() can be

expanded inline at the call site in the function sub().



31

Inlining
• Expanding add() at the call site in sub() yields:

• which can be further optimized to:



32

Control-Flow Simplification
• High-level optimization
• Idea:

– If we know the value of a branch condition, eliminate the unused 
branch

• How would that happen?
– Combination of other opts:

• Constant propagation, constant folding

• What’s the benefit?
– Straight-line code
– Easier to reason about, easier to optimize
– Better for pipelined architectures

if (10 > 5) {

...

} else {

...

}



33

Anatomy of an Optimization

• Two big parts:

• Program analysis - Pass over code to find:
– Opportunities

– Satisfy safety constraints

• Program transformation
– Change the code to exploit opportunity



34

Big Picture

• When do we apply these optimizations?
– High-level:

• Inlining, cloning

• Some algebraic simplifications

– Low-level

• Everything else

• It’s a black art
– Ordering is often arbitrary

– Many compilers just repeat the optimization passes over 
and over



35

Overview

Front end Lowering Back end

Optimize

High-level 

optimizations –

take advantage of 

AST

Optimize

Low-level 

optimizations –

expose 

implementation



36

Writing Fast Programs

• In practice:
• Pick the right algorithms and data structures

– Asymptotic complexity (Big O)
– Memory usage, indirection, representation

• Turn on optimization and profile
– Run-time
– Program counters (e.g., cache misses)

• Evaluate problems

• Tweak source code
– Make the optimizer do “the right thing”



37

Optimizations
• Inlining
• Constant folding
• Algebraic simplification
• Constant propagation
• Dead code elimination
• Loop-invariant code motion
• Common sub-expression elimination
• Strength reduction
• Branch prediction/optimization
• Register allocation
• Loop unrolling
• Cache optimization

High-level IR

Low-level IR



38

Scope of Optimization

• Local (or single block)
– Confined to straight-line code

– Simplest to analyze

• Intraprocedural (or global)
– Consider the whole procedure

• Interprocedural (or whole 
program)
– Consider the whole program



39

Summary

• Myriad (many) optimizations to improve 
programs – particularly runtime

• Optimizations interact in both positive and 
negative ways

• Primary issue: safety



40

Where are We

• We have; 
– recognize tokens

– Accept true statements

– Verify meaning to statements

– Put these statements in a neutral format

– Optimize time and memory for code

• We have not;
– Matched IR to specific assembly language

– Allocated IR to memory and register



Where are We

• As first course in compilers, in 45hrs, we have 
achieved allot

• As a student of language theory and compiler 
design, the appetite has just been created

• Go out there, settle to;

– Under stand more theory

– Realize the theories from easiest to the furthest 
you can reach



Thank You

42


