

Transmission Fundamentals

W. Stallings, Chapter 2
Part 2

Data Communication Terms

- **Data** entities that convey meaning, or information
- Signals electric or electromagnetic representations of data
- **Transmission** communication of data by the propagation and processing of signals

Examples of Analog and Digital Data

- Analog
 - Video
 - Audio
- Digital
 - Text
 - Integers

Analog Signals

- A continuously varying electromagnetic wave that may be propagated over a variety of media, depending on frequency
- Examples of media:
 - Copper wire media (twisted pair and coaxial cable)
 - Fiber optic cable
 - Atmosphere or space propagation
- Analog signals can propagate analog and digital data

Digital Signals

- A sequence of voltage pulses that may be transmitted over a copper wire medium
- Advantages of digital signals
 - Generally cheaper than analog signaling
 - Less susceptible to noise interference
 - Suffer more from attenuation
- Digital signals can propagate analog and digital data

Reasons for Choosing Data and Signal Combinations

- Analog data, analog signal
 - Analog data easily converted to analog signal
- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - Examples include optical fiber and satellite
- Digital data, digital signal
 - Equipment for encoding is less expensive than digital-toanalog equipment
- Analog data, digital signal
 - Conversion permits use of modern digital transmission and switching equipment

Channel Capacity

-How fast data can be transmitted

- Impairments, such as noise, limit data rate that can be achieved
- Channel Capacity C the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

Concepts Related to Channel Capacity

- **Data rate** rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path (different definitions exists)
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1
- We want to achieve as high data rate as possible for a given error rate, bandwidth and noise level

Nyquist Bandwidth (noise free channel)

- Given a bandwidth of signal (two levels) with frequency at B (Hz), the highest rate of transmission is 2B (bps).
 - C = 2B
- For signals with M levels (each signal element can present more than 1 bit)
 - $C = 2B \log_2 M$
 - M = number of discrete signal or voltage levels
- Data rate in noise free channel is limited by the bandwidth of the signals.

Example of Nyquist

• How many signaling levels are required?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

Signal-to-Noise Ratio

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission (often measured at a receiver)
- Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

SNR sets upper bound on achievable data rate

Shannon Capacity Formula

Equation:

$$C = B \log_2(1 + \text{SNR})$$

- Represents theoretical maximum rate that can be achieved
- In practice, only much lower rates achieved
 - Formula assumes white noise (thermal noise)
 - Impulse noise, attenuation distortion or delay distortion not accounted for
- Note that C increases, when signal power S increases for a given noise power level

Example

 Spectrum of a channel between 3 MHz and 4 MHz; SNR_{dB} = 24 dB

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

$$SNR_{dB} = 24 \text{ dB} = 10 \log_{10}(SNR)$$

$$SNR = 251$$

Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Classifications of Transmission Media

- Transmission Medium
 - Physical path between transmitter and receiver
- Guided Media
 - · Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber
- Unguided Media
 - · Provides means of transmission but does not guide electromagnetic signals
 - · Usually referred to as wireless transmission
 - . E.g., atmosphere, outer space
 - Transmission and reception are achieved by means of an antenna
 - Directional
 - Omnidirectional

Electromagnetic specturm

VLF = Very low frequency

LF = Low frequency

Multiplexing

- Multiplexing carrying multiple signals on a single medium
 - More efficient use of transmission medium

WAVELENGTH DIVISION MULTIPLEXING

Frequency-division Multiplexing

- Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
- Example: AM broadcastFM broadcast

Time-division Multiplexing (TDM)

- Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal.
- Example: GSM 1990
 TDMA/FDD
 Spectrum 935-960MHz
 Channel BW 200kHz
 8 voice users per carrier
 Ch. Speed 270.833Kbps
- Example: AT&T standard in P. 37

Appendix 2A dBW and dBm

- dBW refers to an absolute level of power in decibels.
 - It is easy to calculate gains and losses.
 - 1 W is selected as a reference and defined to be 0 dBW.

 Power_{dBW} = $10\text{Log}_{10} \frac{P_W}{1W}$
- dBm (decibel-milliWatt) uses 1mW as the reference.

$$Power_{dBm} = 10Log_{10} \frac{P_{mW}}{1mW}$$

Thank You