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Figure 14.8 Data Flow, Interrupt Cycle

transferred to the MBR to be written into memory. The special memory location
reserved for this purpose is loaded into the MAR from the control unit. It might,
for example, be a stack pointer. The PC is loaded with the address of the interrupt
routine. As a result, the next instruction cycle will begin by fetching the appropriate
instruction.

14.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the processor can improve performance. We have already
seen some examples of this, such as the use of multiple registers rather than a single
accumulator, and the use of a cache memory. Another organizational approach,
which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing
plant. An assembly line takes advantage of the fact that a product goes through
various stages of production. By laying the production process out in an assembly
line, products at various stages can be worked on simultaneously. This process is
also referred to as pipelining, because, as in a pipeline, new inputs are accepted at
one end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact,
an instruction has a number of stages. Figures 14.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some
opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two
stages: fetch instruction and execute instruction. There are times during the execu-
tion of an instruction when main memory is not being accessed. This time could
be used to fetch the next instruction in parallel with the execution of the current
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Figure 14.9 Two-Stage Instruction Pipeline

one. Figure 14.9a depicts this approach. The pipeline has two independent stages.
The first stage fetches an instruction and buffers it. When the second stage is free,
the first stage passes it the buffered instruction. While the second stage is executing
the instruction, the first stage takes advantage of any unused memory cycles to fetch
and buffer the next instruction. This is called instruction prefetch or fetch overlap.
Note that this approach, which involves instruction buffering, requires more regis-
ters. In general, pipelining requires registers to store data between stages.

It should be clear that this process will speed up instruction execution. If
the fetch and execute stages were of equal duration, the instruction cycle time would
be halved. However, if we look more closely at this pipeline (Figure 14.9b), we will
see that this doubling of execution rate is unlikely for two reasons:

1. The execution time will generally be longer than the fetch time. Execution will
involve reading and storing operands and the performance of some operation.
Thus, the fetch stage may have to wait for some time before it can empty its
buffer.

2. A conditional branch instruction makes the address of the next instruction to
be fetched unknown. Thus, the fetch stage must wait until it receives the next
instruction address from the execute stage. The execute stage may then have
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the
following: When a conditional branch instruction is passed on from the fetch to
the execute stage, the fetch stage fetches the next instruction in memory after the
branch instruction. Then, if the branch is not taken, no time is lost. If the branch is
taken, the fetched instruction must be discarded and a new instruction fetched.
While these factors reduce the potential effectiveness of the two-stage pipe-
line, some speedup occurs. To gain further speedup, the pipeline must have more
stages. Let us consider the following decomposition of the instruction processing.
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¢ Fetch instruction (FI): Read the next expected instruction into a buffer.
e Decode instruction (DI): Determine the opcode and the operand specifiers.

e Calculate operands (CO): Calculate the effective address of each source oper-
and. This may involve displacement, register indirect, indirect, or other forms
of address calculation.

e Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.

¢ Execute instruction (EI): Perform the indicated operation and store the result,
if any, in the specified destination operand location.

* Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 14.10 shows that a six-stage pipeline can reduce the execution time for
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction
goes through all six stages of the pipeline. This will not always be the case. For
example, a load instruction does not need the WO stage. However, to simplify the
pipeline hardware, the timing is set up assuming that each instruction requires all
six stages. Also, the diagram assumes that all of the stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For example,
the FI, FO, and WO stages involve a memory access. The diagram implies that all
these accesses can occur simultaneously. Most memory systems will not permit that.
However, the desired value may be in cache, or the FO or WO stage may be null.
Thus, much of the time, memory conflicts will not slow down the pipeline.

Time

1 2 3 4 5 6 7 8 9 |10 | 11 | 12 [ 13 | 14
Instruction1 | Fr | DI | CO | FO | EI | WO
Instruction 2 FI | DI | CO | FO | EI (WO
Instruction 3 FI | DI | CO| FO | EI | WO
Instruction 4 FI | DI | CO | FO | EI | WO
Instruction 5 FI | DI | CO | FO [ EI (WO
Instruction 6 FI | DI [ CO| FO | EI | WO
Instruction 7 FI | DI | CO | FO | EI | WO
Instruction 8 FI | DI | CO | FO | EI (WO
Instruction 9 FI | DI | CO | FO | EI (WO

Figure 14.10 Timing Diagram for Instruction Pipeline Operation
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Time Branch penalty
1 2 3 4 5 6 7 8 9 (10|11 | 12 | 13 | 14

Instruction1 | FI | DI [ CO | FO | EI | WO

Instruction 2 FI | DI [ CO| FO | EI (WO

Instruction 3 FI | DI | CO | FO | EI [ WO

Instruction 4 FI | DI | CO | FO

Instruction 5 FI | DI | CO

Instruction 6 FI | DI

Instruction 7 FI
Instruction 15 FI | DI [ CO| FO | EI (WO
Instruction 16 FI | DI | CO | FO | EI [ WO

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

Several other factors serve to limit the performance enhancement. If the six
stages are not of equal duration, there will be some waiting involved at various pipe-
line stages, as discussed before for the two-stage pipeline. Another difficulty is the
conditional branch instruction, which can invalidate several instruction fetches. A
similar unpredictable event is an interrupt. Figure 14.11 illustrates the effects of the
conditional branch, using the same program as Figure 14.10. Assume that instruc-
tion 3 is a conditional branch to instruction 15. Until the instruction is executed,
there is no way of knowing which instruction will come next. The pipeline, in this
example, simply loads the next instruction in sequence (instruction 4) and proceeds.
In Figure 14.10, the branch is not taken, and we get the full performance benefit of
the enhancement. In Figure 14.11, the branch is taken. This is not determined until
the end of time unit 7. At this point, the pipeline must be cleared of instructions that
are not useful. During time unit 8, instruction 15 enters the pipeline. No instructions
complete during time units 9 through 12; this is the performance penalty incurred
because we could not anticipate the branch. Figure 14.12 indicates the logic needed
for pipelining to account for branches and interrupts.

Other problems arise that did not appear in our simple two-stage organiza-
tion. The CO stage may depend on the contents of a register that could be altered
by a previous instruction that is still in the pipeline. Other such register and mem-
ory conflicts could occur. The system must contain logic to account for this type of
conflict.

To clarify pipeline operation, it might be useful to look at an alternative depic-
tion. Figures 14.10 and 14.11 show the progression of time horizontally across the
figures, with each row showing the progress of an individual instruction. Figure 14.13
shows same sequence of events, with time progressing vertically down the figure,
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Figure 14.12 Six-Stage CPU Instruction Pipeline

and each row showing the state of the pipeline at a given point in time. In Figure
14.13a (which corresponds to Figure 14.10), the pipeline is full at time 6, with 6 dif-
ferent instructions in various stages of execution, and remains full through time 9;
we assume that instruction 19 is the last instruction to be executed. In Figure 14.13b,
(which corresponds to Figure 14.11), the pipeline is full at times 6 and 7. At time 7,
instruction 3 is in the execute stage and executes a branch to instruction 15. At this
point, instructions 14 through 17 are flushed from the pipeline, so that at time 8, only
two instructions are in the pipeline, I3 and I15.

From the preceding discussion, it might appear that the greater the number of
stages in the pipeline, the faster the execution rate. Some of the IBM S/360 designers
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FI [ DI {[CO|FO| EI |[WO F1 | DI |CO|FO | EI (WO
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(a) No branches (b) With conditional branch

Figure 14.13 An Alternative Pipeline Depiction

pointed out two factors that frustrate this seemingly simple pattern for high-perform-
ance design [ANDEG67a], and they remain elements that designer must still consider:

1. At each stage of the pipeline, there is some overhead involved in moving data
from buffer to buffer and in performing various preparation and delivery
functions. This overhead can appreciably lengthen the total execution time of
a single instruction. This is significant when sequential instructions are logi-
cally dependent, either through heavy use of branching or through memory
access dependencies.

2. The amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the
number of stages. This can lead to a situation where the logic controlling the
gating between stages is more complex than the stages being controlled.

Another consideration is latching delay: It takes time for pipeline buffers to
operate and this adds to instruction cycle time.

Instruction pipelining is a powerful technique for enhancing performance but
requires careful design to achieve optimum results with reasonable complexity.

Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and
relative speedup (based on a discussion in [HWAN93]). The cycle time 7 of an
instruction pipeline is the time needed to advance a set of instructions one stage
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through the pipeline; each column in Figures 14.10 and 14.11 represents one cycle
time. The cycle time can be determined as

T=max[r] +d=1,+td 1=i<k

where
7; = time delay of the circuitry in the ith stage of the pipeline

T,, = maximum stage delay (delay through stage which experiences the largest
delay)

k = number of stages in the instruction pipeline
d = time delay of a latch, needed to advance signals and data from one stage
to the next

In general, the time delay d is equivalent to a clock pulse and 7,, => d. Now
suppose that n instructions are processed, with no branches. Let T, be the total
time required for a pipeline with k stages to execute » instructions. Then

Lin=1k+@®n-1Dr 14.1)

A total of k cycles are required to complete the execution of the first instruc-
tion, and the remaining n — 1 instructions require n — 1 cycles.? This equation is
easily verified from Figures 14.10. The ninth instruction completes at time cycle 14:

14=1[6+©-1)]

Now consider a processor with equivalent functions but no pipeline, and
assume that the instruction cycle time is k7. The speedup factor for the instruction
pipeline compared to execution without the pipeline is defined as

_ T , _ nkt _ nk
C Tin [kt (—-Dr k+@m-—1)

Sk = 14.2)

Figure 14.14a plots the speedup factor as a function of the number of instruc-
tions that are executed without a branch. As might be expected, at the limit (n — ©),
we have a k-fold speedup. Figure 14.14b shows the speedup factor as a function of
the number of stages in the instruction pipeline.® In this case, the speedup factor
approaches the number of instructions that can be fed into the pipeline without
branches. Thus, the larger the number of pipeline stages, the greater the potential
for speedup. However, as a practical matter, the potential gains of additional pipe-
line stages are countered by increases in cost, delays between stages, and the fact
that branches will be encountered requiring the flushing of the pipeline.

Pipeline Hazards

In the previous subsection, we mentioned some of the situations that can result in
less than optimal pipeline performance. In this subsection, we examine this issue in

2We are being a bit sloppy here. The cycle time will only equal the maximum value of 7 when all the stages
are full. At the beginning, the cycle time may be less for the first one or few cycles.

3Note that the x-axis is logarithmic in Figure 14.14a and linear in Figure 14.14b.
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Figure 14.14 Speedup Factors with Instruction Pipelining

a more systematic way. Chapter 16 revisits this issue, in more detail, after we have
introduced the complexities found in superscalar pipeline organizations.

A pipeline hazard occurs when the pipeline, or some portion of the pipeline,
must stall because conditions do not permit continued execution. Such a pipe-
line stall is also referred to as a pipeline bubble. There are three types of hazards:
resource, data, and control.

RESOURCE HAZARDS A resource hazard occurs when two (or more) instructions
that are already in the pipeline need the same resource. The result is that the
instructions must be executed in serial rather than parallel for a portion of the
pipeline. A resource hazard is sometime referred to as a structural hazard.

Let us consider a simple example of a resource hazard. Assume a simplified
five-stage pipeline, in which each stage takes one clock cycle. Figure 14.15a shows
the ideal case, in which a new instruction enters the pipeline each clock cycle. Now
assume that main memory has a single port and that all instruction fetches and data
reads and writes must be performed one at a time. Further, ignore the cache. In this


Sazzad
Highlight


14.4 / INSTRUCTION PIPELINING 503

Clock cycle
1 2 3 4 5 6 7 8 9
11| FI | DI | FO | EI | WO
=
g I FI | DI [ FO | EI [ WO
g
zZ B FI [ DI | FO | EI | WO
14 FI | DI | FO | EI | WO
(a) Five-stage pipeline, ideal case
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(b) I1 source operand in memory

Figure 14.15 Example of Resource Hazard

case, an operand read to or write from memory cannot be performed in parallel
with an instruction fetch. This is illustrated in Figure 14.15b, which assumes that the
source operand for instruction I1 is in memory, rather than a register. Therefore,
the fetch instruction stage of the pipeline must idle for one cycle before beginning
the instruction fetch for instruction I3. The figure assumes that all other operands
are in registers.

Another example of a resource conflict is a situation in which multiple instruc-
tions are ready to enter the execute instruction phase and there is a single ALU.
One solutions to such resource hazards is to increase available resources, such as
having multiple ports into main memory and multiple ALU units.

Hg o
garactive o !
%

&
S

Reservation Table Analyzer

One approach to analyzing resource conflicts and aiding in the design of
pipelines is the reservation table. We examine reservation tables in Appendix L.

DATA HAZARDS A data hazard occurs when there is a conflict in the access of
an operand location. In general terms, we can state the hazard in this form: Two
instructions in a program are to be executed in sequence and both access a particular
memory or register operand. If the two instructions are executed in strict sequence,
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no problem occurs. However, if the instructions are executed in a pipeline, then
it is possible for the operand value to be updated in such a way as to produce a
different result than would occur with strict sequential execution. In other words,
the program produces an incorrect result because of the use of pipelining.

As an example, consider the following x86 machine instruction sequence:

ADD EAX, EBX /* EAX = EAX + EBX
SUB ECX, EAX /* ECX = ECX — EAX

The first instruction adds the contents of the 32-bit registers EAX and EBX
and stores the result in EAX. The second instruction subtracts the contents of EAX
from ECX and stores the result in ECX. Figure 14.16 shows the pipeline behavior.
The ADD instruction does not update register EAX until the end of stage S, which
occurs at clock cycle 5. But the SUB instruction needs that value at the beginning of
its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline
must stall for two clocks cycles. Thus, in the absence of special hardware and spe-
cific avoidance algorithms, such a data hazard results in inefficient pipeline usage.

There are three types of data hazards;

* Read after write (RAW), or true dependency: An instruction modifies a reg-
ister or memory location and a succeeding instruction reads the data in that
memory or register location. A hazard occurs if the read takes place before
the write operation is complete.

* Write after read (WAR), or antidependency: An instruction reads a register or
memory location and a succeeding instruction writes to the location. A hazard
occurs if the write operation completes before the read operation takes place.

* Write after write (WAW), or output dependency: Two instructions both write
to the same location. A hazard occurs if the write operations take place in the
reverse order of the intended sequence.

The example of Figure 14.16 is a RAW hazard. The other two hazards are best
discussed in the context of superscalar organization, discussed in Chapter 16.

CONTROL HAZARDS A control hazard, also known as a branch hazard, occurs
when the pipeline makes the wrong decision on a branch prediction and therefore
brings instructions into the pipeline that must subsequently be discarded. We discuss
approaches to dealing with control hazards next.

Clock cycle
1 2 3 4 5 6 7 8 9 10

ADD EAX,EBX | FI | DI | FO | EI | WO

SUB ECX, EAX FI | DI Idle FO | EI | WO
I3 FI DI | FO | EI | WO
14 FI | DI | FO | EI | WO

Figure 14.16 Example of Data Hazard
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Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring
a steady flow of instructions to the initial stages of the pipeline. The primary
impediment, as we have seen, is the conditional branch instruction. Until the
instruction is actually executed, it is impossible to determine whether the branch
will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

°

Multiple streams

°

Prefetch branch target

°

Loop buffer

°

Branch prediction
Delayed branch

°

MULTIPLE STREAMS A simple pipeline suffers a penalty for a branch instruction
because it must choose one of two instructions to fetch next and may make the wrong
choice. A brute-force approach is to replicate the initial portions of the pipeline and
allow the pipeline to fetch both instructions, making use of two streams. There are
two problems with this approach:

e With multiple pipelines there are contention delays for access to the registers
and to memory.

e Additional branch instructions may enter the pipeline (either stream) before
the original branch decision is resolved. Each such instruction needs an addi-
tional stream.

Despite these drawbacks, this strategy can improve performance. Examples of
machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

PREFETCH BRANCH TARGET When a conditional branch is recognized, the target
of the branch is prefetched, in addition to the instruction following the branch. This
target is then saved until the branch instruction is executed. If the branch is taken,
the target has already been prefetched.

The IBM 360/91 uses this approach.

LOOP BUFFER A loop buffer is a small, very-high-speed memory maintained by the
instruction fetch stage of the pipeline and containing the n most recently fetched
instructions, in sequence. If a branch is to be taken, the hardware first checks
whether the branch target is within the buffer. If so, the next instruction is fetched
from the buffer. The loop buffer has three benefits:

1. With the use of prefetching, the loop buffer will contain some instruction
sequentially ahead of the current instruction fetch address. Thus, instructions
fetched in sequence will be available without the usual memory access time.

2. If a branch occurs to a target just a few locations ahead of the address of
the branch instruction, the target will already be in the buffer. This is use-
ful for the rather common occurrence of IFF-THEN and IF-THEN-ELSE
sequences.
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