|_ecture-3
Chapter - 4

Computer Organization and Architecture Designing -
William Stallings

Cache Memory

sazzad@diucse



Memory Hierarchy

 Registers
— In CPU
* Internal or Main memory

— May include one or more levels of cache
. 6‘RAM9,

 External memory
— Backing store

Fig: Memory Hierarchy Diagram




Performance

The two most important characteristics of memory are capacity and
performance. Three performance parameters are used:

— Access time (latency)
» Time between presenting the address and getting the valid data

— Memory Cycle time

» Time may be required for the memory to “recover” before next access
 Cycle time is access + recovery

— Transfer Rate
« Rate at which data can be moved or transfered

sazzad@diucse



Hierarchy List

* Registers
» L1 Cache

« L2 Cache
Main memory

- Disk cache
« Disk
 Optical
 Tape

sazzad@diucse



Cache and Main Memory

« Small amount of fast memory
« Sits between normal main memory and CPU
« May be located on CPU chip or module

sazzad@diucse

CPU

Block Transfer

Word Transfer M’“
Cache
Fast Slow

Main Memory

(a) Single cache

CPU

> Level 1 | Level 2
(L1) cache (L2) cache
Fastest Fast

Level 3
(L3) cache

Less
fast

(b) Three-level cache organization

Slow

| Main

Memory




Cache/Main Memory Structure

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
. 3 (K words)
L
[ [ —
c-1
Block Length
(K Words) -
(a) Cache .

Following figures depicts the structure of a cache/main-memory system. Main
memory consists of up to 2" addressable words, with each word having a unique |--------1
n-bit address. For mapping purposes, this memory is considered to consist of a

number of fixed-length blocks of K words each. That is, there are M = 2"/K blocks Block
In main memory. The cache consists of m blocks, called lines.3 Each line contains .
K WOI'dS, <« Word

Length

(b) Main memory

sazzad@diucse



Cache operation — overview

CPU requests contents of memory location

Check cache for this data

If present, get from cache (fast)

If not present, read required block from main memory to cache

Then deliver from cache to CPU

Cache includes tags to identify which block of main memory is in each cache slot

sazzad@diucse



Cache Read Operation - Flowchart

Receive address
RA from CPU

Is block No Access main
containing RA > memory for block
in cache? containing RA

Allocate cache
line for main
memory block

Fetch RA word
and deliver
to CPU

J L
Load main

memory block
into cache line

Deliver RA word
to CPU

DONE /

sazzad@diucse




Cache Addressing

* Where does cache sit?
— Between processor and virtual memory management unit
— Between MMU and main memory

* Logical cache (virtual cache) stores data using virtual addresses
— Processor accesses cache directly, not thorough physical cache
— Cache access faster, before MMU address translation
— Virtual addresses use same address space for different applications
» Must flush cache on each context switch

 Physical cache stores data using main memory physical addresses

Physical address Logical address MMU Physical address

MMU

RO Main Processor ——

Cache memory Cache femory

Data Data

(a) Logical cache (b) Physical cache

sazzad@diucse



Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is needed for
mapping main memory blocks into cache lines. Further, a means Is needed for
determining which main memory block currently occupies a cache line. The choice of the
mapping function dictates how the cache is organized. Three techniques can be used:
direct, assoclative, and set assoclative. We examine each of these In turn. In each case, we
look at the general structure and then a specific example.

— The cache can hold 64 Kbyte (65536 bytes)

— Data can be transferred between main memory and the cache in block of 4 bytes each
« i.e. cache is 16k = 24 lines of 4 bytes each (16384 lines)

—Main memory consists of 16Mbytes, 24 bit address directly addressable 224=16M
--1.e. 4M blocks of 4 bytes each

sazzad@diucse



Direct Mapping

Each block of main memory maps to only one cache line
— 1.e. iIf a block is in cache, it must be in one specific place

Address is in two parts

Least Significant w bits identify unigue word

Most Significant s bits specify one memory block

The MSBs are split into a cache line field r and a tag of s-r (most significant)

sazzad@diucse



Direct Mapping Address Structure

24 bit address”

.

& Sy
tag line address word

ST ; o

8 14 3

M ) T
M K 2 bit word 1dentifier

S = it bloc
* 24 bit address i A hytstilod)

2 bit word identifier (4 byte block)

22 bit block identifier

— 8 bit tag (=22-14)

— 14 bit slot or line

No two blocks in the same line have the same Tag field

Check contents of cache by finding line and checking Tag

sazzad@diucse



Direct Mapping from Cache to Main Memory

[ ]
m lines

B

m—1 Lrn—1 Y
First m blocks of
main memory
(equal to size of cache) b =length of block in bits
t = length of tag in bits

cache memory

(a) Direct mapping

sazzad@diucse



Direct Mapping Summary

Address length = (s + w) bits (i.e. 22+2 = 24 bits)
Number of addressable units = 25*W words or bytes (i.e. 16Mbytes)
Block size = line size = 2% words or bytes (i.e. 22 = 4 bytes)
Number of blocks in main memory

= 25t W2W = 25 (i.e. 4194304)
Number of lines in cache = m = 2" (i.e. 16384 )
Size of tag = (s —r) bits

Video Link: https://youtu.be/eObN3u3eAnU

sazzad@diucse



Direct Mapping pros & cons

« Simple
* Inexpensive

 Fixed location for given block

— If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very
high

sazzad@diucse



Assoclative Mapping

A main memory block can load into any line of cache
Memory address is interpreted as tag and word

Tag uniquely identifies block of memory

» Every line’s tag 1s examined for a match

Cache searching gets expensive

Video Link: https://youtu.be/sLCJJdzOWAg



Associative Mapping Address Structure

Tag Word
22 bits 2 bits

22 bit tag stored with each 32 bit block of data
Compare tag field with tag entry in cache to check for hit
Least significant 2 bits of address identify which 16 bit word is required from 32 bit

data block

* e.g.
— Address Tag Data Cache line
— FFFFFC FFFFFC 24682468 3FFF

sazzad@diucse



Associative Mapping from Cache to Main Memory

<€
|

one block of
main memory

cache memory

sazzad@diucse



Associative Mapping Summary

Address length = (s + w) bits
Number of addressable units = 25*W words or bytes
Block size = line size = 2% words or bytes
Number of blocks in main memory
= 28T W[W = 28
Number of lines in cache = undetermined
Size of tag = s bits

sazzad@diucse



Set Associative Mapping

Cache is divided into a number of sets

Each set contains a number of lines

A given block maps to any line in a given set
—e.g. Block B can be in any line of set i

e.g. 2 lines per set
— 2 way associative mapping
— A given block can be in one of 2 lines in only one set

Video Link: https://youtu.be/pFndaJARM4Q



Set Associative Mapping Address Structure

. Word
Tag 9 bit Set 13 hit > bit

o Use set field to determine cache set to look In
« Compare tag field to see if we have a hit

c eJg
— Address Tag Data  Set number
— 1FF 7FFC 1FF 12345678 1FFF
— 001 7FFC 001 11223344 1FFF

sazzad@diucse



Mapping From Main Memory to Cache: v Associative

By — Lo A
* ]
: : . g
. e
L]
Ly ¥
cache memory - set 0
Ev—‘l
First v blocks of .
main memaory .
(equal to number of sets) .
-
[ ]

cache memory - set v—1

sazzad@diucse




Mapping From Main Memory to Cache: k-way Associative

_______________ _ . ane
---------------- .-IE. EEt
L]

L] L] L] L]
By NAAN L, ¥
First v blocks of \ cache memory - way 1 cache memory - way k
main memory
ts)

(equal to number of se

mhk
&
o

-
L ]
[ ]
[ ]
[ ]
L ]
& B @
v lines

74
YYYYY

sazzad@diucse



Set Assoclative Mapping Summary

 Address length = (s + w) bits

» Number of addressable units = 25*W words or bytes
» Block size = line size = 2% words or bytes

« Number of blocks in main memory = 2¢

« Number of lines in set = k

« Number of sets = v = 2d

« Number of lines in cache = kv = k * 2¢

 Size of tag = (s — d) bits

sazzad@diucse



That’s All
Thank You




