CIRCUIT THEORMS

Contents

- Linearity property
- Superposition.
- Source transformation

A **linear circuit** is one whose output is linearly related (or directly proportional) to its input.

- A linear circuit consists of only linear elements, linear dependent sources, and independent sources.
- In general, a circuit is linear if it is both additive and homogeneous

Two properties to be a linear Circuit

- 1. Homogenity property(Scaling)
- 2. Additive property

- 1. Homogenity property(Scaling)
 - *V* = *iR V* = *iR KV* = *KiR*

The homogeneity property requires that if the input (also called the excitation) is multiplied by a constant, then the output (also called the response) is multiplied by the same constant.

1. Additive property

- $V_1 = i_1 R$
- $V_2 = i_2 R$
- $V = (i_1 + i_2)R = V_1 + V_2$

Resistor is a linear element because the voltage-current relationship satisfies both the homogeneity and the additivity properties.

For the circuit in Fig. 4.2, find I_o when $v_s = 12$ V and $v_s = 24$ V.

Example 4.1

$$v_{\chi} = 2i_1 \bullet I_o = i_2$$

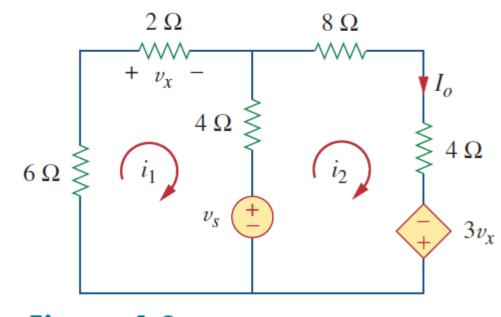


Figure 4.2 For Example 4.1. Let $v_s = 12V$

Mesh Equation – 1

- $12i_1 4i_2 + v_s = 0$ $12i_1 4i_2 + 12 = 0$
 - $12i_1 4i_2 + 12 = 0$
 - $12i_1 4i_2 = -12$

Mesh Equation -2

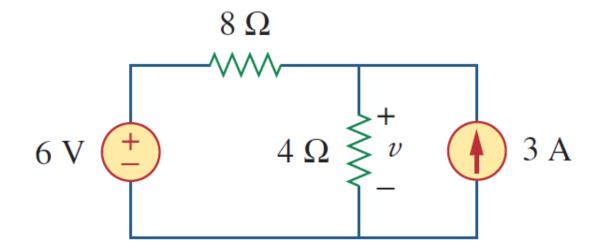
- $16i_2 4i_1 v_s 3v_r = 0$
- $16i_2 4i_1 12 3 \times 2i_1 = 0$
- $16i_2 4i_1 12 6i_1 = 0$
- $16i_2 10i_1 = 12$

Answer

 $I_0 = i_2 = 0.1578A$

Similarly for $v_s = 24V$ $I_0 = i_2 = 0.3157A$

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

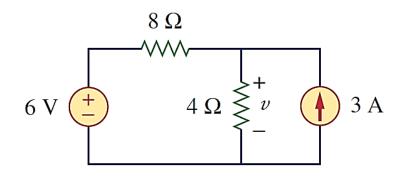


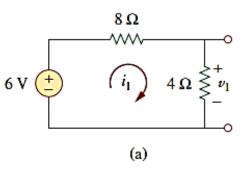
Steps to Apply Superposition Principle:

Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using the techniques before.
Repeat step 1 for each of the other independent sources.
Find the total contribution by adding algebraically all the contributions due to

the independent sources.

Using Superposition theorm determine v.





8Ω

 \sim

Figure 4.7

(b) calculating v_2 .

 $4\Omega \ge$

(b)

For Example 4.3: (a) calculating v_1 ,

 v_2

 (\mathbf{A})

3 A

Thus,

$$v_1 = 4i_1 = 2 \mathrm{V}$$

We may also use voltage division to get v_1 by writing

$$v_1 = \frac{4}{4+8}(6) = 2 \text{ V}$$

To get v_2 , we set the voltage source to zero, as in Fig. 4.7(b). Using current division,

$$i_3 = \frac{8}{4+8}(3) = 2$$
 A

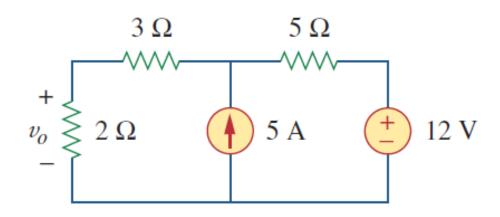
Hence,

$$v_2 = 4i_3 = 8 \text{ V}$$

And we find

$$v = v_1 + v_2 = 2 + 8 = 10$$
 V

Using the superposition theorem, find v_o in the circuit of Fig. 4.8.

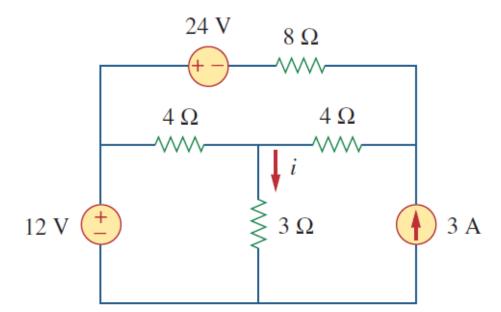


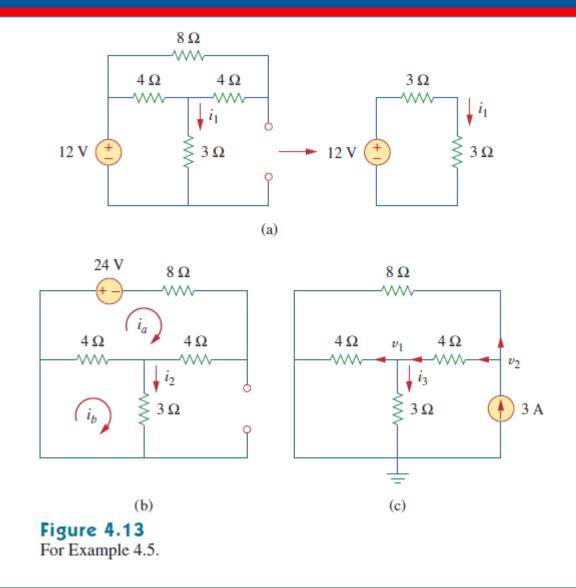
Try Yourself

Ans: 7.4 V

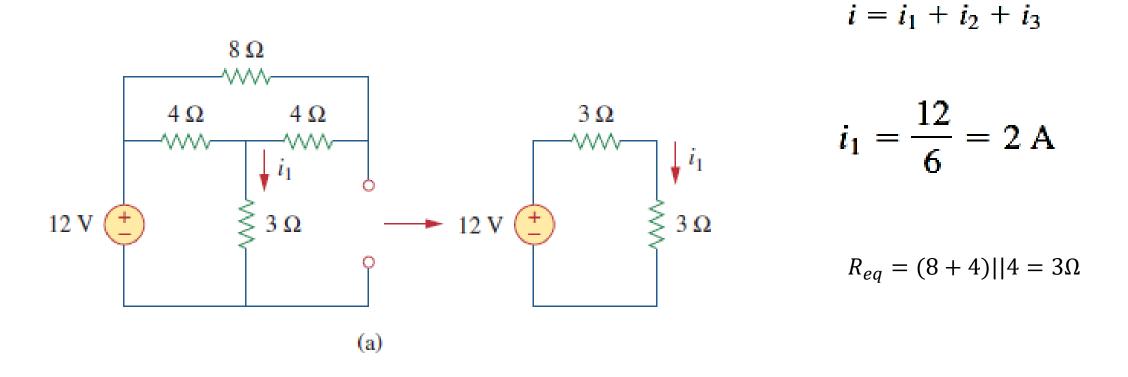
$$\frac{5}{10} \times 5 \times 2 + \frac{2}{10} \times 12 = 7.4$$

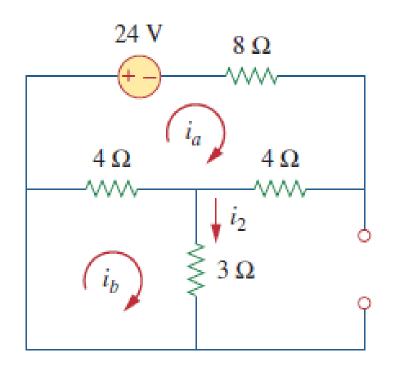
Using Superposition theorm determine *i*.





In this case, we have three sources. Let





(b)

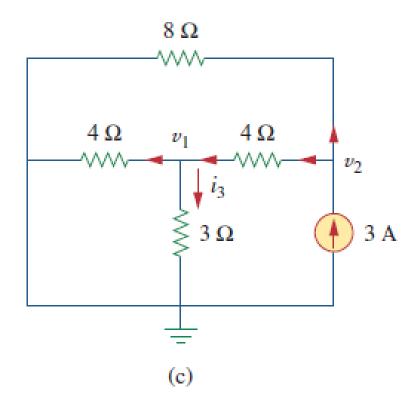
To get i_2 , consider the circuit in Fig. 4.13(b). Applying mesh analysis gives

$$16i_a - 4i_b + 24 = 0 \implies 4i_a - i_b = -6$$
 (4.5.1)

$$7i_b - 4i_a = 0 \qquad \Rightarrow \qquad i_a = \frac{7}{4}i_b \tag{4.5.2}$$

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives

 $i_2 = i_b = -1$



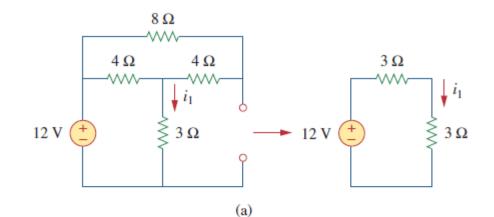
To get i_3 , consider the circuit in Fig. 4.13(c). Using nodal analysis gives

$$3 = \frac{v_2}{8} + \frac{v_2 - v_1}{4} \implies 24 = 3v_2 - 2v_1 \quad (4.5.3)$$

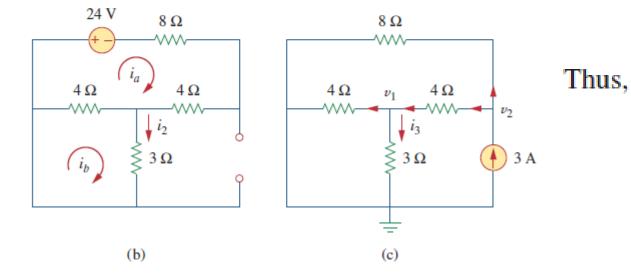
$$\frac{v_2 - v_1}{4} = \frac{v_1}{4} + \frac{v_1}{3} \implies v_2 = \frac{10}{3}v_1 \qquad (4.5.4)$$

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to $v_1 = 3$ and

$$i_3 = \frac{v_1}{3} = 1 \text{ A}$$



$$i_1 = 2 A$$
$$i_2 = -1 A$$
$$i_3 = 1 A$$



$$i = i_1 + i_2 + i_3 = 2 - 1 + 1 = 2 A$$

A source transformation is the process of replacing a voltage source *vs* in series with a resistor *R* by a current source *is* in parallel with a resistor *R*, or vice versa.

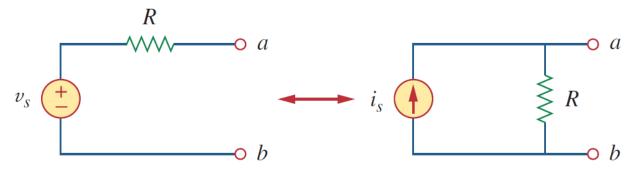


Figure 4.15 Transformation of independent sources

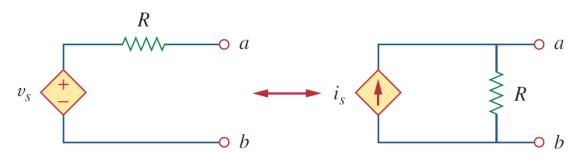
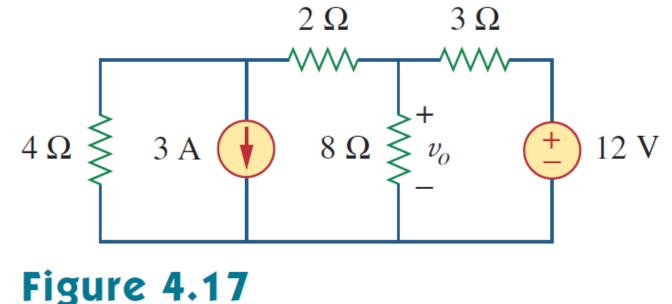


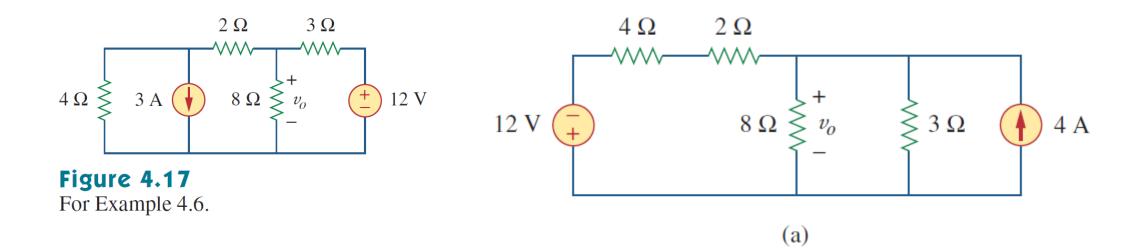
Figure 4.16 Transformation of dependent sources.

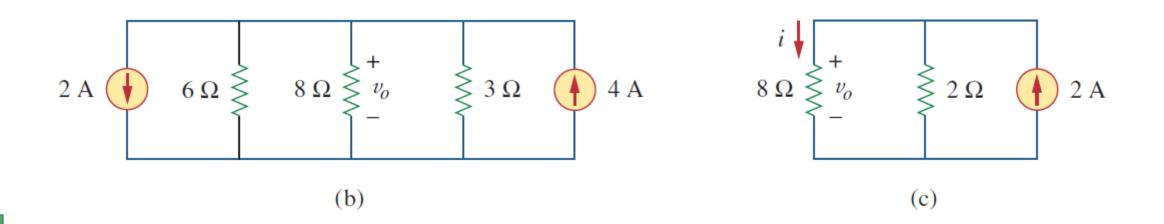
$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

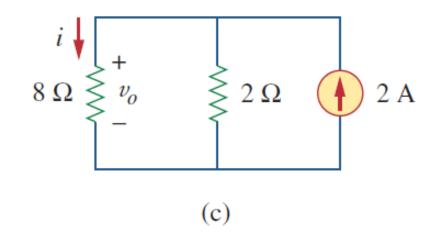
Use source transformation to find v_o in the circuit of Fig. 4.17.



For Example 4.6.







We use current division in Fig. 4.18(c) to get

$$i = \frac{2}{2+8}(2) = 0.4 \text{ A}$$

and

$$v_o = 8i = 8(0.4) = 3.2 \text{ V}$$

Alternatively, since the 8- Ω and 2- Ω resistors in Fig. 4.18(c) are in parallel, they have the same voltage v_o across them. Hence,

$$v_o = (8 \parallel 2)(2 \text{ A}) = \frac{8 \times 2}{10}(2) = 3.2 \text{ V}$$

Find v_x in Fig. 4.20 using source transformation.

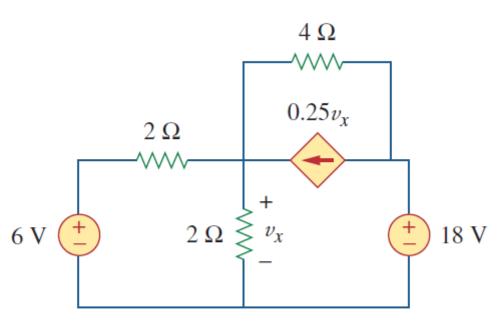
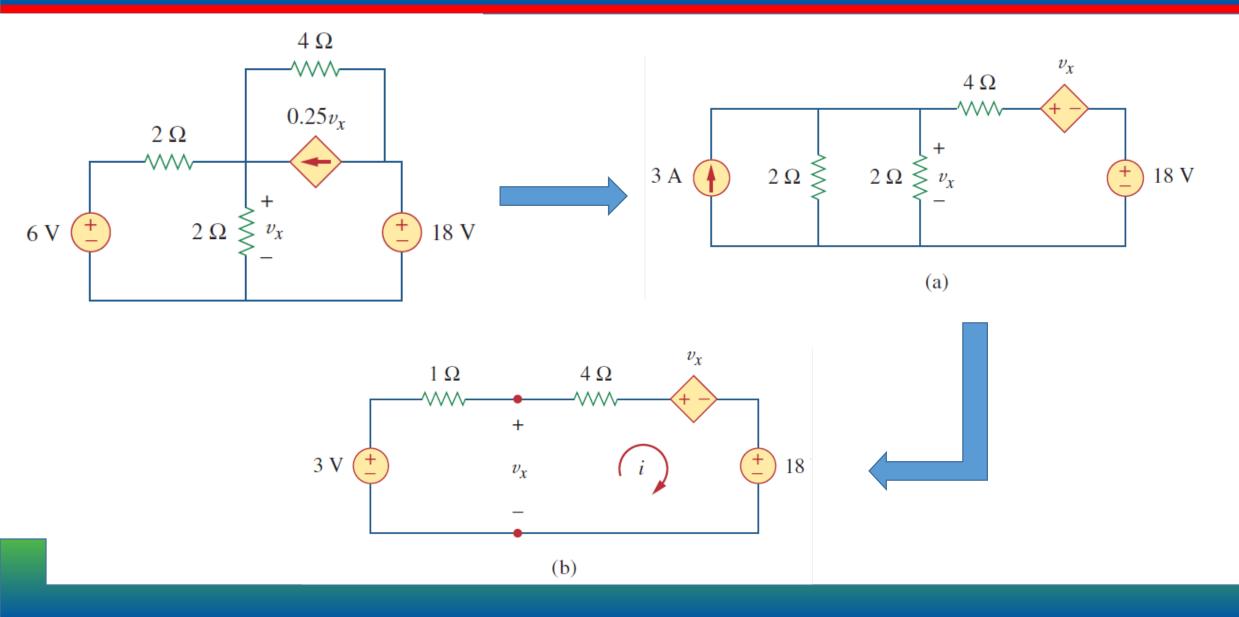
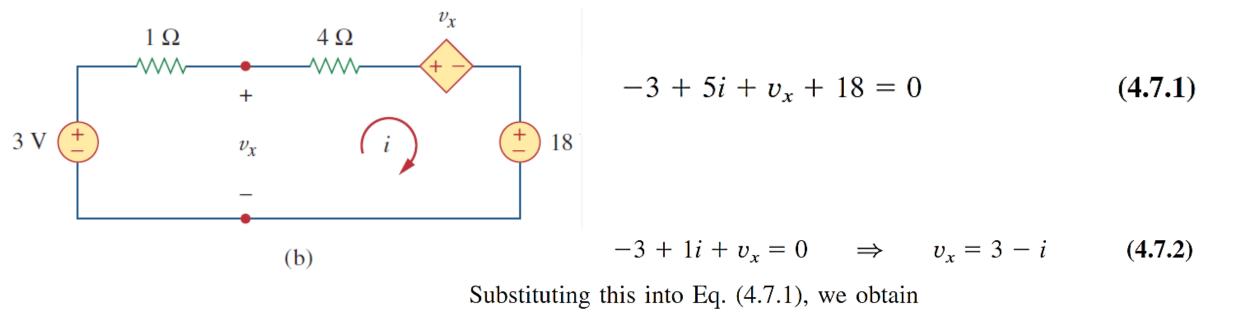


Figure 4.20 For Example 4.7.





 $15 + 5i + 3 - i = 0 \implies i = -4.5 \text{ A}$

Thus, $v_x = 3 - i = 7.5$ V.

THANK YOU