Session 01 Course Title: ODE & PDE Course Code: MAT211

Course Teacher: Protima Dash Sr. Lecturer, Dept. of GED, CC

Email: protima.ged@diu.edu.bd

Mobile: 01716788108

Topics to be covered

Introduction to
Differential Equations
(DE), order and degree
of DE, solution types,
ODE & PDE, Linear
and Nonlinear DE,
Formation of DE.

Expected Outcomes

- Basics on DE and able to find order and degree of DE,
- Identify linear and nonlinear
 DE
- Learn about ODE & PDE
- Basics on general solution and Particular solution
 They will able to form a DE from its primitive

Introduction to Differential Equations (D.Es.)

Differential Equation:

A differential equation is, in simpler terms, a statement of equality having a derivative or differentials. An equation involving differentials or differential co-efficient is called a differential equation.

For Example,
$$\frac{d^2y}{dx^2} = 0$$
 and $ydx + xdy = 0$ are two differential equations

For Example,
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$$

Differential Equations

Ordinary D.E (O.D.E.):

$$(i) \frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

(ii)
$$2\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = e^x + \sin x$$

Partial D.E (P.D.E.):

(i)
$$x \frac{\P^2 z}{\P x^2} + y \frac{\P^2 z}{\P y^2} = \tan x$$

(ii) $\frac{\P z}{\P x} - \frac{\P z}{\P y} = 0$

$$(ii) \frac{\P|Z}{\P x} - \frac{\P|Z}{\P y} = 0$$

Ordinary Differential Equation (ODE):

If a differential equation contains one/more dependent variable and one independent variable, then the differential equation is called ordinary differential equation.

Ordinary D.E (O.D.E.):

(i)
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

(ii)
$$2\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = e^x + \sin x$$

Partial Differential Equation(PDE):

If there are two or more independent variables, so that the derivatives are partial, then the differential equation is called partial differential equation.

Partial D.E (P.D.E.):

(i)
$$x \frac{\P^2 z}{\P x^2} + y \frac{\P^2 z}{\P y^2} = \tan x$$

(ii)
$$\frac{\P z}{\P x} - \frac{\P z}{\P y} = 0$$

Order:

By the order of a differential equation, we mean the order of the highest differential coefficient which appears in it.

For Example, $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} = 0$ is a second order differential equation

Degree:

By the degree of a differential equation, we mean the degree of the highest differential coefficient after the equation has been put in the form free from radicals and fraction.

For Example,
$$\left(\frac{d^2y}{dx^2}\right)^4 + 5x\left(\frac{dy}{dx}\right)^5 = 0$$
 is a differential equation of degree 4 because we count degree based on highest order in a differential equation.

$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -4\cos 2x \quad \rightarrow \text{D.E. with second order first degree}$$

Note:

- Degree of a differential equation is defined if it is a polynomial equation in its derivative.
- The degree of the differential equation is always positive, but never a negative or zero or fraction.
- Dependent variable should not include fraction powers, it should be perfectly linear. For example

$$\frac{d^2y}{dx^2} + \sqrt{y} = 0$$
, degree does not exist

- Degree of the DE does not exist when the differential coefficient involving with exponential functions, logarithmic functions and trigonometric functions. For example:
- There is no degree for DE $e^{\frac{dy}{dx}} + 1 = 0$
- There is no degree for DE $\ln \left(\frac{dy}{dx} \right) + 1 = 0$
- There is no degree for DE $\sin\left(\frac{dy}{dx}\right) + 1 = 0$

Order and Degree of D.E.

(i)
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
 \rightarrow first order and first degree

(ii)
$$2\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + 2y = e^x + \sin x \rightarrow \text{second order and first degree}$$

(iii)
$$x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial y^2} = \tan x \rightarrow \text{ second order and first degree}$$

(iv)
$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial v} = 0$$
 \rightarrow first order and first degree

Problem: Find the order and degree of the differential equation $\frac{d^3y}{dx^3} = \sqrt[5]{\left(\frac{dy}{dx}\right)^2 + 5\frac{dy}{dx} + y}$

Solution:

$$\frac{d^3y}{dx^3} = \sqrt[5]{\left(\frac{dy}{dx}\right)^2 + 5\frac{dy}{dx} + y}$$

Rationalize the above equation, we get

$$\left(\frac{d^3y}{dx^3}\right)^5 = \left(\frac{dy}{dx}\right)^2 + 5\frac{dy}{dx} + y$$

Here highest derivative is 3, so the order is of the DE is 3

The power of the highest order derivatives is 5, so the degree of this DE is 5

Classification based on Linearity:

Linear ordinary differential equation:

An ordinary differential equation of order n is called a linear ordinary differential equation of order n if it follow the followings conditions

- 1. No transcendental functions of dependent variable or its derivative exists
- 2. No product of dependent variables and its derivatives
- 3. The dependent variable and all its derivatives are of the first degree i.e. the power of each term involving is *y* is 1.

Transcendental function: In mathematics, a function not expressible as a finite combination of the algebraic operations of addition, subtraction, multiplication, division, raising to a power, and extracting a root. Examples include the functions $\log x$, $\sin x$, $\cos x$, e^x and any functions containing them. Such functions are expressible in algebraic terms only as infinite series.

It can be expressed as

$$a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = b(x)$$

Where a_0 is not identically zero.

For example:

$$\frac{d^3y}{dx^3} + x\frac{dy}{dx} - 5y = 0$$
; linear third order ordinary differential equation

Nonlinear ordinary differential equation: A nonlinear ordinary differential equation is an ordinary differential equation that is not linear.

Example:

$$1. \ \frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y^2 = 0$$

2.
$$\frac{d^3y}{dx^3} + e^y \frac{d^2y}{dx^2} + xy = xe^x$$

3.
$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 6y = 0$$

Solution of Differential Equation

General Solution:

The solution of a differential equation in which the number of arbitrary constants is equal to the order of the differential equation is called the general solution.

Example:
$$y = ax + b$$

Differentiating w. r. to x

$$\frac{dy}{dx} = a.1 + 0$$

derivative again w. r. to x

constant

$$\frac{d^2y}{dx^2} = 0$$

So, y = ax + b is the general solution of the differential equation $\frac{d^2y}{dx^2} = 0$, where a and b are arbitrary

Particular Solution:

If particular values are given to the arbitrary constants in the general solution, then the solution so obtained is called particular solution.

For Example, Putting a=2 and b=3, a particular solution of $\frac{d^2y}{dx^2} = 0$ is y=2x+3

Formation of Ordinary Differential Equation(ODE) by eliminating arbitrary constants

Example : Form an ODE of
$$y = e^x(ACosx + BSinx)$$

$$\frac{a}{dx}(uv) = uv' + vu'$$

Solution: Differentiating the above with respect to x

$$\frac{d}{dx}e^{x} = e^{x}$$

 $\frac{dy}{dx} = e^{x} \frac{d}{dx} (ACosx + BSinx) + (ACosx + BSinx) \frac{d}{dx} (e^{x})$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{dy}{dx} = e^{x}(-ASinx + BCosx) + e^{x}(ACosx + BSinx)$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{dy}{dx} = e^x(-ASinx + BCosx) + y, \text{ Since } y = e^x(ACosx + BSinx).....(*)$$

$$\frac{d^2y}{dx^2} = e^x \frac{d}{dx} (-ASinx + BCosx) + (-ASinx + BCosx) \frac{d}{dx} (e^x) + \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} = e^x(-ACosx - BSinx) + e^x(-ASinx + BCosx) + \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} = -e^x(ACosx + BSinx) + e^x(-ASinx + BCosx) + \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} = -y + \frac{dy}{dx} - y + \frac{dy}{dx} \quad , \text{ Since } e^x(-ASinx + BCosx) = \frac{dy}{dx} - y \text{ from equation (*)}$$

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

Since there is no arbitrary constant so this is the required ODE. We differentiated two times because of having 2 arbitrary constants initially.

Example: Form an ODE of $xy = Ae^{2x} + Be^{-2x}$ $\frac{a}{dx}e^{mx} = me^{mx}$

Solution: Differentiating the above with respect to x we have,

$$\frac{d}{dx}(uv) = uv' + vu'$$

$$x\frac{dy}{dx} + y = 2Ae^{2x} - 2Be^{-2x}$$
 using the calculus formula of $\frac{d}{dx}(uv)$

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} = 4Ae^{2x} + 4Be^{-2x}$$
, again differentiating w.r.t x

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4(Ae^{2x} + Be^{-2x})$$

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4xy$$
, Since $xy = Ae^{2x} + Be^{-2x}$

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 4xy = 0$$

Since there is no arbitrary constant so this is the required ODE. We differentiated two times because of having 2 arbitrary constants initially. Finally, the order of this equation is 2 and the degree is 1

Problem:

Form the D.E. corresponding to the equations

$$(a) y = ax + bx^2$$

(a)
$$y = ax + bx^2$$
 (b) $c(y+c)^2 = x^3$

(c)
$$y = ae^{2x} + be^{-3x} + ce^{x}$$
 (d) $y = cx + c - c^{3}$

(d)
$$y = cx + c - c^3$$

(e)
$$e^{2y} + 2cxe^y + c^2 = 0$$
 (f) $xy = ae^x + be^{-x}$

$$(f) xy = ae^x + be^{-x}$$

$$(g) xy = Ae^{x} + Be^{-x} + x^{2}$$

Problem : Form the D.E. corresponding the equation $y = ax + bx^2$

Solution: Given that

$$y = ax + bx^2 \tag{1}$$

Differenting both sides w. r. to x, we get

$$\frac{dy}{dx} = a + 2bx \tag{2}$$

Again differenting both sides w. r. to x

$$\frac{d^2y}{dx^2} = 2b \quad \triangleright b = \frac{1}{2}\frac{d^2y}{dx^2}$$

Putting the value of b in equation (2), we get

$$\frac{dy}{dx} = a + 2 \cdot \frac{1}{2} \frac{d^2 y}{dx^2} x = a + \frac{d^2 y}{dx^2} x$$

$$\Rightarrow a = \frac{dy}{dx} - x \frac{d^2 y}{dx^2}$$

Putting the values of a and b in equation (1), we get

$$y = \left(\frac{dy}{dx} - x\frac{d^2y}{dx^2}\right)x + \frac{1}{2}\frac{d^2y}{dx^2}x^2$$

$$= x \frac{dy}{dx} - x^{2} \frac{d^{2}y}{dx^{2}} + \frac{1}{2} \frac{d^{2}y}{dx^{2}} x^{2}$$

$$= x \frac{dy}{dx} - \frac{1}{2} \frac{d^{2}y}{dx^{2}} x^{2}$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

which is a D.E. of second order and first degree.

Solution (b): Given that

$$c(y+c)^2=x^3 ag{1}$$

Differenting both sides w. r. to x we get,

$$2c(y+c).\frac{dy}{dx} = 3x^2 \tag{2}$$

Dividing (1) by (2), we get

$$\frac{y+c}{2\,dy/dx} = \frac{x}{3}$$

$$\Rightarrow$$
 3(y+c) = 2x $\frac{dy}{dx}$ \Rightarrow y+c = $\frac{2}{3}x\frac{dy}{dx}$

Now putting the value of c in equation (2), we get

$$\left(2.\frac{2}{3}x\frac{dy}{dx}-2y\right)\left(y+\frac{2}{3}x\frac{dy}{dx}-y\right).\frac{dy}{dx}=3x^2$$

$$\Rightarrow \left(\frac{4}{3}x\frac{dy}{dx} - 2y\right) \cdot \frac{2}{3}x\frac{dy}{dx} \cdot \frac{dy}{dx} = 3x^2$$

$$\Rightarrow \frac{8}{9}x^{2} \left(\frac{dy}{dx}\right)^{3} - \frac{4}{3}xy \left(\frac{dy}{dx}\right)^{2} = 3x^{2}$$

$$\Rightarrow 8x \left(\frac{dy}{dx}\right)^{3} - 12y \left(\frac{dy}{dx}\right)^{2} - 27x = 0$$
 which is a D.E. of first order and 3rd degree.

3rd degree.

Solution (c): Given that
$$y = ae^{2x} + be^{-3x} + ce^{x}$$
 (1)

Differenting both sides w. r. to x, we get

$$\frac{dy}{dx} = 2ae^{2x} - 3be^{-3x} + ce^x$$
 (2)

Again differenting w. r. to x, we get

$$\frac{d^2y}{dx^2} = 4ae^{2x} + 9be^{-3x} + ce^x \tag{3}$$

Again differenting w. r. to x

$$\frac{d^3y}{dx^3} = 8ae^{2x} - 27be^{-3x} + ce^x$$

$$\Rightarrow \frac{d^3y}{dx^3} = 7\frac{dy}{dx} - 6y \qquad \text{[using (2) and (1)]}$$

$$\Rightarrow \frac{d^3y}{dy^3} - 7\frac{dy}{dy} + 6y = 0$$

Exercise

- 1. Show that the differential equation of a family of circles touches the x axis at origin is $(x^2 y^2)dy 2xydx = 0$.
- 2. Form the differential of parabolas $y^2 = 4a(x+a)$. $[Ans. \rightarrow y \left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} y = 0.]$
- 3. Form the differential equation from the curve $y = Ae^{2x} + Be^{-2x}$. $[Ans. \rightarrow \frac{d^2y}{dx^2} 4y = 0.]$
- 4. Form a differential equation of $y = ax + \frac{b}{x}$ [Ans. $\rightarrow x \frac{d^3y}{dx^3} + 3 \frac{d^2y}{dx^2} = 0$.]
- 5. Form the differential equation from the curve $r = a + b\cos\theta$. [Ans. $\rightarrow \frac{d^2r}{d\theta^2} = \cot\theta \frac{dr}{d\theta}$.]
- 6. Find the differential equation whose solution $y = e^x(A\cos x + B\sin x)$. [Ans. $\Rightarrow \frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$.]
- 7. Find the differential equation whose solution $Ax^2 + By^2 = 1$. $[Ans. \rightarrow x] y \frac{d^2y}{dx^2} +$