CSE444: Introduction to Robotics
Lesson 6: Programming and Control

ALL Follows
Summer 2019

Discussion Points

* |Introduction

e Basic Workflow

* Robot Research Software

* Functional Control Architecture
* Robot Programming using ROS

ALL@DIU, Summer 2019

Introduction

real-time operating system

sensory data reading

motion control execution

world modeling

physical/cognitive interaction with the robot

fault detection

error recovery to correct operative conditions
programming language (data structure + instruction set)

programming environments will depend also
on the level at which an operator has access
to the functional architecture of the robot

Basic Workflow

* Programming Behavior

— Behaviors describe the actions and decisions of
your robot

* |Individual, bite-size functions that your robot
performs directly

Basic Behavior

Turn motor A on
forwards

ALL@DIU, Summer 2019

Simple Behaviors

* Built of several basic behaviors
* Let you describe a full action of the robot

Turn motor A on
TurnmotorA ——| Simple Behavior |~ backwards
on forwards

_— Go forward until you hit [Turn motor C

Turn motor C a wall and then turn on forwards
on forwards /

Get touch / Compare sensor \

sensor reading reading to Turn off motors

from Port 1 constant O A&C

ALL@DIU, Summer 2019

Complex Behaviors

e Describe the full scope of what the robot can do

* Always composed of smaller behaviors, so you can
break them down

Drive
forward\‘
Stop when
you hit a waII

w7]\

right

Complex Behavior

Navigate a maze

Turn
right

— Stop when

Drive forward

Turn

Stop when left

you hit a wall

ALL@DIU, Summer 2019

P
4

you hit a wall

Drive forward

Flowcharts

* Visually organizes steps in different shaped
bubbles

* Good way to work out steps before you
translate them into code

Drive forward [—¥¢ Have you
hit a wall?

ALL@DIU, Summer 2019

Ye'| Stop motors

Flowcharts

 Parts of a Flowchart

Drive forward

No

»/ Have you
hit a wall?

Start of
Program —
Marks the
beginning of
the program.
Begin here.
Follow the line
to get to

the next block.

Statement
Block — A
statement to
execute,or a
behavior to
perform.

End of Program -
Marks the end of
the program. If you
reach this point, the
program is done!

Stop motors

Yes

Decision Block —
A decision point in
your program.

Ask a simple
guestion, and do
different things
depending

on the answer.

Yes/No (also
True/False, etc.) —
Answers to the
guestion posed in
the decision block.
Follow the line
labeled with the
appropriate
answer.

Flowcharts

What does this flowchart describe? Filing atie

@ Pump air

Tire at rated
pressure?

What about this one?

Stop Motors

Touch
sensor
pushed?

No

Go when touch sensor is pushed

Yes

Start motors

Robot Research Software

= a (partial) list of open source robot software
= for simulation and/or real-time control
= for interfacing with devices and sensors
= research oriented

Player/Stage playerstage.sourceforge.net

= networked robotics server (running on Linux, Mac OS X) as an
abstraction layer supporting a variety of hardware + 2D robot
simulation environment

= (Gazebo: 3D robot simulator (with ODE physics engine and
OpenGL rendering), now an independent project

VREP (edu version) www.coppeliarobotics.com

= each object/model controlled via an embedded script, a plugin,
a ROS node, a remote API client, or a custom solution

= controllers written in C/C++, Python, Java, Matlab, ...

ALL@DIU, Summer 2019

Robot Research Software

Robotics Toolbox (free addition to Matlab) www.petercorke.com

= study and simulation of kinematics, dynamics, and trajectory
generation for serial-link manipulators

OpenRDK openrdk.sourceforge.net
= “agents”: modular processes dynamically activated, with
blackboard-type communication (repository)
ROS (Robot Operating System) www.ros.org/wiki

= middleware with: hardware abstraction, device drivers, libraries,
visualizers, message-passing, package management

= “nodes™ executable code (in Python, C++) running with a
publish/subscribe communication style

Pyro (Python Robotics) pyrorobotics.org

ALL@DIU, Summer 2019

Functional Control Architecture

reference model

Sensor knowledge decision
processing models strategies
C > S M D task
level
Q action
98; > M D level
3 -
3 primitives
o : M D level
~
‘ : : }
S M D Servo
N level
Sensors actuators l

S0eLIUI

operator

Functional Control Architecture

horizontal decomposition reference model

Sensor knowledge decision
processing models strategies

C task
~— S M = level
. } 7 i operator
E 5 SENSORY MODULES |
S acquisition, processing and %
= integration of sensory data ¥
fBD S M D [PIICvVEs |
o level
~
. ! !
S M D Servo
N level

SENsors actuators i

Functional Control Architecture

horizontal decomposition

reference model

Sensor knowledge MODELING MODULES
processing _models a priori knowledge about
© S M robot + environment system,
j : ; updated using information
< from sensory modules
5‘, > " © level %)
3 S
3 primitives | @
S > i D level
~
‘ ' : :
S M D Servo
N level
Sensors actuators l

Functional Control Architecture

horizontal decomposition reference model

sensor knowledge decision
' PP ~~~tegies
DECISION MODULES tack

« decomposition (in time and space) |D level

of tasks into actions of lower level +—

- choice and processing of strategleJ action
o) e level
= it
3 primitives
3 S y L level

! !
S M D Servo
N level

SEeNsors

actuators i

0e LU

operator

Functional Control Architecture

horizontal decomposition

reference model

sensor knowledge decision
processing models strategies
Q : \ ‘ \ task
GLOBAL MEMORY
o — data and information relevant -
S to all levels (updated estimate |
;—’ — of robot + environment state)
= —
3 primitives
3 > I;I L level
S M D Servo
N level

SENSors

actuators l

oe Ul

operator

Functional Control Architecture

horizontal decomposition reference model

Sensor knowledge decision
processing models strategies

s v b | 2
’ L OPERATOR INTERFACE - operator
« ~ allows intervention by an L
§ | operator at any level of the g =1
3) functional hierarchy §n
g ' [primitives | @
S > M D i level
s b ! ! !
S M D SErvo
N level

SEeNsors actuators l

m>_

ALIX31dINOD NOILVINHOS
|

Levels for Reference Model

task level: objective of the task (as specified by the
user) analyzed and decomposed into actions (based
on knowledge models about the robot and the
environment systems)

action level: symbolic commands converted into
sequences of intermediate configurations

primitives level: reference trajectories generation for
the servo level, choice of a control strategy

servo level: implementation of control algorithms,
real-time computation of driving commands for the
actuating servomotors

<TEM PORAL CONSTRAINTS

Industrial Robot:
Functional Architecture

p | action

X reference frames

request state path points
camera 4 v interpolation modes

L S M| D | hrimitives

>

- qdes qdes qdes
| data 1 control algorithm

request state

Servo

W I | data actuator

commands
force velocity position

ALL@DIU, Summer 2019

Industrial Robot:
Functional Architecture

- " p | action
vertical decomposition D
L reference frames
path points
camera ACTION LEVEL v interpolation modes

| einterpreter of high-level commands | |D

e task decomposition made by human L
[qdes Udes Odes

operator control algorithm
* N0 sensory and modeling modules

(unless a multi-modal cognitive *

primitives

—»

human-robot interaction is possible) - servo
I [|__data actuator
commands

force velocity position

Industrial Robot:
Functional Architecture

: . p | action
vertical decomposition D
4 reference frames
request state path points
camera 4 S v v interpolation modes
I) D | hrimitives
. -\ . -\ A . L
[[’_’ [qdes qdes qdes

PRIMITIVES LEVEL
¢ S: (only for an active interaction with the environment)
world geometry, interaction state
e M: direct and inverse kinematics, dynamic models
e D: command encoding, path generation, trajectory
interpolation, kinematic inversion, analysis of servo
state, emergency handling

TV e voroeioy PYreroni

Industrial Robot:
Functional Architecture

‘ p | action

vertical decomposition

SERVO LEVEL
* S: signal conditioning, internal state of manipulator, state of
interaction with environment
* M: direct kinematics, Jacobian, inverse dynamics
e D: command encoding, micro-interpolation, error handling,
digital control laws, servo interface

| . | L | L4
,l S l M . l D servo
I I | data actuator
commands

force velocity position

Sensors —

Sensors —

Interactions: Modules

— actuators

uondadtad
bullspow
buluueld
UOIINJIXD YSE)

|0.J3U0D JO0J0W

plan changes to world

identify object

monitor changes

bUlld map . aCtuatorS

explore

wander

avoid obstacles

ALL@DIU, Summer 2019

horizontal
activation
(sequential)

vertical
activation on demand
(subsumption)

Movdl!
::: ROS

ROS is an open-source, meta-operating system

OpenCV pointcloudlbrary

ALL@DIU, Summer 2019

What is special in ROS?

Reusable robotics components!
62 Robotic platforms officially support ROS

http://wiki.ros.org/Robots
Modular design

Hundreds of ready to use algorithms
Efficient, so it can be used for actual
products, not just prototyping

Runs on Ubuntu, also ARM Processors
Parallelisation and networking made easy,
can use multiple machines simultaneously

ROS Components

ROS

Plumbing } [Tools

Capabillities }{ Ecosystem

‘mm

-
|
|

/

LLLLLLLLLLLLLLLLLL

Nodes

Nodes are processes that perform computation, “executables”
Motion
Planner

ALL@DIU, Summer 2019

Topics

Topics are streams of data with publish / subscribe semantics.
They are uniquely identifiable by its name

Motion
Planner

/map/pos

/cam/img

Mapping

ALL@DIU, Summer 2019

Services

Request / reply is done via services, which are defined by a pair
of message structures: one for the request and one for the reply.

Motion
Planner
/map/pos

Battery
indicator

/cam/img

Mapping

ALL@DIU, Summer 2019

Messages

A message is simply a data structure, comprising typed fields.
Language agnostic data representation. C++ can talk to Python.

Motion
Planner
File: pos.msg

string robotName
uint32 posX
uint32 posY

uint32 goalX
uint32 goalY

ALL@DIU, Summer 2019

ROS Master

The ROS Master provides name registration and lookup to
nodes. Without the Master, nodes would not be able to find each
other, exchange messages, or invoke services.

| ROS
mg Master
'Subscribe
Image

.MPublish

\

ROS
Master
Viewer

Image
Viewer

ALL@DIU, Summer 2019

Example: Mobile Robot

- Sensors
Blue - Planning algorithms
Red - Hardware integration

Motion
Planner

Trajectory

Sl Planner

ALL@DIU, Summer 2019

Motion
Controller

Wheel Drivers

Wheel
Encoders

ROS Tools

System Visualisation: rgt_graph

Default - RosGui

File Plugins Running Perspectives Help

@ | | Nodes/Topics (all) = N /

& namespaces [actions [deadsinks [leaftopics [Hide Debug [Highlight [Fit

@"L_"”"'_i‘:i‘"—ﬁ "y

’]phmimm_wodd L .

move_group

~—| [move_group/display_planned_path

ALL@DIU, Summer 2019

ROS Tools
Live Plotting: rqt_plot

MatPlot DECO o
Topic|/ | o [-]
P00 ¢+« Bv B X=6.74381 y=4.30862

| — [turtlel/pose/x
| — [fturtlel/pose/y

ALL@DIU, Summer 2019

ROS Tools

Logging and Visualization Sensor
Data: rosbag and rqt_bag

R L ﬁﬁ.nt‘?...ﬁ]. e

il L it T
R — —E | B
|

ALL@DIU, Summer 2019

ROS Tools
3D Visualisation: RVIZ

ALL@DIU, Summer 2019

