Daffodil International University School of Science and Engineering Department of Civil Engineering Mid Term Examination, Fall-2019 Course Title: Transportation Engineering I Course Code: CE 351

Marks: 25

Time: 1 Hour

(Answer any *two* out of three questions)

1. (a) A calibration study resulted in the following utility equation for different modes in [6.5] a particular city. Use Logit model. i) Estimate the number of trips taken by the different modes in a particular city.

U_k =a_k-0.13 X₁- 0.04 X₂- 0.05 X₃- 0.005X₄

Where, a_k = mode specific constant

 $X_1 = access time in minutes$

 X_2 = waiting time in minutes

 $X_3 =$ Line haul time in minutes

 $X_4 = out of pocket cost in taka$

Table 1

	a _k	X1	X2	X3	X_4
Automobile	-0.10	5	0	20	50
Bus	+0.22	10	15	40	60

ii) A new mode, rapid transit is introduced between the zones. Its characteristics are as follows:

 $X_1 = 10; X_2 = 5; X_3 = 30; X_4 = 75$

It could be estimated that the specific constant for rapid transit to be -0.41. What is the modal share between the three modes now?

(b) The speed of overtaking and overtaken vehicles are 70km/hr and 55km/hr [4] respectively on a two way traffic road. If acceleration of overtaking vehicle is 3.1km/hr/sec. calculate (i) safe OSD (ii) minimum length of overtaking zone.

(c) Narrate different Level of Service (LOS) as per highway capacity manual. [2]

(a) An urban area is divided into 4 zones for transportation demand analysis. Zone pair [6.5] trip distribution is given in table 2 and zone pair travel time is given in Figure 1 below. Calculate total no. of trip assigned in each link of road. Using all or nothing assignment model.

Table 2

OD	1	2	3	4	5
1	0	50	90	65	40
2	60	0	50	80	50
3	70	100	0	100	30
4	30	60	60	0	50
5	50	80	70	100	0

(b) Sketch diagrammatic representation of basic movements. Write short note on: modal [4] split, trip distribution.

(c) What are the steps of transportation planning process?

3. (a) The design speed of a highway is 70kmph. There is a horizontal curve radius [6.5] 100m.Calculate the super elevation needed to maintain the speed. If maximum super elevation of 1 in 12 is not exceeded. Calculate maximum allowable speed on the horizontal curve. Design value of lateral friction coefficient 0.15.

(b) An accident investigator estimates that a vehicle hit a bridge abutment at a speed of [4] 15mile/hr, based on his assessment of damage. Leading up to the accident location, he observes skid marks of 150ft on the pavement (F=0.25) and 60ft on the grass shoulder (F=0.3). There is no grade. An estimation of the speed of the vehicle at the beginning of the skid marks is desired.

(c) Draw flow diagram of urban	transportation planning process.	[2]
--------------------------------	----------------------------------	-----

[2]