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FOREWORD 

This publication is an updating and expansion of Highway Research Board 
Special Report 79, "An Introduction to Traffic Flow Theory," published in 1964. 
This updating was undertaken on recommendation of the Highway Research 
Board" Committee on Theory of Traffic Flow in 1969 after the original printing 
of Special Report 79 had been exhausted. The Federal Highway Administration 
(FHWA) funded the project and in June 1970 awarded to the University of 
Minnesota a contract to write this publication. The project was carried out under 
supervision of an Advisory Committee that included the following prominent 
individuals: 

Robert S. Foote, Port Authority of New York and New Jersey 
Dr. Adolf D. May, Jr., University of California 
Richard W. Rothery, General Motors Research Laboratories 
K. B. Johns, TRB Liaison Representative 

In addition, Sidney Weiner, of FHWA, served as committee secretary until the 
final stages of the project and Barry Benioff, of FHW A, assumed responsibility 
as committee secretary in mid-1973. 

Our appreciation is extended to the authors of this report, Drs. Daniel L. 
Gerlough and Matthew J. Huber, of the University of Minnesota, for their com­
mendable efforts in writing this monograph and for their cooperative attitude 
throughout the project. We would also like to acknowledge the time spent by the 
members of the Advisory Committee in providing guidance and direction on the 
form of the final monograph and for their extensive reviews of the early versions 
of the report. Additional acknowledgment is made for the guidance and counsel 
received from K. B. Johns, Engineer of Traffic and Operations, Transportation 
Research Board. 

It is sincerely hoped that the present publication meets its objective of synthe­
sizing and reporting, in a single document, the present state of knowledge in traffic 
flow theory. 

Advisory Committee Co-Chairmen: 

William W. Wolman, Chief 
Traffic Systems Division 
Office of Research 
Federal Highway Administration 

Donald G. Capelle 
Vice President for Research 
Alan M. Vorhees & Associates 

*On March 9, 1974, the Highway Research Board became the Transportation Research 
Board to reflect the actual scope of its activities. 
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DEFINITIONS AND NOTATIONS 

Term 

Acceleration 

Wave speed 

Density 
Time headway 

Total headway time 

Concentration 

Jam concentration 

Optimum concentration 

Car length 

Probability 
Flow 

Maximum flow 
Correlation coefficient 

Spacing 

Spacing 

Time 
Time 
Speed 
Free-flow speed 

Optimum speed 
Space mean speed 

ix 

Definition 
The time rate of change of speed, d2 xi dt 2

• 

The acceleration of the nth vehicle. 
The speed at which a wave of differing con­

centrations is propagated in the traffic stream. 
See also uw. 

See "concentration" (k). 
The time interval between passages of consecu­

tive vehicles moving in the same lane (mea­
sured between corresponding points on the 
vehicles). 

Headway between the ( n-1) st vehicle and the 
nth vehicle. 

The time interval between passages of the first 
and the nth vehicle moving in the same lane. 

The number of vehicles occupying a unit length 
of a lane at a given instant; often referred 
to as "density" when expressed in vehicles 
per mile. 

The maximum concentration of vehicles when 
jammed at a stop. 

The concentration when flow is at a maximum 
rate. 

The length of a vehicle. 
The vehicle number. 
Total number of vehicles. 
The likelihood of occurrence of an event. 
The number of vehicles passing a point during 

a specified period of time; often referred to 
as "volume" when expressed in vehicles per 
hour measured over an hour. 

The rate of change of count. 
The maximum attainable flow. 
A statistical measure of the association between 

data and a regression line. 
The distance between consecutive vehicles mov­

ing in the same lane (measured between cor­
responding points on the vehicles) . 

The spacing between the ( n-1 ) st vehicle and 
the nth vehicle. 

An interval or index of time. 
Total time. 
The time rate of change of distance, dx/ dt. 
The speed when traffic is flowing freely on the 

facility. 
The speed when flow is at a maximum rate. 
The arithmetic mean of the speeds of the ve­

hicles occupying a given length of lane at a 
given instant. 



Symbol 

ilt 

v 
X, y, Z, x, Y, z 
D. 
T) 

Var (•) 
E(•) 
exp (x-y) 
p((x!a,b) 

Term 
Time mean speed 

Wave speed 

Volume 
Position 
Increment 
Normalized 

concentration 
Standard deviation 

First derivative 
(speed) 

Second derivative 
(acceleration) 

Dynamics 

Kinematics 

Kinetics 

Phenomenological 

Statics 

x 

Definition 
The arithmetic mean of the speeds of vehicles 

passing a point during a given interval of 
time. 

The speed at which a wave of differing concen­
trations is propagated in the traffic stream. 
See also c. 

See "flow" ( q) . 
An index of position; coordinates. 

The ratio kl ki. 
A statistical measure of the dispersion of data 

from the mean. 
The differentiation of x with respect to some 

independent variable; i.e., dxl dt. 
The second differentiation of x with respect to 

some independent variable; i.e., d2 xi dti. 
Statistical variance. 
Expected or mean value. 
e·'·-v. 
Probability of x given conditions a and b. 
Action of force on bodies in motion or at rest 

(includes kinetics, .kinematics and statics). 
Motion in abstract without reference to force 

or mass. 
Motion of masses in relation to forces acting on 

them. 
Describing a phenomenon without explaining 

it. 
Treatment of bodies, masses or forces at rest 

(or in equilibrium). 

• 

• 



2 INTRODUCTION 

1.3 BACKGROUND OF CURRENT 
MONOGRAPH 

By fall 1968 the original printing of Spe­
cial Report 79 was exhausted. At its meeting 
in January 1969, the Highway Research Board 

Committee on Theory of Traffic Flow discussed 
what action should be taken. Although taking 
into account the books that had been published, 
the Committee deemed it worthwhile to have 
An Introduction to Traffic Flow Theory up-

TABLE 1.1 International Symposia on Theory of Traffic Flow 

Symposium Proceedings 

Symposium on the Theory of Traffic Flow, 
Detroit, Michigan, Dec. 7-8, 1959 

Second International Symposium on 
Theory of Road "Traffic 
~and,June25-27, 1963 

the 
En-

Third International Symposium on the Theory 
of Road Traffic Flow, New York, New York, 
June 1965 

Fourth International Symposium on the 
Theory of Road Traffic Flow, Karlsruhe, Ger­
many, June 18-20, 1968 

Fifth International Symposium on the Theory 
of Traffic Flow and Transportation, Berkeley, 
California, June 16-18, 1971 

Sixth International Symposium on Transporta­
tion and Traffic Theory, Sydney, Australia, 
August26-28, 1974 

Theory of Traffic Flow (ed. by R. Herman), 
Elsevier Publishing Co., 1961 

Proceedings of the Second International Sym­
posh!m on the Theory of Traffic Flow (ed. by 
J. Almond), OECD, Paris, 1965. Available 
from OECD Publications Office, 17 50 Penn­
sylvania Avenue, N.W., Washington, D.C. 
20006 

Vehicular Traffic Science (ed. by L. C. Edie, 
R. Herman, R. Rothery), American Elsevier 
Publishing Co., 1967 

Beitrage zur Theorie des Verkehrsf/usses (ed. 
by W. Leutzbach and P. Baron), Strassenbau 
und Strassenverkehrstechnik, n. 86, Bundes­
anstalt fiir Strassenwesen, 5 Kain Raderthal, 
Bruhler Strasse 324, West Germany 

Traffic and Transportation (ed. by G. F. 
Newell), American Elsevier Publishing Co., 
1972 

Transportation and Traffic Theory (ed. by 
D. J. Buckley), American Elsevier Publishing 
Co., 1974 

TABLE 1.2 Books on Traffic Flow Theory 

Frank A. Haight 

Winifred D. Ashton 

Donald R. Drew 

Ilya Prigogine and 
Robert Herman 

Denos C. Gazis (ed) 

Wilhelm Leutzbach 

Mathematical Theories of Traffic Flow 
Academic Press (New York, London) 

The Theory of Traffic Flow 
Methuen & Co. (London) 
John Wiley & Sons (New York) 

Traffic Flow Theory and Control 
McGraw-Hill Book Co. (New York) 

Kinetic Theory of Vehicular Traffic 
American Elsevier (New York) 

Traffic Science 
Wiley-Interscience (New York) 

Einfuhrung in die Theorie des V erkehrsflusses 
Springer-Verlag (Berlin) 

1963 

1966 

1968 

1971 

1974 

1972 
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TABLE 1.3 Journals on Traffic Flow Theory a 

YS;'.ar First 
Journal Publisher Published 

Traffic Engineering and Control Printerhall Ltd., 29 Newman Street, 1958 
London W1P3PE, England 

Transportation Science Transportation Science Section, 1967 
Operations Research Society of America, 
428 East Preston Street, Baltimore, 
Maryland 21202 

Transportation Research Pergamon Press Inc., Maxwell House, 1967 
Fairview Park, Elmsford, New York 10523 

Transportation Planning and 
Technology 

Gordon and Breach Science Publishers, 1972 
Inc., 440 Park A venue South, New York, 
New York 10016 

Transportation Elsevier Publishing Co., Journal Division, 1972 
P.O. Box 211, Amsterdam, The Netherlands 

"Abstracts of articles in a variety of journals may be found in International Abstracts in Operations 
Research, published by the International Society of Operational Research Societies. Available from 
Operations Research Society of America, 428 East Preston Street, Baltimore, Maryland 21202. 

dated and rewritten. The Highway Research 
Board Department of Traffic and Operations 
authorized the Committee to seek funding and 
an author to carry out the rewriting. As a result 
of the Committee's action the Federal Highway 
Administration (FHWA) agreed to provide 
funding, and in June 1970 FHW A entered into a 
contract with the University of Minnesota 
under which D. L. Gerlough and M. J. Huber 
would write a monograph on traffic flow 
theory. It was agreed that partial funding 
would be provided by the University of Min­
nesota. 

1.4 CONTENT OF MONOGRAPH 

Although it follows the general content 
of HRB Special Report 79, this monograph is 
somewhat expanded and updated. It was agreed 
at the outset that models pertaining strictly to 
transportation planning would be excluded in­
asmuch as they could by themselves fill a com­
prehensive treatise. Although it is primarily 
addressed to graduate students in traffic engi­
neering, it is hoped that this monograph will 
serve as a reference for anyone wishing an in­
troduction to traffic flow theory. It is assumed 
that the reader has a background in the funda­
mentals of statistics. 

Models of traffic flow may be classified 
either according to the theoretical approach 

:,. 

TABLE 1.4 Principal Review Studies of 
Traffic Flow Theory Sponsored by 

Federal Highway Administration 

Analytical Models of Unidirectional Multi-Lane 
Traffic Flow: A Survey of the Literature, Sys­
tem Development Corp. Technical Memo­
randum TM(L)-379/001/02, 31January1969. 
NTIS No. PB 183075 

Traffic Systems Reviews and Abstracts, issued 
monthly by Federal Highway Administration, 
from September 1967 to 1971. Available from 
NTIS 

used or according to the characteristics or 
phenomenon they describe. This monograph 
mainly follows the former practice. 

Notation and definitions used are found 
on special pages in the front of the monograph. 

The following paragraphs describe the 
contents of the individual chapters. 

Chapter 2: Measurement of Flow, 
Speed, and Concentration 

Before one attempts to model the funda­
mental traffic characteristics of flow, speed, and 
concentration, it is important to have unam-
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4 INTRODUCTION 

biguous definitions of these characteristics in 
relationship to the methods of measurement, as 
well as the appropriate methods of computing 
averages, etc. Historically, the definitions of 
traffic characteristics were related to the meth­
ods of measurement. Unfortunately, methods 
of averaging often used were influenced by a 
lack of clear understanding of the processes 
involved. 

The earliest students of traffic behavior 
had as the only instruments available to them 
stopwatches and manual counters. Thus flows 
past a point and headways were the important 
measurements. These were supplemented by 
measurements of speed by means of timing 
each car's transit across a "trap." As other 
methods of measurement have been developed, 
it has become evident that the numerical results 
depend on the method of measurement. 

In Chapter 2 various methods of measure­
ment currently available to the traffic engineer 
are considered, and the definitions of character­
istics are related to these methods of measure­
ment; methods of averaging are also considered. 

Chapter 3: Statistical Distributions of 
Traffic Characteristics 

In designing new traffic facilities or new 
control plans, it is necessary to predict the per­
formance of traffic with respect to some par­
ticular characteristic (e.g., the frequency of 
headways of a particular size, the number of 
cars likely to arrive in an interval, and speeds 
exceeding a certain value). It is often desirable 
to be able to make a prediction with a mini­
mum amount of data available or assumed. 
For instance, it may be necessary in designing 
a pedestrian control system to predict the fre­
quency of headways of greater than 10 sec; in 
designing a left-turn pocket it may be neces­
sary to predict how many times per hour the 
number of cars arriving during one signal cycle 
will exceed four. Statistical distribution models 
enable the traffic engineer to make these predic­
tions with a minimal amount of information. 

Statistical distributions are useful in de­
scribing a wide variety of phenomena where 
there is a high clement of randomness. In 
traffic the most important distributions are 
counting distributions-those useful in describ­
ing the occurrence of things that can be 
counted-and interval distributions-those use-

ful in describing the occurrence of the (time) 
intervals between events. Distributions are also 
used, however, in describing such phenomena 
as speeds and gap acceptance. The uses of dis­
tributions in traffic are treated in Chapter 3. 

Chapter 4: Traffic Stream Models 

It requires little more than casual observa­
tion to detect that as traffic flow or concentra­
tion increases, there is a decrease in speed. In 
fact it is often possible to estimate one un­
known flow characteristic from another that is 
known or easily measured. For example, the 
ratio of flow to capacity may be estimated using 
observed values of speed or concentration. In 
Chapter 4 models that relate pairs of the basic 
traffic flow characteristics (e.g., speed/flow, 
speed/ concentration, and flow/ concentration) 
are examined, as are models that consider travel 
time as one of the variables. 

Chapter 5: Driver Information 
Processing Characteristics 

In attempting to devise models to repre­
sent traffic behavior we are, of course, indi­
rectly dealing with human behavior. Several 
traffic flow models to be discussed in later 
chapters contain parameters that are used to 
account for various characteristics of the driver 
in the driver-vehicle system. Some models 
deal with traffic as a deterministic phenomenon. 
even though the driver portion of the system, at 
least, is highly stochastic. 

The whole field of human factors in traffic 
could, of course, be the subject of a very 
lengthy treatise. Nevertheless, it is hoped that 
Chapter 5 will provide some insight into the 
way drivers use the information they receive 
and that this knowledge can then be of use in 
various traffic flow models. Although a driver 
is continuously making decisions, his control 
actions are limited to control of heading (steer­
ing) and control of acceleration. 

Chapter 6: Car Following and 
Acceleration Noise 

From the drivers' action interpretations of 
information received, given that actions are 
limited to control of acceleration (braking and 
acceleration) and heading (steering), we now 
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consider the dynamics of a stream of traffic. 
These dynamics result when a series of drivers 
attempt to regulate their acceleration to ac­
complish a smooth, safe trip. 

In car-following analysis traffic is recog­
nized as being made up of discrete particles, 
whose interaction is examined. The techniques 
of analysis are those of automatic control sys­
tems. A principal effort of such studies has 
been to try to understand the behavior of a 
single-lane traffic stream by examining the man­
ner in which individual vehicles follow one 
another. Studies of this nature have been used 
to improve flow through tunnels, explain the 
behavior of traffic at bottlenecks, and examine 
control and communication techniques that 
will minimize the occurrence of rear-end chain 
collisions in dense traffic. 

Acceleration noise is developed as a mea­
sure of the quality of traffic flow. 

Chapter 7: Hydrodynamic and 
Kinematic Models of Traffic 

Because traffic involves flows, concentra­
tions, speeds, etc., there is a natural tendency 
to attempt to describe traffic in terms of fluid 
behavior. Although traffic was examined as the 
interaction between particles in Chapter 6, in 
Chapter 7 we apply to traffic those models that 
have been developed for fluids (i.e., continuum 
models); by this we are implicitly saying that 
we are more concerned with the over-all statis­
tical behavior of the traffic stream than with the 
interactions between particles. Because the 
sample size for traffic includes only a few par­
ticles relative to a true fluid, fluid models of 
traffic are applicable to the behavior of a 
stream rather than individual cars. 

Despite some writers' postulated analogy 
between traffic and a real fluid, it is preferable 
to begin with fundamental observations and 
postulates concerning traffic and, then, to iden­
tify analogies with fluids as these analogies ap­
pear. Thus, we start by developing the con­
tinuity equation for traffic, illustrating its anal­
ogy to the continuity equation for fluids. Next 
to be developed is the concept of waves in 
traffic, and examples of this application to prac­
tical problems are given. Such studies have 
been used to improve flow through tunnels and 
to explain behavior of traffic at bottlenecks. 
Thereafter the model of choice points toward a 

unification of the continuum and car-following 
theories. Finally, a Boltzmann-like theory of 
traffic is discussed in brief. 

Chapter 8: Queueing Models 

A desirable goal for transportation engi­
neers is to design and operate facilities that 
minimize delay to the users. Delay resulting 
from congestion is a common phenomenon: 
Vehicles wait in line for an opportunity to enter 
a freeway with controlled access ramps; pedes­
trians queue up on a crosswalk in anticipation 
of a gap in road traffic or at a turnstile in a 
transit station; left-turn' slots must be suffi­
cientiy long to store the niaximum number of 
vehicles that can be expected to wait for a left­
turn signal. 

Interest may rest in the length of time a 
user must wait, or the number of units waiting 
in line, or the proportion of time that a facility 
might be inactive (an empty parking stall, for 
instance). Queueing models, which employ 
methods of probability and statistics, provide a 
means for predicting some of these delay char­
acteristics. 

The purpose of this chapter is to present 
some of the results of studies of probability 
models of traffic delay. After an introduction to 
some elements of queueing or waiting-line 
theory, examples concerned with delay prob­
lems that occur when all users pass through a 
single-channel control point, such as a left-turn 
slot or a single exit lane for a garage, are given. 
Next, the analysis is extended to consider sev­
eral channels of service; for example, several 
parallel toll booths or the different stalls of a 
parking facility. Also considered is the case of 
a user who doesn't get served; for example, the 
person seeking a parking space who continues 
to another destination when none is found. 

An analysis of delays at intersections is 
considered next, beginning with an analysis of 
unsignalized intersections. Queueing models 
for more complex intersection control, such as 
pedestrian control or traffic-signal control, are 
also considered in this section. Finally, queue­
ing theory is applied to delay on two-lane roads. 

Except for the detailed development of the 
formulas given in section 8.2, this chapter 
avoids detailed mathematical development, but 
does present the theorists' assumptions and 
some results of interest. 
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Chapter 9: Simulation of Traffic Flow 

When traffic situations are so complex 
that they cannot be predicted by a model of 
one of the types discussed in earlier chapters, 
computer simulation often serves as a useful 
predictive tool. The Federal Highway Admin­
istration has supported various generations of 
programs to simulate a network of signalized 
intersections, the latest of which is known as 
UTCS-1. Several freeway simulation models 
have also been developed. Although some 
traffic simulations have made use of analog or 

hybrid computers, the emphasis in Chapter 9 
is on simulation by digital computers. 

1.5 REFERENCES 

1. Rae, J. G., The mythology of urban trans­
portation. Traffic Q., 26( 1): 85-98, 
( 1972). 

2. Gerlough, D. L., and Capelle, D. G. (ed.), 
An Introduction to Traffic Flow Theory. 
Special Report 79. Highway Research 
Board. Washington, D.C. (1964). 



Chapter 2 

MEASUREMENT OF FLOW, SPEED, 
AND CONCENTRATION 

2.1 INTRODUCTION 

The three most important characteristics 
of traffic are flow, speed, and concentration. 
Before attempting to model these character­
istics, it is essential to define them unambigu­
ously. As will be seen later, the definitions are 
related to the methods of measurement, as well 
as to the methods of averaging the measure­
ments. 

The only instruments available to earliest 
students of traffic behavior were stopwatches 
and manual counters. Thus flows past a point 
and headways were the important measure­
ments. These were supplemented by measure­
ments of speed by means of timing each car's 
transit across a "trap." As other methods of 
measurement have been developed, it has be­
come evident that the numerical results depend 
on the method of measurement. 

Here, various methods of measurement 
currently available to the traffic engineer are 
considered, and the definitions of characteristics 
are related to these methods of measurement. 
Specifically, the methods of measurement dis­
cussed include measurements at a point, along 
a length (by photography), and by a moving 
observer. Methods of averaging are also con­
sidered. The definitions are mainly those re­
sulting from the works of Wardrop,1 Lighthill 
and Whitham, 2 and Edie. 3 Definitions in terms 
of stochastic processes have been given by 
Mori et al.,4 Breiman,5 •6 and Foster.7 

2.2 MEASUREMENTS AT A POINT 

Because of the instruments used by early 
investigators, it was natural for quantities mea­
sured at a point to be adopted as important 
measures of traffic performance. Even today 
many operational decisions are based on 
"point" measurements. To obtain useful data 
at a point, it is necessary to cover extensive time 
periods. Thus all characteristics are expressed 
as averages. Figure 2.1 shows a series of 
vehicle trajectories; i.e., space-time plots of the 

7 

paths of vehicles while in a specific space-time 
domain. Consider line AA'; an observer stand­
ing at point A along the roadway (or sampling 
traffic with a pneumatic-tube counter at point 
A) will obtain a count of the trajectories of ve­
hicles that pass point A during time T. When 
only counts are being made, it is customary to 
record the counts for relatively short intervals 
even though the total counting period may be 
relatively long. It is possible, however, to make 
additional measurements such as the (time) 
headways between vehicles, or vehicle speeds 
(by a short trap or by radar). 

2.2.l Flow 

Traditionally, the traffic engineer has used 
volume or flow * as one of the primary mea­
sures of traffic condition or state. This has 
been because flow is the easiest of all character­
istics to obtain. Consider the situation por­
trayed in Figure 2. J. Then if N cars cross line 
AA' in a time T, the flow is computed as 

q=NIT (2.1) 

In usual traffic engineering practice it is 
customary to start the timing of counting in­
tervals at random with respect to traffic; e.g., 
at the start of an hour or the start of a 15-min 
period. The timer is then allowed to run con­
tinuously, recording counts as the hand sweeps 
past each timing point (e.g., each 20 sec). t 

For a more general understanding of this 
phenomenon, consider that each vehicle has 
associated with it a headway, h;, that is mea­
sured between the times of arrival of corre­
sponding parts (e.g., front bumpers) of suc­
cessive vehicles. From this the following 
relationship can be derived: 

* For the distinction between volume and 
flow see "Definitions and Notations." 

t An alternative method is discussed in Chap­
ter 3. 
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N N 1 
q=-y=-N-- 1 h 

""<\:'h. _""<\:'h. 
~' NL.,' 

(2.2) 

where N =the number of headways measured 
and h=the mean headway. For some studies, 
it may be useful to think of an instantaneous 
flow associated with each vehicle. Thus, 

(2.3) 

When using Eq. 2.3, care must be exercised in 
computing an average flow. Eq. 2.2 shows that 

1 1 
q=~= 

h _1 ""<\:'h. 
NL.., ' 

(2.4) 

Thus the average flow, when computed from 
individual flows associated with each vehicle, is 
the harmonic mean of the individual flows. 

2.2.2 Speed 

The average speed is an important mea­
sure of the traffic performance at a particular 
point or along a particular route; in addition, it 
is one of the fundamental characteristics of 
traffic flow. There are two principal average 
speeds, the time mean speed and the space 
mean speed. 1 Unfortunately, in early traffic 
literature there was confusion as to the use of 
these two averages. (As an example of the con­
fusion, the reader is invited to compare the dis­
cussions in various editions of the Traffic Engi­
neering Handbook). 8 - 10 

2.2.2.1 Time Mean Speed (Spot Speed). 
In the past, it has been common practice among 
traffic eQgineers to report the "spot speed" for 
a given location. This is computed as the arith­
metic mean of the observed speeds: 

In theoretical discussions of traffic flow this 
value is referred to as the "time mean speed." 1 

2.2.2.2 Space Mean Speed (Harmonic 
Mean Speed). Consider the situation where 
three cars, one at 20 mph, one at 40 mph, and 
one at 60 mph, are traversing a length D. At 
a point along D the spot speed would be re­
ported as (20 + 40 + 60) I 3 or 40 mph. Sup­
pose, however, that we are interested in average 
speed as calculated from average travel time. 

Average travel time would be 

_ l[D D DJ 1 ~ D 
t = 3 20 + 40 + 60 = N ~ ui 

The average speed representing this travel time 
would be 

D D 1 
Us=(- 1 N D 

NLU. 
i:::l t 

1 N 1 

N~li; 
(2.6) 

For the three cars this would be u = 
1 

1/3(1/20+1/ 40+1/ 60) = 32·7 mph 

Thus, whereas the spot speed (i.e., the time mean 
speed) is the arithmetic mean of the speeds ob­
served at a point, the speed that represents 
average travel time is the harmonic mean of 
speeds observed at a point. Furthermore, it 
will be noted that the harmonic mean speed is 
lower than the time mean speed. For reasons 
that are discussed in section 2.3.2, the harmonic 
mean of speeds observed at a point is known as 
the space mean speed. 

2.2.2.3 Relationships of Mean Speeds. 
The relationship for computing time mean 
speed from space mean speed was first recog­
nized by Wardrop. 1 His relationship, derived 
in Appendix A-1, is 

(2.7) 

where er/ is the variance about the space mean 
speed. 

In traffic engineering practice it is often 
desirable to convert spot (time mean) speeds 
to space mean speeds. For this purpose the 
following approximate relationship, also dis­
cussed in Appendix A-1, has been developed:* 

(2.8) 

where er/ is the variance about the time mean 
speed. 

For the speeds crossing line AA' in Figure 
2.1 the arithmetic mean speed is 21.71 mph, 
while the harmonic mean speed is 1'6.18 mph. 
When the harmonic mean speed is estimated 
from the arithmetic mean speed and the vari­
ance about it, the result is 15.58 mph. Tables 
2.1 and 2.2 illustrate the estimation of the har­
monic mean (i.e., space mean) speed from 

* Haight and Mosher" have presented a 
method for converting 1/, and <r.' to a, and <r.2 by 
means of tables that assume that speeds follow the 
Pearson type III distribution (see Appendix B-2). 

.. 
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Figure 2. 1 Vehicle trajectories: line AA' represents a fixed point in space; line BB' represents a fixed point in 
time. 

point measurements and the estimation of the 
arithmetic mean (i.e., time mean) speed from 
the harmonic mean. (Of course, the variance 
about each mean is necessary in estimating the 

other mean.) Because space mean speed is 
applied to the models of Chapter 4, the term 
"speed" with no adjective implies space mean 
speed in all later sections of this monograph. 
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2.2.3 Concentration from Point 
Measurements 

Although concentration (the number of 
vehicles per unit length) implies measurement 
along a distance, traffic engineers have tradi­
tionally estimated concentration from point 
measurements, using the relationship 

(2.9) 

TABLE 2.1 Speed Measurements and 
Averages a 

Miles per Hour Frequency 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

2 
7 
1 

14 
5 

25 
24 
32 
13 
22 

9 
13 
4 

IO 
0 
2 
1 

a From observations on Interstate 94 at Prior 
Street Bridge, August 1970. 

TABLE 2.2 Harmonic Mean Derived 
from Arithmetic Mean of Table 2.1 a 

Direct 
computation 

Estimate of arithmetic 
mean from harmonic 

Arithmetic 
Mean 

64.1902 

mean 64.1925 
Estimate of harmonic mean 

Harmonic 
Mean 

64.0368 

from arithmetic mean 64.0353 
Variance• about arithmetic mean =9.94723 
Variance about harmonic mean =9.97089 

" See also Appendix B-8. 
• The variance computed here is the unbiased 

estimate of the variance based on sample mea­
surements; i.e., Bessel's correction has been in­
cluded. 

which may be derived as follows: Assume the 
total stream is made up of substreams, with 
each substream having its own (constant) 
speed. Segregate flow into subflows according 
to speed 1 

where k/ k is the fraction of the total density 
in the stream having speed u;, and kt u;=q; 
(from analysis of units). Therefore, 

a=I.qi_q 
"' -k--T 

Eq. 2.9 is of fundamental importance and 
is discussed further in Chapter 4. 

2.2.4 Lane Occupancy 

Although concentration or density is con­
sidered the fundamental characteristic to be 
measured in freeway surveillance, density can­
not be measured directly by electronic means. 
Thus, during the early days of freeway surveil­
lance various estimates of density were investi­
gated. This led to development of a measure 
that is now called lane occupancy. 

If one could at any instant measure the 
lengths of all vehicles on a given roadway sec­
tion and then compute the ratio 

Rl 
__ sum of lengths of vehicles 

(2.10) 
length of roadway section 

This ratio could then be divided by L,,,, the 
average length of a vehicle expressed in miles, 
to yield an estimate of the concentration or 
density in vehicles per mile. 

For example, suppose vehicles having 
lengths (in feet) 17, 13, 20, 40, 17 and 20 are 
distributed over a length of highway one lane 
wide and 1,000 ft long. The ratio R is then 
0.127. If the average length of a vehicle is 
taken as 21 ft (or 0.00398 mi), a computed 
value of 31.91 vehicles/ mile is obtained as the 
concentration on this highway section. 

It is not feasible to use on-line methods to 
measure the sum of the lengths of vehicles in a 
given roadway section. It is possible, however, 
to estimate this value by time measurements. 

Several types of presence detector are 
available to the traffic engineer, including in­
duction loops, magnetometers, ultrasonic re­
flectors, and photo cells. A presence detector 
has the characteristic that it remains in the "on" 
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or "closed" condition as long as the vehicle 
remains within the zone of effectiveness of the 
detector. This characteristic is the basis for 
point measurements of lane occupancy. 

It is not difficult to build an electronic in­
strument to measure the ratio 

sum of times vehicle detector is occupied 
R 2 = total time of observation period 

I.to (2.11) 
T 

This ratio can then be used to estimate density 
and speed. 

Two general types of error are present­
instrumentation and estimation errors. In­
strument errors depend on the design of the 
instrument and are not discussed here, except 
to remark that time is often measured by count­
ing pulses from a generator and that the prin­
cipal errors are related to events whose begin­
ning or ending falls between pulses. 

2.2.4.1 Estimation of Occupancy with 
Presence Detectors. The ratio of occupied 
time to total observation time, expressed as a 
percent, is called "lane occupancy," denoted by 
¢. 

</> = _t_o_ta_l_o_c_cu_p_i_e_d_t_im~e- . 100 = 100 L/o 
total observation time T 

(2.12) 

To use lane occupancy for estimation of den­
sity and speed, it is necessary to kDow the 
effective length of a vehicle as measured by the 
detector in use. Because both the vehicle and 
the detector have finite lengths, the length of 
roadway covered by the vehicle during the "on" 
period of the detector will be different from the 
length of the car and may often be longer. 
Figure 2.2 illustrates this situation. 

Density or concentration (for a given 
lane) may then be estimated by 

k=_j__ 5,280 (2.13) 
100 Le 

where Le is }he effective length of the vehicle 
in feet and k is the estimated concentration. 

For example, consider the following times 
a detector is occupied during a 60-sec period: 

0.39 sec 
*0.50 
0.32 

0.46 sec 
*0.51 
0.44 

0.43 sec 
0.48 

*0.50 

0.47 sec 
0.46 
0.45 
0.44 

* Significance of asterisks is discussed follow­
ing Eq. 2.17. 

Vehicle in Earliest Position to Turn Detector "on" 

I Direction of Traffic Vehicle in Latest 

d Position to H~ld 
_ Detector "on 

lfr;;QJ L 

I ~' j-- Detector 

Le 

Figure 2.2 Effective length of vehicle at presence de­
tector: t0 == LelUt1, where f 0 is the occupied time, le is 
the effective length of the vehicle, and Ud is the speed 

over the detector {time mean speed). 

Thus, 2:t0 =5.85 and N= 13. 

Then,</>= 
56~5 (100) =9.75%. 

If the average effective length of a vehicle is 
A 9.75 5,280 9 8 h" 1 I 

taken as 26 ft, k= lOO · l6 =I . ve 1c es 

mile. 
To estimate speed, it is necessary to count 

the vehicles crossing the detector during the 
observation period. Average speed can then 
be estimated by substituting into u =qi k to give 

, N L 0 u=--
_2,to 

where a is the estimated speed (ft/sec). 

(2.14) 

• • d A 13 (26) 57 8 Using the prev10us ata, 11=~= . 

ft/sec (39.4 mph). 
Note, however, that Eqs. 2.13 and 2.14 

make use of the average effective length of a 
vehicle. This can lead to serious errors when 
the mixture of cars and trucks in the traffic 
stream is varying. Weinberg et al. 12 have pro­
posed a method for compensating for this situa­
tion by making use of the ability of some pres­
ence detectors (e.g., ultrasonic reflectors) to 
distinguish between high and low vehicles and 
to count them separately. If high vehicles are 
taken as trucks and buses and assigned an ef­
fective length, L 1 and low vehicles· are taken 
as cars and assigned an effective length Le, a 
better estimate of speed is expressed: 

, Nt Lt+Ne Le 
u = --'~"=--'---"-.Lt o 

(2.15) 

where Nt is the number of trucks and buses 
during the observation period and Ne is the 
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number of cars during the observation period. 
Extending this method to the estimation of 
concentration gives 

k- Nt+Ne ~--~ (2.16) 
Nt Lt+Ne Le 100 Le 100 

For k in vehicles/mile, Eq. 2.16 may be 
restated 

k- Nt+Ne _<L5 2SO (2.17) 
. Nt Lt+Ne Le 100 ' 

Using the previous data and considering 
those occupancy times marked by an asterisk 
to be trucks with length 40 ft and the other 
occupancy times to represent cars with average 

A 3+10 
length 20 ft, Nt=3; Ne= 10; k= 

3
.
40

+ 
10

.
20 

~·~g 5 ,280 = 20.9 vehicles/ mile. 

It should be noted that these estimates of 
concentration and speed from presence de­
tectors are biased. Mikhalkin et al.17 give meth­
ods for obtaining an unbiased estimate. 

2.3 MEASUREMENTS ALONG A LENGTH 

Either line BB' or line CC' in Figure 2.1 
indicates the information one might obtain 
from an aerial photograph (or photograph 
from a tall building). From a photograph it is 
possible to scale a distance and count the cars 
in this distance. With two photos spaced a 
short time apart (as the lines BB' and CC' in 
Fig. 2.1), it is possible to get speeds and flows. 
(The aerial photo computations given here are 
true for an infinitely long road; Breiman " 
gives more accurate methods for finite lengths.) 

2.3.1 Concentration Along a Length 

From the scaled distance and vehicle 
count, concentration is 

k=N!I (2.18) 

where N is the number of vehicles counted and 
I is the length of roadway section (in miles). 
It is possible, however, to be more specific: 
given that si. is the distance of the ith car be­
hind the car ahead (measured front bumper to 
front bumper), 

1 1 
ki=-=--

si h/ti 
( 2.19) 

where N is the number of spacings counted, 
hi is the time headway (as before) of the ith 

car, and ui is the speed of the ith car (as be­
fore). 

(2.20) 

or 

(2.21) 

Here, the average concentration is the har­
monic mean of the individual concentrations. 

2.3.2 Speed from Measurements Along 
a Length 

When two (or more) aerial photos are 
taken in sequence with a short time interval 
between them, the situation represented in 
Figure 2.1 by lines BB' and CC', separated in 
time by M, obtains. Although each vehicle 
traverses a different distance, all are observed 
for the same time, or 

U·=2 
I M 

Because this average speed ii 8 is the mean taken 
along a distance, Wardrop 1 gave it the name 
"space mean speed." The relationship between 
this mean and its variance and the mean of 
point measurements is given by Eq. 2.7. 

2.3.3 Flow from Measurements Along 
a Length 

Having obtained values for (average) con­
centration and average speed, flow is computed 
from 

(2.23) 

2.4 TRAFFIC MEASUREMENTS BY 
MOVING OBSERVER METHOD 

It has been found that an effective method 
of assessing traffic along an arterial (or in an 
area) is the measurement of traffic by one or 
more moving observers.'"· 15 With this method, 
an observation car travels first with traffic being 
measured and then returns in the direction op-

• 
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posite to that of the traffic being measured. An 
observer in the car records the travel time for 
each direction. For the trip with the traffic 
stream he also records the number of vehicles 
that pass the observation car and the number 
of vehicles passed by it. For the trip opposite 
to the traffic stream the number of cars passed 
in the stream is counted. Further discussion of 
the procedure and the derivation of the com­
putational equations is given in Appendix A-2. 

The relationships are 

l 
. y 

t= mean trave t1me=tc- -
q 

(2.24) 

(2.25) 

(2.26) 

where le= time observer is moving with stream 

of traffic; ta= time observer is moving against 
stream of traffic; x =number of cars met while 
moving against stream of traffic; y =net number 
of vehicles that pass the observer while moving 
with the traffic stream (i.e., the number that 
pass the observer minus the number he passes); 
and !=length of roadway section. 

For example, given tc=l44.4 sec, x=102 ve­
hicles, ta= 68.2 sec, y = 4 vehicles, and l = 6,000 
ft, then, 

102+4 
q= 68.2+ 144.4 

= 0.499 veh/ sec= 1, 79 5 veh/ hr 

.. 1 A A A 4 ..... 1 ') C. A ,...,..,,.... 
l = 1 '+'+·'+ - 0.499 - l JV.'+ ~'°'-

6000 
ii 8=-

36 
=44 ft/sec=30 mph 

1 .4 

0.499 9 h . k=--=0.0113 veh/ft=59. ve /mile 
44 

2.5 SUMMARY OF TRAFFIC MEASUREMENTS 

Characteristic 

Speed (miles/hr), 
ii, 

Flow (vehicles/ hr), 
q 

Concentration 
(vehicles/mile), k 

Observed over 
Short Length 
during Long 

Time 

N 
fis::::::--

1 
:Lu; 
N 

q=-y 

N 

-:Lt; 
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2.8 PROBLEMS 

1. A platoon of vehicles was observed over 
a distance of 1,200 ft entering the study area at 
Hickory Street and proceeding to Main Street 
1,200 ft away. The following data were re­
corded: 

Time at Time at 
Vehicle Hickory Main 

No. (sec) (sec) 

1 0 41 
2 2 46 
3 3 49 
4 5 50 
5 10 53 
6 13 55 
7 15 75 
8 20 77 
9 25 79 

10 35 80 

(a) Plot the trajectories of these 10 vehicles on 
8Y2 x 11 graph paper with time on x-axis and 
distance on y-axis; (b) using the space-time 
domain, find volume, density, and velocity. 

2. Two aerial photos were made over the 
three westbound lanes of the Connecticut Turn­
pike with a 10-sec interval. The following re­
sults were obtained: 

Vehicle 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Position 
First 

Photo a 

1500 
1450 
1300 
1250 
1100 
1000 

700 
300 
250 

0 

Position 
Second 
Photo a 

2400 
2150 
1950 
2000 
1850 
1925 
1360 
1000 
1050 
900 

" Expressed in terms of feet from a reference 
landmark, 

(a) Plot these trajectories on 8Y2 x 11 graph 
paper; (b) using the space-time domain, com-
pute volume, density, and velocity. 

3. The following list of speeds was ob-
served on US 66 in Arizona between 8 AM and 
2 PM. (Reported by Freund, J. F., Modern 
Elementary Statistics, Prentice-Hall ( 1960), p. 
15). 

52 47 50 54 59 63 67 57 55 48 
54 35 53 58 47 53 52 61 54 53 
49 46 56 43 57 45 53 28 42 55 
60 56 61 55 55 51 56 37 53 51 
55 47 51 52 48 60 44 49 57 62 
40 53 57 46 57 62 53 57 47 45 
58 48 50 53 54 44 52 50 55 50 
55 61 47 63 49 59 54 59 46 56 
51 54 63 53 53 47 54 38 41 49 
57 48 30 42 56 49 46 56 60 55 
45 47 44 52 54 59 56 49 58 43 
60 52 58 55 61 51 50 48 50 54 
56 51 46 46 58 38 52 55 51 52 
52 42 53 60 45 48 56 50 46 53 
54 51 47 56 54 54 52 57 53 43 
59 55 62 50 47 59 66 53 49 74 
53 53 56 51 4~ 53 58 44 55 64 
65 65 45 57 52 46 52 57 48 58 
56 55 48 53 54 51 56 64 68 54 
44 53 54 58 49 61 55 50 47 55 

(a) Compute the arithmetic mean and the 
variance about it. (b) Compute the harmonic 
mean directly from the arithmetic mean and 
the variance about it. ( d) Estimate the vari-
ance of the "space mean speed". (hint: Com-
bine Eqs. 2.7 and 2.8). 
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Chapter 3 

STATISTICAL DISTRIBUTIONS OF 
TRAFFIC CHARACTERISTICS 

3.1 INTRODUCTION 

In designing new traffic facilities or new 
control plans it is necessary to predict the per­
formance of traffic with respect to some par­
ticuiar characteristic, and it is often desirabie 
to be able to make a prediction with a limited 
amount of data available or assumed. For in­
stance, it may be necessary in designing a 
pedestrian control system to predict the fre­
quency of headways of greater than 10 sec; in 
designing a left-turn pocket it may be necessary 
to predict how many times per hour the num­
ber of cars arriving during one signal cycle 
will exceed four. Statistical distribution models 
may enable the traffic engineer to make predic­
tions such as these with a minimal amount of 
information. 

Statistical distributions are useful in de­
scribing a wide variety of phenomena where 
there is a high element of randomness. In 
traffic the most important distributions are 
counting distributions-those useful in describ­
ing the occurrence of things that can be 
counted-and interval distributions-those use­
ful in describing the occurrence of the (time) 
intervals between events. Distributions are also 
used, however, in describing such phenomena 
as speeds and gap acceptance. 

In this chapter first elementary counting 
distributions, specifically the Poisson distribu­
tion, the binomial distribution, and the nega­
tive binomial distribution, are discussed and an 
elementary interval distribution for describing 
time headways is examined. Thereafter the 
inadequacy of elementary distributions in the 
general traffic case is demonstrated and some 
advanced distributions for traffic applications 
are described. Finally, distributions useful for 
speeds and gap acceptances are discussed. For 
each distribution discussed it;, form and a 

3.2 COUNTING DISTRIBUTIONS 

Counting the number of cars arriving dur­
ing an interval of time is the easiest and oldest 
measurement of traffic. When counts from a 
series of equai time intervais are compared, 
they appear to form a random series. This led 
early traffic engineers to investigate distribu­
tions as a means of describing the occurrence 
of vehicle arrivals during an interval. 

3.2.1 Poisson Distribution 

The appropriate distribution for describ­
ing the truly random occurrence of discrete 
events is the Poisson distribution. Thus it was 
natural for Kinzer 1 to discuss the possible use 
of the Poisson distribution for traffic in 1933, 
for Adams 2 to publish numerical examples in 
1936, and for Greenshields and co-workers" to 
use the Poisson distribution in analysis of his 
classic work on traffic at intersections in 1947. 

The Poisson distribution may be stated 
(for a derivation see Appendix B-1): 

or 

1n:C e-m 
P(x)=--

1
-

x. 
x=O, 1, 2,... (3.1) 

(/...t)" e->-t 
P(x) = 

1 x. 
(3.2) 

where P(x) =probability that x vehicles will 
arrive during counting period of t; /...=average 
rate of arrival (vehicles/sec); t=duration of 
each couQting period (sec) ; m = /...t =average 
number of vehicles arriving during a period of 
duration t; and e=natural base of logarithms . 

3.2.1.1 Fitting a Poisson Distribution to 
Observed Data. When a Poisson distribution is 

numerical example of fitting the distribution to to be fitted to observed data, the parameter m 
field data are provided. is computed as 

17 
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m 

Total occurrences (e.g., total 
cars observed) 

Total observations (e.g., total number 
of time periods) 

(3.3) 

The value e-•n is then obtained from tables, by 
slide rule calculation, or by a computer sub­
routine. The probabilities of various values of 
x are computed term by term. When calcula­
tion is to be performed by slide rule, by com­
puter program, or by other direct computation 
process, the following relationships are helpful. 

P(x) 

P(x-1) 

P(O) =e-m 

mX 
-exp(-m) 
x! 

rnx-1 . 
---- exp ( - m) 
(x-1)! 

(3.4) 

tn 
x 

In 
P(x) =--P(x-1) forxz 1 (3.5) 

x 
Thus, from Eqs. 3 .4 and 3.5 it follows that 

P(O) = e-111 

P(l) =!!!._P(O) 
1 

P(2) = 
1~1 

P( 1) 

m 
P(3) =)P(2), etc. 

Equations of the type illustrated by Eq. 3.5 are 
known as "recursion formulas." 

The theoretical number of observed inter­
vals containing 0, 1, 2 cars, etc., is obtained by 
multiplying the total number of intervals ob­
served by, respectively, the probabilities P(O), 
P(l), P(2), etc. 

3.2.1.2 Combination of Poisson Popu· 
lations. It is shown in Appendix B-1 that if 
several Poisson populations, having the param­
eters mA, mg ... mN, are combined, the result 
is still Poisson distributed with the parameter 

N 

tn= L,mi 
i=A 

3.2.1.3 Numerical Example of Poisson 
Distribution. The first published numerical 
examples of the use of the Poisson distribution 
in traffic were those of Adams 2 (see Table 3. l). 

3.2.1.4 Cumulative Poisson Distribution. 
The previous discussion has treated the proba­
bility of occurrence· of a specific event (i.e., 
exactly x arrivals) using one term of a Poisson 
distribution. Frequently, in practice it is desir­
able to compute the probability of a range of 
events. 

The terms of the Poisson distribution may 
be summed to give the probability of fewer 
than or more than x vehicles per period. If, 
for example, the traffic engineer desires to com­
pute the probability that two or fewer cars will 
arrive during a given period, this is the sum of 
the probabilities that 0, l, 2 cars arrive. This 
may be expressed as 

2 . 

P(S2)= L 111 '_~-m 
i=O l. 

for which the general case may be stated 

x . 
~ n1 1 e-m 

P( sx) = L..--.
1
-

i=o l. 

(3.6) 

For the case of fewer than x, the statement 
becomes 

x-1 · 
P( <x) = L m'.~-m 

i=O l. 

(3.7) 

For the case of more than x, 

x n1i e-m 
P(>x)=I-L,--.

1
-

i=o l. 

(3.8) 

For the case of x or more, 

X-1 i m 

P( zx) = 1- L m .~- (3.9) 
i=O l. 

or 

00 1nf e-m 
P(zx) = L,-.-, -

i::::x l. 

(3.10) 

For the case of at least x but not more than y, 

Y int e-m 
P(xsisy) = L,--.,-

i=x l. 

(3.11) 

3.2.1. 5 Limitations of the Poisson Distri­
bution. In section 3 .2.1 it was pointed out that 
the Poisson distribution is appropriate for de­
scribing discrete random events. When traffic 
is light and when there is no disturbing factor 
such as a traffic signal, the behavior of traffic 
may appear to be random, and the Poisson dis-
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tribution will give satisfactory results. How­
ever, when traffic becomes congested or when 
there is some cyclic disturbance in the arrival 
rate of traffic (such as produced by a traffic 
signal), other elementary distributions give a 
better description of traffic behavior (i.e., they 
give a better fit between theoretical and ob­
served data). (See Appendix B-7 for a dis­
cussion of goodness of fit, including x2 and 
Kolmogorov-Smirnoff (K-S) tests.) 

It should be noted that for the Poisson 
distribution the mean and variance are equal. 
When the observed data present a ratio of 
variance/ mean markedly different from 1.0, it 
is an indication that the Poisson distribution is 
not suitable. (See Appendix B-8 for a discus­
sion of the variance of observed data.) 

3.2.2 Binomial Distribution 

For congested traffic (where the ratio of 
the observed variance/ mean is substantially 
less than 1), * it has been found ·1 that the 
binomial distribution can be used to describe 
the distribution of traffic arrivals. t 

Stated in the form most useful for traffic 
purposes, the binomial distribution is: 

P(x) = C/' p·"(l- p) n-x, 

X= 0, 1, 2 .. ., ll (3.12) 

where p is the probability that one car arrives 
and Ci." is the combinations of n things taken 

. ll ! 
x at a time= ( 1 • x! n-x). 

For the binomial distribution, m is the 
mean, = n p, and s2 is the variance, = n p( 1 - p). 
If p is the estimated value of binomial parame­
ter p, used in fitting, and n is the estimated 
value of binomial parameter n, used in fitting, 
these parameters may be estimated by the 
relationships 6 : 

p= (m-s2 )/m 

n= ml p=m2 / (m-s2 ) 

(3.13) 

(3.14) 

where m and s2 are computed from the ob­
served data. Fitting may be accomplished by 
direct computation or by the use of tables.' 

* In congested traffic the opportunity for free 
movement is decreased, resulting in decreased 
variance. 

t It has been shown"" that as the binomial 
parameter n becomes very large and the parame­
ter p becomes very small but the product pn is a 
constant, the Poisson distribution results . 

TABLE 3.1 Poisson Arrival Frequencies, 
Compared with Observed Arrival Counts 

Measured on Vere Street, London 

No. 
Vehicles/ 

Sec-10 Observed Total Theoretical 
Period" Frequency Vehicles• Frequency c 

0 94 0 97.0 
1 63 63 59.9 
2 21 42 18.5 
3 2 6 3.8 

>3 0 0 0.8 

TOTAL 180 111 180.0 

a Since there \Vere 111 vehicles in 180 10-sec 
periods, the hourly volume was 222. 

• Obtained by multiplying Col. 1 by Col. 2. 
'(Theoretical frequency)=(total observed fre-

nrz e-m 
q uency) ----;.y-, 

h (Total vehicles) 
w ere /11 = (Total observed frequency) 

111 I . 
180; x = va ue m Col. 1. 

3.2.2.1 Numerical Example of Binomial 
Distribution. Table 3.2 illustrates a binomial 
distribution fitted to data for congested free­
way flow (where the variance/mean ratio 
equals 0.535). For comparison a Poisson dis­
tribution has also been fitted. It will be noted 
that the binomial distribution produces a much 
better fit. 

3.2.3 Traffic Counts with High Variance 
(Negative Binomial Distribution) 

When traffic counts extend over both a 
peak period and an offpeak period, combining 
the results into one distribution results in a 
high variance. A more common but less ob­
vious situation occurs downstream from a traf­
fic signal: During the early portion of the 
signal cycle traffic flow is high (usually at satu­
ration level); during the later portion of the 
signal cycle there often will be very light traffic. 
If the counting period corresponds to the green 
portion of the signal cycle, or to the complete 
signal cycle, cyclic effects will be masked. 
However, if the counting period is short (say 
10 sec), there will be periods of high flow and 
periods of low flow; there may even be periods 
of intermediate flow. Thus, combining all 
counting periods into one distribution will re­
sult in a very high variance. 

.. 
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Table 3.3 illustrates the phenomenon where 
the counting period is synchronized with the 
signal cycle; here, with 30-sec counting inter­
vals the observed data can fit a Poisson distri­
bution acceptably (at the 5 percent confidence 
level with a chi-square test). When the same 
data are analyzed in 10-sec intervals, the non­
randomness appears, and a Poisson distribu­
tion will not fit the data; however, a negative 
binomial distribution may fit acceptably, as will 
be shown. 

The negative binomial distribution (some­
times called the Pascal distribution) may be 
stated 8 

x=O, 1, 2, ... 
(3.15) 

Fitting is accomplished by using the sam­
ple mean and sample variance to estimate 

TABLE 3.2 Comparison of Binomial and 
Poisson Distributions Fitted to 

Congested Traffic Arrivals a 

Number of 
Cars per 
Interval 

<3 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

>12 

TOTAL 

Theoretical Frequency by 

Binomial 
Observed Distribu-

Frequency tion • 

0 
3 
0 
8 

10 
11 
10 
11 
9 
l 
l 
0 

64 

m= 7.469 
i'= 3.999 

i'lm=0.535 

0.3 
1.0 
2.9 
6.2 
9.8 

12.3 
12.l 
9.4 
5.8 
2.8 
1.0 
0.4 

64.0 

Poisson 
Distribu­

tion• 

1.3 
2.5 
4.7 
7.1 
8.8 
9.4 
8.8 
7.3 
5.4 
3.7 
2.3 
2.7 

64.0 

• Recorded at 1-494 at 24th Avenue-Median 
Lane, during morning peak traffic; measured at 
15-sec intervals. 

• The fit of the binomial distribution is ac­
ceptable by a x' test at the 5 percent significance 
level. The fit of the Poisson distribution is not 
acceptable. See Appendix B-7 for an illustration 
of the computations of this example. 

parameters p and k. If m is the mean of ob­
served data and s2 is the variance of observed 
data, 

p= m/s2 (3.16) 

(3.17) 

and 

q=(l-p) (3.18) 

The various terms can then be obtained 
from tables 8 or by direct computation (e.g., 
using a computer program). The recursion 
equations for the negative binomial distribution 
are given by 

P(O) = p" (3.19) 

( 
x+k-1 

P x)= qP(x-1) 
x 

for x2'. I 

(3.20) 

3.2.3.1 Numerical Example of Negative 
Binomial Distribution. Table 3.4 illustrates the 
data for a cyclic situation downstream from a 
traffic signal. Although the negative binomial 
distribution fits the data acceptably, the Poisson 
distribution does not. 

TABLE 3.3 Traffic Arrivals a at Durfee 
Avenue, Northbound; 30-Sec Intervals 

Number of 
Frequency 

Cars per Theoretical, by 
Interval Observed Poisson Distr.• 

0 9 5.6 
1 16 17.2 
2 30 26.3 
3 22 26.9 
4 19 20.6 
5 10 12.6 
6 3 6.5 
7 7 2.8 
8 3 1.1 

2'.9 l 0.4 

TOTAL 120 120.0 

368 
m= 120 =3.067 

"Volume is 368 vehicles/hr. 
•This fit is acceptable at the 5 percent sig­

nificance level with a x" test. 

• 
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3.2.3.2 Some Notes Concerning the 
Negative Binomial Distribution. Buckley 9 

points out that if a detector on a roadway 
spans several lanes, the resulting count is 
usually a negative binomial distribution. Ken­
dall and Stuart 10 stated that if the Poisson 
parameter is independently distributed with a 
type III distribution, the resulting distribution 
is negative binomial. 

3.2.4 Summary of Elementary Counting 
Distributions 

1. The Poisson distribution represents the 
random occuHence of discrete events. 

2. In counts of light traffic w·here the 
observed data produce a ratio of variance/ 
mean of approximately 1.0, the Poisson distri­
bution may be fitted to the observed data. 

3. In counts of congested traffic where 
the observed data produce a ratio of variance/ 
mean of substantially less than 1.0, the bi­
nomial distribution may be fitted to the ob­
served data. 

4. In counts of traffic where there is a 
cyclic variation in the flow or where the mean 
flow is changing during the counting period, 
giving a ratio of variance/ mean substantially 
greater than 1.0, the negative binomial distri­
bution can be fitted to the observed data. 

3.3 INTERVAL DISTRIBUTION 

The previous analyses have developed the 
probability of discrete events occurring within 
a specific time· interval. Another traffic char­
acteristic of great importance is the time be­
tween events; i.e., the time headways between 
the arrival of vehicles. The class of distribu­
tions used for this purpose has been termed 
"interval distributions." 

3.3. l Negative Exponential Distribution 

The elementary interval distribution is the 
negative exponential distribution, which may 
be derived as follows: 

In Eq. 3.2 substitute A.=V/3,600 cars/sec, 
where V is the hourly volume; thus, 

P(x)= -- -( 
Vt )x e -rt/~.60,0 

3,600 x! 

P(O) = e-rt/3,6oo 

TABLE 3.4 Comparison of Poisson and 
Negative Binomial Distributions for 

Durfee Avenue, Northbound; 
1 O·Sec Intervals 

Theoretical Frequency 

Number Negative 
of Cars Poisson Binomial 

per Observed Distribu- Distribu-
Interval Frequency tion a tion a 

0 139 129.6 140.4 
1 128 132.4 122.0 
2 55 67.7 62.2 
3 25 23.1 24.2 
4 10 5.9 8.0 
5 3 1.2 2.3 

>5 0 O.i 0.9 

TOTAL 360 360.0 360.0 

m= 1.022 
i'= 1.203 

i'lm= 1.177 

' The fit of the negative binomial distribution 
is acceptable by a x2 test at the 5 percent sig­
nificance level; the fit of the Poisson distribution 
is not. 

If there is no vehicle arrival in a particu­
lar interval of length t, there will be a headway 
of at least t sec between the last previous 
arrival and the next arrival. In other words, 
P(O) is also the probability of a headway 
equal to or greater than t sec. This may be 
expressed: 

P(h?.t) =e-Vt/3,aoo (3.19) 

From this relationship it may be seen that 
(under conditions of random flow) the num­
ber of headways greater than any given value 
will be distributed according to an exponential 
curve. (Though correctly a negative exponen­
tial, this is usually known simply as an expo­
nential distribution.) 

In the above equation m or Vt/3,600 is 
the mean of the arrival (counting) probability 
distribution. If we set m =ti T, T is the mean of 
the interval (headway) probability distribution 
=3,600/V. Thus, the probability of a headway 
equal to or greater than t may be written: 

P(h?.t) =e-t/T (3.20) 



22 STATISTICAL DISTRIBUTIONS OF TRAFFIC CHARACTERISTICS 

1.0 

0.8 

0.. 

>o.s 
.~ 

:c 
ro 
.0 e o.4 
0.. 

0.2 

2 4 6 8 
Time, t 

1.0 --- - --- -=-:.:;-::.-=-~-------

0.8 

P (h < t) ; 1 - e -t/T 

0.2 

10 2 4 6 8 10 

Time, t 

Figure 3.1 Probability of headways equal to or greater Figure 3.2 Probability of headways less than t, with 
than t, as treated by the exponential distribution, with T = 1 sec. 

T= 1 sec. 

A sketch representing the general (negative) 
exponential distribution of Eq. 3.20 is shown 
in Figure 3. I. 

For some purposes it is more convenient 
to use the complementary relationship: 

P ( h < t) = 1 - e-1 / 7' ( 3 .21) 

which is illustrated in Figure 3.2. 
The exponential probability distribution is 

fitted by computing the mean interval T and 
then using tables 72 to obtain values of e-1 /T 

for various values of t. 
The variance of the exponential distribu­

tion is T2. (Appendix B-3 presents a deriva­
tion.) 

3.3.2 Numerical Example of Negative 
Exponential Distribution 

The applicability of the above relationship 
may be illustrated by fitting an exponential 
distribution to data observed on the Arroyo 
Seco Freeway (now the Pasadena Freeway). 
The observations included 214 intervals, total­
ing 1,753 sec. Thus, T= 1,753/214=8.19 sec, 
m=t/T=t/8.19=0.122t, P(h?.t) =e-0 -122 1, and 
H=expected number of headways?.t, or 

H=214e-o.1221 

Table 3 .5 lists the results of the fitting. 

These results are also depicted graphically in 
Figure 3.3. It may be seen that agreement 
between the curve and the data is reasonable 
(acceptable by x" test at the 0.05 level). It 
should be noted that traffic was light at the 
time of these observations: Volume= (3,600/ 
1,753)214=439 vehicles/hr. 

3.3.3 Alternate Viewpoint 

The negative exponential probability 
models of Eqs. 3.20 and 3.21 can be viewed 
in an alternate way as follows: Consider the 
probability density of intervals (headways) 

dP 1 
p(t) =-= ~e-t/T 

dt T 
(3.22) 

where Tis the average of time intervals (head­
ways) measured from the origin. Thus, the 
following probability relationships can be 
stated: 

P(h< t) = p(h)dt= -e-t/Tdt= 1-e-t/T f t ft 1 

o o T 
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3.4 INADEQUACY OF THE 
EXPONENTIAL DISTRIBUTION FOR 

INTERVALS 

As discussed in sections 3.2 and 3.3, the 
Poisson distribution for vehicle counts and the 
negative exponential distribution for time head­
ways are only applicable when traffic flows are 
light; i.e., when there is no interaction between 
vehicles, thus enabling them to move at ran­
dom. As traffic becomes heavier, vehicles are 
restricted in their ability to pass at will, and 
interaction between vehicles increases. (The 
assumption of interaction between vehicles is 
fundamental to car-following analysis, as dis­
cussed in Chapter 4.) Vehicles then tend to 
operate in platoons where the minimum time 
headway is substantially greater than zero, 
which results from vehicle finite length and 
finite spacing between the rear of one vehicle 
and the front of the following vehicle. The 
exponential distribution, on the other hand, 
describes probabilities of headways extending 
down to very small values. (See Figure 3 .1 or 
Figure 3.2.) When observations from several 
parallel lanes are combined, it is possible to 
have headways as low as zero. 

Figures 3.1 and 3.3 illustrate the cumu­
lative probability of headways t or greater, and 
Figure 3.2 illustrates the cumulative probabil­
ity of headways less than t. The phenomenon 
of the scarcity of short headways can often be 
better illustrated by the frequency density or 
the probability density curve rather than the 
cumulative curve; i.e., Eq. 3.22 or the equiva­
lent frequency curve obtained by multiplying 
the values from Eq. 3.22 by the total number 
of observations. Thus Figure 3.4 illustrates an 
example of headway observations on the Holly­
wood Freeway for flows of 33, 34, and 35 
vehicles/min. It will be noted from visual ex­
amination that the fit of the exponential density 
distribution is very poor. (Buckley 11 estimates 
that "the probability of a worse fit is approxi­
mately 10-100.") 

3.5 ADVANCED HEADWAY 
DISTRIBUTIONS 

Because of the poor agreement between 
the frequencies of headways observed in prac­
tice and the frequencies predicted by the nega­
tive exponential distribution, as well as theo­
retical considerations precluding very short 
headways, other distributions have been sought 
as a means of improving the predicted fre-

TABLE 3.5 lntervehicle Headways, 
Arroyo Seco Freeway 

Observed H, Expected 
Headway, t Cumulative Number of 

(sec) Frequency 2 t Headways" 2 I 

0 214 214.0 
1 185 191.3 
2 171 171.0 
3 149 153.0 
4 136 136.7 
5 125 122.2 
6 111 109.4 
7 95 97.8 
8 84 87.3 
9 72 78.1 

iO 6i 69.8 
11 52 62.5 
12 40 55.8 
13 34 49.9 
14 32 44.5 
15 29 39.8 
16 26 35.7 
17 19 31.9 
18 16 28.5 
19 14 25.5 
20 11 22.7 
21 10 20.3 
22 9 18.2 
23 8 16.3 
24 8 14.6 
25 7 13.1 
26 7 11.6 
27 6 10.5 
28 4 9.2 
29 3 8.3 
30 1 7.5 
31 0 6.6 

"From negative exponential distribution. 

quencies. For the purpose of this discussion 
these have been termed "advanced headway 
distributions." 

3.5.1 Shifted Exponential Distribution 

Section 3.4 emphasized one shortcoming 
of the exponential distribution: It predicts too 
many short headways. One approach to treat­
ing this situation is to introduce a minimum 
allowable headway; i.e., a region of the distri­
bution in which headways are prohibited. 
(Some writers 13 have maintained that a deter­
ministic prohibited period (i.e., a deterministic 
minimum headway) is philosophically unac­
ceptable. They would rather have a period 
during which the probability of an arrival is 
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Figure 3.3 Plot of dota' in Table 3.5 for lone 1 from 2 to 2:30 PM, October 1950. 
Note: Dashed curve applies only to probability scale. 

very low but not zero. The authors wish to 
point out, however, the use of a deterministic 
"guarantee period" in reliability engineering. 14 ) 

This may be visualized by taking the curve of 
Figure 3.2 and shifting it to the right by an 
amount r equal to the minimum allowable 
headway. This is illustrated in Figure 3.5. In 
shifting, it is necessary to make appropriate 

adjustments to maintain the total area of unity 
under the probability curve, from which the 
following results 12 : 

P(h?_t) =e-<t-Tl/(T-Tl (3.22) 

(Appendix B-3 derives the parameters of the 
shifted exponential distribution.) Note that the 
probability density is 
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p (h < t) = 1-e -(t - r)/(T - r) 
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Time, t 

Figure 3.5 Shifted exponential distribution to represent the probability of headways 
less than t with a prohibition of headways less than T. (Average of observed 

headways is T.) 
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p(t) =0 for t<r 

and 

1 p(t) =-- e-<t-r>/tT-rJ 
T-r 

for t~r. 

Fitting a shifted exponential distribution 
to field data requires estimation of the parame­
ters t and r, where t is the mean of measure­
ments from the origin, f is the shift of curve 
with respect to the origin, and (T-7-) 2 is the 
variance about the origin. 

An application of the shifted cumulative 
exponential distribution is shown in Figure 3.6. 
Figure 3.7 illustrates the relationship between 
a shifted exponential frequency density curve 

.... 
0 
.... 
<ll ..c 

400 ...... 

E 100 ,__ 
:l 
z 

,__ I 

) 

/ 

and Buckley's data for the Hollywood Free­
way. Note that whereas the shifted exponen­
tial fits data for low flows, it is not suitable for 
high flows. 

3.5.2 Other Pearson Type Ill 
Distributions 

Appendix B-2 discusses the Pearson type 
III family of distributions and points out that 
both the negative exponential distribution and 
the shifted exponential distribution are special 
cases of this family. Other special cases have 
been found to be useful for describing traffic 
headways. One such special case is the Erlang 
distribution. 

r = 1.0 sec 
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Figure 3.6 Shifted cumulative exponential distribution fitted to observations taken in Cambridge, 
Mass. Total time, 2,289 sec; total number of vehicles, 318; flow, 5,500 veh/hr.16 
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3.5.2.1 Erlang Distribution. The cumu­
lative Erlang distribution may be stated: 

k-l(kt)le-kt/1' 
P(h>t)= L - -~ 

- i=O T i! 
(3.23) 

For k =I, this reduces to the exponential dis­
tribution. 

For k=2 

P(h~t)=[l+(~)J e-kt/T 

260 
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For k=3 

P(h~t) =[ 1 +( ~ )+( ~y ~!] e-kt/T 

For k=4 

P(h~t) =[I+(~)+( ~)
2 

~! 
+( ~ )3 ;! J e-kt/T 

Here the value of k, a parameter that 
determines the shape of the distribution, may 
be estimated from the mean and variance of 
the observed data 16 : 

' T2 
k=-

s2 
(3.24) 

where T is the mean of the observed intervals 
and s2 is the variance of the observed intervals. 
When the Erlang distribution is used, the value 
of k in Eq. 3.24 is rounded off to the nearest 
integer. It is possible to use the gamma distri­
bution with noninteger values of k, but cal­
culations for such cases are very involved, 
requiring use of tables of the gamma func­
tion 16 •17 or a computer program of the gamma 
function. 18•19 The value of k may be a rough 
indication of the degree of nonrandomness. 
When k = 1, the data appear to be random; 
as k increases, the degree of nonrandomness 
appears to increase. 

3.5.2.2 Numerical Example of the Erlang 
Distribution. Tables 3.6 and 3.7 illustrate the 
fitting of an Erlang distribution to headway 
observations on a freeway; more specifically, 
Table 3.6 demonstrates the estimation of pa­
rameters from one-half of the data, and Table 
3. 7 the testing of the fit to the other half of 
the data by the Kolmogorov-Smirnoff (K-S) 
test (see Appendix B-7). This test is an al­
ternative test for goodness of fit, especially 
suited to small sample sizes. The fit shown in 
Table 3.7 is acceptable at the 5 percent level. 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Headway, Time Units of 10-4 hr (i.e., 0.36 sec) 

Figure 3.7 Buckley example of shifted exponential fltted to freeway data.11 
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(It should be noted that the data of Tables 3.6 
and 3.7 are given in inverse cumulation form, 
analogous to Figure 3.3.) 

Table 3.8 illustrates the changes in the 
theoretical distribution as the parameter k 
changes. 

3.5.3 Lognormal Distribution of 
Headways 

In the lognormal distribution the loga­
rithm of the stochastic variable, rather than 
the variable itself, is distributed according to 
the normal distribution; Appendix B-4 de­
scribes this distribution and methods of fitting 
it to experimental data. 

TABLE 3.6 Estimation of Parameters for 
Erlang Distribution " 

Observed Headway 
Headway b Squared 

0.9 0.81 
2.1 4.41 
2.5 6.25 
3.8 14.44 
1.4 1.96 
1.1 1.21 
2.9 8.41 
1.8 3.24 
1.2 1.44 
1.0 1.00 
1.1 1.21 
2.0 4.00 
2.1 4.41 
2.5 6.25 
4.6 21.16 
1.1 1.21 
5.7 32.49 
3.1 9.61 
2.3 5.29 
3.5 12.25 
0.9 0.81 
5.6 31.36 
0.8 0.64 
1.7 2.89 
1.4 1.96 

TOTAL 57.1 191.71 

T=57.1/25 =2.204 

s'= 2~[ 191.71- C 57~~)']=2.554 
k=.£_= (2.204)' =I 99='.l 

s' 2.554 · ~ 

•Data from Gerlough and Barnes.' 
b Observations 2, 4, 6 ... 48, 50 used. 

Several writers, including Daou, 20•21 

Greenberg,22 May,23 and Tolle,24 have sug­
gested the use of the lognormal distribution 
for headways, especially for traffic in platoons. 
One advantage is the ability to make a quick 
test of fitting by graphical means. The curve 
of a cumulative lognormal distribution on 
paper having a log scale on one axis and a 
normal probability scale on the other axis is a 
straight line. Figure 3.8 is such a plot for the 
data shown in Table 3.9. 

3.6 COMPOSITE HEADWAY 
MODELS 

Schuh! 2 " has suggested that headways, 
especially where there are more lanes than one, 
appear to consist of two subpopulations: one 
of freely flowing cars and one of cars con­
strained by traffic ahead. The model he pro­
poses is a composite of shifted and unshifted 
exponential distributions 

p ( h < t) = ( 1 - a.) [ 1 - exp ( ~: ) J 

where 

+a.[ 1-exp(- ;:_:T) J (3.25) 

a.= fraction of total flow made up of 
constrained vehicles; 

T 1 =average headway of free-flowing 
vehicles; 

T2 = average headway (about origin) of 
constrained vehicles; and 

T= shift of curve (i.e., minimum head­
way) for constrained vehicles. 

Figure 3 .9 illustrates an example given by 
Schuh!. 

Kell 26 has gone farther than Schuh! by 
including a minimum headway for the free­
flowing vehicles. With four or five parameters 
to estimate, fitting of this model is sometimes 
difficult. Where the two populations can be 
readily identified, however, fitting is relatively 
straightforward; where this is not possible, 
other measures must be taken. Kell has de­
veloped some relationships from extensive field 
data. 

Based on empirical results, Grecco and 
Sword 2

' have developed a nomograph (Fig­
ure 3.10) by which it is possible to estimate 
probabilities of various headways from lane 
volume assuming a shifted exponential distri­
bution. The equation represented by this 
nomograph is 
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TABLE 3.7 Fitting of Erlang Distribution and Testing by K-S Method" 

Observed Observed Rela- Erlang' K-S Theoretical 
Gaps"~t tive Frequency Probability Difference Gaps~ t 

0 25 1.00 1.000 0.000 25.0 
I 21 0.84 0.720 0.120 18.0 
2 11 0.44 0.462 0.022 11.6 
3 7 0.28 0.246 0.034 6.2 
4 4 0.16 0.125 0.035 3.1 
5 2 0.08 0.061 0.019 1.5 
6 1 0.04 0.026 0.014 0.7 
7 0 0.00 0.015 0.035 0.4 

Maximum difference: 0.12 
K-S.os.25: 0.27 

" Data from Gerlough and Barnes.' 
•Observations 1, 3, 5, ... 47, 49 used. 

'P(h ~ t) = [ 1 + 2_;~4 Je-2112
·"''; fit is acceptable at the 5 percent level. 

TABLE 3.8 Effect of Varying Erlang Parameter k for Theoretical Frequency of Headways 
Greater Than ta 

Observed 

Odd Even 
k=I k=2 k=3 k=4 k=5 Values Values 

0 25.0 25.0 25.0 25.0 25.0 25 25 
1 15.9 19.2 21.1 22.2 23.0 21 22 
2 JO.I 11.5 12.2 12.7 13.1 11 13 
3 6.4 6.1 5.7 5.2 4.8 7 6 
4 4.1 3.1 2.3 1.7 1.3 4 3 
5 2.6 1.5 0.9 0.5 0.3 2 2 
6 1.6 0.7 0.3 0.1 1 0 
7 1.0 0.3 0.1 0 
8 0.7 0.1 
9 0.4 

10 0.3 

"Data from Gerlough and Barnes' (as corrected by the authors Mar. 8, 1974). 

115 V e-<t-1 i1 2 · 5 

P(h~ t) = 100 000 
' 

(
l- 115V ) -t/<2•-o.0122r1 

+ 100,000 e t~ 1.0 sec 

(3.26) 

where V is the hourly volume. 
Shifting of distributions and use of multi­

parameter distributions and mixed distributions 
to represent mixtures of subpopulations have 
been exploited by various investigators in vari­
ous ways. The works of Dawson and of Buck­
ley are cited as examples (without derivation). 

Dawson 28029 has combined the improved 
shape of the Erlang distribution and the feature 
of shifting the distribution to the right to ac­
count for the minimum headway. His final 
model, which he calls the hyper-Erlang ("hyper­
lang") distribution, may be expressed 
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10.0 TABLE 3.9 Headways on Eisenhower 
8.0 Freeway at First Avenue, 10-14 
6.0 Vehicles/ Minute• 

4.0 

1.0 
0.8 
0.6 

0.4 

, , , 
0.2 

0.1 
0.01 0.1 

Figure 3.8 

10 

Cumulative Percent 
96 

Lognormal plot of data in Table 3.9 with 
visual fit. 

where t=any time duration; •\=the minimum 
"free" headway; y 1 =the average "free" head­
way; 8,=the minimum headway in the con­
strained headway distribution; y2 =the average 
headway in the constrained distribution; and 
k =an index that indicates the degree of non­
randomness in the constrained headway distri­
bution. (See section 3.5.2.1.) 

Table 3.10 lists the values for the various 
parameters as computed for data observed by 
investigators at Purdue University. Figure 3.11 
plots the distributions from these parameters. 

Headway 

0.4 
0.9 
1.4 
1.9 
2.4 
2.9 
3.4 
3.9 
4.4 
4.9 
5.4 
5.9 
6.4 
6.9 
7.4 
7.9 
8.4 
8.9 
9.4 

>9.5 

Frequency 

5 
63 

122 
163 
152 
198 
139 
98 
85 
92 
75 
55 
58 
38 
42 
55 
27 
23 
27 

150 

" Data from May.23 

Cumulative 
Percent 

0.3 
4.1 

11.4 
21.2 
30.3 
42.2 
50.5 
56.4 
61.5 
67.0 
71.5 
74.8 
78.3 
80.6 
83.l 
86.4 
88.0 
89.3 
91.0 

100.0 

Buckley 11 has proposed a "semirandom" 
model or a distribution representing two sub­
populations, one having type 1 headways and 
the other having type 2 headways. Type 1 
headways result from a vehicle being placed 
exactly at the rear limit of a zone of emptiness, 
where vehicles never enter; its length is mea­
sured in time units and is normally distributed. 
Type 2 headways result when a vehicle occurs 

TABLE 3.10 Hyperlang Model Parameters " 

Flow Rate 

Moni- Com-
to red puted R' a_, 1'1 01 k a., 1'2 02 

158 184 0.9959 0.86 22.34 0.69 1 0.14 ::.88 1.65 
251 219 0.9977 0.70 22.09 0.35 1 0.30 2.90 1.44 
353 311 0.9996 0.61 16.75 0.74 1 0.39 3.35 1.12 
450 492 0.9996 0.64 9.81 0.61 2 0.36 2.81 0.70 
547 489 0.9997 0.56 11.05 0.70 2 0.44 2.73 0.90 
651 567 0.9995 0.43 11.06 0.79 2 0.57 2.81 0.71 
746 710 0.9996 0.40 8.35 0.88 3 0.60 2.92 0.57 
836 740 0.9998 0.20 11.57 0.95 3 0.80 3.23 0.52 
957 971 0.9997 0.53 4.58 1.06 6 0.47 2.71 0.72 

"Data from Purdue University. 
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Figure 3.9 Composite exponential arrivals: ' 0 curve A computed for constrained vehi­
cles; curve B, for unconstrained vehicles; curve C, for composite flow; curve D, from 

field data (taken from Schuh!). Points in circles are results of computer generation. 

at some position to the rear of the extreme rear 
limit of a zone of emptiness; i.e., vehicles with 
type 2 headways are presumed to be not in­
fluenced by the front vehicle. 

Using 609 headway observations from the 
Hollywood Freeway at volumes of 33, 34, and 
35 vehicles/min, Buckley plotted comparisons 
of data against several distributions. These 
plots appear as Figures 3.4, 3.7, and 3.12. By 
inspection, the semirandom distribution appears 
to provide the best fit. 

3.7 SELECTION OF HEADWAY 
DISTRIBUTION 

As in many engineering selection proc­
esses, selection of a suitable headway distribu­
tion represents a compromise between eco­
nomic considerations and faithfulness of the 
model. Greater faithfulness is often obtained 
by using a model with a greater number of 
parameters; such a model, on the other hand, 

results in a more complex computational pro­
cedure. In some cases the intended use of the 
model can help in the selection procedure. For 
instance, Newell 30 has shown that delays are 
relatively insensitive to the form of the distribu­
tion of the arriving traffic. Thus, if the objec­
tive is simply the computation of delays, the 
simplest (i.e., the negative exponential) distri­
bution should be used. If, however, the objec­
tive is the determination of gaps for, say, cross­
ing purposes, a more faithful distribution may 
be needed. 

3.8 ADVANCED COUNTING 
DISTRIBUTIONS 

In section 3.2 traffic counts (and head­
ways) for low traffic flows (i.e., where cars can 
maneuver with relative ease) appear to be 
random. In such cases the Poisson distribution 
can serve as a model of traffic counts. When 
the flow becomes high, however, freedom to 
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maneuver is diminished and counts per unit 
time become more uniform. In this situation 
the binomial distribution provides a simple 
means of modeling the counting process. On 
the other hand, when there is some disturbing 
factor, such as a traffic signal or a rapidly 
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changing average flow, the variance of the 
counting process becomes large. The simple 
model for such situations is the negative bi­
nomial distribution. 

In section 3.4 simple headway distribu­
tions are not deemed adequate from a theo-
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Lane Volume (veh/hr) 

Figure 3. 10 Probability of </. headway less than x sec."' 
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Figure 3.11 Hyperlang headway distributions for Purdue research project data.28 
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retical standpoint, and in sections 3.5 and 3.6 
several advanced distributions of headways 
were discussed. 

In section 3.1.1 it was pointed out that the 
negative exponential distribution for headways 
can be easily derived from the Poisson distribu­
tion of counts. The derivation process could 
have been reversed, taking the negative expo­
nential distribution of headways and deriving 
the Poisson distribution by the mathematical 
operation known as convolution. This proce­
dure, even for the simple case of the negative 
exponential headway distribution, is very te­
dious. For more complex headway distribu­
tions the convolution process can be intractable 
even though theoretically possible. 

In summary, the following pertain: ( 1) 
Although simple distributions will often work 
for traffic data, they are not necessarily correct; 
(2) for each headway distribution there is a 
related counting distribution, even though such 
distributions cannot be stated explicitly. 

By use of the approaches taken in de­
veloping advanced headway distributions we 
can search for advanced counting distributions 
directly (i.e., independent of the related head­
way distribution). 

3.8. l Synchronous and Asynchronous 
Counting 

Before proceeding it is necessary to clarify 
a particular point. Jewell 31 has cited two types 
of counting--one in which a new period is 
started immediately on the completion of the 
previous period, and the other in which the 
start of a counting period is delayed until 
the instant a vehicle passes. Haight 02 has 
termed these cases asynchronous and syn­
chronous, respectively (Figure 3 .13). Because 
synchronous counting has relatively minor ap­
plication in traffic engineering, only the asyn­
chronous form (with counting intervals forming 
a continuum) is covered in this monograph. 

3.8.2 Generalized Poisson Distribution 

In dealing with headways of dense traffic 
it was found beneficial to introduce a shape 
parameter k, which as an integer led to the 
Erlang distribution. Similarly, for counting car 
arrivals it is beneficial to introduce a shape 
parameter k. This results in the generalized 
Poisson distribution, 1" which, when k is an 
integer, takes the form: 

or 

k(a>+l J-1 )\i e-X 

P(x)= L -.-, 
i=kx I· 

~ e-X ("A).rk+i-1 
P(x)= L.., . 

1 i=l (xk + 1- 1). 

x=O, 1, 2., ... 

x=O, 1, 2, ... 

(3.28) 

When k = 1, the simple Poisson distribution 
results. 

When k=2 

P(O) = e-X+"Ae-X 

"A4e-x "Ase-X 
P(2) =~+-s-!, etc. 

When k=3 

That is, each term of the generalized Poisson 
distribution consists of the sum of k Poisson 
terms. It should be quickly pointed out that the 
parameter "A in the generalized Poisson distribu­
tion is not equal to the Poisson parameter m 
(except when k = 1). Furthermore, estimation 
of the parameter k is not a straightforward 
process. To aid this situation, Haight et al. 33 

have provided a nomograph and an estimating 
equation. To fit a generalized Poisson distribu­
tion to observed data, the best way of determin­
ing k is by means of the nomograph of Figure 
3 .14. This nomograph is entered with the 
mean m and the variance s2 of the observed 
data, from which the closest value of k is read. 
Although it is possible to read "A from Figure 
3 .14, a more reliable way is to compute its 
value from the estimating equation: 

(3.29) 

Poisson terms with parameter "A are then com­
puted or read from tables, 34 •35 and successive 
groups of k-terms are summed to obtain the 
generalized-Poisson terms, to comply with Eq. 
3.28. It should. be noted that the generalized 
Poisson distribution describes the counting of 
the same population whose headways are de­
scribed by the Erlang distribution. 

• 
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Figure 3.13 Schematic illustrating synchronous and asynchronous counting.32 

'l 50 

20 

10 

5.0 

Q) 
CJ 
c: 

.!:!! ,_ 
<O 

> 2.0 

1.0 

Mean 

Figure 3.14 Nomograph for estimating parameter le for generalized Poisson distribution.33 

3.8.2.1 Numerical Example of General­
ized Poisson Distribution. Table 3.11 exempli­
fies a generalized Poisson distribution fitted to 
freeway data. It will be noted that the fit is 
very good as measured by the x2 test. 

3.8.2.2 Generalized Poisson Distribution 
with Nonintegral k. When nonintegral values 
of k are to be used, it is necessary to make use 
of the "normalized" incomplete gamma func­
tion 13,11,1s: 
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TABLE 3.11 Vehicle Arrivals for Median Lane at Peak Morning Flow, 
1.494 at 24th Avenue • 

Number of 
Cars per Observed Total Cars 
Interval• Frequency Observed 

(x1) (f1) (f1x1) 

0 
1 
2 
3 3 9 
4 0 0 
5 8 40 
6 10 60 
7 11 77 
8 10 80 
9 11 99 

10 9 90 
11 1 11 
12 1 12 

TOTAL 64 478 

478 
m = 64 =7.469 

3822 - (478)' 
64 

s' = 63 = 3.999 

s2/m = 0.535 

p(2x<) 

0.0000 
0.0000+ 
0.0005 
0.0039 
0.0162 
0.0423 
0.0755 
0.0983 
0.0974 
0.0760 
0.0480 

•Data from Minnesota Department of Highways. 
b Fifteen-second intervals. 
c Col. 4 +Col. 5; xo.002 = 7.81. 
tt For the generalized Poisson distribution. 
'From nomograph of Figure 3.14. 

k=2 

f A e-A 

/(LI, p) = ~"-'° __ _ i e-A 'J...P d'J... 

where p = (x + 1) k- 1 and u =A.I (p + 1) 'I" 

Appendix B-6 describes this procedure. 
For most traffic engineering applications 

the relatively modest improvement achieved 
by use of noninteger values of k does not justify 
the extra effort involved. 33 

3.8.3 Other Counting Distributions 

Although other counting distributions have 
been proposed, 9

•
36

•
3

' most are beyond the scope 
of the present discussions. Particularly worthy 
of note, however, is the distribution proposed 
by Oliver and Thibault. :is This distribution 
makes use of a composite headway distribution 
such as that discussed by Kell. 26 Oliver states 
the cumulative probability of x or fewer in an 
interval t (in the notation of this monograph, 
P( :;x)) as: 

Theoretical 
Probability c Frequency• 

p(2x• + 1) P(x•) 64P(x1) /(x<) I F(xi) 

0.0000 0.0000 ''l 0.0000+ 0.0001 0.0 
0.0015 0.0020 0.1 

11.9 0.0084 0.0123 0.8 
0.0275 0.0437 2.8 
0.0590 0.1013 6.5 
0.0894 0.1649 10.6 9.4 
0.1010 0.1993 12.8 9.5 
0.0885 0.1859 11.9 8.4 
0.0619+ 0.1380 8.8 13.8 
0.0354 0.0834 5.3} 12.5 0.0691 10> 4.4 

1.0000 64.0 65.5 

1 A= km+ l(k - 1) = 2 (7.469) + 0.5 = 15.438' 

x' = 65.5 - 64.o = 1.5 
:.v = 6-3 = 3 

P( < )=~c.x+'(l- )x+1-i ;'Y[(x+l-i),y] 
_x £_, , a a (x-i)! 

where 

l=ll 

+a'r+ 1 (3.30) 

a= proportion of restrained vehicles; 
y=µ.(1-a)[t-(x+l)r] for 
µ. = mean flow rate for unrestrained ve­

hicles and 
r= minimum headway; and 

y(u, z) =incomplete gamma function of (u, z) 

= 1 z v-ie-tdt 

3.8.4 Selection of Counting Distribution 

The selection of a counting distribution 
for a particular application should, of course, 
balance the requirement for faithfulness against 
the degree of complexity required for a given 
faithfulness. In performing such a selection, it 
is useful to consider the statement of Under­
wood 39 : 
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While less accurate than the more 
sophisticated distributions that have been 
proposed by various workers, the virtue 
of the Poisson distribution is that it is 
relatively easy to use. Bearing in mind 
the various other assumptions and ap­
proximations that often must be used in 
road traffic calculations, it is believed 
that the Poisson approximation is suffi­
ciently accurate to use for many practical 
problems, provided it is realized that 
errors increase as the volume increases. 

Where traffic conditions are such that 
traffic is clearly not random, Table 3 .12 pro­
vides a guide to the selection of an appropriate 
distribution where minimum complexity is 
desired. 

3.9 DISTRIBUTION MODELS FOR 
SPEEDS 

Inasmuch as speeds are measured on a 
continuous scale and the mean speed (whether 
space mean or time mean) will usually be a 
substantial distance from zero, one might think 
of the normal distribution as a model for 
speeds. Although the normal distribution is 
sometimes appropriate, at times the lognormal 
distribution is more useful. 

3.9.1 Normal Distributions of Speeds 

Numerous investigators have used normal 
distributions to represent speeds. An excellent 
example of the use of the normal distribution 
for speeds is contained in the work of Leong.42 

He reports the results of radar speedmeter mea­
surements of free-flow speeds at 31 rural loca­
tions in Australia during three different years. 
When the data for passenger cars on level roads 
are assembled, the speed distributions are 
found to be normal, with the standard devia­
tions equal to 0.17 times the respective arith­
metic means. Figure 3.15 shows cumulative 
speed distributions at four locations; Figure 
3.16 shows the _same four cumulative distribu­
tions after each has been normalized " by divid­
ing each observation by the arithmetic mean for 
that distribution. When thus normalized, these 
four sets of data appear to form one general­
ized distribution with the standard deviation 
equal to 0.1 7 times the mean. 

Several investigators,43- 45 however, have 

* In this context "normalized" is used in the 
engineering sense of dividing all values by the 
maximum or by the expected value. 

TABLE 3.12 Guide to Selecting 
Counting Distribution 

Range of 
Variance: 

Mean Ratio" 

Situations Where 
Condition Pre­

vails 

Suggested 
Distribution 

> 1 Variation in mean Negative bi-
value; cyclic nomial 
fluctuation 

= 1 Essentially ran- Poisson 

<I 
dom behavior 

Congested flow' Generalized 
Poisson; bi­
nomial 

•At present it is impossible to give definitive 
values for the ratios of variance to mean at which 
the Poisson distribution fails to fit. However, Fig­
ure 3 .14 provides a basis for selecting the appro­
priate value of k in the generalized Poisson distri­
bution. Miller 71 points out that the variance:mean 
ratio increases as the length of the counting period. 

' Pak-Poy '0 suggests that the critical volume is 
approximately the practical capacity as computed 
by the 1950 Highway Capacity Manual." 

found speed distributions to be quite skewed 
when a fit of the normal distribution is at­
tempted. 

3.9.2 Lognormal Model of Speeds 

Haight and Mosher ·16 have pointed out 
that the Jognormal distribution may be an ap­
propriate model for speeds. (The details of the 
lognormal distribution are discussed in A p­
pendix B-4.) Table 3.13 summarizes field ob­
servations of spot speeds at a freeway location, 
along with the computed theoretical frequencies 
from the fitted lognormal distribution. Figure 
3.17 is a plot of the observed relative frequency 
on logarithm-probability paper. 

3.10 GAP (AND LAG) ACCEPTANCE 
DISTRIBUTIONS 

The distribution of gap acceptance at inter­
sections and freeway ramps and by pedestrians 
constitutes an important consideration in the 
computation of delays and in the design of 
control systems. Early investigators 47 pre­
sented curves of percent or number accepted 
and percent or number rejected as rectilinear 
plots; the point of intersection of the accept­
ance and rejection curves was then termed the 
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TABLE 3.13 

mph 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

Spot Speeds on Interstate 94 at Prior Street Bridge, 
8:30-9:00 AM, August 20, 1970 

Observed Data Theoretical Data for 

No. 

2 
7 
1 

14 
5 

25 
24 
32 
13 
22 
9 

13 
4 

10 
0 
2 
l 

Lognormal Distribution 
Frequency 

Cumul. Cumul. 
Cumul. Cumul. % Prob. Freq. 

2 
9 

10 
24 
29 
54 
78 

110 
123 
145 
154 
167 
171 
181 
181 
183 
184 

1.1 0.02 3.7 
3.7 0.04 7.4 
5.4 0.09 16.6 

13.0 0.15 27.6 
15.8 0.25 46.0 
29.4 0.36 66.2 
43.0 0.49 90.1 
60.0 0.61 112.2 
67.0 072 132.5 
78.0 0.82 150.9 
84.0 0.89 163.8 
92.0 0.93 171.1 
93.0 0.96 176.6 
98.5 0.98 180.3 
98.5 0.99 182.2 
99.5 1.00 184.0 

100.0 l.00 184.0 

"critical gap" or the "critical lag." Such a plot 
is shown in Figure 3.18. Blunden et al.·1' have 
attempted to fit Erlang distributions to rejection 
curves (Figure 3.19). Other studies 19 •51 -''' have 
indicated that the lognormal distribution con­
stitutes ~ good representation of both accept­
ance and rejection curves (Figure 3.20). 

Still others have found probit analysis (dis­
cussed in Appendix B-5) convenient for analyz­
ing gap acceptance data (see, for instance, 
Robinson 50 ). Figure 3.21 demonstrates how 
probits can be combined with a logarithmic plot 
to display the distribution of gap acceptances. 

In making field observations of gap accept­
ances and rejections sample size difficulties 
arise inasmuch as each driver can reject many 
gaps but can accept only one gap each time he 
makes an ac.ceptance and acts upon his selec­
tion. Blunden and co-workers -is propose two 
methods of treating this situation for sample 
size considerations. 

4 8 12 16 
Length of Time Interval (sec) 

Figure 3.18 Distribution of accepted and rejected lags 
and gaps at intersection left turns.61 

Ashworth 52 has demonstrated that normal 
field practice in observing acceptance data, as 
well as Blunden's method of adjustment, results 
in biases to the data. In recognition of these 
biases he proposes the following correction: The 
unbiased estimate of the mean of the critical 
gap distribution may be obtained by subtracting 
s2q from the 50 percentile acceptance gap, 



40 STATISTICAL DISTRIBUTIONS OF TRAFFIC CHARACTERISTICS 

u 
Ql 
V> 

Ql 

E 
i= 

15 

10 
9 
8 

... 
/\ 
c. 
co 
l9 
Cl 
c 
·;; 
0 
Ql 
'ii) 
a: ... 
c: 
Ql 
0 ... 
Ql 
a. 

100 

\ 
80 

60 
Observed Erlang Observed 

k=7 

40 

20 

0 
0 2 4 6 8 0 2 4 6 8 

Critical Gap Size, t (sec) 
Figure 3.19 Comparison of observed and theoretical distributions of rejected gaps.'8 

:--~----~[ s-------

5 

4 

3 

2 

• 

1.0 10 50 90 95 

Percent Acceptance 
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3.11 Summary 

99.9 

where s2 is the variance of the normal curve 
fitted to the observed data and q is the flow in 
vehicles/ sec. 

Tsongos and Wiener '' 3 have found differ­
ent distributions of acceptance and rejection for 
night than for day. 

The statistical distributions of various traf­
fic characteristics deal with two types of quanti­
ties. First is the vehicle counts or flows that 
mainly have discrete distributions such as Pois-
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Figure 3.21 Probit regression lines for estimating difference in at· 
ceptance time for various movP.ments at intersections in Lafayette and 

Indianapolis {intersections pooled; lags and gaps pooled.01 

son (for low-density traffic), negative binomial 
distribution (for varying flows), and the gen­
eralized Poisson as well as the binomial (for 
congested flow) . The second type are those 
that obey continuous distributions such as 
headways (exponential, shifted exponential, 
composite exponential, Erlang, hyper-Erlang, 
semirandom, and normal) and speeds (nor­
mal, lognormal, and gamma). The choice of 
distribution depends on how much complexity 
is desired as well as the behavior of the traffic. 

In several of the above cases it was shown 
that if the vehicle count (flow) obeys a given 
discrete distribution the headway will obey a 
unique corresponding distribution. For ex­
ample, if flow is purely random (Poisson), 
headways are exponentially distributed. Simi­
larly, if the headways have an Erlang distribu-

ti on of order k (positive integer), the corre­
sponding flow is itself a discrete event variable 
consisting of every kth event of a Poisson 
series. This unique correspondence, although 
true, is difficult to obtain under real conditions 
except for special cases; that is, to the discrete 
flow process there corresponds a continuous 
headway process. 

Gap acceptances were found to obey either 
the Erlang or the lognormal distributions. 
Probits were useful for expressing the normal 
scales. 
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3.14 PROBLEMS 

1. Given the following data, determine the 
most appropriate distribution and fit it to the 
data. Check the goodness-of-fit with a x2 test. 

Arrival on Interstate 94 at 
Arlington During Evening Peak Traffic 

Number of Arrivals 
per Interval 

~2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

213 

Observed 
Frequency 

0 
1 
3 
8 
7 
6 

16 
15 
5 
3 
4 
0 

2. A sample of 100 over-all travel speeds 
was observed on a four-lane, undivided arterial 
street. The sample mean was 35.45 mph, and 
the standard deviation of the sample was 5.20 
mph. Assume that the sample of travel speeds 
was taken from a normal population. (a) Find 
the percentages of vehicles in the population 
traveling between 33 and 41 mph. (b) Between 
what limits may the mean of the population be 
expected to fall for a 95 percent level of con­
fidence? (c) Between what limits may the 
variance of the population be expected to fall 
for a 90 percent level of confidence? (d) Be­
tween what limits may the standard deviation 
of the population be expected to fall for a 99 
percent level of confidence? 

3. The driver acceptances of time gaps in 
the main street were observed for the traffic on 
the minor street controlled by a "stop" sign. 
For the following frequency distribution, test 
the hypothesis that these data represent a ran­
dom sample from a normal population. 

Mid value 
(sec) 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 
12.0 

TOTAL 

Observed 
Frequency 

0 
6 

34 
132 
179 
218 
183 
146 

69 
30 

3 
0 

1,000 

4. Let x represent the number of vehicles 
observed per 15-sec increment. Three case 
studies show these results: 

Case 1 Case 2 Case 3 

x=3.0 veh/int x=3.0 veh/int x=3.0 veh/int 
s2 =2.4 s2 =3.0 s2 =4.0 

Use the Poisson, binomial, and negative 
binomial distributions as appropriate for the 
above data. Plot the three frequency functions 
on a single chart (use color to discriminate 
among functions). 





Chapter 4 

TRAFFIC STREAM MODELS 

4.1 INTRODUCTION 

Chapter 3 presented the statistical varia­
tions of various traffic characteristics about their 
mean values. The use of these distributions 
for prediction implies constant mean values. 
For certain types of traffic design it is desir­
able to make predictions based on changing 
mean values. In such situations it is often 
helpful to use a functional relationship between 
the mean value of the characteristic under 
study and some other characteristic. For in­
stance, in the design of freeway surveillance 
and control systems, a curve relating flow and 
concentration is most helpful. Furthermore, 
such a curve is quite useful in defining the 
capacity of a facility. 

The relationship among the three vari­
ables u, k, and q is called a traffic stream 
model. A typical model is shown in Figure 4.1. 
The model must be on the three-dimensional 
surface u=q!k. Two specific points on the 
model can also be established: ( 1) As con­
centration approaches zero (light traffic), 
mean speed approaches the mean free-flow 
spe~d Ut and the flow approaches zero; (2) as 
concentration approaches its maximum value, 
called jam density or k;, speed approaches zero 
and flow again approaches zero. 

It is usually more convenient to show the 
model of Figure 4.1 as one or more of the 
three separate relationships in two dimensions 
shown in Figure 4.2. These relationships are 
the orthographic projections of Figure 4.1. 
Such a presentation also shows another im­
portant feature that was not immediately ob­
vious on Figure 4.1: At some concentration 
km and corresponding speed um, flow passes 
through a maximum value qm. 

4.2 SPEED-CONCENTRATION MODELS 

It is an observable fact that drivers decrease 
their speeds as the number of cars around them 
increases. Some of the reasons for this are 
discussed in Chapter 5. Because of this close 
interaction between concentration (cars on the 
highway) and speed, and knowing both con-
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centration and speed, from which flow can be 
computed, it is not surprising that early in­
vestigators explored relationships between speed 
and concentration. The simplest (and perhaps 
the most obvious) of such relationships is a 
linear relationship, as proposed by Green­
shields. 

4.2.1 Greenshields' Linear Speed­
Concentration Model 

Greenshields, 1 as one of the early investi­
gators of traffic characteristics, proposed a 
linear relationship between flow and concen­
tration that is usually expressed 

( 4.1) 

where u1 is the free-flow speed and k; is the 
jam density. This model is simple to use and 
several investigators have found good correla­
tion between the model and field data. (See, 
for instance, Figure 4.3, which shows results 
found by Huber. 2 ) For various theoretical and 
practical reasons, however, other models have 
found greater acceptance. 

4.2.2 Logarithmic Speed-Concentration 
Models 

Greenberg," using a theoretical back­
ground (discussed in Cha pt er 7), has postu­
lated a speed-concentration model of the form 

(4.2) 

where um is a constant that will be shown 
(section 4.3) to be the speed at maximum flow. 
Greenberg found good agreement between this 
model and field data for congested flows 
(Figure 4.4). This model, however, breaks 
down at low concentrations, as may be seen 
by letting k=O in Eq. 4.2. 

Underwood• has demonstrated a model 
of the form 

(4.3) 

at low concentrations (Figure 4.5). In Eq. 
4.3, km is the concentration at maximum flow. 
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Flow,q 

Figure 4.1 A traffic stream model where u = q/k represents the surface of admissible traffic 
stream models. 

This model has shortcomings in that it does 
not represent zero speed at high concentrations. 
In sections 4.3.2 and 4.3.2.1 it is shown that 
for Eq. 4.2 km= k/ e, whereas for Eq. 4.3 
um=urle. 

4.2.3 Generalized Single-Regime Speed­
Concentration Models 

Recently, Pipes and Munjal 5 •6 have de­
scribed a general family of speed-concentration 
models of which the linear model is a special 
case. Drew 7 has described a family of models 
of which Greenberg's logarithmic model is a 
special case. Other families result from car­
following analyses. 

4.2.3.1 Pipes-Munjal Models. Pipes and 

Munjal 5 •6 have proposed a family of models 
of the form 

( 4.4) 

where n is a real number greater than zero. 
Three conditions of this model (n < 1, n = 1, 
n > 1) are illustrated in Figure 4.6. It will be 
seen that for n = 1 the relationship reduces to 
Greenshields' model. 

4.2.3.2 Drew Models. Drew 7 has pro-
posed a family of models of the form 

du --u k<n-1)/2 
dk - m 

( 4.5) 

where n is a real number. When n= -1, Eq. 
4.5 can be solved to yield Greenberg's model. 
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Figure 4.2 Flow-concentration, speed-flow, and speed-concentration curves (assuming single-regime 
linear speed-concentration model). 

Figure 4. 7 illustrates the results for three values 
of n ( - 1, 0, + 1). 

4.2.3.3 Car-Following Models. In Chap­
ter 6 the methods of car-following analysis are 
introduced, including parameters m and f. 
Figure 4.8 shows how different speed-concen­
tration models can be obtained by manipulat­
ing these parameters. Figure 4.9 lists the more 
important models of this family. 

4.2.3.4 Bell-Shaped Curve Model. Drake 
et al. 9 have proposed use of the bell-shaped or 

normal curve as a model of speed-concentra­
tion using the form 

u = llr e-1/2Hk/km i• ( 4.6) 

4.2.4 Multiregime Speed-Concentration 
Models 

As noted in Section 4.2.2, Greenberg's 
model is useful for high concentrations but not 
for low concentrations; conversely, Under­
wood's model is useful for low concentrations 
but not for high concentrations. Additional 
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weight is added to this argument by noting 
that the high-congestion portion of the model 
usually represents cars accelerating from. a jam 
condition and taking into account Forbes' 10- 12 
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finding that cars have a different speed and 
acceleration after a slowdown caused by con­
gestion. 

4.2.4.1 Edie's Model. Edie 13 has de­
scribed a model that is a composite of Eqs. 
4.2 and 4.3, where Eq. 4.3 is at low concen­
trations and Eq. 4.2 at high concentrations. 
When normalized speed is plotted against nor­
malized concentration, the two models become 
tangent in the midrange of concentration 
(Figure 4.10). 

Inside Lane 
R = 0.96 

Outside Lane 
R = 0.97 

• 

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 20 40 60 80 1-00 120 

Density (veh/mile) 

Figure 4.3 Study showing high correlation coefficient between field data and linear model for speed 

vs. density. 2 
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80 120 160 200 

Density, k {veh/mile) 

Greenberg's' speed-concentration model for Merrill Parkway. 

S = 53.2e·D/67 

r2 = 0.90 

120 160 200 

Whereas Edie combined two theoretical 
models at a point of tangency, several other 
investigators started with one theoretical model 
and added relatively arbitrary modifications. 

4.3.4.2 Underwood's Two-Regime Model. 
Underwood adapted Eq. 4.3 by making the 
modification shown in Figure 4.11. 

4.2.4.3 Dick's Model. In developing a 
model to represent urban traffic, Dick 14 as-
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Figure 4.5 Underwood's• speed-concentrotion plot. for 
Merritt Parkwoy. 

Figure 4.6 -Family of speed-concentration models pro­
posed by Munjal and Pipes.6 
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Figure 4.7 Illustration of Drew's 7 family of speed-concentration models. 

1.0 

sumed that there is a fixed upper limit to 
speed. He combined this assumption with 
Greenberg's model to produce the result shown 
in Figure 4.12. 

and Keller 15 have discussed methods for fit­
ting multiregime models. 

4.2.5 Summary 
4.2.4.4 Fitting Multiregime Models. May Figure 4.13 summarizes several types of 

speed-concentration models. 
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4.2.6 Field Measurements 

Most investigations of the characteristics 
of traffic have been performed in field situa­
tions where the investigator could select only 
the site and the time at which observations 
were made. Wardrop,16 however, has reported 
results from controlled experiments conducted 
at the (British) Road Research Laboratory . 
These tests have shown that the relationship 
between speed and concentration depends on 
the radius of the road section. Figure 4.14 
shows a plot for straight sections (infinite 
radius). 

Density (veh/mile) 

Figure 4.8 Example of car-following models 8 of speed-concentration, showing effett of vary­
ing parameter I. 
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Figure 4.9 Matrix of speed-concentration models from car-following analysis.3 

4.3 FLOW-CONCENTRATION 
RELATIONSHIPS 

Early studies of highway capacity followed 
two principal approaches. Some investigators 
examined speed-flow relationships at low con­
centrations; others discussed headway phe­
nomena at high concentrations. Lighthill and 
Whitham 17 have proposed use of the flow­
concentration curve as a means of unifying 
these two approaches. Because of this unifying 
feature, and because of the great usefulness of 
the flow-concentration curve in traffic con­
trol situations (such as metering a freeway), 
Haight 18•19 has termed the flow-concentration 
curve "the basic diagram of traffic." 

Some important features of the flow­
concentration (q-k) diagram may be summa­
rized as follows: 

1. In the absence of concentration there 
can be no flow; thus the curve must pass 
through the origin. Furthermore, if space mean 
speed is taken as the ratio qi k, the slope with 
which the curve leaves the origin is the free­
flow speed. (Note that this is the maximum 
slope of the curve.) 

2. It is an observable fact that it is pos­
sible to have high concentrations with no flow 
where the leader of a stream has stopped and 
followers have thus been forced to stop. This 
may be seen in queues at traffic signals; under 
certain situations it can also be seen on free­
ways; and although it occurs at many other 
situations, the two cited examples are best 

1.0 

0.8 

'+- 0.6 ::i --::i 
0.4 

0.2 

Figure 4.10 

::c 60 
a. 
E 

] 40 
Cl> a. 

(/) 

c 
~ 20 

::;E 

u=ufe-k/km 

0.2 0.4 0.6 0.8 1.0 

Normalized speed vs. normalized concen­
tration for Eqs. 4.2 and 4.3.13 

Model modified 
at high density 
as shown dashed 

Cl> 
(J a ol__~_J_~~J_~_J~-=:::c::::::=~;:::= 

(/) 40 80 120 160 200 

Density (veh/mile) 
Figure 4.11 Rectilinear plot of Figure 4.3! 
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known. Thus, the curve must have a point 
representing maximum (jam) concentration 
with zero flow. 

3. Inasmuch as there are observable flows 
at intermediate concentrations, there must be 
one or more points of maximum flow between 
the two zero points. 

4. It is not necessary for the q-k curve 
to be continuous. 

Lighthill and Whitham 17 have discussed 
phenomena of shock waves and other topics 
related to flow-concentration relationships, 
which are covered in Chapter 7. Several of the 
characteristics of the flow-concentration curve 
(as defined by Lighthill and Whitham) how­
ever, are useful at this point, and have con­
veniently been summarized by Edie and 
Foote 20 •21 (Figure 4.15). Figure 4.15 il­
lustrates the characteristic measurements repre­
senting vehicles traveling with an average speed 
of 25 mph, at a flow rate of 1,200 vehicles/ hr 
and a concentration of 48 vehicles/ mile/ lane. 
For any point on the curve the slope of the 
radius vector represents the average speed, and 
the slope of the tangent represents the velocity 
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of propagation of small changes of flow. In 
Figure 4.15 the jam density (concentration) is 
shown as 279 vehicles/mile, the maximum flow 
as 1,400 vehicles/hr. The scale on the right 
shows average headway in seconds as computed 
by the relationship 

h 
q/3,600 

(4.7) 

Edie and Foote emphasize the importance 
of the flow-concentration curve as a means for 
showing headway and speed in addition to flow 
and concentration. 

4.3.1 Parabolic Flow-Concentration 
Model 

If Greenshields' (linear) speed-concentra­
tion model is adopted, a parabolic flow-con­
centration model results (Figure 4.2). The 
characteristics of this model can be developed 
as follows: 

u k2 

q=k u=k ur(l-k! ki) =urk __ f_ (4.8) 
kj 

Differentiating Eq. 4.8, setting~! =0 to obtain 

conditions for maximum flow, and defining 
qm=maximum flow, k111 =concentration at 
maximum flow, and um= speed at maximum 
flow, 

km= k/2 
um= llr/2 
q 111 = llr k/4=u01 k/2 

Density (veh/mi/effective 10-ft lane) 

Figure 4.12 Dick's 14 speed-concentration model for urban traffic. (Note logarithmic scale for density.) 
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4.3.2 Logarithmic Flow-Concentration 
Model 

If Eq. 4.2-the Greenberg logarithmic 
model of speed-concentration-is used, the 
flow-concentration model becomes 

q=k u=k Um $,..,(k/ k) (4.9) 

Again using differentiation to obtain conditions 
for maximum flow, 

I Greenshields 

ki 
k 

111 3 - Regime Linear 

k2 k3 kj 
k 

V Underwood 

u = ufe -k/km 

km 
k 

VII Bell Curve 

Uf u = ufe·Y. (k/km)2 

k 

km= k/e 
Urn== Um 

qm=umk/e 

Note that in this model um is a parameter; that 
is, um is specified and determines the other 
characteristics. Figure 4.16 shows such a model 
fitted to field data. (Measurements that result in 
a curve including the portion for high concen­
trations must be taken at a bottleneck. 20 ) 

111 2 - Regime Linear 

k1 ki 
k 

IV Greenberg 

Uf u=umln(k/k) 

c 

. k4 kj 
k 

VI Edie 

Uf u = ufe-k/km 

c 

km ki 
k 

50 ·: '!,'l·:::, .. . Sample Data Points . . . :. 
40 .. 
30 

::.;':·:'.: .-·:;: :: 20 

10 .. ·: 
0 k 

20 40 60 80 100 120 

Figure 4.13 Drake, Schafer, May 9 summary of speed-density hypotheses. 
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Figure 4.17 shows a normalized loga­
rithmic flow-concentration diagram in which 
all concentration values have been divided by 
the jam concentration, and all flow values have 
been divided by umki or the product of the jam 
concentration and the speed at maximum flow. 
The normalized maximum flow value is lie 
and the concentration at the time of maximum 
flow is l/e. 

In Underwood's logarithmic model for 
Eq. 4.3, 

q=k Uc exp(-k/ knJ ( 4.10) 

where qm =km u1/ e, um= u1/ e, and km= km. 
Here, km is a parameter. 

4.3.3 Discontinuous Flow-Concentration 
Models 

Edie 13 has pointed out that traffic be­
havior appears to be different at high concentra­
tions and at low concentrations, and has intro­
duced the idea of two speed-concentration 
models. Two speed-concentration curves can 
lead to two flow-concentration curves as shown 
in Figure 4.18. There are ample experimental 
data to indicate that there may in fact be two 
types of behavior of traffic-one upstream from 
the bottleneck (or before the bottleneck reaches 
capacity) and another when the capacity of the 
bottleneck has been exceeded. (See section 
4.3.5.1.) 

0.4 

0 0.2 0.4 

1500 . .. 
q = 17.2 k In (228/k) 

-;:- 1000 
.c 
---~ 
"' u 
er 500 

50 100 150 200 250 

k (cars/mile) 

Figure 4.16 Logarithmic flow-concentration diagram.13 

Data points taken in Lincoln Tunnel, where Um= 17.2 
mph and kJ = 228 cars/mile. 

4.3.4 Special Flow-Concentration 
Models 

Whereas most stream flow models are used 
to describe one-lane flows, it is possible to de­
velop models describing the total flow on one 
roadway of a freeway. Figure 4.19 shows a 
flow-concentration model describing three 
lanes of a freeway. 

4.3.5 Applying Flow-Concentration 
Models 

The flow-concentration representation of 
the traffic stream is frequently used in studying 

0.6 0.8 1.0 

Figure 4.17 Normalized logarithmic flow-conc~ntration diagram.3 
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capacity and in controlling flows on freeways. 
More details are given in Chapter 7. The fol­
lowing paragraphs give two examples of such 
applications. 

4.3.5.1 Traffic Flow at a Bottleneck. A 
bottleneck is a section of roadway having a 
capacity that is less than that of the section of 
road leading up to it. Figure 4.20 shows flow­
concentration curves for the highway and for 
the bottleneck. The capacity of the highway 
may be taken as the point of maximum flow on 
the curve for the highway; the capacity of the 
bottleneck is indicated by point 1. As the high­
way flow approaches the capacity of the bottle-

1500 

-;:: 
.c 1000 .__ 
"' ..... 
"' u 

500 

Noncongested Flow 
q = 90u In (46/u) 

neck, operation switches to the right-hand side 
(point 2) of the highway curve. Any slight in­
crease in arrival flow above the capacity of the 
bottleneck causes the formation of a queue, and 
a wave of increasing density is transmitted rear­
ward with a speed ilq/ ilk. 

4.3.5.2 Freeway Control. In several parts 
of the United States it has been found impor­
tant to establish control systems in order to 
operate freeways at maximum efficiency. The 
tactics of such control systems are to sense 
critical situations in the freeway flow and then 
to control the actions of cars seeking to enter 
the freeway via nearby entrance ramps. The 

Congested Flow 
q = 14.5k In (250/k) 

OL...-~-'-~--'-~-L~~'--~-'-~--'-~--'-~---''--~"--~~ 

0 50 100 150 200 250 

k (cars/mile) 

Figure 4.18 Discontinuous flow-concentration curve.13 
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q = f(k) for Highway 

(Liq/ Lik) 1 

Speed of Vehicles in 
Bottleneck, u2 

Concentration, k 

Figure 4.20 Flow-concentration curves for main highway and bottleneck." 

most basic of such control systems limit the 
entrance rate when the freeway flow is near 
capacity. Concentration has been found to be a 
good estimator of the flow I capacity ratio. This 
is partly because concentration increases in a 
monotonic manner during periods of increasing 
flow; that is, concentration does not decrease 
until after the end of the peak period. To con­
trol the facility represented by Figure 4.19, it 
would be necessary to keep the combined con­
centration in the three lanes at or below about 
150 vehicles/ mile. At present, there is no good 
on-line instrument to measure freeway concen­
tration (density) directly (although in certain 
tunnels it is possible to provide direct concen­
tration measurement 43

). Thus, lane occupancy 
is used as an estimate of lane density or concen­
tration. References 37-42 provide advanced 
methods of estimation. 

4.4 SPEED-FLOW MODELS 

As pointed out in section 4.2, once a 
speed-concentration model has been deter­
mined, a speed-flow model can be determined 
from it. In all realistic speed-concentration 
models, the free-flow speed at zero concentra­
tion is the maximum attainable speed. (See 
Figure 4.13.) Thus, the highest point on the 
speed-flow curve will be the point at free-flow 
speed and zero flow. Inasmuch as the flow 
values are the products of the corresponding 

speed and concentration values, there will be 
a second point of zero flow, corresponding to 
zero speed (maximum concentration). Thus, 
regardless of the shape of the speed-concentra­
tion curve, the speed-flow curve will have one 
point at the origin and one point on the speed 
axis at the maximum value of speed. Between 
zero and maximum speeds, the diagram will 
form some type of loop toward maximum flow. 
If the speed-concentration curve is a straight 
line, as suggested by Greenshields, the resulting 
speed-flow curve is a parabola (Figure 4.2). 
Other shapes are associated with other speed­
concentration curves. (Creighton 20 has pre­
sented a qualitative description of the way in 
which various portions of the speed-flow dia­
gram come about.) 

Some early investigators (e.g., Walker 26
) 

postulated a linear relationship between flow 
and speed out to maximum flow, with a curvi­
linear segment between maximum flow and the 
origin (Figure 4.21). An extreme case is the 
model developed by the (British) Road Re­
search Laboratory (Figure 4.22). Here the 
speed is taken as constant for a substantial 
range of flow that finally breaks to a linear de­
crease of speed with increasing flow. Here 
road width was an important parameter. 

In the experimental speed-flow curves of 
Figures 4.23, 4.24, 4.25 roadway radius of 
curvature is shown to be an important param­
eter. 
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The Highway Capacity Manual 41 defines 
"level of service" and suggests its use in the 
design and evaluation of facilities. May 28 has 
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proposed the use of speed-flow curves for 
establishing levels of service for traffic flow 
(Figure 4.26). 
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Figure 4.22 Speed-flow model developed by British Road Research Laboratory. 27 
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Figure 4.23 Experimenta I speed-flow relationship on test track with straight road­
way section.16 

4.5 TRAVEL TIME RELATIONSHIPS 

Although much attention has been given 
by various investigators to speed-c~ncentra­
tion, speed-flow, and flow-concentration rela­
tionships, relatively little attention has been 
devoted to travel time-flow relationships. Roth­
rock and Keefer 29 empirically demonstrated 
the form of travel time-flow relationships (Fig­
gure 4.27). Guerin 30 has proposed emp~rical 
boundary curves representing travel tJme­
volume (flow) and travel time-density (con­
centration), including percentage contours, as 
shown in Figure 4.28. Weinberg et al. 31 and 
Greenberg and Crowley 32 have also discussed 
travel time relationships. 

4.5.1 Travel Time Models 

Haase 33 , 3 ·1 has proposed freeway travel 
time models having the form 

t;=n;[-l __ 1 J+_:!__+ni[-1 __ 1 J (4.11) 
qi qo U qz qi 

where ti= total trip time for the ith car; 
n; = the ith car to arrive on the on­

ramp queue; 
q0 =the average arrival rate at the on­

ramp queue; 
q1 =the average departure rate from 

the on-ramp queue; 
q 2 = the average departure rate from 

the off-ramp queue; 
u = effective steady-state velocity of the 

N cars on the freeway; and 
d= distance traveled on the freeway. 

Haase summarizes all trips for the facility and 
produces curves such as Figure 4.29. 

4.5.2 Other Models Involving 
Travel Time 

Smeed 35 has discussed a special situation 
in which drivers delay starting their trips in 
order to minimize travel time. He has de­
veloped a model that includes the fraction of 
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Figure 4.24. Experimental speed-flow relationship on test track with 56-ft 
radius.16 
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Figure 4.25 Experimental speed-flow relationship on test track with 
106-ft radius.16 

the central business district ( cso) area devoted 
to streets: 

A plot of this model is given in Figure 4.30. 
Wardrop,27 in his classic paper, postulated 

two principles concerning travel time by regu­
lar users over several alternate routes. In such 
situations regular users will distribute them­
selves over the various routes so that: 

T=t/2+ (7.409/ 10") A 1N[l -n/33tf A 1!2y:i 

( 4.12) 

where T= average journey time measured 
from the time the first vehicle 
enters the cso; 

t = period over which entries to the 
cso are spread; 

n = number of vehicles entering cso 
during period t; 

A= area of cso in square feet; and 
f =fraction of cso area devoted to 

streets. 

(1) The journey times on all routes 
actually used are equal, and less than 
those which would be experienced by a 
single vehicle on any unused route. 

(2) The average journey time is a 
minimum. 

In transportation planning, the expression 

( 4.13) 
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is sometimes used when estimating travel time 
as a function of volume,36 

where T= the travel time for a particular fl.ow, 
q; 

qm =the maximum flow or capacity of 
the facility; and 

T min= the minimum travel time. 

4.6 SUMMARY 

Although the speed-concentration-flow re­
lationship is three-dimensional in reality, it is 
often treated by using one or more of its two­
dimensional orthographic projections. From a 
causation v.iewpoint, the speed-concentration 

Ql 
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Figure 4.28 Guerin's travel time relationships.30 Per­
centage indicated is percentage of observations of 
travel time that are expected lo be below the curve. 

relationship appears to be most fundamental 
in that drivers appear to adjust their speeds ac­
cording to the concentration of the traffic 
around them. The fl.ow-concentration relation­
ship is generally the most useful because it uni­
fies various theoretical ideas, and it provides 
relationships for traffic control activities. 

A variety of speed-concentration, ftow­
concentration, and speed-flow models has been 
presented. The model(s) selected for a specific 
application must depend on the particular situ­
ation and purpose of the analysis. In the ab­
sence of a strong reason to the contrary, the 
simplest appropriate model should be consid­
ered. In Chapter 7 an example is presented of 
traffic behavior at a signal in which solutions 
are obtained using both linear and logarithmic 
speed-concentration models. Which result is 
better depends on local characteristics and 
judgment. 
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4.9 PROBLEMS 

1. For the speed-concentration model of 
Figure 4.12, compute the coordinates and plot 
curves of speed-flow and flow-concentration 
on rectilinear graph paper. 

2. From the flow-concentration curve of 
Figure 4.19, use radius vectors to obtain speeds 
and plot a speed-flow curve. 

• 



Chapter 5 

DRIVER INFORMATION PROCESSING 
CHARACTERISTICS 

5.1 INTRODUCTION 

Model representation of traffic behavior 
indirectly deals with human behavior. Several 
traffic flow models to be discussed in later chap­
ters contain parameters used to account for 
various characteristics of the driver in the 
driver-vehicle system. Some models deal with 
traffic as a deterministic phenomenon even 
though the driver portion of the system, at least, 
is highly stochastic. 

Although the whole field of human factors 
in traffic could, of course, be the subject of a 
very lengthy treatise, such as that by Forbes, 10 

it is hoped that this chapter will pnwide some 
insight into the way drivers receive and use in­
formation and that this knowledge can then be 
applicable in various traffic flow models. It 
should be borne in mind that driver actions are 
highly stochastic, but that it is often possible to 
represent stochastic data either by expected 
values or by worst cases. 

The discussion starts with a brief examina­
tion of the driving task and its information re­
quirements. Then the ways in which a driver 
receives and processes information are ex­
amined. Finally, several miscellaneous items of 
driver behavior are considered. 

5.2 NATURE OF THE DRIVING TASK 

The principal goal of the driver is to guide 
his vehicle from origin to destination in a safe 
manner. He may have some additional goals 
such as arriving at his destination at the earliest 
possible time; he may also have certain goals 
concerning the environment through which he 
passes during his trip. At various points in 
the trip there may be special subtasks (e.g., 
parking).1 

The task of accomplishing the driver's 
goals may be broken down into categories of 
action: perception, judgment, decision, and 
control. 2 •41 The driver's control actions are 
limited to control of acceleration (braking and 
accelerating) and control of heading (steering 
or tracking). 

The tracking or steering subtasks can be 
described in terms of a servo system (Figure 
5.1) and several authors have proposed various 
models to describe the driver's actions as part of 
the servo loop.~-n To accomplish his steering 
function the driver attempts: 

71 

1. To select a reference (point, line, 
angle, curve, etc.) from which to determine 
the vehicle misalignment or deviation (i.e., 
error). 

2. To detect such errors. 
3. To establish an error criterion. 
4. To respond to the detected error (via 

the steering wheel) in such a manner as to 
maintain the vehicle within the established 
criterion limits throughout the duration of the 
steering task. 

The acceleration control subtask consists 
of detecting differences in velocity and/ or spac­
ing and taking actions that will prevent unsafe 
conditions and fulfill both the driver's goal of 
proceeding at a particular speed and such other 
goals as he may have. 

5.2.1 Driver Information Needs 

The information needs of the driver vary 
with the portion of the trip and the immediate 
maneuver to be accomplished. The trip may 
start with a planning phase in which macro­
information provided by maps, weather reports, 
and road conditions is required. Once the driv­
ing has started, however, information comes 
from observations of the roadway, other traffic, 
signs and signals, and instruments. Generally, 
cues to the driver may be visual, auditory, 
tactile, kinesthetic, and even olfactory, but by 
far the most important sense is visual. This is 
followed by hearing, the ability to sense ac­
celerations, and the ability to sense vibrations. 
Some characteristics of these senses are given 
in Table 5.1. (At one time auditory cues were 
an important source of information to the 
driver. However, with the present trend to 
make cars very quiet and to drive with the 
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Figure 5.1 Generalized block diagram of the car-driver-roadway system (adapted from Rockwell 6). 

windows closed and air conditioning on (and 
perhaps a radio or tape player operating), 
many auditory cues cannot be heard.) 

The behavior of the driver can be likened 
to the observer who must scan several displays. 
The driver, in addition to watching the road­
way, must watch the car ahead and the cars 
in adjacent lanes; he must scan one or more 
rearview mirrors and from time to time must 
check the instrument panel. At times it is neces­
sary to actively scan the roadside area for di­
rectional signs and other information such as 
landmarks. In many situations the driver must 
perform a filtering function to extract the in­
formation needed from the surrounding fea­
tures (visual noise). Thus, it is important to 
study the ways the driver processes and re­
sponds to the information at hand. 

5.3 HUMAN RESPONSE TO STIMULI 

The human response to various stimuli 
varies with the type of stimulus and the level 
of the stimulus (intensity and/ or frequency) 
with respect to the related threshold value. 
Furthermore, because each stimulus results in 
the transmission of certain information to the 
brain, response may be moderated by the simul­
taneous receipt of other information. As in any 
instrument system, the human system contains 
an inherent transmission delay between the 
stimulus and the response. Also, a finite time 
is required to process information. The proc­
essing time is added to the transmission time to 
create a total reaction time to the various 
stimuli.* 

''' Private communication from S. F. Hulbert. 
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5.3.1 Simple Response Models 

The ability of an observer to detect a stim­
ulus is often stated by giving the threshold for 
the specified stimulus." The (absolute) thresh­
old may be defined as that amount of energy 
that will result in the correct identification of 
the signal 50 percent of the time. More recent 
research has used the "detection-effectiveness 
parameter." Another (relative) measure of 
stimulus is the "just noticeable difference" 
(JND). This has led to Weber's law, which may 
be stated t 

JND = D.s Is= constant 

where s is the previous stimulus energy value 
and D.s is the change in stimulus energy level. 
Experiments have shown that this relationship 
is a good approximation over about 99.9 per-

t Private communication from. T. W. Forbes. 

VEHICLE 
DISTURBANCE 
DYNAMICS 

cent of the usual range of sensory perception. 
Based on Weber's law, Fechner suggested 

a generalization: 

Magnitude of sensation 
= k log (magnitude of stimulus) 

A more accurate function was developed by 
Stevens.-'"· "" 

..y=k(rp-rpo)" 

where '¥=sensation magnitude; ¢=stimulus 
magnitude; k =a constant; and n =an exponent 
for a given sense area (e.g., vision, hearing). 

5.3.2 Driver as Sampled-Data System 

In observing any object to extract informa­
tion, it is necessary for a person to fixate his 
view on one portion at a time. Thus, normal 
viewing is a process of sampling data. Further-
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TABLE 5.1 Human Senses of Principal Importance to Drivers a 

Intensity Range Intensity Discrimination 

Sense Sensor Medium Smallest Largest Relative Absolute 

Vision Eye 2.2-5.7 Approx Some electro­
magnetic waves 
Mechanical pressure 

X 10-10 ergs 109 times 
threshold 

Approx 5% 
discernible 
levels in white 
light 

3-5 discernible 
levels in white 
light of 0.1-
50 ml 

Hearing Ear 

Interrupted white 
light 

Some amplitude and 
frequency varia­
tions of pressure 
of surrounding 
media (e.g., air) 

Interrupted white 
noise 

IX 10-" 
ergs/cm2 

Approx. 
1014 times 
threshold 

At 2000 Hz 
Approx 325 

discernible 
levels 

With pure tones 
about 3-5 
identifiable 
levels 

Linear 
accelera­
tion 

Muscles; 
semi-
circular 
canals 

Vertical 4-12 
cm/sec2 

Horizontal 
12-20 
cm/sec2 

No data 

Angular 
accelera­
tion 

Semi­
circular 
canals 

0.2 degrees/ 
sec2 

No data 

Mechanical 
vibration 

Skin Varies with 
portion of 
body stimu­
lated 

Varies with 
portion of 
body stimu­
lated 

3-5 steps 

more, because the driving task requires observ­
ing not only the roadway but also other targets 
and displays, the sampling nature is increased. 
Figure 5.2 shows histograms of fixations in 
normal traffic and while passing. Bekey 13 has 
investigated some of the phenomena associated 
with humans as data samplers. Some experi­
ments to determine the characteristics of this 
sampling process have been conducted by 
Senders et al. M-lG; these results are discussed in 
Section 5.3.4. 

5.3.3 Driver Information Processing 

Tasks, such as driving, can be thought of 
as responses to information-containing stimuli. 
It is convenient to quantify this information by 
the number of "bits" it contains; i.e., the num­
ber of mutually exclusive decisions that must 
be made to correctly execute the task. 17 •46 

Driving involves stimuli that are continuously 
changing; hence, it presents the driver with a 
flow of information in bits per second. If this 
rate is slow enough, drivers can respond cor-

rectly and process all information presented to 
them. Drivers, however, are limited in their 
capacity for processing information. If the rate 
of information presentation exceeds this capac­
ity, the excess will not get processed and may 
even confuse the driver. Thus, the driving 
environment should not present information at 
a rate that exceeds the information processing 
capacity of drivers. 

The driver is considered to have a single 
information channel of fixed capacity in which 
tasks are linearly additive. 19 (Several studies 
undertaken to measure the capacity of this 
channel are discussed in the following para­
graphs.) Interestingly, the level to which a 
driver is stimulated can have a beneficial effect 
up to a certain point, but thereafter further 
stimulation can degrade his performance. 20 

5.3.4.1 Short-Viewing-Interval Experi-
ments. Experiments reported by Szafran 21 

using short viewing intervals have demonstrated 
the limits of the human information processing 
ability. As the amount of information in-
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\Vavelength or Frequency Range \Vavelength or Frequency Discrimination 

Lowest Highest Relative Absolute 
Maximum lnfor­

mation Rate 

300 nm 1500 nm Approx 128 discernible hues 
at moderate intensities 

12-13 hues 4.6 X JOU bits/sec 

Unnlimited At intensities with duty At moderate intensities with 5 or 6 interruption 
cycle of 50% approx 50'!o duty cycle, 375 rates rates 
50 interruptions per sec between 1 and 45 inter-

ruptions per sec 

20 Hz 20,000 Hz Between 20 and 20,000 Hz 4 or S tones 8,000 bits/sec 
at 60 db approx 1,800 
discernible steps 

Unlimited At moderate intensities At moderate intensities with Unknown 
with 50% duty cycle 50% duty cycle 460 steps 
approx 2000 Hz in range of 1-45 interrupts/ 

sec 

Unlimited Unknown but reported as 
high as 10 kHz 

Between 1 and 320 Hz 
180 discernible steps 

Unknown 

Unlimited Unknown but reported as 
high as 10 kHz 

Between 1 and 320 Hz 
180 discernible steps 

Unknown 

a Source of data: References 7, 8, 9, 10 

creases, or when there is divided attention or 
unwanted or excessive information (visual 
noise), the additional information may be only 
marginally processed. The results are illustrated 
in Figure 5.3. 

5.3.3.2 Measuring the Spare Mental 
Capacity of Drivers. Brown and Poulton 22 

have described experiments by which they 
sought to measure the spare mental capacity of 
drivers under certain tasks. Although they 
demonstrated a method, they did not obtain a 
specific rate in bits per second. 

5.3.3.3 Drivers' Channel Capacity Re­
lated to Accident Experience. Groups of driv­
ers having high and low accident incidences 
and high and low violation experiences were 
tested to determine, by measuring decision time, 
their abilities to process information (Table 
5.2). It will be noted that the subjects with 
high accident rates had a very low information 
processing capacity. One unexpected result of 
the experiments is that drivers with zero acci-

dents but a high number of violations had the 
highest information processing capacity. Ferg­
enson 23 offers the following interpretation: 

Possibly those individuals with many 
violations are involved in more critical 
situations due to their driving habits; but 
they still avoid accidents because their 
information processing capability is not 
overloaded (they have large channel ca­
pacity. 

TABLE 5.2 Average Information Processing 
Ability of Subjects With and Without 

Violations and With and Without 
Accidents" 

Zero accidents 
High accidents 

"From Fergenson.'" 

Bits per Second 

Zero 
Violations 

26.09 
21.13 

High 
Violations 

38.67 
15.69 
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Figure 5.2 Frequency distributions of eye fixation duration (a) during passing and (b) during normal driving 
(from Whalen et al. as given by Briggs 18

). 

5.3.4 Models of Driver Information 
Processing 

An interesting experiment directly related 
to the information processing capacity of 
drivers has been reported by Senders and 
Ward. 1

" The experimental program consisted 
of observing the relationship between a driver's 
maintained speed and the amount of time his 
vision was interrupted. Interruption was ac­
complished by dropping an opaque visor over 
the eyes of the driver for varying lengths of 
time. 

In one variation of the experiment the fre­
quency and duration of viewing time was fixed 
while the driver adjusted his speed to the 

3o N - Visual Noise 

DA - Divided Attention 

20 

10 

0 
10 20 30 40 50 

Input Information (bits) 

Figure 5.3 Results of tests in which pilots were allowed 
to view information for 0.2 msec.:.'1 

amount of information he received. In a 
second variation the driver maintained a con­
stant speed but varied the frequency of viewing 
time. Two types of roadway were used: an 
unopened segment of I-495 in Massachusetts 
was considered an "easy" road for driving; the 
other, a closed-circuit sports-car course, was 
considered difficult. 

Senders and co-workers developed a model 
of information based on the assumption that 
the road had a certain number of information 
bits per mile. The faster one travels, the more 
bits he must process per unit of time. If the 
driver were to see the road only at fixed inter­
vals, he would develop uncertainty about his 
position on the road and what events ~ave 
appeared on the road since his last observat10n. 
For a given sampling rate of information it can 
be hypothesized that a driver will adjust his 
"maximum" speed to prevent the uncertainty 
between samples from becoming too great. 
(Under normal driving situations it is ob­
served that a driver tends to other tasks while 
driving, such as tuning radios, lighting ciga­
rettes, reading signs, and talking to passengers.) 

Consider the situation in which a driver's 
vision is periodically occluded, as shown in 
Figure 5.4: 

At t = - T1 vision is unobstructed and 
the driver absorbs information. The 
maximum amount of information is in 
store at t=O. Vision is obstructed for 
the following L seconds [Figure 5.4], 
during which time the store of informa­
tion continually diminishes. The mini­
mum amount of information is in store at 
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t = T,,, at which time vision is restored 
and the cycle repeats.1 " 

The following assumptions and derivations 
of a driver-information processing model are 
made: 

l. The driving situation is in the steady 
state. The vehicle proceeds at a constant ve­
locity ( V miles/sec); the timing of looks is 
periodic such that vision is allowed for T1 sec 
and occluded for Tll sec. 

2. The road has a constant information 
density of H bits/ mile. 

3. The information density of the driver's 
stored image is H e-"·1 n bits/ mile, where D is 
a weighting factor in miles and x is the distance 
from the start of occlusion. 

4. The period of view is sufficient for the 
driver to absorb all the information available. 
The amount of information stored at t=O is 
HD bits. 

5. Information is forgotten at the rate of 
/,.(1)/ F and becomes obsolete at the rate of 
I,.(t)BI D bits/sec. The amount of informa­
tion in storage t sec after the onset of oc­
clusion is H D e-<V/D+i/Fit bits, where /,. is 
the bits of information stored, F is the time 
constant (sec), and Vis speed (miles/ sec). 

The driver is assumed to adjust his veloc-
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ity (or the occlusion time) so that his uncer­
tainty U(Tll) at the encl of occlusion is less 
than some critical value Uc. 

The uncertainty is made up of two ele­
ments: ( 1) uncertainty about the road and 
(2) uncertainty about the vehicle position and 
orientation of the vehicle. With the introduc­
tion of uncertainty, the model of driver behav­
ior becomes 

U(T, 1) =H·D[l -e-·11·;1J+i/F1Tt1] 

+K,, V"(Tt1)"i 2 '.5oU., (5.1) 

where K,, includes the power density spectrum 
related to drivers' uncertainty about vehicle 
position, as well as other scaling factors; other 
variables arc as previously defined. 

In the first experiment, on an unopened 
section of 1-495, drivers were given views of 
the roadway of 0.25-, 0.50-, or J .0-sec dura­
tion. Between views the occlusion time was 
varied from 1.0 to 9.0 sec, and drivers were 
expected to adjust speed to reflect the informa­
tion received. 

When Eq. 5.1 was calibrated against ob­
served driving data on the highway, the follow­
ing ranges of results were obtained from five 
different drivers (viewing time=0.50 sec): 

H =information bits per mile 12.0-34.0 

Ir Min -- -------- __ ..__,,___ ---- --~ ---- -- -----

Tl o Time Td 

~ '----------r---------~ 
Vision Occlusion 

Figure 5.4 Timing of events." 
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D= distance ahead over which 
driver weighs information 
(miles) 0.18-0.50 

F= time (sec) to forget bits 
of information 3.5-10.0 

U = maximum amount of un-
certainty accumulated m 
information bits 1.07-13.47 

A listing of all of the model parameters 
for the six drivers is given in Table 5.3. 

In general, the results of the experiments, 
usmg two different modes of operation and 
two different classes of roads, indicated that 
the less frequent the observations, or the 
shorter the period of observation, the slower 
will be the speed that the driver can maintain. 
Conversely, the greater the level at which the 
speed 1s fixed the more often a driver must 
look at the road. Differences between the two 
roads were modifiers in which the more com­
plicated road required lower speeds for con­
stant viewing and occlusion time or more fre­
quent viewing for constant speed and viewing 
time. 

Verification of adequacy of the informa­
tion driving model suggests that trained drivers 
might be used to identify and quantify exces­
sively demanding road configurations and that 
this technique might be used on "calibrated" 
roadways to make a preliminary classification 
of drivers in terms of skill level. 

5.3.5 Driver Perception-Response Time 

One of the important measures of driver 
response to information received is his reaction 
time. The best known of these responses is 
brake reaction time. 

In early experiments brake reaction times 
were measured in the laboratory, and the re­
sults listed values that are now considered 
relatively short. Recent experiments in real 
traffic have produced brake reaction times that 
may be considered more reliable. 21 In these 
experiments the time measured represented the 
sum of the perception time (time to perceive 
the need for braking) and the time to move the 
foot from the accelerator to the brake pedal. 
Some drivers were tested under conditions of 
both surprise and limited anticipation. A large 
group was tested under limited anticipation 
alone (Figure 5.5). To correct for surprise, 
results in Figure 5.5 should be multiplied by 
1.35. For surprise situations, then, the median 
is 0.9 sec, with 10 percent of the reactions at 
1.5 sec or longer. 
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Figure 5.5 Histogram of brake reaction times of 321 drivers. The sharp peak at the left is the distribu­
tion of the reaction times of the measuring process.:.:• 

5.4 DETECTING VELOCITY DIFFERENCES 
IN CAR FOLLOWING 

One of the most important driver tasks 
from the viewpoint of traffic flow theory is 
detection of differences of velocity between the 
lead car and that which the driver operates. 
Michaels "" has given one approach to quanti­
fying this task; his work is discussed later. 
Another approach to the problem is the ability 
of the driver to detect acceleration. Under 
general conditions, the human thresholds for 
sensing acceleration are s linear-horizontal 
(12-20 cm/ sec2 ), linear-vertical ( 4-12 cm/ 
sec2 ), and angular (0.2 degrees/sec2 ). 

For car following at night, Todosiev and 
Fenton 26 found the velocity threshold gen­
erally to be smaller than the corresponding day 
threshold. 

An important aspect of velocity detection 
is the reaction or latency time. Braunstein and 
Laughery 2 ' have measured response latencies 
of drivers in detecting accelerations and de­
celerations of the lead car (Figure 5.6). 

Hoffmann "' has proposed a model for latency 
as follows: 

where 

t= latency time: 
\a\= magnitude of acceleration 111 ft/ sec"; 

and 
R =vehicle separation in ft. 

The minus sign represents acceleration: the 
plus sign, deceleration. 

Field observations have led Lee and 
Jones 0 !• to make the following statement: 

The mean time lag for the queue­
forming condition is less than that for the 
queue-releasing condition. In the queue­
forming condition the driver of the fol­
lowing car must make quick decisions to 
avoid collision as the following car gets 
nearer to the vehicle ahead. In the queue­
releasing condition there is less urgency 
for decisive action. 
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5.4.1 Estimated Driving Speed 

Estimating the speed actually being driven 
is a problem related to velocity differences in 
car following. Experiments have shown that a 
driver's estimate of his speed depends on the 
speed at which he has been traveling pre­
viously. Denton 30 has stated, "Drivers under­
estimate their speed when decelerating and 
overestimate it when accelerating." Beers and 
Hulbert 4 " have found that accuracy of speed 
estimation increases with age, but that older 
drivers tend to underestimate speed while 
younger drivers overestimate. 

5.4.2 Behavior in Platoons ··· 

Forbes :n has derived the flow-concentra­
tion curve from driver characteristics. The 
curves on the left of Figure 5.7 would result if 
drivers maintained the same speed as concen­
tration increases. At low concentration where 
cars do not interfere with each other, flow 
would increase linearly with concentration. If 
there is ?ne car per mile moving at 25 mph, 
the flow 1s 25 cars per hour. If concentration 
is doubled to two cars per mile, flow is also 
doubled (in this case to 50 cars per hour). It 
may be seen from Figure 5.8 that Forbes' pre­
dictions are validated by actual traffic flow data 
from tunnels and expressways. However, as 
concentration increases, the driver is increas-

•:• Material in section 5.4.2 is quoted from 
Gordon " with appropriate renumbering of refer-· 
ence citations and figures. 
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Figure 5.6 Effects of rate of change and initial distance 
on response latency.:r. 

ingly impeded by congestion, and flow departs 
progressively from the predicted lines. 

Forbes' predictions of flow based on fixed 
reaction time headways are shown in the nega­
tively sloped portions of the flow-concentration 
curves. As concentration increases, drivers 
move more slowly to preserve reaction time 
headway. (Haight, Bisbee, and Wojcik 1 9 have 
shown that the driver cannot reduce time 
headway below man-machine reaction time if 
the risk of collision with the car ahead is to 
be avoided. The derivation assumes that the 
driver's braking is as effective as that of the 
driver in front.) For example, if concentration 
increases from 120 cars to 240 cars per lane 
per mile, distance headway decreases from 44 
to 22 ft, and clearance between 1 7-ft cars 
de~reases from 27 to 5 ft. In this example, the 
dnver must reduce speed to less than a fifth to 
equalize his time heading at the two concen­
tration levels. 

Flow data from highway sites are also 
shown in Figure 5.8. Curves a to d show data 
obtained at four freeway stations. The Edsel 
Ford Expressway (curve c) is fitted by a time 
headway between 1.0 and 1.5 sec; the Lincoln 
Tunnel (curve b) and the Penn-Lincoln Park­
way (curve d) are predicted by headways be­
tween 1.5 and 2.0 sec. The traffic flow taken 
at another station on the Edsel Ford Express­
way and shown in curve a did not reach a 
slowdown or stoppage, although flow volume 
reached as high as 2,000 vehicles per hour. It 
may be seen that the congested-flow data can 
be fairly well fitted by straight lines represent­
ing the assumption that drivers' average time 
heading is constant and independent of traffic 
density. 

Forbes also showed that drivers reacted to 
sudden braking of the car ahead by dropping 
back to increase their time headways. If the 
leader of a three-car queue reduced speed by 
about 10 mph and after several seconds re­
turned to cruising speed, the driver immediately 
behind dropped back to increase his time head­
way. The effect at various road sites differing 
in horizontal and vertical curvature is shown 
in Table 5 .4. It may be seen that the rear 
driver increased time headway 0.8 sec or more 
after the deceleration maneuver. This change 
in time headway is observed after deceleration 
of actual traffic and affects flow rate. 

Forbes' experimental work under dense 
traffic is described in Forbes and Simpson.'" 

5.4.2. l Platoon Behavior as a Weber­
Fechner Relationship. Daou 3

" suggests that 
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driver performance in platoons may be a 
Weber-Fechner relationship. Specifically, he 
suggests that headway and speed may be re­
lated by 

(L+B) 
h=tr+---­

U 
(5.3) 

where 

h= headway (sec); 
fro= reaction time (taken as 1.488 sec); 
L= length of lead vehicle (ft); 
B = buffer distance between vehicles 

(ft); 
L+B= 35 ft; and 

u=speed (ft/sec). 

This relationship is illustrated in Figure 
5.9. The low value of L+B indicates a low 
speed. Such a speed would imply operation on 
the lower portion of the speed-flow curve. 
(See, for example, Figure 4.23.) 

TABLE 5.4 Time Headways Before and 
After Deceleration of Lead Car" 

Site 

I 
2 
3 
4 
5 

Lead Car 
Average Time Headway 

Average 
(sec) 

Speed'' Before'· After c 

(mph) Deceleration Deceleration 

30 1.8 
30 1.5 
30 1.5 
33 1.5 
28 1.6 

" Compiled from Forbes et al." 
''Forbes' Table 2 (daylight). 
"From Forbes' Table 3 (daylight). 

2.5 
2.6 
2.4 
2.3 
2.6 

5.5 MISCELLANEOUS DATA 
CONCERNING DRIVER 

PERFORMANCE 

5.5.1 Overtaking and Passing 

Figure 5.2 shows that driver eye fixations 
during passing tend to be of longer duration 
inasmuch as the driver has a greater level of 
concentration. Table 5.5 indicates some typi­
cal times for passing maneuvers. '33 Further 
information regarding passing may be found in 
references 34, 35, 36, 3 7, 38. 

5.5.2 Information Content of Signs 

The viewing time for a sign is often taken 
as about 1 sec. This limits the feasible con­
tent of a sign message to three or four short 
or easily recognized words. 39 The recent intro­
duction (in the United States) of symbolic 
signs is expected to greatly facilitate informa­
tion extraction from signs. 

5.6 SUMMARY 

The driving task consists of rece1vmg in­
formation from the roadway, other cars, and 
the environment and of reacting to the various 
stimuli received by control of heading (steer­
ing) or control of acceleration (acceleration 
or braking). The driver uses a variety of senses 
to gather information required for the driving 
task, the most important of which is visual 
inputs. Whereas the information rate of the 
human eye can be up to 4.6 x 1 on bits/ sec, the 
human information processing channel has a 
maximum rate in the neighborhood of 25-35 
bits/ sec. Thus visual input could completely 
swamp the information processing channel if 
the driver did not do selective filtering. 

TABLE 5.5 Typical Passing Times " 

Overtaken Car Overtaken Car Overtaken Car 
Speed (Medians) Speed (Means) Speed (Means) 

Type of Pass 30 50 0-19 20-29 30-39 40-49 50-59 25 30 40 50 

Accelerative: 
Voluntary 10.0 11.5 8.7 8.8 9.8 10.8 10.5 
Forced 8.0 9.5 7.7 8.0 8.8 9.4 8.4 7.8 8.1 8.9 9.6 

Flying: 
Voluntary 10.5 12.0 10.0 9.9 11.0 I 1.9 9.6 
Forced 8.0 10.5 8.1 8.9 9.8 11.8 9.3 

" Compiled by Rockwell ~1 from four sources. 
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Indications are that the driver normally 
scans the roadway approximately 1.5 sec 
ahead. 1 ' If, however, the situation (highway 
and control task) is changing relatively slowly, 
the driver may look farther ahead and thereby 
increase his information input. 

Indications are that the motor response 
time (e.g., move the foot from the accelerator 
to the brake) is relatively constant and that 
judgment and decision time (including percep­
tion and information processing) varies with 
the complexity of the situation and the decision 
to be made. 
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5.9 PROBLEMS 
1. Assume that a· lead car decelerates for 

a "stop" sign at a rate of 0.25 g. What is the 
latency in detecting the deceleration? 

2. What would be the modal brake reac­
tion time under surprise? 

3. According to Daou, in a platoon travel­
ing at 40 mph, what headway would you 
expect? 

4. (a) Consider the 1-sec observations 
shown in Table 5.3 and determine the rate 
(in bits/ sec) at which each driver acquires 
roadway information. (b) If a driver looks at 
the roadway for 1 sec, how many bits of road­
way information does he have stored when he 
changes his fixation to, say, his rearview mir­
ror? (Use median values of H and D.) 
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Chapter 6 

CAR FOLLOWING AND ACCELERATION NOISE 

6.1 INTRODUCTION 

In Chapter 5 it was pointed out that the 
individual driver's actions result from his inter­
pretation of the information received and his 
decision to make some response to that infor­
mation. The driver's actions are limited to the 
control of acceleration (braking and accelerat­
ing) and the control of heading (steering). 
This chapter is concerned with the dynamics 
of a stream of traffic resulting from a series of 
drivers attempting to regulate their accelera­
tions to accomplish a smooth safe trip. 

The earliest attempts at estimating the 
capacity of a single lane on a roadway were 
based on assumptions of car-following behav­
ior of individual drivers. The first edition of 
the Highway Capacity Manual 1 contains a 
synopsis of 23 early studies of highway capac­
ity as reported between 1924 and 1941. 

Nearly all of the calculations were based 
on the formula: 

C=5,280 VIS ( 6.1) 

where 

C= capacity of a single lane (vehicles/hr); 
V =velocity (miles/hr); and 
S= average spacing (ft) from front 

bumper to front bumper of moving 
vehicles. 

For the greater number of calculations of 
lane capacity the spacings were arrived at by 
assuming a car-following law in which the fol­
lowing driver adjusted his position relative to 
the lead vehicle in anticipation of a "brick-wall' 
stop by the lead vehicle. If the lead vehicle 
were to come to an instantaneous stop the 
following driver is assumed to have allowed 
himself a distance for stopping that included 
the distance traveled during braking, the dis­
tance traveled during reaction time, and the 
length of the lead vehicle. The average spacing 
is then given by: 

(6.2) 
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where 

S =average spacing, as previously defined; 
V =velocity (mph); 
a= a constant that is a function both of 

the assumed deceleration rate and 
conversion from mph units to fps 
units; 

b= a constant that is a function both of 
the assumed reaction time and con­
version from mph units to fps units; 
and 

c = assumed distance (ft) front bumper 
to front bumper of stopped vehicles. 

The models noted, however, were appli­
cable only to the case of uniform velocity for 
each vehicle in the traffic stream and provided 
no insight into the behavior of a line of traffic 
when one of the vehicles in a line accelerates 
or decelerates and the following vehicles at­
tempt to maintain some desired spacing. With 
the work of Reuschel ~- 3 in 1950 and Pipes ·1 

in 1953, the analysis of car-following models 
was formalized, and operations research tech­
niques were used to develop models of car 
following. This work was further extended by 
Kometani and Sasaki 0- 8 in Japan and by 
Herman and his associates 9 - 13 at the General 
Motors Research Laboratories. 

A principal effort of car-following studies 
has been that of trying to understand the be­
havior of a single-lane traffic stream by exam­
ining the manner in which individual vehicles 
followed one another. Studies of this nature 
have been used to examine control and com­
munication techniques that will minimize the 
occurrence of rearend chain collisions in dense 
traffic. 

6.2 DEVELOPMENT OF A 
CAR-FOLLOWING MODEL 

Car-following models are a form of 
stimulus-response equation, where the response 
is the reaction of a driver to the motion of the 
vehicle immediately preceding him in the traffic 
stream. The response of successive drivers in 
the traffic stream is to accelerate or decelerate 
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in proportion to the magnitude of the stimulus 
at time t and is begun after a time lag T. 

The basis equation of these models is of 
the form 

Response ( t + T) =Sensitivity x Stimulus ( t) 

What is the nature of the driver's response? 
To what stimulus does he react and how do 
we measure his sensitivity? 

Consider the case of drivers in "dense" 
traffic who, because of traffic restrictions (no 
lane-changing permitted) or high volumes in 
adjacent lanes, are forced to follow the car 
immediately in front without passing. 

It is assumed that a driver will space 
himself at a distance s(t) from the lead vehicle 

. such that in the event of an emergency stop by 
the first vehicle, the second vehicle will come 
to rest without striking the lead vehicle. The 
second driver allows himself a reaction time T, 
measured from the time t at which the lead 
driver initiates his stop, until the second driver 
initiates his own stopping maneuver. 

f-olll------s (t)-----~ 

-Xn+1 (t) 

-----Xn (tl-----~ 

The relative positions of the two vehicles 
at the time t, measured from the front bumper 
of each vehicle, are shown in Figure 6.l(a), 
where vehicle n is the lead car and n + 1 the 
following car. 

The relative positions of the two vehicles 
after the stopping maneuver are given in Fig­
ure 6.1 (b), where 

x,,(t) =position of vehicle n at time t; 
s(t) =spacing between vehicles at time 

t=x,, (l) -Xn+l (t); 
d1 =distance traveled by vehicle (n+ 1) 

during reaction time T= T u,,+i (t); 
d2 =distance traveled by vehicle (n + 1) 

during deceleration maneuver= 
[U11 +1 (t+ T) ]2/2an+l (t+ T); 

d3 = distance traveled by vehicle (n) 
during deceleration maneuver= 
[u,, (t) ]2/2an(t); 

L= distance from front bumper to front 
bumper at rest; 

ui(t) =velocity of vehicle i at time t; and 
aJ t) = acceleration of vehicle i at time t. 

(a) Position at Time t 

i----- Vehicle n Initiates Deceleration 

r~~· 
1 n+1 ';::j 
L_LJ 

d3------------~ (b) Position 

Stopping Distance for n at Rest After 
Stop Initiated 
by Lead 
Vehicle 

f-olll-----d1------+-------~d2------11...+-o,._ 
Distance Traveled Stopping Distance for 
During Time T n+1 

Vehicle n+1 Initiates Deceleration 

Figure 6.1 Positions of lead and following vehicles for emergency stop condition. 
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The desired spacing at time t, such that no 
collision will occur in event of a sudden stop, 
is then 

s(t) =xn(l)-x,,+1(1) =d1 +d2 +L-d3 (6.3) 

Defining the velocity of a vehicle as 

dx(I) . 
u(I) = dt =x(I) 

and the acceleration as 

d2x 
a(I) =--=x(I) 

d1 2 

( 6.4a) 

( 6.4b) 

and substituting in Eq. 6.3 the appropriate 
relations for d1 , d2 , and cf;:,,, gives 

s(I) = x,,(1)-x,,+1 (1) 
=Tx11 +1 (1) 

+ [x2,,+r ( t + T) ]/ [2x,,+1 (I+ T)] 
+L-[.F 11 (1)]/[2.X 11 (1)] (6.5) 

If the stopping distances and velocities of 
the two vehicles are assumed equal, so that 
d 2 =d3 , the spacing becomes 

x 11 (1)-x 11 +1 (1) =Tx11 + 1 (t+T) +L (6.6) 

which is the distance traveled by the following 
vehicle during reaction time (T), d1 , plus the 
separation between the front bumpers at rest, 
L. It will be observed that this spacing is less 
than that assumed in Eq. 6.2. 

Differentiating with respect to ( t), 

.X,,(1)-.i,,+1 (1)=T[x,,+1 C1+T)J (6.7) 

so that the acceleration of the n +1st vehicle 
at time (t+ T) becomes 

x11 +1 (1+T) =T-1 [.X"(t)-.X11 +1 (1)] (6.8) 

which is of the form given previously, 
Response (I+ T) =Sensitivity x Stimulus ( t). 

The response of the n + 1st driver, which 
takes place at time (t+ T), is to accelerate 
(decelerate) by an amount proportional to the 
positive (negative) difference in the relative 
velocity of the nth and n +1st driver and the 
measure of sensitivity is given by T-1 (sec). 

How well does a simple car-following 
model of the type given in Eq. 6.8 describe 
driver behavior? Assume two vehicles waiting 
at a traffic signal, with the front bumper of the 
second vehicle positioned 25 ft from the front 
bumper of the lead vehicle. The reaction time 
( T) of the drivers is taken to be 1.0 sec and 
the sensitivity ( T-1 ) is 1.0. At time 0.0, shortly 
after the signal changes to green, the first 
vehicle immediately (a physically impossible 

situation that is assumed because further cal­
culations are simplified) moves away at 30.0 
ft! sec. The second vehicle follows the first 
according to the rule given in Eq. 6.8. 

Substituting appropriate values for T and 
T-', Eq. 6.8 may be written as: 

x11 +1 (1+l)=l.O[.X11 (1)-i11 +1 (t)] (6.9) 

A direct analytical solution of Eq. 6.9 is 
cumbersome; it is easier to find a numerical 
solution. As an. example, consider the case 
where the second vehicle attempts to follow a 
first vehicle that has instantly attained a veloc­
ity of 30.0 ft/ sec from a stopped position as 
developed below. For this solution the posi­
tion of the first vehicle is advanced 30 ft 
during each 1-sec time slice. At each time t 
separated by an increment of time 6.1, the 
acceleration of the second vehicle is calculated 
( Eq. 6 .9) . All distances measured are from 
the stop line at location 0 ft. 

Assuming that during each time slice M 
( 1.0 sec in this example) the acceleration is 
uniform and equal to the average of the accel­
erations calculated at the start and end of each 
time slice, the equations of velocity u 2 (t) and 
position x 2 (t) are given by 

i2(1) = .<' 2 (1-D.t) 
+1/i(x2 (t-M) +x2 (1)]6.1 (6.10) 

and 

X 2 (t) = X 2 (t-D.t) -f-X2 (t-M)D.t 
+ 1/i[i2(t-6.I) +x2 (t)]M 2/2 

= x 2 (t-M) 
+ 1h[i2(t-M) +.X2 (1)]t.1 (6.11) 

where M is the time increment between suc­
cessive calculations (sec). 

A numerical solution of these three for­
mulas is given in Table 6.1, where the relation­
ship is solved at 1.0-sec increments. It is 
evident that vehicle 2 quickly reaches the speed 
of the lead vehicle and settles down to follow 
at a distance of about 55.0 ft from it, with only 
minor corrections in velocity and spacing after 
7 or 8 sec have elapsed. The spacing of 55.0 ft 
is the same as that given in Eq. 6.6 when the 
reaction time is assumed to be 1.0 sec and the 
stopped spacing L between vehicles is 25 ft. 

So far concern has been with the behavior 
of only the first and second cars waiting in a 
queue at a stop signal. What of a vehicle that 
is not immediately behind the lead vehicle but 
is the fourth or fifth vehicle in line at the 
moment the lead vehicle moved at 30 ft/ sec? 
The behavior of a series of vehicles could be 
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TABLE 6.1 Car-Following Calculations 

Time i, x2 i2 i1-X2 x, X2 X1-X2 

(sec) (ft/sec) (ft/sec') (ft/sec) (ft/sec) (ft) (ft) (ft) 

0.0 30.0 0.0 0.0 30.0 0 -25.0 25.0 
1.0 30.0 30.0 0.0 30.0 30 -25.0 55.0 
2.0 30.0 30.0 30.0 0 60 -10.0 70.0 
3.0 30.0 0.0 45.0 -15.0 90 27.5 62.5 
4.0 30.0 -15.0 37.50 -7.5 120 68.8 51.2 
5.0 30.0 -7.50 26.25 3.75 150 100.6 49.4 
6.0 30.0 3.75 24.375 5.625 180 125.9 54.1 
7.0 30.0 5.625 29.062 0.938 210 152.7 57.3 
8.0 30.0 0.938 32.345 -2.345 240 183.4 56.6 
9.0 30.0 -2.345 31.641 -1.641 270 215.4 54.6 

10.0 30.0 -1.641 29.648 0.352 300 246.0 54.0 
11.0 30.0 0.352 29.004 0.996 330 275.3 54.7 
12.0 30.0 0.996 29.678 0.332 360 304.7 55.3 
13.0 30.0 0.322 30.342 -0.342 390 334.7 55.3 
14.0 30.0 -0.342 30.332 -0.332 420 365.0 55.0 
15.0 30.0 -0.332 29.995 0.005 450 395.2 54.8 
16.0 30.0 0.005 29.831 0.169 480 425.1 54.9 
17.0 30.0 0.169 29.918 0.082 510 455.0 55.0 
18.0 30.0 0.082 30.046 -0.046 540 484.9 55.1 
19.0 30.0 -0.046 30.064 -0.064 570 515.0 55.0 
20.0 30.0 -0.064 30.009 -0.009 600 545.0 55.0 

x2(1+ 1) = 1.o[x,(t) -x,(r)J 

x2(t) =x,(t-l) ++[x2(t- l) +x,(t)J 

x,(t) =x,(t-1) ++[x,(1-l) +x,(t)J 

extended by extending the type of arithmetic 
calculations given in Table 6.1, but the calcu­
lations are lengthy and numerical accuracy 
dictates that the calculations be done at 0.1-sec 
intervals (see Fox and Lehman H for a discus­
sion of solving the car-following problem with 
an electronic computer). 

An alternate method for calculating the 
behavior of a platoon of vehicles for the car­
following situation is to apply the Laplace 
transform to the solution of the problem. The 
particular problem postulated here, the behav­
ior of a platoon of vehicles starting from rest 
when the velocity of the lead vehicle instanta­
neously becomes u0 at time t ::>: 0, has been 
solved by Kometani and Saski. 7 Further dis­
cussion of the application of the Laplace trans­
form will be found in references 9, 15, 16. 

A numerical solution of the behavior of 
the first five vehicles in a platoon, based on 
the equations of Kometani and Sasaki 7 is given 
in Table 6.2. The assumptions are the same as 
for the two-car situation, with T= 1.0 sec and 
vehicles starting from a queue at rest with 
25-ft spacing between vehicles, except these 
calculations are done at 0.1-sec intervals. The 

results are presented at 1.0-sec intervals, and 
the reader will observe that the location of the 
second vehicle x 2 is not exactly that calculated 
by using 1.0-sec intervals as in Table 6.1. 

Although the simple rule for car following 
developed in Eq. 6.9 gave a reasonable pattern 
for the motion of the second vehicle relative 
to the first, it will be observed that the third 
and fourth vehicles will be involved in a rear­
end collision about 90 ft and 7.0 sec from the 
starting point when the spacing (front bumper 
to front bumper) is reduced to less than 
18.0 ft. It is evident that if all drivers were to 
follow the postulated behavior there would be 
a rash of rearend collisions at signalized inter­
sections. The amplitude of the response to the 
instant change in velocity of vehicle 1 becomes 
greater for each successive vehicle and the sys­
tem is said to be unstable. 

6.3 TRAFFIC STABILITY 

The question of stability in a platoon of 
vehicles is important in reviewing different 
patterns of car-following behavior. If driver 
behavior is to be modified, or the mechanical 

• 
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TABLE 6.2 Solution of Car-Following Model 

Time x, x, x, x, x" x,; x. x, Yo Xo 

(sec) (ft/sec) (ft) (ft/sec) (ft) (ft/sec) (ft) (ft/sec) (ft) (ft/sec) (ft) 

0.0 30 0.0 0.00 -25 0.00 -50.0 0.00 -75.0 0.00 -100.0 
1.0 30 30.0 0.00 -25 0.00 -50.0 0.00 -75.0 0.00 -100.0 
2.0 30 60.0 30.00 -10 0.00 -50.0 0.00 -75.0 0.00 -100.0 
3.0 30 90.0 45.00 27.5 15.00 -42.5 0.00 -75.0 0.00 -100.0 
4.0 30 120.0 35.00 67.5 50.00 -10.0 5.00 -72.5 0.00 -100.0 
5.0 30 150.0 23.75 96.9 58.75 44.4 36.25 -51.9 1.25 -99.4 
6.0 30 180.0 25.25 121.4 29.00 88.2 78.00 -4.8 19.00 -89.2 
7.0 30 210.0 31.71 149.8 6.96 106.23" 109.75 89. l" 70.08 -44.7 

"Front ends of vehicles are separated by less than 18.0 ft (collision imminent). 

devices in the vehicle or the signal system 
changed, it is important to determine that the 
system is stable; that is, that a change in 
velocity by the lead vehicle of a platoon will 
not be amplified by successive vehicles in the 
platoon. 

The stimulus-response equation exempli­
fied in Eq. 6.8 can be generalized as 

.x,,+,(1+1') =a.[.i,,(1)-x,,~ 1 (1)J (6.12) 

This is a linear car-following model because 
the response, acceleration (deceleration), is 
directly proportional to the stimulus, a positive 
(negative) difference in relative velocity of the 
nth and n +1st vehicles. Although more com­
plex car-following models give better descrip­
tions of observed traffic flows, the linear model 
given in Eq. 6.12 is most amenable to a theo­
retical analysis of stability. 

Herman and co-workers 10-11 have dis­
cussed two conditions of stability-local and 
asymptotic. Local stability is concerned with 
the response of a vehicle to the change in 
motion of the vehicle immediately in front of 
it. It can be demonstrated by the pattern of 
spacing between vehicle 1 and vehicle 2 as in 
Table 6.1. In tracking the lead vehicle, the 
second vehicle first lost ground, then "over­
shot" at 5 .0 sec, and continued to oscillate in 
damped amplitude about an ultimate "steady­
state" spacing of 55 ft. 

The manner in which a fluctuation in the 
motion of the lead vehicle is propagated 
through a line of vehicles is a function of 
asymptotic stability. From the data of Table 
6.2 it is evident that the motion introduced to 
the first vehicle is propagated through the line 
of vehicles in a pattern of increasing amplitude, 
leading to the rearend collision between ve­
hicles 3 and 4. 

6.3.l Local Stability 

Herman and his associates 10
·
1

" have iden­
tified the following situations for local stability 
in which: 

0<:'. (C=a.T) < l/e 
(0.368) 

lie<:'. (C=a.T) <rr/2 
(l.571) 

(C=a.T) =rr/2 

(C=a.T) >rr/2 

spacing is nonoscil­
latory 
damped oscillation 
of spacing 
spacing is oscillatory 
with undamped os­
cillation 
increasing amplitude 
m oscillation of 
spacing 

As the value of C increases, the spacing 
between the two vehicles becomes increasingly 
unstable. If one reacts too strongly (large a., 
reflecting excessive throttle or brake-pedal re­
sponse) to an event that occurred too far in 
the distant past (large response lag T), the 
situation at the moment of response may have 
changed to the point where the response is 
actually in the wrong direction. 

The influence of the parameter C( = a.T) 
on local stability is demonstrated in Figure 6.2. 
For values of 0.50 and 0.80, the spacing shows 
damped oscillation; at a.T=rr/2( = 1.57), the 
spacing is oscillatory and undamped; at 
a.T= 1.60, the spacing is oscillatory with in­
creasing amplitude. The lead vehicle first de­
celerated and then accelerated back to its ini­
tial velocity, with an initial spacing of 70 ft 
between vehicles. Positions of the two vehicles 
were then calculated by Eq. 6.12 and the results 
plotted as shown. 

For the example given in Table 6.1, 
a.T= 1.0( = T- 1 X T), indicating that the spacing 
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Figure 6.2 Change in car spacing of two cars. 10 

is oscillatory but damped, which can be readily 
verified by examining the final column of 
Table 6.1. 

6.3.2 Asymptotic Stability 

The limit for asymptotic stability has been 
investigated and reported by Chandler, Her­
man, and Montroll. 9 A line of traffic is asymp­
totically stable only when C = aT < 1h, which 
may be compared with the limit for local 
stability, where C = )~ indicated that the spacing 
is oscillatory but damps very quickly (Figure 
6.2). The fluctuation in the motion of the 
lead car is propagated down the line of vehicles 
at a rate of a- 1 sec/ car. 

A value of aT> 1h will propagate a dis­
turbance with increasing amplitude, ultimately 
resulting in a rearend collision as demonstrated 
between vehicles 3 and 4 at about 7 sec elapsed 
time in Table 6.2. This effect is further dem­
onstrated in Figures 6.3 and 6.4. 

Figure 6.3 shows the spacing of succes­
sive pairs of vehicles for different values of aT 
and for a condition where the first car decel­
erated and then accelerated back to its initial 
velocity, with an initial spacing of 70 ft between 
vehicles. 

Figure 6.4 shows the variation in spac­
ing of a group of nine vehicles relative to 
a phantom lead car moving with constant speed 

at an initial spacing of 40 ft. Vehicle 1 de­
celerates and then accelerates back to its 
original velocity. In the process his spacing 
from the phantom vehicle is increased but is 
stable. Successive vehicles make corrections 
at a later time and with increasing amplitude of 
oscillation until a collision occurs between 
vehicles 7 and 8. For this example a=0.8 
and T=2.0 sec . 

6.3.3 Propagation of a Disturbance 

Herman and Potts 12 have reported a 
series of three experiments designed to investi­
gate the way in which a disturbance is propa­
gated down a line of cars. Eleven cars were 
driven in a line down a test track at about 
40 mph. The lead car was suddenly braked, 
and the elapsed time between the appearance 
of the brake lights on the lead and sixth car t6 

and. the time between the lead and eleventh 
car t 11 were recorded. In experiment A the 
drivers were instructed to react only to the 
brake light of the car immediately in front of 
them; in B the drivers were to react to any 
braking stimulus; in C the brake lights were 
disconnected on all but the first and last ve­
hicles. The results are summarized in Table 
6.3. 

The shortest time of propagation occurred 
in experiment B; the longest (about 1.0 sec/ 
car), in experiment C. The difference in time 
between experiments A and C demonstrates 
the value of the brake light as a means of 
communicating the act of deceleration. It was 
pointed out earlier that the rate of propagation 
is a-1 sec/ car. The propagation rate for experi­
ment C (a- 1 =1.01) agrees closely with the 
assumptions made in developing the car­
following example discussed in Section 6.1 
(a- 1 =1.0). 

6.4 NONLINEAR CAR·FOLLOWING 
MODEL 

In the development of a linear car-follow­
ing model and a brief review of stability, it 
has been assumed that for the relationship, 
Response= Sensitivity x Stimulus, the sensitivity 
a is a constant value. This would imply that 
for a given difference in velocity between a 
driver and the lead vehicle, his response would 
be independent of the spacing between the two 
vehicles. Gazis, Herman. and Potts 11 devel­
oped a more realistic model, in which they 



NONLINEAR CAR-FOLLOWING MODEL 93 

-;:;-..... 
Cl 
c: 
u 

"' a. 
(/) 
.... 
"' u 

70 

60 

50 

70 

60 

50 

90 

80 

10 20 

Time (sec) 
30 40 

Figure 6.3 Car spacings of a line of cars with constant control for 

varying values of C ( = etT) and for a condition where the first car 
decelerated and then accelerated back to its initial velocity, with an 

initial spacing of 70 ft between vehicles. 10 

proposed that the sens1t1v1ty be inversely pro­
portional to the spacing so that 

x,,+1 (t+T) = {et0 /[x"(t)-x,,+1 (t)]} 
[.X,,(t)-il!+l(t)] (6.13) 

where {a0 /[xn(t)-x,,+l(t)]} is a measure of 

TABLE 6.3 Time for Propagation 
Down a Line of 
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Figure 6.4 Asymptotic instability of a line of 

nine cars under the influence of velocity control 
(Ct= 0.8, T = 2.0) relative lo a phantom lead 
car moving with constant speed at an initial spac­
ing of 40 ft. Vehicle 1 decelerates and then ac­
celerates back to its original velocity. In the 
process its spacing from the phantom vehicle is 
increased but is stable. Successive vehicles make 
corrections at a later time and with increasing 
amplitude of oscillation until a collision occurs 

between vehicles 7 and 8.10 

(sec) of Fluctuation 
Cars 

Experiment A Experiment B Experiment C 

Run Number I,; In 1, In 111 

1 3.00 5.95 2.33 5.70 10.90 
2 3.00 6.05 1.49 6.85 9.95 
3 3.05 5.75 2.68 6.50 12.00 
4 3.44 6.75 1.68 6.10 10.20 
5 2.73 7.80 . 2.26 3.72 9.35 
6 8.30 

Avg. per car 0.61 0.65 0.42 0.58 1.01 
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the sensitivity and the units of a.0 are distance/ 
time. 

A number of car-following experiments 
were performed in the Holland and Lincoln 
Tunnels in New York and at the General 
Motors test track. Two vehicles were con­
nected by a length of wire on a reel, permitting 
direct measurement of spacing and relative 
velocity simultaneously with measurements of 
the acceleration and velocity of the following 
vehicle. Different drivers were given instruc­
tions to follow the lead vehicle as they would 
under normal driving conditions. A summary 
of the values of a.0 and T found in the car­
following experiments is given in Table 6.4.12 

As will be seen in section 6.5, a.0 is representa­
tive of the speed associated with maximum 
traffic volumes. 

The values given are the averages for all 
of the drivers tested. In the General Motors 
experiment, for example, the value of T ranged 
from 1.0 to 2.2 sec. 

6.5 FROM CAR-FOLLOWING TO 
TRAFFIC STREAM MODELS 

The relationship between car-following 
models and traffic stream models of the type 
discussed in Chapter 4 was first examined by 
Gazis et al. 11 Assume that the lead vehicle in a 
stream of cars is proceeding at a constant 
velocity u and that each following vehicle pro­
ceeds at the same velocity and is separated from 
the preceding vehicle by a distance dictated by 
the drivers' perception and interpretation of a 
"safe" following distance. The platoon of cars 
will move along the roadway in a "steady-state" 
condition for which one can observe flow rate 
q, density k, and velocity u. Gazis et al. demon­
strated that it is possible to derive equations of 
traffic stream flow directly from the laws of 
motion that are suggested by car-following 
theory. Basically, the procedure is to integrate 
an expression for the acceleration of the 

TABLE 6.4 Summary of Car-Following 
Experiments 

Number of 
Location Drivers a.,, (mph) T (sec) 

General Motors 
test track 8 27.4 1.5 

Holland Tunnel 10 18.2 1.4 
Lincoln Tunnel 16 20.3 1.2 

( n + 1st) vehicle, giving an expression for 
the velocity of that vehicle, which in turn is the 
steady-state velocity of the traffic stream. The 
resulting equation of the velocity can then 
be solved for known boundary conditions, de­
termining the constant of integration and then 
substituting in terms of the appropriate quanti­
ties, q and k, used in the definition of flow 
(q=uk) (Chapter 2). 

Consider the application of the procedure 
to the simple linear car-following model given 
in Eq. 6.12: 

1. Express the acceleration for the 
(n+ 1st) vehicle, 

2. Integrate the expression to obtain the 
velocity of the n + 1st vehicle (the velocity of 
the traffic stream) 

Xn+i (t + T) =a[x 11 (t) -Xn+i ( t)] + C 0 

Because under steady state the velocity at 
time (t+ T) is the same as the velocity at time 
(t), the lag time T can be disposed of such that 

.X- 11 +1 = u = a[x" -xn+i] + C0 

= as+C0 ( 6.14) 

where [x" - Xn+il is the average spacing between 
vehicles, s( = 1 I k). The expression for velocity 
and spacing are for the average vehicle in the 
traffic stream. 

3. Determine the constant of integration 
(C0 ) by solving Eq. 6.14 for a known condi­
tion-in this case, when velocity u=O, spac­
ing=s;=iam spacing= 11 ki= (jam density)-1

• 

Therefore, O=a[l/ ki] + C0 and C0 = -al k;. 
4. Express u in terms of k by substituting 

for the value of C0 and recalling that s= 11 k 
in Eq. 6.14-in this instance u=a[l/ k-11 k;]. 

5. Recalling the relationship (q=uk), we 
arrive at the steady-state equation 

q= ka.[11 k-11 k;] 
= a[l -kl k;] ( 6.15) 

6. Determine the proportionality con­
stant a by solving for a known condition; in 
this case, when k = 0 the value of q in Eq. 6.15 
will be a maximum q 111 so that a will equal qm. 

Note that the unit of a is time-1 =flow 
rate. The traffic stream model given in Eq. 
6.15 indicates that the flow rate q is a maximum 
at density k=O. If a= (1 sec)-1 then the maxi­
mum flow rate at k =0 will be 3,600 vehicles/ 
hr. This is inconsistent with observed traffic 

• 
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stream data (see Figures 4.15 and 4.17), indi­
cating that the car-following model of Eq. 6.12 
is not a realistic model, at least at low densities. 

The same procedure may now be applied 
to Eq. 6.13. 

I 
.. ( T)- x11 (t)-i,,. 1(t) 

. x""' t+ -ao -----­
x11(t) -x11+1(t) 

2. Integration (this is of the form 

C f d'lll) • results m u=a0En,[x 11 -x11+1]+C,, 

= a 0 fu[s] + C0 = a 0 fu[l/ k] + C0 • 

3. Since for u= 0, k=ki 
0= a 0fu[l/ kj]+C0 , 

C0 = - a 0fu[l I kj]. 
4. U= a 0fu[l/ k]-a0fu[l/ kj] 

= a 0Ei,[l/k-En, 1/ki] 
= a 0Ei,[k/ k] (6.16) 

5. q= u k 
=a0 kfu(k/k) (6.17) 

6. To determine the proportionality con­
stant a 0 , refer to Figure 4.15 and Section 4.3 .2 
to determine the known physical conditions. 
Observe that slope dq/ dk = 0 at maximum 
volume qrn. Differentiation of Eq. 6.17 yields: 

dq!dk= a 0 [k(kl ki) (-k/ k2
) +En,(k/k)]=O 

= a 0 [- l +En,(k/ k)]=O 
= a 0 Ei,[k/ ke] = 0 

where e =base of natural logarithms. 

Assuming that a 0 =I= 0 and defining k 111 as the 
density at maximum flow qm yields En,(k/ krne) 
= 0 so that k/ kme= 1 and km= k/ e. 

Defining u111 as the velocity at qm, qm 
=umkm=umk/e. 

Substituting um and km in Eq. 6.16, gives 
um= a 0 En,[k/ km]= a0 En,[kje/ kj] = a0 fu e, so 
that 

Eq. 6.16 was first proposed by Green­
berg,17 who developed the relationship from the 
equation describing unidimensional flow in 
fluids and that denoting conservation of matter. 
The relationship was confirmed from experi­
mental observations of flow, density, and veloc­
ity. The Greenberg equation of state (section 
7.4.1), using the application of a fluid flow 
analogy, is based on a macroscopic approach 
and is mathematically equivalent to Eq. 6.13, 
which is based on the principles of car follow­
ing, a microscopic approach. This model has 

been verified by experimental data (Figure 
4.15). 

6.6 GENERAL EXPRESSION FOR 
CAR-FOLLOWING MODELS 

Continuing examination of the relationship. 
between microscopic and macroscopic models 
led to a generalized form of the car-following 
equation: 

.. ( ) x"'11+1Ct+T) 
X11+1 t+T =ao [x"(t)-x11+1Ct)]I 

[.:i:"(t) -i,,+1 (t)] ( 6.18) 

where l and m are constants. 
First proposed by Gazis, Herman, and 

Rothery, 13 the general expression has been 
further examined by May and Keller. 18 

Integration of the generalized equation 
(Eq. 6.18) by Gazis et al. 13 has given 

(6.19) 

where u is the steady-state speed of a stream of 
traffic, s is the constant average spacing, and a 0 

and C0 are appropriate constants consistent 
with physical restrictions. Further, 

f,,,(u) = ul-111 for (m =I= 1) 
and 

f,,,(u)=fuu for (m=l) (6.20) 

fi(s)=s'-' 
and 

f 1(s)=Ei,s 

for (I =I= 1 ) 

for (l= 1) ( 6.21) 

The value of C0 is related either to free 
speed uf (the velocity of a single vehicle whose 
speed is not influenced by interaction with 
other vehicles) or velocity at jam spacing, 
Sj= 1/ ki. 

and 

The values of C0 are shown to be 

for m > 1, l =I= 1 or m = 1, l > 1 
(6.22) 

C0 =a0/ 1(si) for all other combina-
tions of m and l (except m= 1, l> 1 
not bounded) (6.23) 

The traffic stream model equations result­
ing from the application of Eqs. 6.19-6.23 are 
shown in Table 6.5 and Figure 6.5. These 
steady-state solutions were originally derived 
independently of car-following assumptions. 
However, as shown previously, they have a 
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TABLE 6.5 Steady-State Flow Equations (q-k)(l, 

Equation of State Reference 

m=O 

0 q= a.[1-klki] 
a.= qm = 1/reaction time 

Chandler et al." 
Pipes• 

q= a.k2n[k1!k] 
et.= velocity at optimum flow (um) 

Greenberg 17 

Gazis et al.13 

3/2 q= a.k[l-(klk1) 112
] Drew,. 

a.= velocity at free flow (u,) 

2 q= a.k[l-klki] Greenshields w 

et.= Ur 

m=l 

2 q= a.ke'kfko! Edie 21 

et.= u,; ko=density at optimum flow 

3 q= a.ke--}(klko) 2 

a.=u, 

" Based on May and Keller.18 

direct correspondence with car-following 
models. A generalized discussion of the steady­
state flow for various values of m and l is given 
in Gazis et al., 13 but only those combinations 
presented in Table 6.5 have been verified by 
observations of vehicle flow on roadways. 

May and Keller 18 have also examined the 
case for noninteger values of m and /, propos­
ing a model with m = 0.8, I= 2.8 when fitted to 
data on the Eisenhower Expressway in Chicago. 
The following steady-state flow equation 
results: 

(6.24) 

Values for m and l have evolved as various 
investigators attempted to fit observed data to 
proposed models of driver and/ or stream flow 
behavior. The case m = 0, I= 0 evolved from 
the "simple" linear car-following situation de­
veloped in Eq. 6.8. The same model had been 
developed by Pipes 1 and analyzed for stability 
by Herman et al. 10

• 1 e 

Further examination of experimental data 
based on car-following experiments led to the 
hypothesis that a driver does not have a con­
stant reaction to a stimulus by the lead vehicle 
but that the reaction will vary inversely as the 
distance between the subject vehicles.ll This 
is the case for m = 0, I= 1, which led directly 

Drake et al.22 

to a comparison with the Greenbt;rg fluid flow 
analogy data. 

Greenshields' 20 analysis of traffic flow, 
which corresponds to the case m=O, 1=2, was 
first developed from photographic observations 
of traffic flow made in 1934. Values for flow 
rate and mean velocity were calculated for 
100-vehicle groupings; density was calculated 
from the flow rate and velocity information. A 
simple straight-line fit between velocity and 
density was deduced from a plot of the data. 

Although the steady-state flow equation 
resulting from this analysis does not fit observed 
data as well as some other models listed here, it 
does have the advantage of being amenable to 
calculation and manipulation. 

An independent verification of the Green­
shields model is reported by Pipes and 
Wojcik "" in which perceptual factors are re­
lated to the car-following model. (A similar 
derivation is shown in Fox and Lehman.'" In 
Figure 6.6 let 8 be the visual angle subtended 
by the lead vehicle. Taking w as the width of 
vehicle (and neglecting the distance L, the 
length of the lead vehicle), 

w 
8=­

s 

Differentiating with respect to t, 

(6.25) 
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Figure 6.5 Matrix of speed-density relationships for various m, I 
combinations of the general car-following equation." (Dashed lines 

enclose limiting values of I and m used in Table 6.5.) 
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Figure 6.6 Conditions of the Pipes and Wojcik 23 veriflcation of the Greenshields traffic flow model. 
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(6.26) x11+1 =c(-iJ) (6.27) 

If it is assumed that the acceleration for 
the following vehicle is proportional to the 
driver's perception of the rate of change of the 
visual angle, e, 

which implies acceleration if e is negative and 
deceleration if iJ is positive. Because s=x,.­
x,,+1 and dsldt=x,.-x,,+1 , substituting Eq. 6.26 
in Eq. 6.27 yields 
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( 6.28) 

where c =CW, a constant. 
Further discussion concerning the rate of 

change in B for the acceleration and decelera­
tion case is given by Michaels. 21 Drew 19 de­
veloped a generalized equation of steady-state 
flow (for which the Greenberg and Green­
shields models are special cases) including a 
"parabolic" model as well as the Greenberg and 
Greenshields models. This equation was tested 
on the Gulf Freeway in Houston, Texas. Time­
lapse aerial photography was used to measure 
speed and concentration. 

Statistical analysis of the regression equa­
tions for the relationship between u and k indi­
cated that all three models yielded satisfactory 
fits to the data. The car-following model 
(m=O, [=312) is the microscopic equivalent 
of the parabolic model. 

Edie 21 noted that the car-following model 
of Gazis et aJ.ll and Greenberg's equivalent 
model 17 were not applicable at low density, 
with the free-flow velocity approaching infinity 
as the density approached zero. His proposal 
would increase driver sensitivity as the driver 
velocity increases and decreases sensitivity as 
the square of the separation. 

Edie demonstrated the validity of the rela­
tionship by relating his modification of the car­
following model to data reported by Gazis 
et al. u 

The model of Drake et al. 22 (m=l, 1=3) 
is based on a regression analysis of speed­
density-flow data obtained on the Eisenhower 
Expressway in Chicago. A further discussion 
of this model by May and Keller 18 suggests 
that this model may have particular value when 
flow rates are greater than 1,800 vehicles/ hr I 
lane. 

6.7 EXTENSIONS AND MODIFICATIONS 
OF CAR-FOLLOWING MODELS 

6.7.1 Three-Car Experiments 

In the previous development the assump­
tion was made that the following driver re­
ceives clues from the immediately preceding 
vehicle. It can also be hypothesized that a 
driver also receives clues from the second car 
ahead. Eq. 6.12, the linear car-following 
model, can be modified to include the influence 
of a second lead vehicle, as follows: 

x,,+ 2 (1+ T) =c1 [i,,+ 1 (t) -i,,+2 (t)]+c2 [i,iCt) 
-i,,+ 2 (1)] (6.29) 

where c1 is the sensitivity to the velocity differ­
ence between the third and second vehicles and 
c2 is the sensitivity to the velocity difference 
between the third and first vehicles. 

Herman and Rothery 20 report on experi­
ments in which three cars were physically con­
nected by steel wires permitting direct measure­
ment or calculation of relative speed and dis­
tance between the vehicles as they were driven 
on a test track. Experiments involving only 
two vehicles had indicated that t~ value of T 
for drivers on the test track was about 1.6 sec. 
Although it might be anticipated that knowl­
edge of a second car would permit drivers to 
decrease their reaction time, such was not the 
case; the reaction time derived from the three­
vehicle experiments was still 1.6 sec. Best cor­
relations between the model and observed data 
for response between the first and third ve­
hicles only occurred when T equaled 2.3 sec. 
The authors conclude that although it is not 
possible to show that a driver follows only the 
immediately preceding vehicle, the stimulus 
provided by that lead vehicle is probably the 
most significant input in the car-following 
model. 

Fox and Lehman H incorporated the effect 
of a second lead car in their computer simula­
tion model, as follows: 

.t,,+2 (t+ T) =<X1i,,+ 2 (t+ T) 

{ 
W1_[x,,+ 1 (t) ~in+z(l~] + W 2 [i,,(1) -i,,+ 2 (1~]} 

[x,,+ 1 (1)--x,,+ 2 (t)] fx,,(t)-X,,+ 2 (1)] 

(6.30) 

where a 1 is a sensitivity factor and W 1 + W 2 = 1. 
When W 1 = 1, there is no effect for a second 
lead car; and in several conditions, which were 
simulated for later comparison with field data, 
this was the case. The influence of following a 
second car ahead is discussed in considerable 
detail by the authors. 

6.7.2 Asymmetry for Acceleration and 
Decleration 

In all previous discussions the implicit 
assumption has been made that a driver adjust­
ing to a change in velocity will accelerate and 
decelerate at the same rate for a given stimulus. 
In extrapolating from personal experience it is 
seen that the deceleration capabilities of most 
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passenger cars are greater than the acceleration 
capabilities and that in congested traffic greater 
action is taken when the vehicle ( s) in front is 
(are) decelerating rather than accelerating 
relative to the subject vehicle. Herman and 
Rothery 25 examined this hypothesis by weight­
ing the negative relative speeds by values in the 
range 1 to 1.25. The linear model (Eq. 6.12) 
was modified so that 

and 

for relative 
velocity 
positive 

(6.31a) 

for relative 
velocity 
negative 

(6.31b) 

Herman and Rothery tested this model for 
the ratio range (a.,_/a.,+) between 0.5 and 1.5. 
Data from 40 car-following test runs were fitted 
to the model, and an improvement in fit was 
found to occur in the range 1 <::;(a.,_/ a+)<::; 1.25. 
The average weighting factor was = 1.1 for 
runs made in the Holland and Lincoln Tunnels 
of New York City and on a test track. 

Forbes and his associates 26 ·27 have re­
ported on simulated studies of platoon behavior 
and air photo records of urban freeway sec­
tions.28 As a result of the simulation runs (two 
vehicles following a lead vehicle "closely but 
safely as if anxious to get home in heavy traf­
fic"), the authors found that time headways 
after an experimental (and unexpected) decel­
eration by the lead vehicle were about twice as 
large as the time headways before the decelera­
tion. As the lead car accelerated after the slow­
down the following drivers allowed a greater 
time and distance gap to develop, from which 
it may be inferred that reaction time to acceler­
ation is greater than for deceleration. 

Newell,29030 building on the findings of 
Forbes et al., has hypothesized and discussed a 
car-following model that considers different 
forms for acceleration and deceleration. Newell 
considers that delay in responding to a stimulus 
may be a "consequence of laziness or inten­
tional failure of drivers to respond to every 
stimulus, rather than some inherent limitation 
on reaction times." 

Newell's approach to the car-following 
model is illustrated in Figure 6. 7. Consider a 

vehicle that has been following a lead vehicle 
at a constant velocity and at a desired spacing. 
The lead vehicle accelerates but the following 
vehicle is in no hurry to close the spacing, be­
ing satisfied with the longer spacing until some 
further change takes place in the velocity (and 
therefore spacing) of the lead vehicle. When. 
the lead car decelerates, the following car al­
lows some of the excess gap to dissipate before 
reacting to the deceleration. 

In Figure 6.7 it is assumed that there are 
two velocity-headway relationships of the form 

Xn+ 1 (t+T) =G 11 + 1 [x 11 (1)-x 11 +1 (t)) (6.32) 

where G 11 +1 is a function selected to represent 
the empirical relationship between velocity and 
headway (one for acceleration and a second 
for deceleration, as shown by the solid lines). 
The solid lines are connected by a family of 
curves, one through each point in the region 
of the velocity-headway space between the two 
curves. These connecting curves (dashed line) 
have small (or zero) slope, indicating a small 
(or zero) change in velocity as a function of 
the change in spacing. 

The following example illustrates the use 
of the curves. Assume two cars have an initial 
velocity V 1 and a spacing given by the decelera­
tion curve (point l). The lead car accelerates 
to a velocity V 2 • The following car accelerates 
only slightly, letting the spacing increase as 
shown at point 2. When that occurs the follow­
ing driver accelerates according to the accelera­
tion curve shown until he has reached a velocity 
V 2 and the associated spacing (point 3). When 
the lead car decreases velocity to V,, the fol­
lowing driver decelerates only slightly, allowing 
the gap to decrease to point 4. At point 4 the 
driver initiates a more affirmative deceleration 
movement (along the deceleration curve) until 
the velocity and spacing have returned to the 
initial condition (point 1). 

It is important to note that in this model 
the stimulus to the driver is spacing (not rela­
tive velocity as previously discussed) and that 
there are different relationships for the accelera­
tion and decleration cases. 

Newell further relates his hypothesis to the 
formation of shock waves in dense traffic, 
showing his model to be consistent with obser­
vations of shock waves in tunnel flow. Newell 
has indicated only the structure of the theory; 
he has not attempted to obtain quantitative 
results. 29

• P· 53 
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Figure 6.7 Velocity-headway relationships during ac­
celeration and deceleration.30 

6.8 FURTHER APPLICATION OF 
CAR-FOLLOWING MODELS 

In previous sections of this chapter appli­
cations have related to the explanation of ob­
served traffic phenomena, particularly in con­
ditions of dense traffic such as observed in tun­
nels or on crowded highways. Car-following 
models have also been used to evaluate aids to 
driver car following, to examine the behavior 
of platoons of buses as may be operated on an 
exclusive freeway lane, to anticipate the effect 
of short cars on the flow and speed of down­
town traffic, and to examine safety in car 
following. 

6.8.1 Applications to Driver-Aided 
Car Following 

One method of improving lane capacity 
would be to give a driver more information, 
permitting him to decrease his reaction time 
and therefore follow the lead vehicle at a lesser 
headway. Fenton and Montano 31 report the 
results of an experiment in which additional 
information about the lead car was given to a 
driver by means of a tactile device built into 
the single control stick used for steering, ac­
celeration, and deceleration (as opposed to a 
steering wheel, accelerator pedal, and brake 
pedal as normally used). The tactile device 
was a finger flush with the control stick at the 
correct spacing, recessed when headways were 
too small and protruding when headways were 

greater than desired. Drivers were able to re­
duce tracking error, very nearly duplicating the 
motion of the lead driver, but at the same time 
it was observed that asymptotic stability was 
not obtained under the conditions for optimum 
tracking. 

An earlier experiment in improving driver 
information is reported by Bierley. 32 Drivers 
were given a visual display that showed spacing 
in one instance and a combination of spacing 
and relative velocity in a second instance. The 
display was used to supplement any clues the 
driver might normally obtain from observing 
a lead vehicle. 

In the first instance (spacing information 
only added to normal clues) there was improve­
ment (reduction) in absolute spacing error and 
in variability in spacing error. However, there 
was no significant reduction in reaction times or 
maximum spacing change, indicating that the 
simple display was no real improvement over 
no display at all. 

In the second instance (spacing+ relative 
velocity information added to normal clues) 
following performance was significantly im­
proved. Absolute spacing error, absolute spac­
ing changes, variability in spacing error, and 
reaction time were all reduced. Bierley does not 
make an analysis of asymptotic stability for 
this _case, but the results of Fenton and Mon­
tano would suggest that the improved car fol­
lowing is not coincident with asymptotic stabil­
ity. Bierley suggests a car-following model of 
the form: 

x II+ l ( t ..L T) = IX [."i: II ( t) - x II+ 1 ( t) ] 
+k[x11 (1) -X 11 + 1 (1)] ( 6.33) 

where IX and k are sensitivity constants for 
relative speed and relative spacing, respectively. 

In a comprehensive study and review of 
the "car-following" problem as applied to im­
proving flow (safety and volume) Rockwell and 
Treiterer 33 suggest a control system in which 
the acceleration of the following vehicles is 
given by: 

.x11 +1 (1+T)=1X[x 11 ( 1) -.x11 + 1 (r) J + Kx11 (t) 
( 6.34) 

The relationship suggests that the accelera­
tion, after some lag ( T), is a function of differ­
ence in velocity plus a term indicating that the 
following car exactly duplicates the acceleration 
of the lead car after a lag of T sec. (This latter 
component is termed "acceleration control" by 
Rockwell and Treiterer.) The parameter K 
varies from 0 to 1.0, representing the propor-

• 
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tion of the control that is acceleration control. 
For K = 1.0 (total acceleration control) each 
vehicle would exactly duplicate the acceleration 
of the preceding vehicle after a lag of T sec, 
a system that cannot be controlled by drivers 
without the aid of supplementary devices. 

6.8.2 Single-Lane Bus Flow 

An application of car-following theory to 
an analysis of single-lane flow of heavy vehicles 
(large buses were used in the experiment) is 
reported by Rothery et al. 34 Car-following 
experiments, similar to those involving pairs of 
automobiles, were conducted with pairs of 
buses directly connected by the apparatus used 
to measure the required parameters of car­
following models. 

Three versions of the general expression 
for car following (Eq. 6.18) were analyzed. 
The three models evaluated were for the fol­
lowing cases: 

Model 

linear 
reciprocal spacing 

reciprocal spacing-speed 

0 
1 
2 

m 

0 
0 
1 

Of the three models tested, the reciprocal 
spacing model provided the best fit to the data. 
For the 22 drivers involved, the value of lag 
time ( T) ranged from 0.4 to 1.6 sec (the higher 
value occurred during a test conducted in the 
rain). These values can be compared with 
those found ·in Table 6.4, where the average 
value of T is about 1.4 sec. The value of a 0 for 
the reciprocal spacing model was approximately 
36 mph for expressway facilities, substantially 
greater than the values of about 20 mph found 
for passenger vehicles in the vehicular tunnels 
as reported in Table 6.4. 

An analysis of stability for the bus-follow­
ing experiment showed that all of the data 
points were in the region of asymptotic stability, 
whereas in previous automobile experiments 
only about one-half of the data points fell in 
this region. 

Applicability of the car-following model 
to steady-state flow was tested by observations 
of platoons ranging from two to ten buses. The 
platoon experiments verified the predictions of 
the bus-following model; i.e., maximum flows 
at a rate of 1,450 buses/ hr at a constant speed 
of 33 mph were measured. 

6.8.3 Effect of Small Cars on 
Downtown Traffic 

Two major advantages are usually claimed 
for small cars: they occupy less space when 
parked and they will reduce congestion. Mc­
Clenahan and Simkowitz :ic, have estimated the 
anticipated reduction in congestion by com­
puter simulation of a single lane of traffic 
consisting of a number of cars with identical 
acceleration and performance characteristics, 
but with varying lengths. 

The simulation modeled the behavior of 
a file of cars down one lane of a street with 
arbitrarily fixed-cycle traffic signals. Driver 
behavior was based on a car-following model 
plus a model of a lead-car driver's behavior. 
The model was designed to reflect driver 
reaction to the traffic signal indication if it took 
precedence over the stimulus received from 
the lead car. When the lead· car provided the 
stimulus, the driver behavior was based on the 
model given in Eq. 6.13 (the reciprocal spac­
ing model). The results of the simulation are 
synopsized in Table 6.6. They indicate that 
the flow increased by 70 percent and the 
velocity by 57 percent if all small cars ( 10 ft 
long) are substituted for all long cars (20 ft 
long), and congestion is such that there is a 
queue of 15 cars at each light. 

The validity of the simulation model was 
verified by data collected during a Friday 
rush-hour period on a three-block section of 
Walnut Street in downtown Philadelphia. Re­
sults of the field experiment corresponded 
closely with the simulation results. 

6.8.4 Safety in Car Following 

A further example of simulating car­
following behavior on a digital computer is 
given by Fox and Lehman.11 The purpose of 
the study was to investigate those driver and 
vehicle characteristics that are most important 
in eliminating rearend collisions. The car­
following model used is that given by Eq. 6.18 
with m= l, 1=2. Refinements included the 
option of including the next-ahead vehicle as a 
stimulus, a driver sensitivity factor that reflected 
whether the driver was accelerating or decel­
erating, and a distance "threshold" beyond 
which the driver did not adjust his velocity as 
dictated by the car-following equation. 

The implications drawn from the simulation 
studies were concerned with the reduction in 
accidents that might follow by sharpening 
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TABLE 6.6 Flow and Velocity as a Function of Traffic Concentration 
and Vehicle Size a 

Number Percentage of 10-ft Cars (remaining cars are 20 ft) 
of Cars 
at Each 0 10 20 33 50 100 

Light Flow'' Vel c Flow• Vel c Flow• Vel c Flow• Vel c Flow• Vel c Flow• Vel c 

5 1154 13.2 
10 955 6.3 
15 732 3.5 745 3.4 855 
20 745 3.6 

"From McCienahan and Simkowitz.a:; 
• Flow converted to vehicles/hr of green. 
c Velocity in ft/sec. 

drivers' perceptions and minimizing response 
lag. The simulation demonstrated that the 
quantities most efficient for system behavior 
are (1) driver reaction time, (2) desired 
spacing, and (3) threshold boundary for rela­
tive velocity perception. Specific suggestions 
for improving or minimizing the effect of these 
three quantities are given in Fox and Lehman, 
Chapter 4. 14 

6.9 ACCELERATION NOISE 

It is reasonable to assume that a driver 
will attempt to maintain a uniform velocity 
when he is traveling along a roadway. Even 
at low volumes on a limited-access roadway, 
however, he will fluctuate from his desired 
velocity. In the presence of high volumes, 
where his velocity and acceleration are a func­
tion of the car-following laws, or in the urban 
situation, where traffic controls dictate his 
velocity, there will be greater fluctuations about 
his desired velocity. 

A measure of the fluctuations of a driver 
is given by the standard deviation <T of the 
acceleration about the mean acceleration and is 
defined as the acceleration noise. The mathe­
matical definition of this quantity, assuming 
mean acceleration to be zero, is 

{ 
{T } % 

<T= (l!T) }o [a(t)]2dt . (6.35) 

where a(t) is the acceleration (positive or 
negative) at time t and T is the total time in 
motion. An alternative form, in which accel­
eration is sampled at successive time intervals 
(ti.t) becomes 

<T=[(l!T):2'.[a(t)]2 .6.1]% ( 6.36) 

4.0 

1400 14.4 
1390 8.4 

855 4.0 1005 4.5 1240 5.5 
1154 4.0 

A "smooth" trip will have minor deviations, 
a "rough" trip greater deviations from the 
mean acceleration. 

The concept of acceleration noise devel­
oped as a result of car-following studies 9 • 10 

and was further analyzed by Jones and Potts 36 

who suggested that the parameter might be used 
to give partial answers to such questions as, 
"How much safer and more economical is a 
four-lane dual highway than a twisty two-lane 
road?"; or "Are teenage drivers more reckless 
than other drivers?"; or "How much congestion 
is produced by increasing traffic volume and 
the general side activity generated by a shop­
ping area?" 

6.9. l Calculation of Acceleration Noise 

Eqs. 6.35 and 6.36 do not lend themselves 
to ease of calculation of data collected in field 
studies. An equation for acceleration noise, 
which is adaptable to reduction and analysis 
of data, is 

(6.37) 

where T is the time in motion for the trip 
segment, 6.u is taken as a constant increment 
of velocity change (mph), ti.ti is the time in­
terval (sec) for a change in velocity of mag­
nitude nit!..u (n is integer), and V 0 and VT 
represent the velocity (mph) at the start and 
end of the trip segment. K represents the 
number of segments of uniform acceleration, 
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where M; and ni are measured along a trace 
of velocity versus time, with measurements be­
ing recorded for every change in acceleration. 
For a long trip, or a trip where VT and V 0 

are nearly identical, the second term of the 
equation can be neglected. The derivation of 
this equation is given by Drew, Dudek, and 
Keese. 37 

Data may be collected by connecting a 
recording pen directly to a vehicle speedometer 
cable or to a fifth wheel and tracing the velocity 
directly on a moving strip of paper, where the 
distance the paper moves is proportional to 
time. A hypothetical trace of this type is shown 
in Figure 6.8. Data may also be collected by 
recording the total distance traveled (ft) at 
fixed intervals (about 1 sec) and then cal­
culating velocity and acceleration from these 
distance-time measuremer;ts. The distance may 
be recorded on film, advancing at one frame 
per second, or on tape, where the distance is 
printed or punched at the proper time interval. 
Except for punch tape that may be read directly 
into a computer, the data reduction is lengthy 
and tedious. 

A trace of a velocity-time graph for a 
hypothetical vehicle proceeding on a rural 
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highway and then entering an urban area at 
about 5.0 min from the start of the record is 
shown in Figure 6.8. The initial velocity V 0 

is 54 mph and at 30 sec the driver begins to 
decelerate for a curve with an advisory speed 
limit of 45 mph, gradually accelerating again 
to 60 mph at 96 sec. He continues at this 
velocity until 132 sec, at which time he is· 
forced to adjust his speed to a slower-moving 
vehicle. He continues with minor velocity 
fluctuations until 246 sec and then decelerates 
to adjust to urban traffic and a speed-zone 
restriction. For the second 5-min interval the 
driver is subject to a rapid series of accelera­
tions and decelerations, including a complete 
stop for a traffic signal 450 sec after the start 
of the record. The acceleration noise for the 
first 5 min of the record is determined as in 
Table 6.7. 

In the example it is assumed that ~u=2.0 
mph and the acceleration noise is calculated for 
the first 5-min interval as shown in Figure 6.8. It 
is convenient to use a table of values of 11 2/ M 

(such as Table 6.8) in order to calculate the 
value of n 2 1 M progressively on a desk calcula­
tor. Substituting the appropriate values in 
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IAt91 At11 1 
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Figure 6.8 Velocity trace over 10..min time interval. 
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Eq. 6.37, recalling that V 0 and VT must be 
converted from mph to ft/sec, a-={(8.60/ 
300) x 2.55-[(40-54)/300]2 x (88/60) 2 }% 
=(0.068)%=0.26 ft/sec2 • 

By contrast, the acceleration noise for the 

second 5-min period is= 0.88 ft/sec. 2 For the 
second 5-min 'period, T=270 sec; because Tis 
defined as the time in motion, the interval from 
450 to 480 sec is not included in the calcu­
lation of acceleration noise. 

TABLE 6.7 Example Showing Calculation of Acceleration Noise 

Elapsed Time Velocity u 
at End of at End of 
Interval Interval 

Interval (sec) (mph) II tit, (sec) 11,2 I tit, 

0 0 54 
I 30.0 54 0 30.0 0.00 
2 60.0 50 2 30.0 0.13 
3 78.0 56 3 18.0 0.50 
4 96.0 60 2 18.0 0.22 
5 132.0 60 0 36.0 0.00 
6 150.0 56 2 18.0 0.22 
7 180.0 54 1 30.0 0.03 
8 216.0 56 1 36.0 0.03 
9 246.0 56 0 30.0 0.00 

10 264.0 54 1 18.0 0.06 
11 300.0 40 7 36.0 1.36 

TOTAL 300.0 2.55 

If lit is in seconds, the running time T in seconds, and Li1t=2.0 mph, 
(!iu)2=(2.08X88/66)'=8.60 ft'/sec.' 

TABLE 6.8 Values of n2 IM 

Value of n'l!it 

lit n= I n=2 11=3 n=4 n=5 11=6 n=7 n=8 

1 1.00 4.00 9.00 16.00 25.00 36.00 49.00 64.00 
2 0.50 2.00 4.50 8.00 12.50 18.00 24.50 32.00 
3 0.33 1.33 3.00 5.33 8.33 12.00 16.33 21.33 
4 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00 
5 0.20 0.80 1.80 3.20 5.00 7.20 9.80 12.80 
6 0.17 0.67 1.50 2.67 4.17 6.00 8.17 10.67 
7 0.14 0.57 1.29 2.29 3.57 5.14 7.00 9.15 
8 0.13 0.50 1.13 2.00 3. 13 4.50 6.13 8.00 
9 0.11 0.44 1.00 1.78 2.78 4.00 5.44 7.11 

10 0.10 0.40 0.90 1.50 2.50 3.60 4.90 6.40 
11 0.09 0.36 0.82 1.45 2.27 3.27 4.45 5.82 
12 0.08 0.33 0.75 1.33 2.08 3.00 4.08 5.33 
13 0.08 0.31 0.69 1.23 1.92 2.77 3.77 4.92 
14 0.07 0.29 0.64 1.14 1.79 2.57 3.50 4.57 
15 0.07 0.27 0.60 1.07 1.67 2.40 3.27 4.27 
16 0.06 0.25 0.56 1.00 1.56 2.25 3.06 4.00 
17 0.06 0.24 0.53 0.94 1.47 2.12 2.88 3.76 
18 0.06 0.22 0.50 0.89 1.39 2.00 2.72 3.56 
19 0.05 0.21 0.47 0.84 1.32 1.89 2.58 3.37 
20 0.05 0.20 0.45 0.80 1.25 1.80 2.45 3.20 
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6.9.2 Acceleration Noise Related to 
Roadway and Traffic 

Acceleration noise is mainly influenced by 
three factors-the driver, the road, and traffic 
conditions. An aggressive driver, with frequent 
and relatively large speed changes, will have 
greater "noise" than a passive driver. A narrow, 
winding road or a signalized urban street will 
show greater and more frequent changes in 
velocity than will occur on a multilane freeway. 
Finally, a driver in congested traffic will gen­
erate more acceleration noise than that obtained 
at low traffic volumes, as demonstrated by the 
example shown in Figure 6.8. 

Jones and Potts 36 measured acceleration 
noise over different roads, varying traffic con­
ditions, and different drivers. They reported 
the following conclusions: 

1. For two roads through hilly coun­
try, rY is much greater for a narrow 2-
lane road than for a 4-lane dual highway. 

2. For a road in hilly country, rY is 
greater for a downhill journey than for 
an uphill one. 

3. For two drivers driving different 
speeds below the design speed of a high­
way, rY is much the same. 

4. If one or both drivers exceed the 
design speed, rY is greater for the faster 
driver. 

5. Increasing traffic volume increases rY. 

6. Increasing traffic congestion pro­
duced by parking cars, stopping busses, 
cross traffic, crossing pedestrians, etc., in­
creases rY. 

7. The value of rY may be a better mea­
sure of traffic congestion than travel times 
and stopped times. 

8. High values of rY indicate a po­
tentially dangerous situation. 

Although Jones and Potts caution against 
the use of arbitrary interpretation of values of 
a-, they make the observation that a-=0.7 ft/sec 2 

is a low value and a-=l.5 ft/sec 2 is a high value. 
Reily and Baker 38 modified the calcula­

tion of acceleration noise by proposing a 
parameter 

G= '!_ (6.38) 
v 

where G is the velocity gradient, a- is the ac­
celeration noise, and v is the mean velocity on 
the trip. It was reasoned that the acceleration 
noise alone does not describe the quality of the 
trip, that a fast trip and a slow trip could both 
have the same value of a- but the fast trip would 
be more desirable. The time T used in the cal-

culations of a- was the total trip time, including 
stop time. 

Underwood 30 reported results of observa­
tions made in Australia that suggest that G 
seems to be a better measure of traffic conges­
tion than er, but contradicts item 7 of the 
conclusion of Jones and Potts 36 by questioning 
whether the velocity gradient is any better than 
total travel time as a measure of congestion. 

6.9.3 Acceleration Noise of a Vehicle in 
Traffic 

The acceleration noise of an isolated 
vehicle was discussed in Section 6.9.1. In 
Sections 6.1-6. 7, several sim pie car-following 
laws for traffic were exhibited. Clearly, the 
total acceleration noise of a vehicle in traffic is 
a superposition of its natural noise (the ac­
celeration noise at very low traffic volume) 
and its response to that of its predecessors 
through the law of following. The total accel­
eration noise of vehicles at different locations 
in a platoon has been measured by Herman 
and Rothery 10 (Figure 6.9). It is noted that 
traffic has broadened the acceleration distribu­
tion function so that the acceleration noise far 
down the platoon is about three times that of 
the lead car, which is effectively moving freely 
on the road. Figure 6.9 also shows that if the 
traffic stream is proceeding in a stable manner, 
where stability means the damping out of small 

N 
u 
~ 0.05 -­+-' ..... 

N 
(") 
• 0.04 

O> 
..... 
0 

"' .<::: 0.03 
c: 

:::> 
c: 
Q) 0.02 
"' ·5 
z 
c: 
0 0.01 ·.:; 
~ 
Q) 

Qi 
u 0 

:{_ I 

/ 
/ 

I 

I 
I 

7 9 II 

Vehicle Position 

Figure 6.9 Acceleration noise of vehicles at different 
locations in a platoon.'0 
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disturbances, as discussed in Section 6.3.2, the 
increase of the noise of a given lead vehicle is 
damped out by the time the signal of its motion 
has propagated down to the fifth or sixth car 
behind it. Traffic broadens the accC!eration 
distribution increasing the value of er, the 
broadening being smaller for the conservative 
driver who is satisfied to follow the stream 
than for the "cowboy" who by weaving attempts 
to drive 5-10 mph faster than the stream. This 
is shown in Figure 6.10 for traffic on Wood­
ward Avenue in Detroit.10 

The traffic broadening is not large for 
smoothly flowing traffic, but the dispersion 
increases rapidly at the onset of congestion. 
For stop-and-go traffic the dispersion is small 
because cars are unable to accelerate to ap­
preciable speeds. 

The broadening of the acceleration dis.tribu­
tion by traffic depends on the parameters of the 
law of following, because, as previously noted, 
the acceleration of the nth car at time t is a 
superposition of its natural acceleration noise 
and its response to the motion of its prede­
cessor. Montroll 41 has shown that in smoothly 
moving traffic separation distance varies only 
slightly from the equilibrium distance s; hence, 
Eq. 6.13 can be linearized so that addition 
of the natural acceleration /3( t) gives 

.x,,+,(t+ n =C[.:i:,,(1)-.X,,+11J+f3(1) (6.39) 

-2 -I 0 I 2 

Acceleration in Units of 0.059 (-1.6 ft/sec2) 

Figure 6.10 Acceleration distribution functions for a 
driver (A) moving with a traffic stream at approximately 
35 mph and (BJ affempting to drive 5 to 10 mph faster 

than the stream average.10 

in which 

C=a0 /[x 11 (t)-x11+I(t)]=a0 /s (6.40) 

The f3(t) is a random value of the ac­
celeration a, whose value at time t is not 
specified. It is determined by its distribution 
function f(a) so that f (a)da is the probability 
that f3(t) has a value between a and a+da at 
time t. For simplicity, assume that f3(t) has 
the same distribution for all drivers on the road 
of interest. One can use the standard methods 
of the theory of Brownian motion to determine 
the statistical differences of properties of a,, ( t) 
=x,,(t) from those of f3(t) in terms of C and T 
(lag time). If the acceleration noise is peaked 
in the low-frequency range, one finds that the 
dispersion er of the distribution function of 
a,,(t) (as n-7CXl; i.e., for cars far from the 
beginning of a platoon) is related to the natural 
noise dispersion cr0 of f3(t) by 

cr=cr0 / (1- 2CT) 1!2 if 2CT <1 (6.41) 

The stability condition (CT< 1h) again 
makes its appearance. (See section 6.3.2.) 
The closer the traffic reaches the limit of 
stability (2CT-7 1), the larger is the traffic 
broadening of the acceleration noise. 

If Eq. 6.40 is substituted in Eq. 6.41, the 
average spacing may be expressed as 

( 6.42) 

This equation was checked with the Hol­
land Tunnel observations of Herman, Potts, 
and Rothery. The traffic broadening of the 
acceleration noise dispersions a/ cr0 in the tun­
nel varied from about 1.50 to 1.75, depending 
on the density during the experiment. The 
average time lag of 1.5 sec, which was ob­
served in car-following experiments, was sub­
stituted in Eq. 6.42, as was the observed ratio 
er/ cr0 • The computed values of s were then 
converted into appropriate densities (s = 1 I k), 
which were compared with the observed den­
sities made at the same time as er/ cr0 was 
determined. These calculated values generally 
did not deviate from the measured ones by 
more than 10 or 15 percent. 
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6.12 PROBLEMS 

1. Repeat the example of the car-following 
calculations given in Table 6.1 using 0.5-
sec increments. If a computer is available, you 
may wish to repeat the process at 0.1-sec 
increments. (Fox and Lehman 14 discuss prob­
lems that may be encountered with computer 
simulation of car following.) 

2. Show that the steady-state flow equa­
tion corresponding to the car-following equa­
tion 

.. ( T) i,,(t)-i11 + 1 (t) 
Xn+l t+ ==CX.11---··------., 

[x,,(t) -X11 + 1 (t)J-

is equal to q = u 1k[ 1 :_kl ki]. Use the technique 
outlined in Section 6.5. 

3. Calculate the acceleration noise for the 

time interval 5-10 min shown in the velocity 
trace given in Figure 6.8. Recall that intervals 
of zero velocity (7:30 to 8:00) are not included 
in the calculations. 





Chapter 7 

HYDRODYNAMIC AND KINEMATIC 
MODELS OF TRAFFIC 

7 .1 INTRODUCTION 

Because traffic involves flows, concentra­
tions, and speeds, there is a natural tendency 
to attempt to describe traffic in terms of fluid 
behavior. In car-following models traffic is 
recognized as being made up of discrete par­
ticles and it is the interactions between these 
particles that have been examined. Applying 
to traffic those models which have been devel­
oped for fluids (i.e., continuum models) im­
plies greater concern in the over-all statistical 
behavior of the traffic stream than in the inter­
actions between particles. Because the sample 
size for traffic includes only a few particles, 
fluid models have certain shortcomings. Never­
theless, fluid models (i.e., models that treat 
traffic as a continuous medium) have certain 
uses, expressly the behavior of the stream 
rather than individual cars. 

Although some writers have postulated an 
analogy between traffic and a real fluid, it is 
preferable to begin with fundamental observa­
tions and postulates concerning traffic and then 
to identify analogies with fluids as these analo­
gies appear. To begin, the continuity equation 
for traffic is developed and its analogy to the 
continuity equation · for fluids is delineated. 
Next, the concept of waves in traffic is devel­
oped and example applications to practical 
problems are provided. Thereafter, selected 
models of platoon diffusion are treated. Fi­
nally, the Boltzmann-like theory of traffic is 
briefly presented. 

7.2 CONTINUITY EQUATION 

Consider two traffic counting stations on a 
one-way link as shown in Figure 7.1. The 
stations are so situated that there are no traffic 
sources or sinks between the stations, and 
station 2 is downstream from station 1. 

Let Ni be the number of cars passing sta­
tion i during time M, qi the flow (volume) 
passing station i during time M, D.x the distance 
between stations, and M the duration of simul­
taneous counting at stations 1 and 2. Suppose 
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that N 1 >Ne· This implies that there must be 
a buildup of cars between station 1 and sta­
tion 2, inasmuch as there is no traffic sink 
between the stations. 

Let (N 0 -N,) =D.N. (Thus, D.N will be 
negative for a buildup. 

N 1 /M=q 1 

NjM=q 0 

!::i.N/ t:.t=!::i.q 

Then, the buildup of cars between stations 
during the period M will be (-D.q)(M). If 
!l.x is of such a length that it is appropriate to 
use a uniform density (concentration) over 
this distance, let t:.k =increase in concentration 
of cars between stations 1 and 2 during period 
!l.t, or 

!1.k= - (Ne-N,) 
D.x 

Then, the buildup of cars may be expressed by 

(t:.k) (t:.x) = -Mv 

Under the assumption of conservation of cars, 

- (D.q) (M) = (D.k) (D.x) 

and 

If the medium is now considered continuous 
and the finite increments are allowed to be­
come infinitesimal, in the limit 

Station Station 
1 2 
~1-.-~~~-D.x~~~~~ ... ""11 

Figure 7.1 Sketch of two closely spaced measuring 
stations. 
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(7.1) 

Eq. 7.1 will be recognized as the continuity 
expression for a fluid. 

7.3 WAVES IN TRAFFIC 

To anyone slightly familiar with the be­
havior of fluids, especially with shock waves in 
fluids, the behavior of traffic at a bottleneck 
appears to be acting in a shock wave-like 
manner. (In the late 1950s wave phenomena 
in traffic even became the subject of advertise­
ments.1) The existence and behavior of 
traffic shock waves has been demonstrated by 
Lighthill and Whitham.2 But the use of traffic 
wave analysis is not limited to shock waves. 
Lighthill and Whitham have also demonstrated 
that several traffic problems can be analyzed 
by assuming a system of traffic waves. In the 
following sections a variety of analytic tech­
niques is used to demonstrate and analyze 
traffic waves. 

7 .3.1 Fundamental of Traffic 
Shock Wave Motion ':' 

For the purposes of this discussion a 
shock wave is defined as the motion or propa­
gation of a change in concentration and flow. 
Consider the movement of two distinct con­
centrations of traffic k, and k 2 along a straight 
highway (Figure 7.2). These concentrations 
are separated by the vertical line S, which has 
a velocity of u"'. This velocity is considered 
positive if the line moves in the direction of 
positive x as depicted by the arrow. With the 
following notations, 

u, =space mean speed of vehicles in 
region A; 

u 2 = space mean speed of vehicles m 
region B; 

Uri= ( 11 1 - llw) =speed of vehicles in re­
gion A relative to the moving line 
S; and 

Ur2 = (11 2 -uw) =speed of vehicles in re­
gion B relative to the moving line S, 

1t 1s evident that in time t the number of ve­
hicles N crossing the dividing line S is 

*This section and Figures 7.2-7.5 have been 
adapted from the manuscript prepared by LA. 
Pipes for Highway Research Board Special Report 
79." 

or 

(u1 -uw)k1 =(u2 -uw)k2 (7.2) 

Eq. 7.2 is a restatement of the conserva­
tion of matter applied to the vehicles that cross 
the line and may be written in the form 

u2k 2 -u1k1 = Uw(k2 - k,) (7.3) 

If the rate of traffic flow in region A is 
q,, and the rate of traffic flow in region B is q 2 , 

q 1 =k1 u 1 

and 

On insertion of these values, Eq. 7.3 may be 
manipulated to 

If the rates of flow and the concentrations 
are nearly equal, 

(qz-q,) =!iq, 

and Eq. 7.4 becomes 

Uw=tiq/tik=dq/dk (7.5) 

which is the equation for the velocity u". with 
which small disturbances in the traffic stream 
are propagated. 

In the general case in which the differ­
ences in the concentrations on the two sides of 
the moving line S are not infinitesimally small, 
Eq. 7.4 may be written in the form 

Uw= (u 2 k 2 -u1 k 1 )! (k2 -k 1 ) (7.6) 

Eq. 7.6 demonstrates that the speed Uw is 
the slope of the chord between points 1 and 2 
on the flow-concentration diagram. This fact 
is used in several analyses that follow. 

7 .3.2 Accelerations in Traffic Stream 
Observations 

Having developed the speed of propaga­
tion of small disturbances by two semiqualita­
tive approaches, it is now possible to examine 
the various accelerations related to the traffic 
stream. This approach will be purely analytic.* 

* This section is based on Pipes' but has been 
changed somewhat in notation and in order of 
presentation. 



WA YES IN TRAFFIC 113 

Consider the speed of the traffic stream, u. 
From the discussion of partial derivatives in 
any calculus text, 

OU OU 
du=-df+-dx 

of ox 

du ou ou 
-=-+-u 
df ot ox 

(7.7) 

H du · h 1 · f b ere dt 1s t e acce erat1on o an o server 

h ffi d ou . h moving with t e tra c stream, an at 1s t e 

acceleration of the traffic stream as viewed by 
an observer at a fixed point at the side of the 
road. 

If it is assumed that u is a function of k, 

u=u(k) (7.8) 

then~=~~l of dk of 

OU du ok 
ax--<lkax-

(7.9) 

Substituting Eq. 7.9 in Eq. 7.7 gives 

du du ok du ok 
<lt=<lkai +u<lkax (7.10) 

As a consequence of Eq. 7.8, 

where 

q= ku=ku(k) =q(k) 

oq dq ok ok 
ax-= dk ax =Uw fu 

(7.11) 

(7.12) 

(7.13) 

Eq. 7.1 may now be rewritten using Eq. 7.13 as 

ok oq ok 
-=--=-u -
Of OX w ox 

(7.14) 

Noting that q=ku, u,,. may be restated''' 

Substituting Eq. 7.14 in Eq. 7.10 gives 

* It should be noted that the wave velocity is 
0 when headway equals reaction time, is positive 
when headway is greater than reaction time, and 
is negative when headway is less than reaction 
time. 

sl 
• Uw u, 

A B u2 lk2 
• x 

Figure 7.2 Movement of two concentrations.3 

Figure 7.3 Small discontinuity in concentration.3 

Figure 7.4 Shock wave caused by stopping.' 

Figure 7.5 Shock wave caused by starting.' 

Substituting Eq. 7.15 in Eq. 7.16 gives 

du= -k (~)
2 

ok 
dt dk ox 

(7.17) 

Eq. 7.17 expresses the acceleration of an ob­
server moving with traffic as a function of the 

. d" ok density gra Jent ax· 
du 

Regardless of the sign of dk' the square 

makes the value of the parentheses positive.t 

t A review of Figures 4.3-4.8 and 4.10-4.14 

reveals that :~ is zero or negative for all of the 

models discussed. 
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Thus, from Eq. 7.17, when an observer mov­
ing with the traffic fluid moves into a less 
dense region his acceleration is positive; when 
he moves into a more dense region his accel­
eration is negative. 

The acceleration of traffic as seen by a 
fixed observer can be restated, using Eq. 7.14: 

OU du ok [ du J ok (7.18) ai=<lkai= -uw dk ox 

where the quantity in brackets can take on 
positive, negative, or zero values. 

7 .3.3 An Application 

Before considering an application, let us 
summarize: 

u =speed of traffic stream (i.e., speed 
of an observer moving with the 
traffic stream) ; 

du/ dt =acceleration of traffic stream (i.e., 
acceleration of an observer mov­
ing with the traffic stream); 

ou!ot= acceleration of the traffic stream 
as seen by a fixed observer; 

u"' = speed of propagation of small 
disturbance in concentration and 

du 
flow=u+k d{; and 

ou/ox= speed gradient along the roadway. 

[ 
du J ok ou 

du!dt= -uw dk ox +u ox (7.19) 

2000 

3 

7.3.3.1 Numerical Example of Shock 
Wave Analysis. The following numerical ex­
ample of shock wave analysis was suggested 
by L. C. Edie.* Consider traffic flowing at 
1,000 vehicles/ hr with a concentration of 20 
vehicles/ mile and a speed of 50 mph, as rep­
resented by point 1 in Figure 7.6. A truck 
with a speed of 12 mph (as represented by 
the slope of the radius vector 0-2 in Figure 
7.6) enters the traffic stream and travels for 
2 miles. Because it is impossible to pass, cars 
immediately behind the truck are forced to 
match his speed, so that a platoon forms with 
a platoon concentration of 100 vehicles/ mile, 
a space mean speed of 12 mph, and a platoon 
flow of 1,200 vehicles/hr, as represented by 
point 2 of Figure 7.6. The rear of the platoon 
(i.e., the point at which the free-flowing traffic 
behind the platoon catches up with the cars in 
the platoon) moves with a speed represented 
by the slope of chord 1-2 in Figure 7.6, so 

q2-q1 1,200-1,000 
Uw=~= 

100
_

20 
=2.5 mph. 

2 1 

Thus, the rear of the platoon (shock wave of 
increased concentration) is moving forward 
with a speed of 2.5 mph with respect to the 
roadway. But the front of the platoon (the 
truck) is moving forward at a speed of 12 mph. 
Therefore, the length of the platoon is growing 
at a rate of (12.0-2.5) =9.5 mph. The truck 
requires ~ hr for a 2-mile trip so by the time 
the truck turns off, the length of the platoon is 
(~) (9.5) = 1.58 miles. At 100 cars/mile, the 

* Private communication. 

Figure 7.6 Sketch for numerical example of shock wave analysis. 

• 
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platoon will contain 158 cars. Note that while 
the platoon is growing, although the rear moves 
forward at a speed of 2.5 mph, the rear is mov­
ing backward at a speed of 9.5 mph with re­
spect to the cars in the platoon. 

After the truck turns off, flow increases to 
optimum flow (capacity) of the facility. This 
condition is represented by point 3 of Figure 7 .6, 
with a flow of 1,500 vehicles/hr, a concentra­
tion of 50 vehicles/ mile, and a space mean 
speed of 30 mph. The front of the platoon 
moves with a speed represented by the slope 
of the chord 2-3 in Figure 7.6, or 

= q3 -q2 = 1,500-1,200 = _ 6_0 m h. 
u k

3
-k

2 
50-100 P 

With the rear of the platoon moving for­
ward at 2.5 mph and the front of the platoon 
moving to the rear at 6.0 mph, the platoon 
(originally 1.58 miles long) will dissipate in 
1.58/(2.5+6.0)=0.174 hr (=10.44 min). 
Thus, for approximately 10 min after the truck 
has turned off there is still a platoon of queued 
vehicles. 

7 .3.4 Shock Wave Behavior for 
Specific u-k Relationship 

So far, the analysis has not considered any 
specific relation between the mean velocities 
11 1 and 11 2 and the concentrations k1 and k 2 • 

If we now assume Greenshields' model, 

ui=ur(l-k;I ki) 

If we further let 

we can now write 

(4.1) 

(7.20) 

(7.21) 

where u, is the free-flow speed of the traffic 
stream and 711 and 712 are the normalized con­
centrations on both sides of the boundary line 
S. Substituting these values in Eq. 7.4 gives a 
wave speed of 

[k1 ur0 -711)]- [k2ur(l - 712)] 
Uw= (k1 -k2) 

(7.22) 

The relationships for 71 1 and 712 from Eq. 
7.20 may be used to simplify Eq. 7.22 with 
the result 

(7.23) 

which gives the velocity of the line S in terms 
of the normalized concentrations on either side 
of the moving discontinuity. 

7 .3.4.1 The Case of Nearly Equal Con· 
centrations. If the normalized concentrations 
YJ 1 and Y/z on both sides of the boundary line S 
are nearly equal, the situation shown in Fig­
ure 7.3 exists. The normalized concentration 
to the left of S is YJ, whereas the normalized 
concentration to the right of S 1s (71+710 ), 

where YJ + Y/o :':'. 1 . In this case, let 

and 

(7.24) 

[I - (7J 1 +YJJ]=[I - (2YJ+YJ 0 )]=[1-271] 
(7.25) 

in which Y/o is neglected. If Eq. 7.25 is substi­
tuted in Eq. 7.23, the wave of discontinuity is 
propagated with the following velocity: 

llw = uf[l - 271] 

This is the equation for the propagation of 
shock waves obtained by Lighthill and 
Whitham 1 by a more elaborate analysis. 

7.3.4.2 Stopping Waves. Consider a line 
of traffic moving with a normalized concentra­
tion 7J 1 and a mean vehicle velocity of 

(7.26) 

At a pos1tton x =x0 on the highway, a 
traffic signal causes the traffic to halt, and the 
stream immediately assumes a saturated nor­
malized concentration of 71 2 = 1, as shown in 
Figure 7.4. To the left of the line S, the traffic 
is still moving with the mean velocity given by 
Eq. 7.26 at the original concentration of 71 1. 
Under these conditions the shock wave velocity 
is obtained by substituting 711=711 and 71 2 = 1 in 
Eq. 7.23 to give 

Uw=t1r[l-(71 1 +l)]=-ur711 (7.27) 

which indicates that the shock wave of stop­
ping travels backward with a velocity of u171 1. 

If the signal at x=x0 turns red at t=O, then 
in time t later, a line of cars of length u171 1t 
will be stopped behind x 0 • 

7.3.4.3 Starting Waves. To discuss the 
nature of the shock wave produced by the 
starting of a line of vehicles, assume that at 
t = 0 a line of vehicles has accumulated behind 
a signal located at x=x0 • Because this line of 
vehicles is standing still, it has a saturated con­
centration of 711 =1 (Figure 7.5). Assume that 
at t = 0 the signal at x = x 0 turns green and 
permits vehicles to move forward with a veloc­
ity of u2 • Because u2 =u1(1-712 ) there exists a 
concentration of 
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(7.28) 

Therefore, a starting shock wave forms as soon 
as the line of vehicles begins to move. The 
velocity of this shock wave is obtained by 
substituting 71 1 =1and712 =712 in Eq. 7.23; thus, 

Uw = uf[l- (1 +112)] = - uf112= - (uf-U2) 
(7.29) 

Therefore, the shock wave of starting travels 
backward from x0 with a velocity of (uf-u2). 
Because the starting velocity is small, it is seen 
that the shock wave of starting travels back­
ward with a velocity essentially equal to - uf. 

Another way of deducing a wave motion 
is as follows: If q=q(k,x), then 

oq oq ak 
OX ak ax 

If k is rel.atively constant with small variations 
about a mean value, then 

when substituted in Eq. 7.1 gives 

ok ok 
--+u -=0 at w ax 

This differential equation has the solution 
k=B(x-uwt), where() is an arbitrary function. 
Thus small changes in concentration will be 
propagated in the direction of traffic flow with 
velocity u"°. (See, for instance, Pipes 0

.) 

7 .3.5 Wave Flow Traffic Analysis 

Thus far the discussion has centered 
around shock waves, which are observable in 
the field. However, analysis of several traffic 
situations can be performed by use of a postu­
lated system of traffic waves that are not ob­
servable in the field, as first pointed out by 
Lighthill and Whitham. 1 (In a sense these 
waves are analogous to radio waves that can­
not be seen and are thus difficult to compre­
hend.) 

The flow-concentration curve is an essen­
tial part of any traffic wave analysis. In Figure 
4.15 it was pointed out that for any point on 
the flow-concentration curve, the radius vector 
represents the traffic speed ii 8 and the tangent 
represents the w.ave velocity u". Figure 7. 7 
demonstrates the use of traffic waves to predict 
the occurrence of a shock wave. The left-hand 

side of the figure is a flow-concentration (q-k) 
curve; the right-hand side, a time-space dia­
gram. On the q-k curve, point A represents a 
situation where traffic is flowing near capacity 
and the speed is reduced to a value well below 
free-flow speed. Point B represents a situation 
where traffic flows at a somewhat higher speed 
because of the lower density. Tangents at 
points A and B represent the wave velocities 
for these two situations. Now, if the faster flow 
of point B occurs later in time than that of 
point A, the waves of point B will eventually 
catch up with those of point A. This is shown 
in the time-space diagram of Figure 7.7. The 
intersection of these two sets of waves has a 
slope equal to the chord connecting the two 
points on the q-k curve, and this intersection 
represents the path of the shock wave.* Note 
that the velocity of the shock wave is often 
negative with respect to the roadway and is 
always negative with respect to the traffic. 

At this point it is necessary to clarify that 
the waves on the time-space diagram in this 
analysis are not trajectories of vehicles but lines 
of constant flow and thus lines of constant 
speed. The vehicles have a greater velocity than 
the waves, because the speed of the vehicle 
stream is represented by the radius vector, 
whereas the velocity of the waves is represented 
by the tangent. Thus the reader may wish to 
regard these waves as imaginary but useful as 
an analysis tool. 

7.3.5.l Progress of a Traffic Hump. An 
example of the application of such analysis 
techniques is the progress of a traffic "hump" 
as discussed by Lighthill and Whitham. 1 A 
hump is a parcel of increased density, such as 
might occur on a freeway, flowing at a constant 
level along the main stream, when there is a 
short-term influx of substantial proportions at 
one on-ramp. 

Figure 7.8 portrays the traffic waves asso­
ciated with the formation of a hump. The 
speed of the front of the hump can be stated 
immediately from Figure 7.8 as the velocity of 

* The slope of the chord equals the mean 
velocity of the two waves for parabolic q-k 
curves. This is also approximately true for non­
parabolic curves, except those containing a vertical 
tangent, because the following series expression 
applies: 
q(ko)-q(k1) 1 

k,-k, =1·(q'(k1)+q'(k,)) 

(k..-k, )' 
- 24 [q"'(k,) +q'"(k,)J+. 
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q x 

'-~~~~~~~~~~---' k 
Figure 7.7 Analysis of traffic shock wave using flow-concentration curve and 
time-space diagram. The wave speeds in the space diagram are drawn parallel 

to the respective tangents of the flow-concentration diagram. 1 

Feed Point 

Normal Inflow Increased Inflow Normal Inflow 

Time (scale of order 1 hr) 

Figure 7.8 Wave forms in the traffic hump.1 

the earliest wave representing the increased 
flow. The construction of the path of the shock 
wave is carried out as discussed in Figure 7.7 
and is shown in Figure 7.9. 

7 .3.5.2 Behavior of Traffic at Bottle· 
necks. The study of traffic behavior at bottle­
necks represents an important application of 
traffic wave analysis. A bottleneck is here de­
fined as a stretch of roadway where the capacity 
is less than that of the roadway sections up­
stream and downstream from it. Figure 7 .10 
depicts the flow-concentration curves at vari­
ous points within the bottleneck. Note the hori­
zontal line at the left of the diagram. This line 
indicates how the speed of the stream suddenly 
drops as the bottleneck is reached. Figure 7.11 
indicates the passage of the traffic waves 
through the bottleneck area. 

When the approach flow attains the point 
where it exceeds the capacity of the bottleneck, 
the duration of such a condition would be 

finite. This situation might be associated with 
the passage of a hump as previously discussed 
or attributable to the buildup of traffic during 
the peak period, which is followed by dissipa­
tion. 

Figures 7.12 and 7.13 illustrate this analy­
sis. First, no wave carrying a flow greater than 
the capacity of the bottleneck can pass the 
bottleneck zone. (Here, it is necesary to re­
emphasize that waves are being discussed and 
not the actual traffic stream. Given time, the 
actual traffic stream will eventually pass 
through the bottleneck.) Consider the arrival of 
waves as shown in Figure 7.13. At the left­
hand side waves of low flow (volume) are 
seen; hence, high-velocity waves are arriving 
at the bottleneck area. As they arrive, there is 
a jump from one flow-concentration q-k curve 
to another of lesser capacity (maximum flow) 
(Figure 7 .12) , resulting in a decrease in 
velocity. As the arriving flow increases, arriv­
ing wave velocities are less. Eventually, the 
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condition is reached where the jump from one 
q-k curve to another results in a zero velocity 
of the wave within the bottleneck. This is indi­
cated by the horizontal wave in Figure 7.13. As 
the flow continues to increase the situation 
typified by the wave ABC is reached. The 
wave enters the bottleneck with the velocity 
indicated by point A; this velocity is changed to 
zero by the bottleneck as indicated by point B. 
Then increased concentration forces operation 
to the right-hand side of the q-k curve resulting 
in a negative wave velocity, the wave leaving 
the bottleneck in a rearward direction with the 
velocity indicated by point C. As waves start 
toward the rear they meet arriving waves; the 
intersection of these two sets of waves forms a 

Distance 

Nonnal 
Inflow 

Increased Inflow 

shock wave as indicated by the heavy line at 
the right of Figure 7.13. As long as arriving 
flow exceeds the capacity of the (permanent) 
bottleneck, the shock wave will continue to 
move upstream, carrying with it decreased flow. 

7.4 TRAFFIC FLUID STATE 
CONSIDERATIONS 

In Eq. 7.17 now let 

F=-k(:~r (7.30) 

where F may be regarded as a transfer func­
tion. This allows Eq. 7 .17 to be rewritten 

Car Path Shock 

Normal Inflow 

Figure 7.9 Progress of the traffic hump with time.' 
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q Speed of Wave in Main Road 

Speed of Same Wave at 
Center of Bottleneck 

Flow-Concentration 
Curve on Main Road 

Flow-Concentration 
Curves Inside Bottleneck 

k 

Figure 7.10 Changes in flow-concentration curve at a bottleneck.' 

Distance 

Main Road 

Bottleneck 

Main Road 

Time 

Figure 7.11 Passage of waves through a bottleneck whose capacity exceeds the arrival 
flow rate.' 

~=F~ 
dt ox (7.31) 

Up to now the form of the u-k relationship has 
not been specified. Specific forms can be in­
vestigated, as well as the resulting flow-concen­
tration models. Postulating a form for F is 
equivalent to defining a "fluid state".5 

7.4.l Greenberg's "One-Dimensional" 
Fluid State 

Greenberg 6 has ·assumed a traffic fluid 
state * 

(7.32) 

where c is a constant. (Payne 20 has extended 
this work to include reaction time.) Eq. 7.32 is 
equivalent to assuming that 

* Greenberg's notation has been changed to 
agree with usage in this work. 

F=-c2 /k (7.33) 

Equating the values of F from Eqs. 7.33 and 
7.30 gives 

-k(:~r =- ~ (7.34) 

which can be manipulated algebraically to 
yield 

(7.35) 

Eq. 7.35 can be solved as a differential equa­
tion with the boundary condition 

(7.36) 

k k 
Note that Os k. s 1; thus, £,,, k. sO. Therefore, 

J J 

.. 
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Velocity with Which Wave Enters Bottleneck 
q 

B 

Velocity with 
Which Wave Leaves Bottleneck 

k 

Figure 7.12 Flow-concentration curve for reflection of waves from a bottleneck as shown in 
Figure 7.13.1 

Main Road 

Bottleneck 

Main Road 

Last Wave with Flow.;;; Capacity 
of Bottleneck 

Figure 7.13 Formation of shock wave in front of a hump as it enters a bottleneck of inadequate capacity.1 

the negative sign must be used to obtain a posi­
tive u/ c: 

k 
u= -c&-=c[&ki-&k] (7.37) 

kj 

This is the same model as Eq. 4.2 when um is 
substituted for c. In Section 4.3.2 the maxi­
mum flow for this model was shown to be 
qm=umk/e. 

Note that the model of Eq. 7.37 is the 
same as that obtained in the car-following 
theory where l=l and m=O (See Table 6.5). 
Because of this equivalence, there is a tendency 
to look on this as a unifying of the microscopic 
(car-following) and macroscopic (fluid anal-

ogy) approaches to the theory of traffic flow. 
Care must be exercised, however, as to the 
extent to which one carries this reasoning. 

7.4.2 Richards' Equation of State 

Richards ' has implied a state equation of 
the form 

(7.38) 

where A is a constant having the dimensions of 
speed-concentration.5 Equating the expressions 
for F in Eqs. 7.38 and 7.30 and performing 
algebraic manipulations, one obtains 

du/dk= -A (7 .39) 

• 
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Solving the differential Eq. 7.39 with the 
boundary conditions: 

yields 

(7.40) 

Note that this is equivalent to assuming that 
A= url ki as a traffic fluid state. Eq. 7.40, of 
course, is the same as Greenshields' model of 
Eq. 4.1. 

7.4.3 Pipes' Equation of State 

Pipes 4 ,s has generalized Richards' work 
by taking an equation of state of the form 

F= -A2k2S+1 (7.41) 

where s is an integer not equal to - 1. Per­
forming the same operations on Eq. 7.41 as 
were performed on Eq. 7.38 yields 

u=u1[1- (kl ki) 8+1 ] (7.42) 

7.5 QUANTITATIVE ANALYSIS 
(SIGNALIZED INTERSECTION) 

A combination of wave analysis with spe­
cific flow-concentration models can be illus­
trated by studying queue length. The computa­
tion of queue length at a traffic signal was first 
discussed by Lighthill and Whitham 1 and later 
extended by Rorbech. 9 

Consider a one-lane approach to a traffic 
signal with an approach volume of qA and an 
approach density kA. The red period of the sig­
nal is tr and the green (i.e., green plus amber) 
period is tw Figure 7.14 is a q-k curve, and 
Figure 7.15 is a time-space plot of the wave 
patterns. Figure 7 .16 is a sketch of the angles 
used in the trigonometric computation of the 
queue length. 

While the signal is red, traffic is stopped 
initially at the stopline (line SL in Figure 7 .15), 
and a shock wave is propagated toward the 
rear. The waves representing the stopped 
traffic have a slope equal to that of the tangent 
at point R in Figure 7.14; the waves represent­
ing arriving traffic have a slope equal to that of 
the tangent at point P in Figure 7 .14; the line of 
interference of these two waves represents the 
path of the shock wave and has a slope equal 
to that of the chord between points P and R in 
Figure 7 .14. Point A represents the position of 
the shock wave (i.e., rear of queue) at the in-

stant the signal turns green. Because the re­
sponse of a traffic system is slow, traffic does 
not start immediately on receiving the green 
indication, and some cars may still be required 
to come to a complete stop even after the green 
has been displayed. Point B represents the 
maximum distance from the stopline for which 
complete stoppage is required. X A represents 
the distance of point A from the stopline, and 
Xu represents the distance of point B from the 
stopline. 

XA =tr tan a 

x 
~=tan (3 

W=~ 
tan (3 

Xn=tan a (tr+ W) 

Xu= tan a[1r+ ~] 
tan (3 

Xn Xn 
-----=! 
tan Ct, tan (3 r 

tan a tan (3 

tan (3= I dql 
dk 7'=kj 

=U· 
.l 

(7.44) 

Where ui is the velocity of waves representing 
jam density, 

X fr 
n=~-~---

ki-kA 1 
(7.45) 

~-IUJ 

Taking Greenshields' model (linear u-k rela-

Figure 7.14 Flow-concentration curve for computation 
of queue length at a signal. 
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Figure 7.15 Time-space wave diagram for computation of queue length at a 
signal. 

tionship with resulting parabolic q-k curve), 

Maximum flow (q",) will occur at ~~ =0: 

Velocity of waves representing jam density is 
expressed 

~~I ,c=l'J = uf-
2~:ki_ = - uf (7.46) 

and the arrival flow is 

qA=Pqm 

where p is a decimal fraction (i.e., 0::::; p::::; 1 ) , 
from which it is possible to compute kA. 

Still using Greenshields' model, 

(7.47) 

This gives two values of arrival density­
one for flows less than maximum on the low 
density side and one for flows less than maxi­
mum on the high density side. The lower 
value is accepted and the higher is discarded. 
Thus, 

kA= 0.5kj(l-\fl-p) 

X tr(Pqm) F ( trqm) 
A= kj-0.5kj(l-(1-p)'l2] := A ---r; 

(7.48) 

where 

p p 
FA= 1-0.5[1- ( l-p)l/2] 0.5 +0.5(1-p)'/2 

(7.49) 

pqm 

-(trqm)F - IS II 

where 

1 
Fn= 1-0.5[1- (1-p)%] 

p 4 
1 

0.5+0.5(1-p)% -0.25 
p 

(7.50) 

(7.51) 
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or, alternatively, 

I 
Fu=-1--1 

---
FA 4 

(7.52) 

Consider the case where qA = 
1
1
0

qm; i.e., p=O.l. 

Then FA=0.103 and Fn=0.105. 

Rorbech 9 has tabulated FA and F B for various 
values of p and for two flow-concentration 
models-Greenshields' and Greenberg's. Table 
7 .1 gives the results. 

Consider now a numerical example, where 
qA=0.2qm, qm=l,800 vehicles/hr, tr=30 sec= 

/6~0 hr, and kj=200 vehicles/mile. What dis­

tance will the queue of cars occupy at the time 
the signal turns green? Assuming that Green­
shields' flow-concentration model has been ac-

trqm O ( 30 )(1,800) cepted, XA =FA~= .211 
3

,600 200 
=0.015825 miles=83.6 ft. 

7.6 PLATOON DIFFUSION 

One common objective in timing traffic 
signals is to synchronize them so that a platoon 
of cars being released from one signal arrives at 
the next signal at such time that it can pass 
through this second signal without interruption. 
The usual practice is to assume that all cars in 
the platoon move with the average speed of 
traffic. This simple approach breaks down be­
cause platoons do not remain in a compact state 
but tend to diffuse as they move away from 
the point of their formation. For example, 
Graham and Chenu 10 have experimentally 
found the percentage of the original number of 
cars in the platoon that remain in the platoon at 
various distances along a highway from the 
point of origin (Table 7 .2). When platoons are 
represented by frequency distributions of per­
cent of total platoon flow versus arrival time, 
the result is as shown in Figure 7 .17. It will be 
noted that as distance increases, the peak of the 
distribution becomes lower, with an increased 
tendency for the distribution to "tail" out to the 
rear. Part of the problem lies in the fact that 
platoon leaders from one signal cycle to another 
do not travel at the same speed. Figure 7.18 
illustrates the fact that arrival times of platoon 
leaders become more dispersed as the distance 
from the point of platoon formation increases. 

._.------tr------..-+--w--j 

B 

Figure 7.16 Sketch of angles for computation of queue 
length at a signal. 

7 .6.1 Pacey's Diffusion Study 

Pacey 12 has postulated that the speeds of 
vehicles in a platoon are normally distributed, 
from which he deduced the distribution of 
travel times. The mathematical derivation is 
given in Appendix F-1. The result of Pacey's 
method is shown in Figure 7.19. 

7 .6.2 Diffusion Model of Grace and 
Potts 

By first changing to new variables and then 
changing back Grace and Potts 13 have shown 
that Pacey's model corresponds to a unidimen­
sional fluid diffusion equation 

TABLE 7.1 Values of FA and Fn 

Greenshields' Greenberg's 
Flow-Concen- Flow-Concen-
tration Model tration Model 

p FA Fn FA Fn 

0.1 0.103 0.105 0.101 0.105 
0.2 0.211 0.223 0.204 0.220 
0.3 0.327 0.356 0.310 0.350 
0.4 0.451 0.508 0.421 0.498 
0.5 0.585 0.686 0.536 0.668 
0.6 0.735 0.901 0.662 0.874 
0.7 0.904 1.169 0.798 1.130 
0.8 1.105 1.527 0.954 1.469 
0.9 1.368 2.079 1.146 1.983 
1.0 2.000 4.000 1.582 3.787 
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01d OT= a.2 ( 02K! ox2
) 

which is equivalent to 

(oklot) +u(oklox) = u2 a.2(02 k!ox2
) 

where 

(7.53) 

(7.54) 

u =mean speed of vehicle speed distribu­
tion; 

s= dispersion of speed distribution; 

TABLE 7.2 Percentage of Vehicles 
Remaining in a Highway Traffic Platoon a 

Distance 
(miles) 

0.25 
0.50 
0.75 
1 

Vehicles 
Remaining in 
Platoon(%) 

91 
85 
80 
77 

•From Graham and Chenu.10 
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a= s/il=diffusion constant; 
r= 1/2 t2

; 

K= (x/u) -t; 
x= distance from stopline at original sig­

nal; and 
t= time since display of green signal. 

More importantly, Grace and Potts have 
( 1 ) pointed out that the establishment of the 
ratio a computed from stream measurements 
as a parameter in the kinematic diffusion theory 
serves to link it to stream flow and (2) de­
scribed a suitable way of timing traffic signals 
by representing platoons as trapezoidal pulses. 

7.6.3 Platoons as Trapezoidal Pulses 

When the green indication of a traffic sig­
nal is displayed, the flow does not immediately 
jump to its maximum value but builds up over 
a period of several seconds. The solid line in 
Figure 7.20 is a plot of flow versus time for 
the flow leaving a traffic signal (assuming there 
is sufficient demand to assure flow throughout 
the entire green interval). The other lines in 
Figure 7.20 indicate the (time) shape of the 

--
60 70 80 90 100 110 

Seconds After Green 

Figure 7.17 Frequency distributions of vehicle orrival at various stations." Station l, 0.03 miles from stop· 
line of signal; station 2, 0.21 miles; station 3, 0.34 miles; station 4, 0.50 miles; station 5, 0.65 miles. 
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Station 
Distance (miles) 

Seconds After Green Signal 

1 
0.03 

2 3 4 
0.21 0.34 0.50 

60 70 

125 

5 
0.65 

Figure 7.18 Frequency distributions of arrival times of platoon leaders at same stations as in Figure 7.1711 
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Figure 7.19 Result of Pacey's diffusion prediction. 
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flow pulse after it has been diffused by passage 
down the roadway by distances of 0.25 and 
0.50 mile. 

derivation, the reader is referred to Grace and 
Potts.13 

Definitions 
For purposes of analysis, consider the 

trapezoidal pulse indicated by the dotted lines 
of Figure 7.21. It is most convenient to treat 
the front and the rear of the pulse separately. 
Only the significant steps for the case where 
b1 =b2 (Figure 7.21) are given. For a detailed 

0 -- 1.0 t:T 

~- 0.8 
.2 

0.6 LL 

"O 0.4 Q) 
N 

K = maximum density (e.g., in cars/ 
ft) of the platoon at t=O; 

Q= Ka maximum flow (e.g., in cars/ 
sec) of platoon at x=O; 

a= initial length (in ft) of a pla­
toon; 

',~ -ro 0.2 -j r4sec E '' .......... ~ ..... 0 0 F R z 
Time, t 

Figure 7.20 The normalized flow of a platoon plotted as a function of time at three suc­
cessive points on the highway. The horizontal scale is indicated by the interval "4 sec." 
The initial flow builds up in approxiamtely 4 sec to its maximum value. The dotted curve 
represents the flow at a distance 0.25 mile down the highway; the dashed curve, at 0.5 
mile. F and R indicate when the front and rear of the platoon would have reached the 

-a 

I 
I 

three points on the highway had there been no diffusion.13 

t=O \ 
\ 

0 

K 
t = t' 

Distance, x 

Figure 7.21 The density k (x, t) of a platoon sketched (not to scale) as a function 
of distance x down the highway for t = 0 and a later time t = t'. The solid lines 
indicate an initial rectangular pulse, showing how it spreads as the platoon moves 

down the highway. The dashed lines indicate an initial trapezoidal pulse.13 
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bpb2 = length (in ft) of front (rear) of 
platoon in which the density 
builds to (falls from) its maxi­
mum value (Actually, only the 
case where b, = b2 = b has been 
treated); 

erf(z) =---= exp(-x2 )dx 2 1: 
v"' o 

For the Front of the Platoon 

Nr= V2 K(rtt-x-112b) + (112b )K u2a.212 

[(x 2 + 1!2)erf(z) + (ll7r)Z exp(-z2 )J:,z, 
(7.55) 

where Nr= number of cars that are stopped 
at the front of a platoon with an 
offset xi u sec from the previous 
signal and a preset (early start) 
of the green (xi u- t) sec; 

z, = (alu-t)la.tVf.; and 
Z3 = [(x/ u- t) + blii]/ a.tVf.. 

For the Rear of the Platoon 

Nr= 112 K(x-iit-112b) + ( l/2b )Kii2a.2 t2 

[(z2 + 112) erf(z) + (lly;)exp(-z2 )Jz
1
z, 

(7.56) 

where Nr= number of cars that are stopped 
at the rear of a platoon when the 
offset is as above and the exten­
sion (late termination) of the 
green is - (xi ii- t); and 

z,= (x!u-blii-t)!a.tVL 

For various values of offset and preset or ex-

tension, the ratios of N rl A and N / Q are 
given in Table 7.3 (for a diffusion constant 
a.=0.15). 

Computational Procedure 

To apply these results to allow for platoon 
diffusion in the design of the coordination of 
two successive traffic lights, the following pro­
cedure is suggested: 

1. Under conditions of the maximum 
traffic flow to be coped with, the initial flow for 
all lanes combined is determined from a time 
arrival study, from which Q (the maximum 
flow in cars/sec) and b,u and b 2u (sec) (the 
build-up and fall-off times) are estimated. 

2. The distribution of car speeds is deter­
mined and the mean speed ii and dispersion sa­
(both in ft sec-1 ) are estimated, from which the 
diffusion constant a.= a-I u is calculated. 

3. From the distance x (ft between the 
traffic lights), the offset time xi ii (sec) is 
calculated. 

4. If Nr and Nr-the expected number of 
cars to be stopped, respectively, at the front 
and rear of the platoons-are decided upon, 
then Nrf Q and N/ Qare calculable. 

5. The appropriate values of the preset 
time x (sec) and the extension time -x(sec) 
are then read from Table 7.3 where x= 
(xlu-t). 

Numerical Example 

Consider the following data: Q=two cars/ 
sec (for a multilane facility), x=2,640 ft (the 

TABLE 7.3 Expected Number of Cars Stopped,a Initial Trapezoidal Pulse 

Offset 
Preset or Extension (sec) 

(sec) 0 2 3 4 5 6 7 8 9 JO 

30 1.02 0.68 0.42 0.24 0.13 0.06 0.02 O.Dl 0 0 0 
1.02 0.77 0.58 0.44 0.33 0.24 0.18 0.14 0.10 0.08 0.06 

60 2.71 2.26 1.86 1.50 1.20 0.93 0.71 0.53 0.38 0.27 0.18 
2.71 2.37 2.07 1.81 1.58 1.37 1.19 1.04 0.90 0.78 0.67 

90 4.46 3.98 3.53 3.10 2.71 2.35 2.02 1.73 1.46 1.22 1.01 
4.46 4.10 3.75 3.44 3.14 2.87 2.63 2.40 2.19 1.99 1.82 

120 6.24 5.74 5.26 4.80 4.36 3.95 3.57 3.21 2.87 2.55 2.26 
6.24 5.85 5.49 5.14 4.82 4.51 4.22 3.95 3.69 3.45 3.22 

•The odd lines give the values (sec) of the ratio of the number of cars stopped at the front of the 
platoon to the maximum initial flow for the specified values of offset and preset. The even lines give 
the values (sec) of the ratio of the number of cars stopped at the rear of the platoon to the maximum 
initial flow for the specified values of offset and extension.The diffusion constant a.=0.15.13 
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distance between signals), a= 30 mph= 44 ft/ 
sec (the average speed), cx.=s/u=0.15 (the 
diffusion constant, b 1/ a= 4 sec (the time to 
build up to full-flow condition), and b2/u=4 
sec (the time to decay from full-flow condi­
tion). It is a matter of engineering judgment 
to select the number of cars to be stopped at 
the front and rear of the platoon. If Nt=2 and 
Nr=2, the offset as computed from the data is 
60 sec. 

The ratio N ti Q = 1.0. Referring to Table 
7.3, line three lists values of NfQ for offsets of 
60 sec. A ratio of 1.0 falls between a preset of 
4 and 5 sec; a preset of 5 sec is selected. 

The ratio N rQ = 1.0. Referring to Table 
7.3, line four lists values of Nr/ Q for offsets 
of 60 sec. Because the ratio 1.0 falls between 
7 and 8 sec, an extension of 8 sec is selected. 

Suppose now the normal duration of the 
green interval at the second intersection is 40 
sec. The green interval as designed here would 
start 60- 5 = 5 5 sec after the start of the green 
at the first intersection in order to account for 
forward diffusion of platoons. Ordinarily, the 
green at the second intersection would terminate 
at 60 + 40 = 100 sec after the start of the green 
at the first intersection. As designed to account 
for backward platoon diffusion, it will ter­
minate 100 + 8 = 108 sec after the start of the 
green at the first intersection. 

7 .6.4 Other Platoon Studies and 
Comments 

Edie et al. 20 have performed experimental 
studies to test the kinematic model of Grace 
and Potts. They state: "The kinematic model 
well describes the spreading of platoons in 
medium traffic without interference." 

Hillier and Rothery 21 have demonstrated 
that consideration of platoon phenomena can 
improve signal timing in the delay-difference 
of offset approach. 

Nemeth and Vecellio 15 have concluded 
that Pacey's model is valid. 

7.7 BOLTZMANN-LIKE BEHAVIOR 
OF TRAFFIC 

The fact that traffic under low densities 
is essentially the flow of individual cars, whereas 
at high densities flow is by platoons, suggests 
an analogy between traffic and gases. The early 
work on this approach was performed by 
Prigogine. 16 Continuing work has been carried 
on by him, by the General Motors Research 

Laboratories, and by the System Development 
Corporation. Until now, no data have been 
collected under conditions prescribed by the 
theory; however, recent analyses based on 
available data demonstrate the attractiveness of 
the approach. Prigogine and Herman 17 dis­
cuss the development of the theory, and a brief 
review of assumptions, results, and some nu­
merical applications is given in the following. 

7 .7 .1 Velocity Distribution Function 

An essential part of the theory is the in­
troduction of the "velocity distribution func­
tion" f (x,u,t), which is analogous to the 
probability of finding a particle in a gas at x 
and t with a specific momentum. In absence of 
any interactions, this distribution must satisfy 
the continuity equation for a given region*: 

(7.57) 

7 .7 .2 Kinetic Equation 

Actm\lly, three different main features of 
multilane traffic are recognized and treated as 
separate processes in the theory. They are the 
relaxation process, or the speeding-up process, 
that expresses the attempts of drivers to achieve 
their own desired speeds; the interaction proc­
ess, or the slowing-down process, that arises 
in the conflict between a faster driver and a 
slower driver; and the adjustment process that 
reduces the variance around the mean speed.18 

These processes are then expressed in a kinetic 
equation: 

dr = ir + u( ~~) =(~~)relaxation 
+ ( ir\nteraction +(~~)adjustment (7

·
53

) 

As written, this equation describes the time 
evolution of the speed distribution, f[u,k(x,t) ,t], 
of cars on a homogeneous highway at location 
x and time t, where k(x,t) is the concentration 
of cars at that point. · 

7.7.2.1 Relaxation. The distribution of 
desired speeds is defined as / 0 (x,u,1) and / 0 

(x,u,t) dxdu is the number of cars at time t in 

" Prigogine, Herman, et al. considered the 
distribution of desired speeds to be independent of 
density (concentration). More recent work by 
Andrews''·"" discusses the case of this distribution 
being a function of concentration. 
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the interval dx with desired speeds between u 
and u +du. When the distribution f is different 
from f 0 it will relax toward f 0 with a time 
constant T. The relaxation process is described 
by 

- =-U-fo)IT (of) 
ot relaxation 

(7.59) 

The desired speed distribution can exist only 
at low concentrations. 

7.7.2.2 Interaction. The interaction proc­
ess describes the effects of various cars on each 
other. The probability of passing (P) is re­
lated to the interaction phenomenon, which is 
described by 

( ~1 ). . = (1-P)k(u-u)f (7.60) 
t 1nteractlon 

7.7.2.3 Adjustment. As noted in Chapter 
3, as traffic density (concentration) increases 
the variance of speeds about the mean de­
creases. To account for this phenomenon, an 
adjustment process must be included in the 
model. This process is represented by 

(~1) . =A.(1-P)k[o(u-u)-f] 
t adiustment 

(7 .61) 

where 8 is the Dirac delta function and A. is a 
parameter. 

7. 7 .2.4 Computations. It is beyond the 
scope of this discussion to follow through the 
detailed mathematical steps that ensue; Prigo­
gine and Herman 17 developed these computa­
tions. Several investigators have pursued 
analyses and some experimentation. Their 
results are as indicated in the following para­
graphs. 

7. 7 .3 Low-Density Traffic 

For small concentrations, the flow becomes 

or 

where 

k 
-=71 
kj 

Thus, for very small values of 71, q is linear 
with increase in concentration (see, for ex­
ample, Figure 7.22); the deviations in linearity 
are determined by the dispersion of the desired 
speed distribution function. 

To summarize, as k ~ 0, f ~ f 0 ; i.e., for 
a very small density, or light traffic, the actual 
speed distribution is in fact the desired distribu­
tion of each individual, 

f= fo 
l+Tk(l-P)(u-a) 

(7.62) 

7 .7 .4 High-Density Traffic: Numerical 
Results 

Several models have been examined by 
Anderson et al.2 4 ; two are reproduced in 
Table 7.4. The normalized flow versus con­
centration curves for these models are shown 
in Figures 7.22, 7.23, and 7.24. 

Note that in Figure 7.22 the increase in 
flow is linear with increase in 71, as mentioned 
in the discussion of low-density traffic. Further, 
notice that the higher the average speed, the 
lower the concentration at which the optimum 
flow occurs. Also in this case, collective flow 
does not begin until 71= 1 and the flow vanishes; 
that is, there is a "cutoff" concentration. In 
Figure 7.23 these cutoff concentrations are very 
apparent and differ from the curves in Figure 
7.22 because of the use of a different model 
for the desired velocity distribution function. 

It follows that where 

1-Tk(l-P)u=O (7.67) 

leads to a "collective flow pattern," since 
average velocity can be seen as a function of 
k, T, and P only; it does not depend at all on / 0 , 

the desired speed distribution of the individual 
drivers. Thus, we define the concentration at 
which collective flow begins as 

kcrlt = ------1 - T(l -- P) u (7.68) 

Thus, for model 1 (the exponential distribu­
tion) ri = 1 at the initiation of collective flow. 

Figure 7.24 shows the regimes of indi-
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Figure 7.22 Normalized flow q/ki vs. normalized con­
centration '7 = k/ki for exponential speed distribution 
function (model 1 in Table 7.4) for different average 

desired speeds and kiT = 0.1 sec/ft.17 
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Figure 7.23 Normalized flow q/ki vs. normalized con­

centration '7 = k/ki for modified exponential speed dis­
tribution function (model 2 in Table 7.4) for different 

vidual and collective flow, where the dashed 
collective flow curve is given by Eq. 7.68. 

In spite of these interesting results, 
Prigogine and Herman 17 state: 

It should be pointed out, however, that 
our entire discussion of the collective flow 
was based on the assumption of the 
validity of a time-independent description. 
This ... is not a valid assumption, as the 
transition to collective flow and instabili­
ties occur in the same range of concen-

average desired speeds and' kiT = 0.1 sec/ft.17 

tration. In the quantitative description of 
the flow patterns at high concentrations, 
fluctuations will therefore play an essen­
tial role. 

The prediction of a transition from in­
dividual to collective flow is certainly a 
nice feature of the basic kinetic equation. 

TABLE 7.4 Properties of Models 

Free-Speed 
Distribution 

No. Function /o iio 

Exponential cl~) c-u) 
kin/ut[exp(- u/ur)] 

-;;( exp Ur Ut 
A+'Yu 

(fut)·'exp(fur)-1 {"' dx x-1exp(- x) 
} (fur)-1 

2 Modified ( 4kinu) ex (=-") (4kinu/ur2 )[exp( - 2u/ur)] 
exponential ur p ur Ut A+ 'YU 

2(fur)·1{ 1 - 2(fut)-1[ exp ( r:,) J 

!
00 

dxx-1exp(-x)} 
2 < r,,, J-1 

• 
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Indeed, every driver experiences that at 
some moment, with increasing traffic 
concentration, his speed drops abruptly, 
and he is trapped in a collective flow to 
which he himself contributes. 

The results of the kinetic theory are 
nevertheless impressive, as the fl.ow-concen­
tration curves in Figures 7.22, 7.23, and 7.24 
indicate. The material presented here is in­
tended to give the reader the basic assumptions 
and conceptual formulation of the kinetic 
theory of traffic flow, but the interested reader 
may refer to the referenced literature for more 
details. 

7.7.5 Experimental Work 

A recent paper by Herman, Lam, and 
Prigogine 18 reports the results of a comparison 
of the theory and field data from two sources. 
Figure 7 .25 contains histograms of speed for 
four sets of data from the Port Authority of 
New York and New Jersey. Figure 7.26 con­
tains histograms for three sets of data produced 
by the Bureau of Public Roads (now the Fed­
eral Highway Administration) and used by 
Systems Development Corporation in previous 
work. The third and fourth moments and 
their ratios to the second moment (variance) 
were computed from the data and compared 
with the same values from the theory. The 
results are given in Tables 7.5, 7.6, and 7.7. 
Herman and his co-workers feel that the results 
are encouraging, considering the limited data 
available. 

7.8 SUMMARY 

1. Traffic can be analyzed by means of 
"waves" of constant fl.ow and, hence, on roads 
of constant roadway geometry and environ­
ment, by constant speed and concentration. 
When there is a change in fl.ow, resulting from 
changes in roadway geometry or condition, 
&hock waves can develop. Techniques have 
been described by which shock waves can be 
plotted and used to predict performance of 
the traffic system. Applications to freeway 
bottlenecks and to traffic signals have been 
given. 

2. The model of Greenberg was originally 
developed by him using a traffic "fluid state" 
assumption. That this model also appears in 
car-following gives limited confidence in the 

25 u = 80 ft/sec 
0 

20 

15 

6 
0.2 0.4 0.6 0.8 1.0 

1] 

Figure 7.24 Normalized flow q/kJ vs. normalized con­
centration 1) = k/kJ for modified exponential desired 
speed distribution function (model 2 in Table 7.4)." 
The solid curves represent the individual flow curves 
for various values of ii.,. The dashed curve represents 

the collective flow curve. 

relationship between the microscopic and 
macroscopic theories of traffic. 

3. Platoon diffusion can be represented by 
a model that is analogous to the diffusion of 
gases. Techniques of application to signal tim­
ing have been discussed. 

4. The Boltzmann-like model of traffic 
has been introduced. This model attempts to 
integrate low-density flow (individual vehicles) 
and high-density fl.ow (platoons) into a single 
model. Results achieved to the present are 
considered promising. 
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Figure 7.25 The frequency function, f(u), of the observed speed distributions from the Port Authority of New 
York and New Jersey. The concentrations corresponding to distributions fn, f12, f,,, and fu are 35.0, 62.0, 74.3, 

and 93.0 veh/mile, respectively. 

TABLE 7.5 Moments of the Observed Speed Distributions a 

Data Source PANYNJ SDC-BPR 

Distribution /11 /12 f 13 fu /21 f 22 /23 

Concentration (veh/mi) 35.0 62.0 74.3 93.0 32.7 49.5 88.4 
Sample size 285 871 462 620 2709 984 1369 
Mean, ii 52.52 34.35 26.76 20.13 48.17 47.42 41.79 
Variance," m"' 43.42 91.31 144.05 187.28 42.18 40.35 30.29 
Third central moment, m'3

' -99.22 318.23 -289.26 72.86 -19.62 -116.52 14.44 
Fourth central moment, 

m'fl 6487 37439 57830 57895 4379 5290 2153 
m'"'!m'" 2.285 3.485 -2.008 0.389 -0.465 -2.887 0.477 
m"'lm'"' 149.4 410.0 401.5 309.1 103.8 131.1 71.1 

a SOURCE: Herman et al.18 

•mo"' =second moment of desired speed distribution; m'" =third moment of actual speed distri­
bution; etc. 
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TABLE 7.6 Moment to Variance Ratios a 

Data Source 

Desired Speed 
f11 Distribution (fo) 

Speed Distribution f12 '" m'3'/m<2> Data 3.485 -2.008 
Theory -13.800 0.675 

m"' lm'2' Data 410.02 401.47 
Theory 928.80 771.57 

m<2) Data 91.31 144.05 
Theory 623.90 689.15 

a SOURCE: Herman et al.18 
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TABLE 7.7 Calculated Moments of the 
Desired Speed Distribution 

Data Source PANYNJ SDC-BPR 

Distribu-
tions f11J1',f,,. f,.,f,,.,f,, f21,f22,f23 

lfo 39.48 27.61 47.47 
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Public Roads data in Pipes.3 The concentrations corresponding to f21, f~2, and f,, are 32.7, 49.5, and 88.4 veh/ 

mile, respectively. 
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7.11 PROBLEMS 

1. Given a single-lane roadway as shown 
in the sketch and the three conditions at loca-

A I B I 
I , 
,---1/4 Mile~ 

School Zone, 
Operates Only for 15 Min 

c 

tions A, B, and C as: qA=l,250 vehicles/hr, 
uA=50 mph; qn=l,000 vehicles/hr, un=20 
mph; qc=l,200 vehicles/hr, u<'=40 mph. De­
termine (a) uw(AB) (speed of shock wave 
AB), (b) llw(BC) (speed of shock wave BC), 
( c) length of queue at end of 15-min period, 
( d) time to dissipate queue after the end of 
period, and ( e) distance from beginning of 
school zone to point of dissipation. 

2. A line of traffic is moving with a free­
flow speed, uf, of 35 mph and a concentration 
of 40 vehicles/ mile. This traffic stream is 
stopped for 30 sec at a signal. (a) What would 
be the velocity and direction of the wave of 
stopping? (b) What would be the length of 
the line of cars stopped for the signal? ( c) How 
many cars would be stopped for the signal? 
(Jam concentration, kj = 200 vehicles/ mile.) 

3. Consider a one-lane approach to a traf­
fic signal with an approach volume of 400 
vehicles/hr, a capacity volume of 1,600 ve­
hicles/hr, a red signal time of 25 sec, and a 
jam density of 200 vehicles/ mile. Based on the 
information provided in Section 7.5 and assum­
ing Greenshield's flow-concentration model, 
what distance will the queue of cars occupy 
at the time the signal turns green? What is the 
distance from the stopline for which complete 
stoppage is required? 
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Chapter 8 

QUEUEING MODELS* 

8.1 INTRODUCTION 

A desirable goal for transportation engi­
neers is to design and operate facilities that 
minimize delay to the users. Delay resulting 
from congestion is a common phenomenon 
associated with many types of transportation 
problems. Vehicles wait in line on access 
ramps for an opportunity to enter a freeway; 
pedestrians queue up on a crosswalk in antici­
pation of a gap in road traffic or at a turnstile in 
a transit station; left-turn slots must be suffi­
ciently long to store the maximum number of 
vehicles that can be expected to wait for a 
left-turn signal. 

How long a user must wait, or what is 
the number of units waiting in line, or the 
proportion. of time that a facility might be in­
active (an empty parking stall, for instance)? 
Queueing models, employing the methods of 
probability and statistics, provide a means by 
which it is possible to predict some of these 
delay characteristics. 

Queueing theory was first developed early 
in the twentieth century to deal with problems 
of telephone switching. Following World War 
II queueing was accepted for use in a wide 
range of situations. Adam 2 considered the 
problem of pedestrian delay at an unsignalized 
intersection in 1936. Tanner 3 expanded on the 
pedestrian problem in 1951, and in 1954 Edie 4 

evaluated delays at toll booths by applying 
queueing models to an analysis of their opera­
tion. In the same year Moskowitz 5 reported 
on an empirical study of vehicles waiting for a 
gap in traffic. 

The purpose of this chapter is to present 
some of the results of studies of probability 
models of traffic delay. Section 8.2 introduces 
some elements of queueing or waiting-line 
theory. The examples used in section 8.2 are 
concerned with delay problems that occur 
when all users pass through a single-channel 

* In preparing this chapter, the authors have 
drawn freely on the material of Cleveland and 
Capelle.1 References to that material are acknowl­
edged at this time. Specific references are noted 
only for the illustrations used in this text. 
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control point, such as a left-turn slot or a single 
exit lane for a garage. 

In section 8.3 the analysis is extended to 
consider several channels of service; for ex­
ample, several parallel toll booths or the dif­
ferent stalls of a parking facility. In this sec­
tion the case of a user who does not get served 
is also considered; for example, the person 
seeking a parking space but who then continues 
on to another destination when none is found. 

Much urban traffic engineering is related 
to the operation of urban intersections. An 
understanding of delay at these intersections is 
necessary to obtain the greatest efficiency from 
existing and planned transportation systems. 
The analysis of delays at intersections is con­
sidered in section 8.5, beginning with an 
analysis of unsignalized intersections. Queue­
ing models for more complex intersection con­
trol, such as pedestrian control or traffic-signal 
control, are also considered in this section. 

A final application of queueing theory, the 
treatment of delay on roadways, is included in 
section 8.6. Except for the detailed develop­
ment of the formulas given in section 8.2, this 
chapter avoids detailed mathematical develop­
ment, but does present the theorists' assump­
tions and some results of interest. The model 
for service through a single channel is devel­
oped in detail because it demonstrates the 
relationship between probability theory and the 
behavior of waiting lines. Readers interested in 
further theoretical development of queueing 
models should consult textbooks such as 
Haight,6 Prabhu,7 Cox and Smith,8 or Newell.9 

8.2 FUNDAMENTALS OF QUEUEING 
THEORY 

Queueing theory draws heavily on prob­
ability theory. To mathematically predict the 
characteristics of a queueing system, it is 
necessary to specify the following system char­
acteristics and parameters: 

A. Arrival pattern characteristics: ( 1) 
average rate of arrival and (2) statistical dis­
tribution of time between arrivals; 

B. Service facility characteristics: (1) 
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service time average rates and distribution and 
(2) number of customers that can be served 
simultaneously, or number of channels avail­
able; 

C. Queue discipline characteristics, such 
as the means by which the next customer to be 
served is selected; for example, "first come 
first served," or "most profitable customer 
first." 

To facilitate reference to these charac­
teristics, a short notation in the form a/b/ c has 
come into use. In this notation a letter denoting 
the type of arrival pattern is substituted for a; 
a letter denoting the type of service is sub­
stituted for b; a number designating the number 
of service channels is substituted for c. Sym­
bols in the first two places are as follows: 

M= exponentially distributed (i.e., ran­
dom) interarrival or service time; 

D= deterministic or constant interarrival 
or service time; 

G = general distribution of service times; 
GI= general distribution of interarrival 

times; 
Ek= Erlang distribution of interarrival or 

service times with Erlang parameter 
k. 

Thus, MIG! 1 designates a queue with random 
arrivals, general service distribution, and one 
server. 

In some discussions it may be desirable to 
indicate queue length limitations and queue 
discipline. For such purposes the notation, 
M/M/1: (LI Disc) is used, where Lis replaced 
by the maximum allowable length and Disc is 
replaced by a symbol for the appropriate queue 
discipline. The following are common dis­
ciplines: 

FIFO= first in-first out (i.e., service in 
order of arrival) ; 

SIRO = service in random order; 
LIFO= last in-first out. 

Thus, Ek/D/2 ( oo /FIFO) denotes a system 
with Erlangian arrivals, constant service, two 
service channels, infinite queue length (i.e., 
no limitation on queue length), and first come­
first served discipline. 

8.2.1. System State for M/M/l 

The fundamental quantities characterizing 
a waiting line are the states of the system. The 
system is said to be in state n if it contains ex-

actly n items (this includes all items being 
served as well as those waiting to be served). 
The value of n may be either 0 or some positive 
integer. 

If the average arrival rate is called A, the 
average interval between arrivals is 1 I A. If 
the service rate of the system is µ, the average 
service time is 1 Iµ. The ratio p =A/µ, some­
times called the traffic intensity or utilization 
factor, determines the nature of the various 
states. If p < 1 (that is, A<µ) and a sufficiently 
long time elapses, each state will be recurrent. 
This means that there is a finite probability of 
the queue being in any state n. If, on the other 
hand, p?_ 1, every state is transient and the 
queue length (the number in the system) will 
become longer and longer without limit. A 
fundamental theorem states that the queue will 
be in equilibrium only if p < 1. 

An understanding of the characteristics of 
queueing systems can be obtained from simple 
cases. Consider the case of a single-channel 
queueing system with a mean random Poisson 
arrival rate of A customers per unit of time and 
where service times are independent and dis­
tributed exponentially with a mean rate µ. Let 
P,, ( t) be the probability that the queueing 
system has n items at time t. Consider the 
situation at time t+M where Mis so short that 
only one customer can enter or leave th~ 

system during this time. 
Thus, for the period M, the following 

probabilities can be stated: 

Mt= probability that one unit enters 
the system; 

1-Mt= probability that no unit enters the 
system; 

µD.t = probability that one unit leaves 
the system; 

1 - µM = probability that no unit leaves the 
system. 

There are three ways in which the system 
can reach state n at time (t+M) (when n > 0): 

1. The system was in state n at t and no 
customers arrived or departed in M. (The 
probability of simultaneous arrival and depar­
ture in M is considered to be zero.) 

2. The system was in state n - 1 at t and 
one customer arrived in M. 

3. The system was in state n+ 1 at t 
and one customer departed in M. 

• 
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The probability of the system being in 
state n at (t+M) is 

P,.(t+tlt) = P,,(t) [( 1-Mt) (1-µ6.t)]+Pn_,(t) 
[(AM) (I - µ6.t)] + P,.+i (1)[ (1- Mt) 
(µM)] (for n2 I) (8.1) 

Expanding and collecting terms, 

P,.(t+M)-Pn(t) = -Pn(t) (µ+A.)M 
+ Pn-1 (t) AD.I+ Pn+I (t) µ6.t 
+µA(M) 2 [Pn(t)-Pn_,(t) 
-Pn+1 (t)] 

Neglecting terms with second-order infinitesi­
mals and dividing by M, 

P,.(t+6.t)-P,Jt) =AP - (t)- ( +A) p (t) 
6.t n I fL n 

+,uP,,+l(t) 

Letting 6.t~O, 

dP,, ( t) ( ) ( ) -d-
1
-=AP,,_ 1 (1)- µ+A P,,(t)+µP,,+i t 

(8.2) 
where n = 1,2,3 . 

The probability of the system being in state 
0 at time (t+M) can come about in two ways: 
( 1) There are no units in line at time t and none 
arrives in interval M; or (2) there is one unit 
in line at time t and one unit departs in interval 
6.t and none arrives in interval M. Expressing 
these relationships in terms of probabilities, 

P0 (t+M) =P0 (t) (1-A.6.t) 
+P,(t)[(µM) (1-A!lt)] 

Expanding, collecting terms (neglecting terms 
with second-order infinitesimals), and dividing 
byM, 

P 0 (t+M)-P0 (t) _ p ( )- p ( ) 
µ 1 t A II t 

6.t 

Letting 6.t~O 

dPn(t) ( ) _d_t_ =µP,(t)-AP., t (8.3) 

When dealing with the steady state of the 
system (that is, when the probabilities of being 
in a given state do not change with time), the 
following results, 

dP,,(t) =O 
dt 

for all n at time t. (8.4) 

From Eqs. 8.2, 8.3, and 8.4, it is then 
possible to set up systems of differential­
difference equations for various steady states. 

The resulting equations are of the form 

for n > 0 

and 

for n=O 
(8.5) 

in which P,, is the value of P,,(t) as t~OJ. 
The first few equations are as follows: 

AP0 =µP 1 (8.6) 

A.P0 +µPe= (A+µ) P, (8.7) 

AP1 + µP:: =(A+µ) P 2 (8.8) 

Recalling that p=A/ µ and noting (from 
Eq. 8.6) that P, =pP0 and substituting in Eqs. 
8.7 and 8.8, 

and 

for n20 

(8.9) 

( 8.10) 

( 8.11 ) 

Because the sum of all probabilities is 1, 

11=.~ 

I =P11 +pP0 +p2P0 + .. . 

=P.,(I +p+ P2 +p3+ ... ) 

for p< 1 

P0 = 1-p forp<l (8.12) 

Therefore, Eq. 8.11 may be written as P 11 = 
p"(l-p). 

The traffic intensity, p, can then be seen 
to express the fraction of time that the system 
is busy (P0 is the probability that the system is 
empty and 1- P0 is the probability that it is 
occupied). 

8.2.2 Average and Variance of Number 
of Units (Customers) in System 
(M/M/l) 

The average number of customers in the 
system is 
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n:::c.o 

E(n) = L,nP" 
n:::O 

= O+P1 +2P2 +3P3+ .. . 
= Po(p+2p2+3p3+ ... ) 

= (1-p{ (1 ~p) 2 J for p< 1 

p 

1-p 
forp<l (8.13) 

The upper curve of Figure 8.1 illustrates 
this relationship. It will be noted that when the 
traffic intensity p exceeds about 0.8, the con­
gestion (number in system) increases rapidly. 

The variance of the number in the system 
is 

Var (n)='.I[n-E(n)]2P,,=(l_:' )2 (8.14) 
.~ p 

This relationship is plotted in Figure 8.2. 
The derivation of this expression may be found 
in a standard text on queueing theory. 

8.2.3 Delay Time in the ·System 
(M/M/l) 

Consider the total time a customer spends 
in the system ( v) to be made up of two 
components: a time to wait before service, w 
(queueing time) plus a time in service, s (ser­
vice time). The average number in the system, 

20 

E 16 <ll .... 
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E(n), is the product of the average time in the 
system, E( v), multiplied by the arrival rate, A, 
such that 

E(n) =AE(v) 

E(v)=E(n)/A 

Substituting Eq. 8.13 for E(n) and recalling 
that p =A/µ., this becomes 

E(v)=(i~p)(~) 
=(JL~A)(~)=JL~A (8.15) 

the average time an arrival spends in the sys­
tem. The expected time to wait before service 
(that is, the time spent waiting in a queue) is 

E(w) =E(v)-E(s) (8.16) 

where E(s) is the average service time (1/µ.); 
thus, Eq. 8.16 may be rewritten as 

1 A 
E(w)=~--11µ.= (8.17) 

µ.-A. µ.(µ.-A) 

The average number of customers waiting 
to be served (the average queue length), E(m), 
is the product of the average waiting time, 
E(w), multiplied by the arrival rate, A.: 
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E(m) = [ It J It= 1'2 
p,(p,-!t) p,(p,-1') 

( 8.18) 

Eq. 8.18 considers the average queue 
length over all time, including the periods when 
the queue is empty. Of interest is the average 
queue length, given that the queue length is 
greater than zero. This is defined as 

· average queue length 
E( m\m > 0) = ----''--~---­

prob. of nonempty queue 
E(m) 

P(m>O) 
(8.19) 

A zero queue length will occur if the 
system is in state zero or state one so that by 
Eqs. 8.11 and 8.12 the probability of a non­
empty queue is 

P(m>O) =1-(P0 +Pi) 
=l-[(1-p)+p(l-p)] 

2 

=l-l+p-p+p2 =p2 = ~2 (8.20) 

Substituting Eqs. 8.18 and 8.20 in Eq. 
8.19 gives 

E(m\rn>O)=(µ(;~!t) )(~:)=(fL~A) 
( 8.21) 

8.2.4 Example of Application of 
Queueing Formulas (M/M/1) 

The exit from a parking garage is through 
a single gate where a variable fee is collected 
and change is made for drivers. Vehicles 
arrive at the gate at random at a rate, It, of 
120 vehicles/ hr. The time to collect fees is 
exponentially distributed, with a mean duration 
(1 Iµ) of 15 sec. What are the characteristics 
of the operation when 1'=120 arrivals/hr, µ=4 
services/min=240 services/hr, and p=!tl fL= 
120/240=0.5 

(a) The probability of an idle booth (Eq. 
8.12) is 1-0.5=0.5. 

( b) The probability that n vehicles will be in 
the system (Eq. 8.11) is 

Px=n PX5,» 

Po= 0.5 0.5 
P1= 0.25 0.75 
P2= 0.125 0.875 
Pa= 0.0625 0.9375 
P.= 0.03125 0.96875 
Ps= 0.015625 0.984375 

If the garage operator wanted to be certain 
with 0.9 5 probability that departing vehicles 
would not interfere with other operations, he 
would need to provide space for about three 
vehicles, one in service, two in queue. Similarly, 
if he wished to be certain at the 0.99 prob­
ability level, he would have to provide space 
for 5 or 6 vehicles, one in servict;, the others 
in queue. 

(c) The average number in the system (Eq. 
8.13) is E(n) = 120/ (240-120) = 1. 

( d) The average number waiting in a queue 
(Eq. 8.18) is E(rn)=(120x120)/ 
[240(120)] =0.5. 

( e) The average length of a nonempty queue 
(Eq. 8.20) is E(m\m>O) =240/120=2. 

(f) The average time in the system (Eq. 8.15) 
is E(v) = 1/120 hr=0.5 min. 

(g) The average time waiting in a queue (Eq. 
8.17) is E(w)=120/[240(120)]=1/240 
hr=0.25 min. 

8.3 THE CASE OF MULTIPLE 
CHANNELS WITH EXPONENTIAL 

ARRIVALS AND EXPONENTIAL SERVICE 
TIMES (M/M/N) 

A parking lot (or the face of a block with 
on-street parking) may be considered as an 
example of a system with parallel service chan­
nels where the N parking slots represent the 
service channels. An arriving vehicle will 
occupy an empty slot if one is available; if not, 
it joins the waiting queue. The arrivals into the 
system are assumed to be random with rate It 
and the service time per service channel ( dura­
tion of parking) is also random with mean 1 Iµ. 
Again, p is defined as It/ p,. Further, pl N is 
defined as the utilization factor for the entire 
facility, representing the mean proportion of 
busy channels (full parking spaces). For the 
multiple-channel case the value of p may be 
greater than one but the following formulas 
apply only for the case where the utilization 
factor pl N < 1. 

8.3.l Synopsis of Equations for 
Queues with Multiple Channels 

Probability of n units in system 

p" 
Pn= -

1 
P0 for nsN (8.22) 

n. 
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Probability of no units in system 1 
2 22 23 2' 25 

(8.24) = 1 +TI+2! +3T+4T+ 5!(0.6) 1 
Po= ~~---1-------

- p" PN 

L-n-! + N!(l-p/N) 
11:::0 

Average queue length 

Po p;..·+
1 

[ 1 J 
E(m)=-N!N (l-p/N) 2 

Average length of nonempty queues 

1 
E(mlm>O)= l-p/N 

Average number of units in system 

E(n) =p+E(m) 

(8.25) 

(8.26) 

(8.27) 

Average time an arrival spends in the system 

E(v) =E(n)/I.. (8.28) 

Average waiting time in queue 

E(w) =E(v) -1/u (8.29) 

Average waiting time for an arrival who waits 

1 1 
E(wlw>O)=T l-p/N 

Probability of waiting for an empty space 

8.3.2 Example 

(8.30) 

The branch office of a customer repair 
service operates a fleet of vehicles that return 
to the office for picking up spare parts and 
assignments. The repair vehicles arrive at 
random during the day at a rate A. of four 
vehicles/hr. The stay at the parking lot is 
exponentially distributed, with a mean duration 
of 0.5 hr (u=2). There are five stalls (=N) 
in the lot set aside for the vehicles. What are 
the characteristics of the lot operation? 

Solution 

N=5 stalls, A.=4 arrivals/hr, u=2 ser­
vices/ hr, p =A.I u = 412 = 2, and the utilization 
factor= pl N = 2/ 5 = 0.4. 

(a) P 0 =probability of empty lot (Eq. 8.24) 

1 
7.44444 0.134328. 

( b) The probability that n vehicles will park 
(Eq. 8.22) * is 

P0 =0.134328 
Pi= (2/ 1) (0.134328) =0.268656 
P2= (2/2) (0.268656) =0.268656 
P 3 = (2/3) (0.268656) =0.179104 
P 4 = (2/ 4) (0.179104) =0.089552 
P 5 = (2/ 5) (0.089552) =0.035821 

( c) The probability that a vehicle will have to 
wait on arrival (Eq. 8.31) is P(n>5) 

=0.134328 5 ! 5 ~~- 6 ) -0.023880, which is 

the same as 1- (P0 +Pi +P2 +P3 +P4 +P5). 

(d) The average number of vehicles waiting 
for an empty slot (Eq. 8.25) is E(m) 

26 . 
=0.134328 

5
!
5

(
0

_
6

)
2 
-0.0398 vehicles. 

( e) The average number of waiting vehicles 
when the lot is full (Eq. 8.26) is 
E(mlm > 0) = 1/0.6= 1.67 vehicles. 

(f) The average number of vehicles parked 
and waiting (Eq. 8.27) is E(n) =2+0.0398 
=2.0398 vehicles. 

(g) The average time a vehicle spends parking 
and waiting (Eq. 8.28) is E(v) =2.0398/4 
=0.50995 hr. 

(h) The average time spent in waiting for an 
empty slot (Eq. 8.29) is E(w) =0.50995 
-1/2=0.00995 hr. 

(i) The average time a waiting vehicle waits 
for an empty slot (Eq. 8.30) is E( wlw > 0) 

1 1 
= 4 0.6 =0.417 hr. 

8.3.3 System with Infinite Stalls: An 
Example of the M/M/ oo Case 

As the number of stalls becomes very 
large (N-¥YJ), Eq. 8.24 gives 

lim i 
P0 =-=e-P 

N--'?CYJ eP 
(8.32) 

and the expected number of parked vehicles is 

E(n) = inP(n) =pP0 ( 1 +p+ p~ + .. ·) =p 
n=O 

2 · 
(8.33) 

* Computation can be simplified by observing 
that Pn= (p/n)Pn-1. 



SYSTEM MIDI 1 BUSY PERIOD 143 

8.3.4 The System with Loss 

A more realistic type of operation for a 
parking lot occurs when vehicles unable to park 
go away instead of waiting in line; that is, 

P,,=0 for n>N 

For this model the probability that n 
vehicles will be parked is 

pn/11! 
P,,=-,,-,-- for n=O,l,2, ... ,N 

LP;;;i 
i=O 

The probability of an empty lot is 

1 
Po=-_,-.--

LPi/i! 
i:::O 

( 8.34) 

(8.35) 

and the probability that a car cannot park is 
the probability that there are N slots occupied, 
so that 

pX/X! 

x 
Px= L_i)li! 

i=O 

(8.36) 

Eq. 8.36 is called Erlang's Loss Formula, L;y(p), 
the probability that an incoming unit is "lost" 
to the system. 

Finally, the average number of vehicles in 
the parking lot may be developed as follows: 

N 

E(n)= L,n P,, 
ti=O 

N-1 n. 

L.~t 
E(n) =p n;,0 

~pn 

L..-nt 
11=0 

(8.36) 

If Eq. 8.36 is multiplied by e-P/ e-P, the expres­
sion becomes 

.Y-1 
~e-Pp" 

L..- n! 
E(n) =p _11= __ 0 __ 

±e-Pp" 
11=0 n! 

(8.37) 

in which case it is possible to use tabulations of 
the Poisson distribution function to get the 
desired answer. 

A more elegant discussion of the relation­
ship between the Poisson distribution and the 
queueing formulas developed here is given by 
Kometani and Kato 10 and by Haight and 
Jacobson. n 

8.3.5 Example of a Queueing System 
Operating with Loss 

Assume the same data given in exampfo 
8.3 .2, except that vehicles do not wait for an 
empty space. Again, N=5, A.=4 arrivals/hr, 
u=2 service/hr, p=A.lu=412=2, and utiliza­
tion factor= pl N = 215 = 0.4. 

The probability of an empty slot (Eq. 8.35) is 

Po=-----------
2 2' 23 2• 25 

1+1+2 +31+41+5f 
=0.137614 

P, = (2/ 1 )P0 =0.275228 
P~= (2/2)P1 =0.275228 
P3 = (2/3)P~=0.183485 
P4 = (2/ 4 )P3 =0.091743 
P,-,= (2!5)P,=0.036697 (probabil­

ity that a 
car cannot 
park) 

The average number of vehicles parked 
. 0.947 9 

(Eq. 8.37) IS E(n) =2
0

_
983

=1. 3. 

8.4 SYSTEM M/D/l BUSY PERIOD 

In this section the number of units, n, 
that will be served before the system will again 
become empty is considered, given r units in 
the system at a given time. For example, there 
may be five vehicles (r) in a queue at the start 
of the green interval on a traffic signal. It is 
desired to find the number n of vehicles that 
will pass through the intersection before the 
queue is dissipated; i.e., the system is again 
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empty. The solution to this particular problem 
has been accomplished by assuming the MIDI 1 
queueing model; that is, random arrivals into 
the single queue with a uniform service- time 
for each of the "customers." 

In this system vehicles arrive randomly at 
a rate A, there is one server, and each vehicle is 
"served" for exactly B units of time, so that r 
vehicles in line will require rB units of time for 
service. The distribution of the number of units 
served, n, before the system again becomes 
empty in a busy period starting with an accu­
mulation of r units is given by the Borel­
Tanner distribution: 

r e-'A1111 (AnB) 11-r 

P(n\r) = - ( ) 1 n n-r . 
(8.38) 

n=r, r+ 1, ... 

The development of Eq. 8.38 may be 
found in Prabhu.' This equation can be re­
written by noting that p=AB 

r e-"Pnp"_,. 
P(n\r) =- ( ) 1 (8.39) 

n n-r . 
n=r,(r+ 1 ),(r+2), 

Tabulated values for a limited range of n and r, 
given p = 0.2, are presented in Table 8.1. 

For example, if there are three units in a 
queue, including the one being served, the 
probability that no more units will arrive during 
the service for these three is 0.549, but the 
probability that exactly five will be served 
before the queue empties again is 0.110. 
Haight 12 used the Borel-Tanner distribution to 
analyze delay at a signalized intersection (see 

TABLE 8.1 State Probabilities for Borel-
Tanner Distribution (p=0.2) 

~--? 2 3 4 5 

1 0.819 
2 0.134 0.670 
3 0.033 0.220 0.549 
4 0.010 0.072 0.270 0.449 
5 0.003 0.025 0.110 0.294 0.368 
6 0.001 0.009 0.043 0.145 0.301 
7 0.003 0.017 0.064 0.172 
8 0.001 0.007 0.028 0.086 
9 0.003 0.012 0.040 

10 0.001 0.005 0.018 
11 0.002 0.008 
12 0.003 

"Probability (11ir) less than 0.001. 

section 8.5.3), whereas Tanner 13
• 

14 has ap­
plied the Borel-Tanner distribution to a model 
for delays to vehicles on two-way, two-lane 
roads. 

8.5 DELAYS AT INTERSECTIONS 

Applications of queueing theory to prob­
lems represented by traffic situations are more 
complex than those developed in sections 8.2 
and 8.3. For example, the time a vehicle waits 
in line at a stop-sign-controlled intersection is 
a function of a combination of gap acceptance 
characteristics, the passage of gaps in the main 
stream and the characteristics of the waiting 
stream of traffic. 

Treatment of intersection problems may 
be categorized by two elements: ( 1) the type 
of control (stop sign, yield sign, fixed-time 
signal, or traffic-actuated signal) and (2) the 
element controlled (vehicles or pedestrians). 

At the stop-sign-controlled intersection, it 
is assumed that the side-street traffic waits for 
an adequate gap in the main-street traffic before 
crossing. 

The problem of crossing the main street 
will be considered for both pedestrians and 
vehicles. There is a fundamental difference 
between these two cases. Pedestrians arrive 
at the crossing and accumulate at the curb 
until an opportunity to cross presents itself. 
The entire group then crosses together, inde­
pendent of the number of pedestrians waiting. 
On the other hand, later vehicular arrivals 
cannot cross the main stream until the first 
vehicle in line has departed. If side-street 
vehicular flow is so low that two or more 
vehicles will rarely be waiting, the calculation 
of delays to individual vehicles will be similar 
to those used for individual pedestrians. 

The problem of pedestrians crossing at a 
pretimed signalized intersection is tractable 
when conflicts with cross-street turning traffic 
are ignored. Under these conditions delays to 
these pedestrians can be easily determined from 
knowledge of the pedestrian arrival distribu­
tion and the traffic signal timing. The unsig­
nalized and signalized intersection delay prob­
lems are treated in sections 8.5.2 and 8.5.3, 
respectively. 

8.5.1 Blocks, Gaps, Intervals, and 
Lags-Some Definitions 

A stream of traffic can be considered as 
the passage of a succession of vehicles, or a 
succession of gaps, or a succession of blocks. 
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Raff 15 and Oliver 16 have considered the prob­
lem of defining the intervals between vehicles 
that might be considered as acceptable to a 
vehicle crossing or merging with a stream of 
traffic. 

Consider a stream of traffic as shown in 
Figure 8.3 where the time of arrival of main­
street vehicles is shown on a time scale (events 
2 through 9) . 

Intervals 2 through 9 are time intervals 
(h) between the arrival of main-street vehicles 
at the projected path of the crossing side-street 
vehicle. The first interval (a lag) is defined by 
the time from the arrival of the side-street 
vehicle at the point of crossing (event number 
1 ) to the passage of the next main-street 
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10 
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vehicle. If h is greater than the critical head­
way T, the waiting driver or pedestrian will 
cross, otherwise he will wait. 

Intervals 2, 6, 7, and 9 are all greater than 
T, but it is evident that only a portion of these 
four intervals is available for crossing. That 
time during which no crossing is possible has 
been defined by Raff as a "block"; conversely, 
the rest of the time is defined as "antiblocks." 

Oliver defined any time interval ( h > T) 
as a gap and the remaining intervals as non­
gaps, as shown in Figure 8.3. The length of a 
gap is seen to be the length of a block less the 
critical headway (for h > T). Time intervals 
2, 6, 7, and 9 are each a gap; time intervals 3, 
4, and 5 are grouped into a single nongap; and 
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Figure 8.3 Definitions of time interval for stream flow. 
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intervals 1 and 8 are also nongaps. It is of 
interest to note that the number of blocks, 
antiblocks, and gaps are all equal. The number 
of vehicles in an intergap headway is here 
defined as the number occurring just after the 
vehicle (or event) defining the start of a gap 
but including the last vehicle that defines the 
end of the nongap. For example, the first 
intergap headway in Figure 8.3 contains four 
vehicles (numbers 3, 4, 5, and 6); the last 
intergap headway shown contains one vehicle 
(number 10). If event 3 were to represent the 
arrival of a pedestrian, he would be delayed 
until events 4, 5, and 6 (passage of main-street 
vehicles) had taken place. 

8.5.2 Unsignalized Control-Pedestrian 
Delay 

Delays are discussed with the assumption 
that the delayed person is in a position to accept 
or reject a gap without the added delay of 
waiting for the person in front to enter or cross 
the traffic stream. A group of pedestrians 
waiting to enter a crosswalk is an example of 
this case. 

Pedestrian delay at an unsignalized inter­
section was first treated by Adams 2 in 1936 in 
one of the earliest theoretical traffic papers. 
He assumed that pedestrian and vehicle arrivals 
are random and made field observations that 
generally justified the assumption. If it is as­
sumed that the main-street flow is q (vehicles/ 
sec) and that an interval r (the critical gap in 
seconds) is required between successive arrivals 
on the main street for a pedestrian to cross 
safely, several delay relationships can be de­
rived. 

By the equations of Chapter 3, the proba­
bility that a pedestrian will pass without delay 
is 

(8.40) 

The probability that pedestrians will be 
delayed is 

( 8.41) 

which is plotted in Figure 8.4 with main-street 
flow expressed in vehicles per minimum ac­
ceptable gap. 

Of particular interest is the average dura­
tion of blocks, antiblocks, gaps, and nongaps 
as defined in Figure 8.3 and the time a pedes­
trian must wait (block time) for an appropriate 
gap in order to cross the roadway. Roadway 
events are considered relative to the passage of 

vehicles over an elapsed time t, during which 
the number of events is the accumulated vol­
ume, qt. Further, the mean headway (1 I q) is 
defined as T. 

Each time interval ( h > r) is the beginning 
of an antiblock and therefore also marks the 
end of a block, so that in the elapsed time t 
the number of time intervals 

(h>r) =number of antiblocks 
=number of blocks 
=number of gaps 
=qt e-qr 

the time spent in antiblocks is 

=te-qr 

and the time spent in blocks is 

t- te-qr= t( 1 -e-qr) 

(8.42) 

( 8.43) 

(8.43a) 

The total time spent in gaps (Figure 8.3) 
is the sum of antiblock time + r x (number of 
antiblocks) 

= te-qr + qte-qr r 
= (t+qtr)e-qr (8.44) 

and the proportion of time spent in gaps (Eq. 
8.44/ t) 

= (1 + qr) e-qr (8.45) 

which was first proposed by Adams in his 
1936 study of delay to pedestrian traffic. 

The average time duration (sec) of all 
gaps= (total gap time, Eq. 8.44)/ (number of 
gaps, Eq. 8.42) 

(t+qtr)e-qr 
qt e-qr T+r 

which is equation III of Adams. 

(8.46) 

The average time duration for all intervals 
(h<r) =average length of nongaps 

= (total nongap time) I 
(number of intervals h < r) 

=[I - (t + qtr) e-qr]/ qt(I -e-qr) 

=T-- re-qr 
1-e-qr 

which is Eq. IV of Adams. 

(8.47) 

The average time duration of blocks is 
(total block time, Eq. 8.43a) I (number of 
blocks, Eq. 8.42) 

qte-qr qte-qr qte-qr 

=(2-)(-
1
-)-T=(T/e-qr)-T (8.48) q e-qr 
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while the average time duration of antiblocks 
(Eq. 8.43/Eq. 8.42) 

re-qr 
=--=llq=T 

qte-ar 

This last equation can be compared with 
the length of gaps expressed in Eq. 8.46, dem­
onstrating the relationship between gaps and 
anti blocks. 

In considering the problem of delays, 
reference is again made to Figure 8.3, recalling 
that the beginning of a gap can be defined by 
the arrival of a side-street vehicle or pedestrian, 
as well as by the passage of a main-street 
vehicle. A pedestrian may arrive in two posi­
tions: (a) as the event defining a gap (no 
delay) or (b) during the nongap interval. In 
the latter instance, the arrival must wait for the 
remaining vehicles within the gap to pass before 
he can cross the stream. 

The average number of vehicles between 
the start of gaps (see Figure 8.3 for relation­
ship between start of gaps and the start of 
blocks) 

volume qt 
number of blocks - qte-qr - e-qr 

(8.49) 

A delayed vehicle or pedestrian has to wait 
for one less vehicle than is given in Eq. 8.49, or 

1-e-ar 
( 8.50) e-qr 

From this, it is noted that the expected 
delay, E(t), is found by multiplying the 
average number of waits (Eq. 8.50) by the 
average length of gap (h<r), Eq. 8.47; that is, 

E(t) = ( l :-:~qr) X ( T- l ~e:~ar) 
1 

=---T-·r (8.51) qe-qr 

Eq. 8.51 is plotted in Figure 8.5 with delay in 
terms of the minimum crossing gap required. 
For example, if there is one vehicle per mini­
mum gap and the minimum required gap is 5 
sec (equivalent flow= 720 vehicles/ hr), the 
delay will be (0.7 x 5) = 3.5 sec. Similarly, for 
a 10-sec value of r (equivalent flow=360 
vehicles/hr) the expected delay will be (0.7 
x 10) =7.0 sec. 

The amount of delay for all delayed 
pedestrians is equal to the average delay I pro­
portion delayed: 

0.8 
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0 .... 
0 
> 

.':::'. 

:0 
co 
.0 0.2 0 
ct 

0 
0 2 3 4 !! 

Vehicles per Minimum Acceptable Gap, qr 

Figure 8.4 Probability of pedestrian delay.' 

Ed(t) = (-
1 

_ _l__r)x ( 1 
) qe-qr q 1 - e-qr 

1 T 
------- ( 8.52) qe-qr 1 -e-qr 

which is also plotted in Figure 8.5. 
Underwood, 17 in applying the formulas for 

pedestrian delay to determine warrants for in­
stallation of pedestrian crossings, considered 
three levels of pedestrian treatment: (a) no 
treatment zone; (b) a "walking legs" sign zone 
(pedestrian sign and crosswalk markings in 
U.S. practice); and (c) a traffic control signal 
zone. His proposed method requires that three 
values be established: (a) minimum vehicular 
volume warrant; (b) minimum pedestrian 
volume warrant; and ( c) maximum pedestrian 
volume warrant. 

If the volume is less than that required by 
warrants (a) or ( b), no treatment is required. 
In the case of warrant (a), the delay to 
pedestrians would be acceptable; in the case of 
warrant ( b), because there are so few pedes­
trians delay would be acceptable. The "walk­
ing legs" sign zone (includes painted cross­
walk) is used if warrants (a) and (b) are 
exceeded. If warrant (c) is also exceeded, a 
traffic control signal is justified. 

The minimum vehicular volume warrant is 
determined from the application of Eq. 8.52. 
which is plotted in Figure 8.6 for values of r 

at 9, 12, 15, and 18 sec. Line AA represents 
a point such that below the line delays increase 



(.) 
0) 

148 

Vl 140 
\J 
0) 

> 
"' 
0) 120 
Cl 
0) .... 
<{ 
0 100 
.c: 
~ 

200 

200 

u 
0) 

100 

70 

40 

20 

VI 10 
'1--o > 7 

"' Qi 4 
Cl 
0) 

E' 2 
0) 

> 
<{ 

I 

0.7 

0.4 

0.2 

0.1 
0 

400 

QUEUEING MODELS 

/ 
/ 

/ 
/ 

Average Deloy for / 
Those Delayed 7 / 

~ 
7/ 

.J r 

/. v 
// / 

/" 
K_Averoge Deloy for All Pedestrians /j 

I 
I 

2 4 5 6 7 

Vehicles per Minimum Acceptable Gap, q 1 

600 

Figure 8.5 Average delay to pedestrians.1 

800 1000 

gradually; above it, increase at an accelerating 
rate. In each case the value V x r is approxi­
mately 6,000, where V =hourly vehicular 
volume ( =3,600 q) and r is the intervehicular 
spacing (sec) required by pedestrians. To 
attain the minimum, 

V= 6,000 (8.53) 
T 

an approximate formula for r as given by 
Underwood is 

where 

RxS W 
r=---1--+2 

30 ' v 

R = perception time (sec; 2 or 3 sec); 
S= speed limit (mph); 

W = width of roadway (ft); and 
v =crossing speed (ft/ sec); about 4 

ft/ sec. 

Volume (veh/hr) 

Figure B.6 Pedestrian delay vs. vehicular volume.17 

The minimum pedestrian volume is taken 
to be an average of one pedestrian per anti­
block. The number of pedestrians delayed at 
an average of one delayed pedestrian per anti-
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block is Ve-fJT (from Eq. 8.42) and the propor­
tion of pedestrians delayed is ( 1 - e-rjT) ; thus, 
the total number of pedestrians who may cross 
the traffic stream such that, on the average, not 
more than one pedestrian is waiting at any 
particular time is 

Ve-QT 
Pernin)= ) pedestrians/hr (8.54) ( 1-e-(jT 

which is the minimum pedestrian warrant. 
For example, at V=720 vehicles/hr 

(q=0.2 vehicles/sec) and r=9 sec, Pernin) 
720xe-i.s 720x0.165 

42 
d . /h 

(1-e-LS) 0. 835 -1 pe estnans r. 

Finally, Underwood reasoned that moto·r­
ists who were required to give way to pedes­
trians in the crosswalks should have at least 
60 percent of the available time. If less than 
60 percent of the time is available, traffic 
signals are warranted to assure adequate time 
to the motorists. 

The proportion of nondelayed vehicular 
traffic (from Eq. 8.40) is e-Py/3 .soo where P is 
the hourly pedestrian volume and g is the time 
interval between pedestrians in the crosswalk 
such that there is a minimum safe distance 
between pedestrians. 

Underwood takes the minimum safe dis­
tance between pedestrians as equal to the width 
of a vehicle plus 6-ft clearance on either side, 
or, for an 8-ft vehicle, a spacing of 20 ft. The 
time interval between pedestrians is given by 
g = 201 v, where v is the crossing speed of pedes­
trians (ft/ sec) , so that 

Probability (no delay) =e-20Pja,soov 
=e-P/1sov (8.55) 

For 60 percent probability e-P/180"=0.60 
P/180v=0.51 and P = 90v. 

If v=4 ft/sec, a signal is warranted when 
pedestrian volume exceeds 360 pedestrians/hr. 

Underwood prepared a family of curves 
based on Eqs. 8.53, 8.54, and 8.55, as shown in 
Figure 8. 7. Areas to the left of and below the 
dashed curve associated with each minimum 
gap represent the domain of combined pedes­
trian and vehicular volumes for which no 
treatment is required. To the right of and 
above the same curves "walking legs" sign 
zones are required. Traffic control signals are 
required when the pedestrian volume exceeds 
360 persons per hour; for example, if the 
pedestrian volume is 100/hr and the minimum 
acceptable gap is 10 sec, no control is required 
for vehicular volumes less than 800/hr. For 

the same minimum acceptable gap and a pedes­
trian crossing velocity of 4 ft/ sec, a signal 
will be required for pedestrian volumes over 
360/hr if the vehicular volume exceeds 600 
vehicles/ hr. 

In 1951, Tanner 18 published the results of 
a comprehensive study of pedestrian crossing 
delays. His work is an extension of the delay 
relationships developed by Adams. 2 He as­
sumed random arrivals of both main-street 
vehicles and crossing pedestrians and presented 
three proofs of the crossing delay distribution. 
(Details of these proofs are beyond the scope 
of this presentation but may be found in the 
original paper.) Tanner also developed a 
method of considering varying values of gap 
acceptance for different pedestrians and gave 
some attention to the problem of groups of 
pedestrians crossing the street. 

Of particular interest to those designing 
pedestrian controls are the distribution of the 
size of pedestrian groups crossing together and 
the distribution of the number of pedestrians 
waiting at a random time. 

The average size of a group crossing 
together is 

pePT +qe-qT 
E(n )=----~ 

c (p+q)eCP-(j!T 
(8.56) 

in which pis pedestrian flow and q is vehicular 
flow. Figure 8.8 shows this relationship. The 
average number waiting to cross is 

(8.57) 

which is plotted in Figure 8.9. 
As an example, consider a crossing with a 

vehicular volume of 720 vehicles/hr and a 
pedestrian volume of 360 persons/hr. The 
minimum acceptable gap, r, is constant at 10 
sec. For this example, q=0.2, p=O.l. 

The probability that a pedestrian will be 
delayed (Eq. 8.41) is Pa=l-e-2 =0.865. The 
mean delay for all pedestrians (Eq. 8.51) is 

1 1 
E(t)=

0
.
2

e_2 -
0

.
2 

-10=21.95 sec; the mean 

delay per delayed pedestrian (Eq. 8.52) is 
1 10 

Ea(t) =
0

.
2

e_2 - 0.
865

=25.38 sec; the average 

number of pedestrians crossing together (Eq. 

56 . E( )- 0.1e1+0.2e-2 -2 71 e-
8. ) is n'" - ern.1-0.2,10(0.1 +0.2) . p 

destrians; the average number waiting to cross at 
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a random time (Eq. 8.57) is E(n,J =~ 
0.2 

( e2 
- 2 - 1) = 2.19 pedestrians. 

. Tanne: also com~ared the delay to pedes­
tnans crossmg the ent!fe roadway at one time 
with the delay to those stopping in the middle 
at a refuge island when necessary. His field 
studies indicated that pedestrians crossing the 
street where no island exists look for a gap of 
at least the critical lag in both directions of 
movement rather than for some combination 
of near- and far-stream gaps. The average 
delay, assuming the same volumes as given in 
the previous example, is 21.95 sec. When the 
pedestrian can stop in the middle of the street 
at a refuge island, assuming the vehicular vol­
ume is equal in both directions and that the 
critical gap required to cross one-half of the 
street is reduced to -r/2, the formula for average 
delay is 

4 4 
E(t.)- ---T (8.58) 

qe-<q-r/4> q 

In the present example the delay with a pedes­

trian refuge would be __ 4 __ _±__ 10-2 97 
0.2e-0 · 5 0.2 - · 

sec. These delays are plotted in Figure 8.10. 
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cross street .1 

In the previous discussion of this section 
all of the authors assumed that distributions of 
n;iain-street headways were negative exponen­
tial; but, as noted in Chapter 3, this distribution 
is unrealistic in describing small time headways 
between successive vehicles moving in a single 
roadway lane. Mayne 19 generalized Tanner's 
results to include an arbitrary distribution of 
independent main-street headways. He also 
~onsidered th~ effects of introducing refuge 
islands on a wide crossing, showing that for the 
same average delay the pedestrian flow must be 
at least four times as great when an island is 
present as when there is no island. 

Jewell 20 obtained the distribution mean 
an~ variance of waiting times for a~bitrary 
mamstream headway distributions and for 
several main-street situations at the time a side­
street vehicle presents itself. His relationships 
were developed for a critical lag -r and extended 
for other gap acceptance criteria. He obtained 
results for the number of minor-street vehicles 
that can be discharged during a fixed time 
period when only one side-street vehicle can 
cross during each acceptable main-street gap. 
He also showed that the mean delay for the 
side-street vehicle increases in proportion to 
the second or higher power of the critical gap 
and to the first or higher power of flow. The 
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island.' 

variance of delay increases in proportion to 
the third or higher power of the critical gap. 

Weiss and Maradudin 21 and Herman and 
Weiss 22 developed several generalizations of 
the crossing delay problem studied by earlier 
investigators. The approach is based on re­
newal theory. A renewal process in time is the 
occurrence of random spacings from a known 
gap distributiol).. With their technique, it is 
possible to deal with a general independent 
distribution of main-street gaps and a general 
gap acceptance distribution. This makes it 
possible to consider the "yield sign" delay 
problem where the side-street vehicle has a 
different critical lag, depending on whether it 
is moving or stopped. It is also possible to 
develop delay functions for the impatient driver 
whose probability of accepting a given gap in 
the main street increases with the passage of 
main-street vehicles. 

Weiss and Maradudin expressed delay 
characteristics for several gap and gap accept­
ance distributions. Herman and Weiss fitted 
shifted exponential constants experimentally. 
For Poisson main-street traffic with mean 
headway T and shifted exponential gap accept­
ance, the mean delay to side-street traffic as 
developed by Herman and Weiss 22 is 

E(t) = eqr_ 1-r+ .!.[eqr_ l-qr+ (-q-) 2 

q b q+b 
X (l+qr+br)(l-e-qr) 

+e-qrC!b +qr) J (8.59) 

in which r is the mm1mum acceptable gap, q 
is the main-street flow, and b is the parameter 
of the shifted exponential gap acceptance dis­
tribution, which equals 1/(T-r). Eq. 8.59 
may be compared with Eq. 8.51, the delay 
with a constant gap acceptance value. The 
probability, F(t), of accepting a gap of t sec 
in the main-street flow is 

F(t) =0 (tSr) 
F(t) = 1-exp[-b(t-r)] (t:'.::r) (8.60) 

The upper curve of Figure 8.11 presents a 
graph of this relationship for Herman and 
Weiss's constants, r=3.3 sec and b=2.7 sec-1 . 

The lower curve shows the results of assuming 
that all drivers have an acceptable gap of 3.3 
sec. 

Weiss and Maradudin also considered the 
yield sign problem, which differs from the 
pedestrian delay problem in acceptable gap 
between moving and stopped vehicles. If a 
moving vehicle requires a gap of r 1 and a 
stopped vehicle requires a gap of r 2 (r1 Sr2 ), 

the mean delay is 

As an example, assume r 2 =3.3 sec and 
r 1 =2.0 sec. These values substituted into Eq. 
8.61 yield a plot, as shown in Figure 8 .12, that 
compares the average side-street vehicle delay 
(at a yield sign) with a stop sign situation where 
all side-street drivers are required to stop and 
wait for a main-street gap of 3.3 sec. 

Weiss 2 " further demonstrated that the 
delay to a single vehicle crossing or merging 
with a traffic stream is practically independent 
of the velocity distribution of the mainstream 
flow, for flow rates less than 1,600 vehicles/hr. 

A different approach to the distribution of 
gaps in the main-street flow is given by Miller,24 

who postulated that bunches of vehicles (non­
gaps in Figure 8.3) are randomly distributed on 
a highway. Letting the flow of queues (bunches) 
be q/unit time and defining >< as the parameter 
of the exponential distribution of intervals be­
tween queues, ><e-1.1, Miller relates q to >< as 
1 / q = 1/1' + t, where tis the average length of a 



,. 

DELAYS AT INTERSECTIONS 153 

0 
Q) 

~ 
4 

>-
.2 
Q) 

Cl 

Q) 
1;71 
0 .... 
Q) 2 
~ 

200 400 600 800 

Main Street Flow 

1000 1200 1400 1600 

(veh/hr) 

Figure 8.11 Average delay crossing a street.' 

queue (Eq. 8.47 if traffic flow is random). For 
example, if the average length of a queue is 
10 sec (T=lO) and A.=0.025, llq=l/0.025+ 
10=50 and q=0.02 queues/sec=72 queues/hr. 

One can arrive at an intuitive feeling for A. 
by observing that in one hour there will be 72 
queues of 10-sec average duration T, or a total 
of 720 sec of queues (nongap time). The re­
maining gap time (3,600- 720=2,880 sec) is 
distributed among the 72 gaps (intervals be­
tween queues) so that the average gap length 
=2,880172=40 sec(l/A.). This is equivalent 
to a flow rate A. of 0.025 units/ sec. 

Miller derived an expression for the mean 
waiting time for a pedestrian or side-street 
vehicle as 

E(t) =>-(T+-r) 2/2, (8.62) 

where -r is the minimum acceptable gap and 
A and tare defined as previously. For example, 
if it is assumed that a pedestrian needs a time 
gap of at least 10 sec (-r= 10), that A. is 
equivalent to 90 events/hr (A.=l/40), and that 
it takes on the average 10 sec (t = 10) for a 
queue to pass, E(t)=l/2xl/40 (10+10) 2 = 
5 sec. 

The probability that a side-street vehicle 
can cross immediately is given by 

P0 = ( 1-qf)e-h ( 8.63) 

Substituting appropriate values, 
P0 = (1-10/50)e-0 · 25 =0.622. 

,. 

Miller made a limited comparison of the 
average side-street delay and frequency of 
undelayed crossings predicted by the random 
bunches model with those produced by the 
random vehicle model. He found little differ­
ence in average waiting time for crossing 
vehicles. The random bunches model predicted 
the opportunities for immediate crossing better 

400 800 1200 l600 

Main Street Flow {veh/hr) 

Figure 8.12 Average delay for side-street vehicles.' 

,. 
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than did the random vehicles model. Figure 
8.13 gives the observed values for immediate 
crossing opportunities and the values predicted 
by the two theoretical models for 14 sets of 
observations, each set representing one hour 
of data collection. 

8.5.3 Unsignalized Control-Vehicular 
Delay 

Because the equations in section 8.5.2 
make no allowance for queueing on the minor 
street, it is necessary to introduce a delay that 
reflects the time required for a second-in-line 
vehicle to get into position to accept or reject a 
gap. The case of a queue of vehicles waiting 
on a side road or entrance ramp before merging 
or crossing traffic on a main highway has been 
discussed by Evans, Herman, and Weiss, 25 

Major and Buckley,26 and Ashworth,27 among 
others. 

Consider a single inexhaustible queue of 
vehicles on the side street under the following 
conditions: when a main-street highway is less 
than T, no vehicle enters; when a main-street 
headway is between T and 2T, one vehicle 
enters; when a main-street headway is between 
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2T and 3T, two vehicles enter, etc. The number 
of vehicles N that can enter from the side street, 
developed by Major and Buckley, 26 is found as 
follows: 

Size of 
Headway 

<T 
T-2T 

2T-3T 
3T-4T 
etc. 

Number 
of Vehicles 

Entering 
Headway 

0 
1 
2 
3 

Number of Headways 
This Size/Unit Time 

q(l-e-qT) 
q(e-qT -e-2q7) 
q ( e-2q7 _ e-3qT) 
q(e-3q7_e-4qT) 

The number of vehicles that will enter or 
cross the main-street flow per unit time 
(capacity of cross flow) is 

N =q( e-qr -e-2qr) + 2q(e-2qr -e-3qr) 
+3q( e-3qr -e-4qr) + .. . 

= qe-qr + qe-2qr + qe-3qr + .. . 

from which 

qe-qr 
N=--1-e-qr 

Random Vehicles Model 

~ 

,,,.,--Random Bunches Model -
----- -- - -===------- --
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-

---

13 

(8.64) 
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14 
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Figure B.13 Comparison of undelayed crossing opportunities.' Each set represents 1 hr of observations. (Adapted 
from Miller,21 Table 3.) 
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The more realistic assumption can be 
made that the headway for following vehicles 
is /3" so that two vehicles require a headway of 
T + /3 2 and three vehicles require T + 2/32 , etc. 
Provided /32 ~T, Eq. 8.64 becomes 

qe-ar 
N=---o-1-e-q/3, 

(8.65) 

If it is assumed that only one vehicle enters 
during each antiblock, the capacity of the cross 
street (from Eq. 8.4) is equal to qe-ar vehicles/ 
unit time. 

Ashworth 27 modified the approach used 
by Major and Buckley by assuming that the 
critical gap of the driver is r 1 , whereas that of 
the second driver is r 2 sec. Further, he assumed 
a move-up time equal to a constant /32 sec, 
during which time-following the departure of 
the vehicle at the head of the queue-the sec­
ond vehicle moves into the front position but is 
unable to take advantage of any suitable gap 
offered. With these assumptions the author 
gives the average waiting delay at the head of 
the queue for those vehicles actually delayed: 

( 8.66) 

where 

P= 1 +q(T1 -/32)-eq<r,-r,-/32l(l +qrz) 
q( 1-eq<r,-r,-{32\) 

and T=llq. 

The average waiting delay for all vehicles 
(provided r 2 > r 1 -/32 ) is 

E(t) =r1 -r2 -/32+ T(eq7 2-eq<r,-/32J) (8.67) 

Eqs. 8.67 and 8.66 may be compared with 
Eqs. 8.51 and 8.52, respectively, where the last 
two equations consider delay for the pedestrian 
case. 

The influence of an acceleration lane on 
the merging problem is treated by Blumenfeld 
and Weiss.28 In their model, vehicles on the 
acceleration lane of length L are assumed to 
travel at a constant velocity v and vehicles on 
the main road travel at a constant velocity 
V( >v). The model further assumes that the 
merging driver continues to move along the 
acceleration lane at a velocity v until he either 
finds a suitable gap or continues to the end of 
the lane, at which point the velocity goes 
instantaneously to 0. The time TL is the time 
for the vehicle to reach the end of the lane= 

LI v. Suppose a merge occurs at some time 
t < TL; if the driver had not been merging, the 
distance traveled would have been Vt instead 
of vt actually traveled. This delay is defined as 

D = ( 1 - ~} = f3t 

where /3= 1-v/ V. 
If the time to merge is greater then TL 

(say t=TL+ti> where t 1 >0) the delay is 
defined by 

The total delay to a vehicle in the accelera­
tion lane can be written as the sum of two 
random variables, Dill+ D., where Dill is the 
time spent traveling on the lane and D. is 
the delay while stopped. The formula for the 
expected delay (developed in detail by Blumen­
feld and Weiss 28 ) is awkward, but the authors 
have found numerical solutions to relate the 
probability of reaching the end of the ramp 
without merging (Figure 8.14) and the ex­
pected delay to merging vehicles (Figure 8.15) 
as a function of the length of the acceleration 
lane. 

8.5.4 Signalized Intersections 

There are several models that may be used 
in the investigation of queues and delays at 
signalized intersections. In section 8.5 .4.1 a 
continuum or fluid model is considered in 
which various measures of queue length and 
delay are developed. In section 8.5.4.2 various 
probability models are compared and different 
assumptions implicit to several types of models 
are noted. 

In estimating delay at intersections, the 
traffic is considered as consisting of identical 
passenger car units (PCU). A truck, for ex­
ample, may be considered as 1.5 or 2 Pcu 
and a turning vehicle may be assigned some 
value depending on the type of maneuver that 
is made. 

The following notation, after Allsop, 29 is 
used. Let 

c= the cycle time (sec); 
g= the effective green time (sec); 
r= the effective red time (sec); 
q= the average arrival rate of traffic on 

the approach ( PCU I sec) ; 
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variance of number of PCU arriving 
in one signal cycle 

1 = mean number of PCU arriving in' 
one signal cycle 

s= the saturation flow on the approach 
(Pcu/sec); 

d= the average delay to PCU on the 
approach (sec); 

Q0 = the overflow (PCU); 
>-.= g/ c (i.e., the proportion of the cycle 

that is effectively green; 
y= q/s (i.e., the ratio of average arrival 

rate to saturation flow); and 
x= qc/ gs (i.e., the ratio of average num­

ber of arrivals/ cycle to the maximum 
number of departures/ cycle). 

Thus, r + g = c and >-.x = y. The ratio x is called 
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200 400 
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Figure 8.14 Probability of reaching the end of the 
acceleration lane without merging as a function of 

length.28 

the degree of saturation of the approach, and 
y is called the flow ratio of the approach. 

The effective green time is the portion of 
the cycle time during which Pcus are assumed 
to pass the signal at a constant rate s, providing 
vehicles are waiting on the approach. Green­
shields et al.,30 for example, reported that the 
total time for a queue of n stopped vehicles to 
pass a signal can be given by 

Total time=14.2+2.l(n-5) sec for n"2.5 

Had all of the vehicles departed at the satura­
tion rate s (1I2.1), the first five vehicles would 
have required 10.5 sec; that is, the effective 
green is -the signal green time less 3. 7 sec. In 
most studies it is assumed that a waiting queue 
of vehicles will take advantage of the yellow 
clearance interval, although the effective green 
time may be adjusted to reflect particular 
operating conditions. 

The meaning of arrival time and departure 
time for a pcu on an approach can be demon­
strated by reference to Figure 8.16, in which 
distance-time curves are plotted for each of 
four vehicles. AB represents the passage of an 
undelayed vehicle, where the line PQ represents 
the stopline at which the first vehicle waits 
when there is a queue. CDEF represents the 
trajectory of the first vehicle that is delayed 
by a signal. The straight portions of CD and 
EF are parallel to AB and projected to meet PQ 
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Figure 8.15 Expected delay as a function of accelera­
tion lane length.28 
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at X and Y so that the length XY is the delay 
to the first vehicle. Similarly, X'Y' and X"Y" 
represent the delays for the next two vehicles. 
XX' and X'X" represent the arrival headways. 

In a number of the studies it has been 
convenient to assume that events such as the 
arrival of a vehicle may occur only at certain 
instants that are equally and closely spaced in 
time. It is convenient to choose the interval 
in seconds between two events such that 
:':.t = 1 Is and to define time in multiples of t:.t. 
If the time origin t = 0, events occur at time 
t=nM (n=l,2,3, ... ). 

Let c=Ct:.t; r=Rt:.t; and g=Gt:.t, where 
C, R, and G are integers, and let a.= average 
number of vehicles in time t:.t=qM=y. These 
definitions are useful when using a binomial 
model of vehicular arrivals as used in section 
8.5.4.2. 

8.5.4.1 Continuum Model for Pretimed 
Signal. A representation of a continuum 
model proposed by May 11 is given in Figure 
8.17. The vertical axis represents the cumula­
tive arrivals qt and the horizontal axis the 
time t. 

Case I represents the behavior when the 
capacity of the green interval exceeds the ar­
rival during the green+ red time. Case II is 
concerned with the instance when the discharge 
during the green phase is equal to the arrivals 
during the green+ red period. In Figure 8.17 
the vertical distance ca represents the number 
of vehicles that have accumulated since the 
signal entered the red phase. The horizontal 
distance ab represents the total time from ar­
rival to departure for any given vehicle. 

May developed the following measures of 
queue behavior: 

Position of t-:------+--------r-::::;111-_."-771-+.~+:'7"::--------Q 
Stop line 

Car That is Delayed But 
Does Not Stop 

Car That Stops Farther Back in 
the Oueue 

C Car That Waits at Stopline 

Time --

Figure 8.16 Diagram to illustrate the definitions of supposed arrival and departure times.2° 
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1. Time after start of green that queue is 
dissipated (t0 ); 

2. Proportion of cycle with queue (Pq); 
3. Proportion of vehicles stopped (P8 ); 

4. Maximum number of vehicles in queue 
(Qm); 

5. Average number of vehicles in queue 
(Q); 

6. Total vehicle-hours of delay per cycle 
(D); 

7. Average individual vehicle delay ( d) ; 
8. Maximum individual vehicular delay 

(dm). 

The formulas for these two cases are developed 
from simple geometric relationships: 

1. For any given cycle it is evident that 
at time t0 after the start of green, the arrivals 
equal the discharge: 

q(r+t0 ) =st0 

letting y=qls, 

t0 =yrl(l-y) (8.68) 

2. Proportion of cycle with queue is equal 
to queue time/ cycle length 

(8.69) 

3. Proportion of vehicles stopped is equal 
to vehicles stopped/ total vehicles per cycle 

P 8 q(r+t0 )/ q(r+g) =!0 / (ye) (8.70) 

4. The maximum vehicles in queue will 
be seen by inspection to be the height of the 
triangle at r units after start of red: 

Qm=qr (8.71) 

5. The average number of vehicles in the 
queue, over the total length of cycle ( c) is 

Q= (qr/2)r+ (qr/2)t0 +0(g-t0 ) 

r+t0 +g-t0 

which yields 

Q = [(r+ !0 ) I c](qr/2) (8.72) 

6. The total vehicle-time of delay is given 
by the area of the triangle 

D= (qr/2) (r+t0 ) = (qr/2) [rl (l-y)] 
=qr2 / [2(1-y)] (8.73) 

7. The average individual delay is given 
by dividing the total delay by the number of 
vehicles, or 

d= [ 2(~=y)] ;c = 2c(;~y) (8.74) 

8. The maximum individual vehicular 
delay will be seen from Figure 8.16 to be 

(8.75) 

If the departures sc are less than the arrivals 
qc, the queue grows with each successive cycle 
and the foregoing formulas are no longer ap­
plicable. 

Consider the following example (after 
May) of the behavior of a queue at a signalized 
intersection. Assume that the green phase g is 
40 sec, the red phase r is 20 sec, the discharge 
rate s is 1,200 vehicles/hr, and the input rate 
q is in one case 600 vehicles/ hr and in another 
case 800 vehicles/ hr. The results are given in 
Table 8.2. 

8.5.4.2 Probability Models for Pretimed 
Signals. This section owes much to the paper 
by Allsop 29 in which he critically reviews the 
various theoretical models of delay at fixed­
time signals. The reader should refer to this 
paper and those of the individual authors cited 
for a more detailed analysis than that presented 
here. 

Several models have been used to describe 
the arrival of vehicles at intersections. The 
simplest involves regular arrivals, as discussed 
in section 8.5.4.1. Winsten and co-workers 32 

were the first to use the binomial model in 
analyzing delays at pretimed signals. 

An approach has binomial arrivals if for 
some fixed M and a,, P ( 1 PCU arrives at time 
nM) =a and P (no PCU arrives at time nM) = 
1 - a for each n, independent of any other 
instant, and no arrivals can occur at other 
times. The average arrival rate is a,/ flt; if AN 

TABLE 8.2 Queueing Characteristics at 
Fixed-Time Signalized Intersection 

Queueing 
Value for Input Rate (q) of 

Characteristic 600 vph 800 vph 

to 20 sec 40 sec 
P. 0.67 1.0 
P, 0.67 1.0 
Qm 3.3 veh 4.4 veh 
Q 1.1 veh 2.2 veh 
D 66.7 veh-sec 133.3 veh-sec 
d 6.67 sec 10.0 sec 
dm 20 sec 20 sec 
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is the number of PCU in a period containing N 
instants of nilt, then AN has a binomial distribu­
tion. (See section 3.2.2.) 

For this distribution the ratio of variance 
to mean (I), equal to 1-a, is less than 1; for 
urban roads, however, the v;ilue of I is often 
observed to exceed 1, as reported by Miller.33 

The Poisson distribution (section 3 .2.1) 
has been used by Adams,2 Webster,34 and 
Wardrop.35 The value of I will equal 1 and the 
model is most appropriate when an approach is 
lightly loaded in relation to the capacity of the 
approach. 

Newell 36 used a model in which the arrival 
headways were assumed to have a shifted ex­
ponential distribution (section 3.5.1). This 
assumption imposes a minimum headway of 
1/ s. Other models of arrivals cited by Allsop 
include those of Darroch, 37 Kleinecke, 38 Mc­
Neil, 39 and Miller.40 

Models for the departure of PCU from a 
queue are simpler than the arrival models. Most 
models assume departures at equal time inter­
vals 1 / s providing a queue exists and the first 
departure is at the start of the effective green 
time. For the discrete time assumption, M is 
taken as 1/ s. The first Pcu departs at the start 
of the effective green time nM, and one PCU 

departs at each succeeding nM until the queue 
clears or the green time ends. Other departure 
models have been proposed, but variations in 
assumptions for departure models do not have 
the same impact on delay as the variations in 
arrival models. 

Allsop demonstrates that for an approach 
with regular arrivals at intervals 1/ q (arrivals 
would be plotted as a step function rather than 
as a straight line in Figure 8.17), the average 
delay I PCU (sec) is 

(8.76) 

where e is shown by Allsop to have the range 
1 2 

_
3

x
3

1/
2
<0<

3
x

3
11z' and c, q, r, s, and y are 

as previously defined. 
The first term of Eq. 8.76 is the same as 

that developed by Wardrop 35
: 

d= (r- L )2 /2c(l-y) (8.77) 

If q is allowed to increase indefinitely (the flow 
ratio y=qls remaining constant) in Eq. 8.76, 

the average delay per PCU will tend to d = r 2 
/ 

[2c(l-y)], the result given in Eq. 8.74, based 
on an assumed continuum model. 

Wins ten et al. 32 have demonstrated that 
for a traffic signal with binomial arrivals the 
average delay to a Pcu passing through the 
approach is 

d=-R-[E(Qo) + R+l JM (8.78) 
(1-a) a 2 

Although the Winsten group was not able to 
develop the probability distribution of the 
overflow (the number of vehicles failing to 
clear the intersection during a given cycle), 
Dunne 41 and Potts 12 have developed the prob­
ability-generating function for the total delay 
in a cycle when binomial arrivals are assumed 
and the green time is long enough for the queue 
to clear. 

Newell 43 was able to develop an estimate 
of the mean value of the overflow E(Q0 ), 

which, as a-gl c (i.e., the ratio x approaches 
1), can be approximated by 

Rg 
E(Qo) = 2 ( ) c g-ac 

( 8.79) 

One of the better-known formuliis for 
delay is that developed by Webster 34 using data 
resulting from computer simulation of inter­
section operations: 

d=c(l-A.)2+ x2 -0.65(~)1hxc2+s;_i 
2(1-A.x) 2q(l-x) q 2 

( 8.80) 

Because c(l-A.) =r and A.x=y, the first term 
is the same as that obtained by assuming 
continuum flow (Eq. 8.74). Allsop 29 shows 
that the second term is obtained by assuming 
that a queue with constant service 1/ A.s is 
interposed between the signal and the arriving 
traffic. The mean waiting time in the interposed 
queue is x 2/2q(l-x). 

The third term, developed by Webster 
from regression analysis of data generated by 
simulated signal behavior, is a correction term 
representing from 5 to 15 percent of the total 
mean delay. From this, Allsop suggests that 
the average delay may be taken as 

d- _9_[ c(l-A.)2 ..L x2 J 
~ 10 2 ( 1 - Ax) 1 _2_q_(_l ___ x_) (8.81) 

Miller 44 made no assumptions about the 
distribution of arrivals, except that the queue 
on the approach was in statistical equilibrium 
and that the numbers of arrivals in successive 
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red and green times were independently dis­
tributed. With this assumption he found an 
approximation for the mean number of over­
flow vehicles 

% 
e- 1 ·'""~'·"' (1 -x) Ix 

E(Q0 ) = q(l-x) (8.82) 

which when applied to the model for delay with 
Poisson arrivals gives 

1 -A. [ e-i.:<:qA«s>'
1
'(1 -x)/x] 

d= c(l-A.)+--------
2(1-y) q( 1-x) 

( 8.83) 

Miller ,, also developed a delay formula in 
which he relaxed the assumption of Poisson 
arrivals and applied the same general model of 
arrivals used in developing Eq. 8.82. The 
resulting equation for delay, when X> 1/2 is 

d 1-A. [ ( (2x-l)J l+A.x-1] = c 1-A.)+ +---
2(1-A.x) q(l-x) s 

(8.84) 

When x < 1I2, the middle term in the brackets 
is replaced by zero. Miller found that his equa­
tion and Webster's (Eq. 8.80) gave similar 
results with I near to 1, and that Eq. 8.84 gave 
better results when I was appreciably greater 
than 1. 

Newell ·10 considered the continuum model 
developed in section 8.5 .4.1 and the further 
delay caused by the overflow Q0 • His work 
leads to the expression for delay 

d 
c(l-A.) 2 IH(µ,)x J(l-A.) - + _L ____ _ 

- 2(1-A.x) 2q(l-x) ' 2s(l-A.x) 2 

(8.85) 

where H (µ,) is a function of the spare capacity 
of the approach and 

µ,= (sg-qc)! (lsg)l/z 

= (1-x) I (sg/ 1)1/2 

(See Figure 8.18.) 

(8.86) 

Hutchinson 46 made numerical compari­
sons of several of the delay expressions that had 
been discussed by Allsop, 29 as well as. analyzed 
the following expressions: (a) Webster's full 
expression (Eq. 8.80), (b) Miller's first ex­
pression (Eq. 8.84), (c) Miller's second expres­
sion (Eq. 8.83), (d) Newell's expression (Eq. 
8. 85), ( e) a modification of the simplified 

1.0 

0.8 

..::, 0.6 

I 
0.4 

0.2 

µ 

Figure 8.18 Value of function H(µ.). 45 

Webster expression (Eq. 8.81), introducing the 
variable J, such that 

d 9 [ c (1 - A.) 
2 

I x
2 J 

=10 2(1-A.x) + 2q(l -x) 
(8.86) 

Because Webster's full expression has been sub­
ject to the most extensive field testing, it has 
been taken as the standard for the numerical 
comparisons made by Hutchinson. 

Curves of Webster's average delay (Eq. 
8.80) versus degree of saturation x and propor­
tion of cycle effectively green are shown in 
Figures 8.19 and 8.20, respectively. 

The influer:ce of the parameter I (vari­
ance/ mean) for the several expressions for 
delay is presented in Figure 8.21. 

Hutchinson also calculated the percentage 
differences between various estimates of aver­
age delay and the delay given by Webster's full 
expression as a function of the flow ratio y. 
Figure 8.22 shows the results obtained when 
s=0.5, c=90, and A.=0.5. Similar results are 
presented by Hutchinson for different combi­
nations of s, c, and A.. The heavy pair of curves 
that nearly envelope the other curves are the 
limiting values of the percentage differences 
that result as y ~ 0 (x ~ 0) and as y ~A. 
(x~ 1). 

The percentage differences related to the 
proportion of cycle effectively green A., as 
calculated by Hutchinson, are shown in Figure 
8.23. As a result of his analysis, the author 
concluded that the results are sufficiently simi­
lar that convenience and simplicity of calcula­
tion may dictate the choice of model. For 
example, if one were required to differentiate 
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Figure 8.19 Average delay according to Webster's 
full expression as a function of flow ratio for an ap­
proach with s = 1.0, c = 90, and X = 0.5 (so g = 45).40 

the expressions in determining optimal signal 
setting parameters, Eqs. 8.81, 8.83, 8.84, or 
8.86 would be easiest to handle. 

In this section only fixed-time signals have 
been considered. Recent analyses of traffic 
behavior ·at traffic-actuated signals have been 
reported by Little, 47 Newell, 48 and Newell and 
Osuna.49 Readers may refer to these papers 
for a discussion of queueing behavior. 

The foregoing discussion has considered 
only the case of isolated intersections, where 
vehicle arrivals are not influenced by adjacent 
traffic control devices. When groups of inter­
sections are considered, either in succession 
along an arterial or as a cluster in a downtown 
street network, the assumptions made for 
isolated intersections no longer hold. A review 
of much of the literature related to signal 
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Figure 8.20 Average delay according to Webster's full 
expression as a function of the proportion of the cycle 
effectively green for an approach with s = 1.0, c = 90, 

and y = 0.4 (so q = 0.4).4
" 

operation of systems on urban arterials will be 
found in the work by Wagner, Gerlough, and 
Barnes. 56 The same authors also report 57 on a 
review of literature related to signal networks. 
The reader is referred to these for an introduc· 
tion to the appropriate literature. 

8.6 QUEUEING MODELS FOR 
ROADWAYS 

Queueing theory methods have been ap­
plied to flow analysis on roadways. For in­
stance, it is possible to calculate the behavior 
of a queue of cars at a bottleneck, where the 
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bottleneck may be considered the server, and 
vehicles waiting to be served (i.e., to pass the 
bottleneck) is the observed behavior. This topic 
is discussed in section 8.6.1. Another applica­
tion of queueing techniques is describing unin­
terrupted vehicular flow. In models of this 
type vehicles are assumed to be operating on a 
roadway at some desired speed until they over­
take a slower vehicle, join a queue behind it, 
and await an opportunity to pass. Models of 
this type are discussed in section 8.6.2. 

8.6.1 Queue Behavior at Bottlenecks 

May 31 applied the technique of continu­
ous flow to the problem of the temporary 
bottleneck (i.e., a roadway blocked by a rail 
crossing or a single lane blocked by an acci­
dent). The problem may be represented by the 
behavior of a queue during one cycle of a traffic 
signal (Figure 8.17), where the duration of the 
delay or blockade is equivalent to the length of 
the red interval r and the time for the queue 
to dissipate after removal of the blockade is 
the same as the time t0 in Figure 8.17. 

The following notation, similar to that 
used in section 8.5.4, is used for May's road­
way model. Let 

q = average arrival rate of traffic (vehicle/ 
min) upstream of the bottleneck; 

s = saturation flow rate or capacity ( ve­
hicles/ min) of uninterrupted flow; 

sr= flow rate (vehicles/min) at bottlenecks 
during blockade (sr<q<s); 

r= duration of blockade (min); 
t0 = time (min) for queue to dissipate after 

blockade is removed; 
tq =total elapsed time (minutes from start 

of blockade until free flow resumes) 
=r+t0 • 

The value of sr may be zero when the 
roadway is completely blocked, as for an 
at-grade railroad crossing, or some value (sr<q) 
when the roadway is partially blocked by a 
disabled vehicle. May developed the following 
set of relationships: 

Duration of queue, tq = r(s - sr) 
s-q 

Number of vehicles affected, N = qtq 
Maximum number of vehicles in queue, Qm = 

r(q-sr) 
Average number of vehicles in queue, Q = 

Q11/2 

Total vehicle-minutes of delay, 

Average minutes vehicle is 
r 
2 (1-srf q) 

D=r(q-sr)tq 
2 

delayed, d= 

Maximum minutes of individual delay, dm= 
r(l-sr/ q). 

May and Keller 50 have applied a similar 
technique to analyze the behavior of queueing 
vehicles during rush-hour traffic. For this 
problem, it is assumed that although the 
capacity flow of the roadway s remains con­
stant, the demand q varies from some value 
less than s, to equals s, and then to a maximum 
rate q2 > s. The authors consider two cases for 
the shape of the demand curve: (a) trapezoidal 
(i.e., demand increases at constant rate to maxi­
mum q2 , remains at q2 for some fixed time, 
and then decreases at a constant rate to con­
stant post-peak demand) and (b) triangular 
(i.e., demand increases at constant rate to q2 

and then immediately decreases at constant rate 
to constant post-peak demand). 

By an analysis similar to that used for 
bottlenecks, it is possible to calculate values of 
delay, queue length, and duration of queue. 

McNeil 51 has considered the bottleneck 
problem by treating the bottleneck as the 
M/G/1 queueing situation (i.e., random ar­
rivals, general service function, and one queue). 
The service time for the first vehicle in the 
queue b1 is the delay time s1 plus the time a1 

for its effective length (front bumper to front 
bumper of following vehicle) to clear the block 
point. The time s1 could vary from a few 
seconds in the event of a short delay to several 
minutes in the event of a vehicle breakdown. 

Each subsequent vehicle in the queue is 
assumed to have a service time bi that is made 
up of the departure period si plus the time ai 
for each vehicle to clear its own effective length. 
The departure period si (i= 1, 2, 3, ... ) is a 
sequence of independent, identically distributed 
variables with a mean value that corresponds to 
the headway at the maximum flow rate. The 
value of a; is constant for all vehicles, including 
the first, and is the effective length over the 
mean velocity V. The first and subsequent 
vehicles are each assumed to instantly resume 
the speed V after passing the point of blockage. 

McNeil notes that if the vehicles are as­
sumed to have zero length (ai will be zero), 
then the number of vehicles delayed by the 
initial blockage of duration s 1 is the number of 
customers served in the server's busy period 
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for the queue MIG/ 1. These delays must be 
modified to allow for the effective length of the 
vehicle. Some of the results of McNeil's model 
are presented in the following. Let 

E(b) = E(a) +E(s) =mean service time 
for all vehicles after the first; 

E(b1) = E(a1) +E(si) =mean service time 
for the first delayed vehicle; 

Then 

q = normal arrival rate at the bottle­
neck (vehicles/min); 

p= qE(b); 
p, = qE(b1); and 
PA= qE(a). 

E(N) =1+~ 
l-p 

=total number of vehicles affected; 
1 1 

E(W) =E(s1 ) + 2qE(s1 b,) +2 

P1[(2+p1 +p1C/)E(s) +qcov(s,b)](l-p)-1 

+~PP1E(s) ( 1 +pCb2) (l-p)-2 

where 

=total vehicle delay time 
(vehicle-min); 

cl 2 =var(bl) /E2 (bl); 
Cb2 =var(b)/E2 (b); 

cov(s,b) =the covariance between the headway 
sand the service time b; and 

E(tq) =E(s1) +E(s)E(n-1) 
=duration of queue (min). 

McNeil also develops the variance of the 
measures listed in the foregoing and provides 
a numerical example for the solution of the 
expected total vehicle delay time. 

8.6.2 Delays on Roadways 

The delay experienced by vehicles while 
traveling on two-lane roads in accordance with 
postulated rules has been of particular interest 
to the traffic flow theorist. If not interrupted, 
each vehicle will travel at its own desired 
speed. When a slower vehicle or group of 
vehicles is overtaken, passing without delay 
will occur if there is an acceptable gap in the 
opposing stream of vehicles. If an acceptable 
gap for passing is not available in the opposing 
stream, the faster vehicle will be required to 

assume the speed of the slower vehicle or queue 
of vehicles and to await an opportunity to pass. 

Several authors have applied principles of 
queueing to the problems of passing on two­
lane roads. For example, Tanner's mode] 1 3.H 

makes use of the Borel-Tanner distribution 
(section 8.4) in determining the size of queues. 
If a vehicle with velocity u is to pass a vehicle 
with velocity u1, the passing maneuver requires 
a time of 

( 8.87) 

and a distance of 

(8.88) 

in which A1 is a parameter describing the dis­
tance required for the passing vehicle relative 
to the vehicle being passed. 

Tanner's model deals with vehicles travel­
ing in both directions along a two-lane road and 
can be extended to one-way flow on a two-lane 
facility. In Figure 8.24, the flow in one direc­
tion is q1 vehicles/unit time. All vehicles travel 
at the same constant speed u1, except the ve­
hicle under study that travels at some greater 
desired speed u, or at speed u1 if it is unable to 
pass. The minimum spacing of vehicles in this 
stream is S1. In the opposite direction the flow 
is q2 , with all vehicles traveling at the same 
constant speed u2 and with no spacing less than 
S2 • The Borel-Tanner distribution is assumed 
for the number of vehicles n in the "bunches." 
The distribution of gaps is a modification of 
random arrivals, which requires that no spacing 
be less than the minimum. 

The delays experienced by the single ve­
hicle traveling at speed u in the q1 flow direc­
tion is the problem for which Tanner offered a 
model. To solve this problem, the vehicle is 
assumed to act in accordance with the following 
rules: 

1. A group of n vehicles in the q1 stream 
traveling at their minimum separation sl is 
overtaken in a single maneuver. The overtaking 
vehicle can only reenter the q1 lane between 
two groups and cannot break into any one 
group or approach the rear vehicle of any 
group by a distance less than Si-

2. When the overtaking vehicle reaches 
the tail of any group of n vehicles and there is 
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Figure 8.24 Two-lane roadway, showing the corre­
sponding assumed terms in the Tanner model.1 

a distance of at least d,,=d+nS 1 (u+u 2 )/ 

(u-u,) in the q" stream, the vehicle passes 
without decelerating. [d is defined as the least 
acceptable clear distance between the u vehicle 
and the passed traffic as the u vehicle clears the 
bunch in passing. It can be expressed by d = 
A,u!(u-u 1 ), with A 1 being some distance 
between 50 and 100 ft.] 

3. If the required distanced,, is not avail­
able, the vehicle decelerates instantaneously to 
u 1 , follows as closely as possible behind the 
vehicle ahead, waits for a clear distance of at 
least D,,_=d,,+t(u1 +u2 ) in the q2 stream, waits 
a further time t, accelerates instantly to u, and 
passes. The additional time t required for the 
overtaking vehicle to remain in the q1 stream 
because of having slowed down is used to com­
pensate for the assumed instantaneous accelera-

K 

0.1 0.2 0.3 0.4 0.!5 

R 

Figure 8.25 Relationship between K and the parame­
ters R and C/G.1 

tion and could be expressed as t=Ae(u-u1 )/a, 
where a is the constant acceleration of the over­
taking vehicle and A" is approximately one. 

Tanner's major objective was to determine 
the average speed E(u) of a single vehicle 
desiring to travel at a velocity u over an infi­
nitely long trip. He was able to express the 
average speed E(u) in terms of the average 
waiting time behind all vehicles, E(tw), which 
included zero waits. The expression 

E(u) = uu1 2 +q1(U-U1) (u1-s1q1)u1ECtw) 
U1 2 +qi (u- U1) (u1 -s1q1) E(tw) 

(8.89) 

was developed; thus the problem became one 
of solving for E( tw). Algebra involved in the 
computation of E(tw) is formidable: 

in which g=q11u1 , G=q2 /u 2 , r=S1g, R=S2G, 
c=q1 (u-u 1 )/u1 (u+u 2 ), K=root between 0 
and 1 of K=exp[R(K-1-c/G)], and N=the 
smaller real root of N = exp[n (N - 1 +GI c)] 
(which exists only when r exp (1-n+nG/ 
c):; 1). 

Limited solutions for K and N have been 
included in Figures 8.25 and 8.26, respectively. 

Substitution of the values of E(tw) in Eq. 
8.89 gives an expression for the average speed 
E(u) in terms of the desired speed u, the 
velocity of the q1 stream u1, and the flow rate 
q1 of the stream. Limited solutions of this 
equation were made by Tanner using specific 
values of the various parameters. Figure 8.27 
shows the effect of traffic flow when q1 =q2 for 
various values of u and u1 = 30 mph. This 
model indicates that for a total flow (q1 +q2 ) 

of more than 800 vehicles/hr a vehicle will 
have to assume very nearly the velocity of the 
q1 stream, regardless of its own desired velocity. 

The effect of varying proportions of q1 
and q2 on the average speed E(u) is shown in 
Figure 8.28, which shows that in this model 
the average speed E(u) is least when one-half 
to three-fourths of the total traffic is traveling 
in the opposite direction of flow q 2 (one-half 

• 
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Figure 8.27 Effect of traffic when equally divided be­
tween directions for various values of u (two-way 

traffic).1 

being applicable at low volumes and the value 
of three-quarters as one approaches higher 
volumes). 

It is worthwhile to point out that the delay 
implied by E(u) is the only delay involved; all 
other vehicles are, by the assumptions, not 
delayed. The u vehicle would ultimately pass 
all q, vehicles, and no passing would occur 
among q, or q" vehicles. 

Morse and Yaffe 02 have developed a 
queueing model for the two-way two-lane situa­
tion at low volumes. The model assumes a 
sequence of free or lead cars driving at various 
speeds, some of which are followed by a queue 
of trapped cars that are traveling at the same 
speed as the lead car. No assumption is made 
of the desired speed of the trapped vehicle, but 
some are able to escape the queue by passing 
and becoming lead cars. The authors develop 
a formula for the length of queue trapped be­
hind a lead vehicle with given velocity v, the 
mean velocity of the stream, and the mean time 
for a faster vehicle to pass a slower vehicle. 
Tables that aid in the solution of the resulting 
equations are included. 

Queueing models on multilane roadways 
differ from the two-lane situation by virtue of 

.3 
UJ 

Total Volume 

30o'-~~2~0,--~._,4~0~~-60~~~~80~~~IOO 

q
2 

(as Percent of Total Vall 

Figure 8.28 Effect of varying proportion of opposing 
traffic for various levels of total traffic.1 
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the fact that a vehicle is free to use al).y of the 
two or more lanes available in his direction of 
travel and is restricted from passing only dur­
ing the period when another vehicle is in the 
adjacent passing lane. Miller 53 proposes an 
empirical model, which is an extension of the 
"product density" method of analysis. Miller 
develops and criticizes the product density ap­
proach and then develops a technique that for 
want of a better term, he calls the "termination 
rate method," where this latter method is analo­
gous to the statistical model of mortality rates 
for humans. Miller provides some verification 
of his model with data collected on a multilane 
freeway. 

Schach 5 ·1 gives an example of the Markov 
process as it might be applied to a model of 
multilane flow. Some quantities that he is able 
to calculate are the average use of each lane, 
the average speed of cars in the system, and the 
expected number of lane changes per unit time. 
Input parameters are N, the density of vehicles 
on a roadway, intensities of weaving from lane 
1 to lane 2 or lane 2 to lane 1 (A, µ,), and a 
parameter r that the author sets equal to 2. 

Holland 55 considers the behavior of three 
lanes of traffic, all moving in the same direction. 
He allows the special behavior of each lane­
traffic in the right lane is free to exit or move to 
the middle lane; traffic in the middle lane may 
move to either of the two adjacent lanes; traffic. 
in the left lane may enter the middle lane only. 
The solution technique is iterative (a flow chart 
of the computational process is included), and 
his results are plotted against previously pub­
lished data. 

Drew 5
" and Worrall, Bullen, and Gur 59 

have used the Markov process to describe the 
lane-changing process on a multilane freeway. 
The interested reader will find information on 
application of this process to traffic analysis in 
these two references. 
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8. 9 PROBLEMS 

I. A parking authority has found that for 
every day an automatic ticket dispenser is out 
of service $50 is spent to assign operators to 
that station. Ticket dispensers fail at an aver­
age rate (A.) of three/ day. The ·authority has 
the option of using repair system A that costs 
$40/ day and is capable of repairing equipment 
at a rate (µ) of four/day. A more expensive 
system, B, capable of repairs at a rate (µ) of 
six/ day, will cost $60/ day. The breakdowns 
occur at random (Poisson), and the length of 
time to repair a dispenser is exponentially dis­
tributed. Which of the two systems, A or B, 
will minimize the total daily cost of repairs plus 
breakdowns? (Answer: A=$190, B=$110). 

2. Vehicles arrive at a toll plaza at ran­
dom at a rate of 10/ min. Calculate the queue 
characteristics for each of the following ar­
rangements: (a) a single toll booth where the 
service is random at an average rate of 20 
vehicles/min; (b) two toll booths where at each 
the service is random at an average rate of 
10 vehicles/ min. 

3. Pedestrians require a minimum head­
way T of 6.0 sec to cross a roadway. Using the 
equations of section 8.5.2, find the mean delay 
per pedestrian and the mean delay per delayed 
pedestrian for flow rates varying from 100 to 
1,200 vehicles/hr (by 100-vehicle/ hr incre­
ments). Plot the results. 

4. The cycle length c at an intersection is 
90 sec. Effective green time g is 60 sec. Ve­
hicles arrive at a rate of 720 vehicles/hr and 
the saturation flow s is 1I3 vehicle/ sec. (All 
values are passenger car units.) The ratio of 
variance:mean, 1, is 1.10. Find the mean delay 
by each of the methods discussed in section 
8.5.4. 

5. The peak-hour demand volume on a 
freeway is 4,500 vehicles/hr and the capacity 
for uninterrupted flow is 5,700 vehicles/hr. In 
the event of a vehicle breakdown on the free­
way, the capacity is reduced to 4,200 vehicles/ 
hr. It requires 15 min to clear the breakdown. 
Use the technique discussed by May (section 
8.6.1) to determine the queue and delay char­
acteristics. What happens if the breakdown can 
be reduced to 10 min? 





Chapter 9 

SIMULATION OF TRAFFIC FLOW 

9.1 INTRODUCTION 

As any discussion of theory proceeds, one 
usually has a growing desire to conduct experi­
mentation. In some cases there is a desire to 
test a particular model; in others, a desire to 
evaluate a parameter or constant. In still other 
situations there is a desire to investigate situa­
tions that have not yet yielded to theoretical 
treatment. At times there is a need for experi­
mentation simply to gain enough knowledge of 
a system to begin modeling. The conduct of 
traffic experiments on operating facilities has 
many difficulties. The experimenter must find 
a suitable site, prepare suitable instrumenta­
tion, and then wait for the appropriate traffic 
condition to occur. If the condition lasts only 
a short time, tests may have to be conducted on 
several days or weeks; as a result, it may not 
be possible to repeat a problem in the field. 
Some traffic situations may not occur at all on 
an operating facility. Some experimental runs 
may imply conditions that would be hazardous. 
Some experiments might require the construc­
tion of expensive facilities. Test tracks, such 
as that maintained by the (British) Transport 
and Road Research Laboratory in Crowthorne, 
England, enable execution of a certain range 
of tests neither requiring elaborate construction 
nor entailing hazard. But even experiments on 
a test track can be quite expensive, requiring 
the provision of vehicles, drivers, etc. 

Since the development of the high-speed 
automatic computer, there has been a growing 
tendency to use digital computer simulation as 
a method of conducting a variety of experi­
ments, especially those concerning systems 
having important stochastic features. 

9.2 NATURE OF SIMULATION 

Over the past 20 years various definitions 
and interpretations have been given to the 
term "simulation." Generally, present-day 
usage refers to an experiment performed on an 
artificial model of a real system. The pre­
ponderance of current simulations makes use of 
a digital computer to implement a model. Such 
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is the case with traffic flow simulations. Al­
though some early investi.gators examined the 
possible use of analog computers for traffic 
flow simulation, and a few recent investigators 
have proposed applications of hybrid comput­
ers for traffic flow simulation (see, for instance, 
Green et al. 43 ), the important traffic flow simu­
lations remain those performed using a digital 
computer. 

The reasons for simulation include (but 
need not be limited to) : 

1. The need to test the behavior of a new 
system or operating procedure prior to its 
actual construction: 

(a) The construction of the new system 
may be very expensive and/ or time 
consuming. 

( b) Experimentation with the real system 
may entail considerable risk (such 
as traffic accidents). 

2. The need to test alternate systems 
under identical conditions. (For instance, it is 
never possible to exactly reproduce a specific 
traffic condition in the field; in simulation it is 
quite routine to submit the same traffic condi­
tions to several alternative systems.) 

Any simulation may be divided into the 
following steps: 

1. Formulation of a model. 
2. Reduction of the model to a language 

acceptable by the computer. 
3. Program checkout and internal verifica­

tion of the model. 
4. Experiment planning and design: 
(a) Design of an experiment that will 

yield the desired information.1 

(b) Determination of how each of the 
test runs will be executed. 

5. Performance of experiment(s): 
(a) Model validation. 
(b) Simulation of new conditions. 
6. Interpretation of results. 

Each of these steps is discussed in the follow­
ing paragraphs. 
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9.3 HISTORICAL NOTE ON TRAFFIC 
FLOW SIMULATION 

Although suggestions for the simulation of 
traffic flow took place as early as 1949, * it was 
not until several years later that there were 
published papers discussing possible tech­
niques,2·'1 and it was about 1954 before traffic 
simulations were actually run on computers in 
the United States;•-G, t Many studies were con­
cerned with how to conduct traffic simulation. 
By about 1960 it became generally accepted 
that traffic simulation was possible and feasible, 
and efforts were directed to the development, 
validation, and use of large-scale simulation 
programs. The work described by Wagner 
et al.' is typical of these efforts. 

9.4 GENERATION OF RANDOM INPUTS 

One of the most important features of 
simulating traffic is the ability to generate ran­
dom events. Such generation takes place in two 
steps: First, a random number following a 
uniform (rectangular) distribution is generated. 
Second, this random number is treated as a 
probability to substitute into an appropriate 
distribution function in order to solve for the 
associated event. 

9.4. l Generation of Random Numbers 

Many programming systems have "built­
in" random number generators. When using a 
system having such a generator, the investiga­
tor can simply call for random numbers, using 
the appropriate command for that system. Even 
though most present-day simulation program­
mers have a random number generator availa­
ble to them, it is interesting and worthwhile to 
be familiar with the fundamentals of random 
number generation. 

Most correctly, the term "pseudorandom 
numbers" should be used rather than random 
numbers; the procedures used to generate num­
bers are highly nonrandom, but the numbers 
generated, when subjected to statistical tests, do 

* Suggestions by M. Asimow in private discus­
sion with D. L. Gerlough. 

t It appears that there may have been some 
computer runs of traffic simulation in Great Britain 
as early as 1953 (D. W. Davies of British National 
Physical Laboratory in conversation with D. L. 
Gerlough). Webster 7 made use of such work in 
preparing his classic work on traffic signal settings. 

not exhibit any nonrandomness. There are 
many algorithms that can be used to generate 
pseudorandom numbers," but the one that re­
mains the most common by virtue of its relia­
bility and ease of implementation is the simple 
multiplicative procedure. 10 This method may 
be described as follows: 

where 

R,,,= the mth random number; 
p= the multiplier; 
n = number of digits in a normal word 

on the particular computer used; 
b = number base of computer; 

Mod b"= instruction to use only the low­
order or less significant half of the 
full (2n-digit) product (the re­
mainder after dividing the product 
by b" the maximum integral num­
ber of times) ; and 

R 0 =any odd number selected as a start­
ing number. 

This multiplicative procedure is a special 
case of a general "congruential" algorithm, 
which may be stated 11 : 

Rm=[pR,,,_ 1 +c] Mod b11 

Thus, the multiplicative procedure is a congru­
ential method with c=O. 

The results of such generation algorithms 
may be used as a series of fractions following a 
uniform (rectangular) distribution. As an ex­
ample of the multiplicative procedure, let R0 = 
3, p=97, and b"=lOO (i.e., b=lO, n=2). 

Then 
03 x97=0291 
9lx97=8827 

R,=91 
R 2 =27, etc. 

The results of this sample generation 
process are given in Table 9.1, in which it may 
be seen that the "random series" consists of 20 
values, after which the series is repeated.* 
This illustrates one of the problems in the use 
of such pseudorandom generation procedures 
(i.e., a repeating period). However, if the 
word size of the computer is sufficiently large 
and the values of R 0 and pare properly selected, 

* It will be noted that all numbers are odd. 
This is a result of selecting an odd number as the 
starting value and a multiplier that is a power of a 
prime number. 
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the period is usually sufficiently long for most 
simulation purposes. It should be noted that 
by saving the last random number, it is possible 
to restart the series without returning to the 
beginning with each start. Alternatively, if it 
is desired for some particular experiment to 
provide, say, the same series of traffic arrivals 
to each part of the experiment, using the same 
starting value for the random generation will 
provide this feature.t 

The value of p may be selected by taking 
a base that is prime relative to the number base 
of the computer and raising it to the highest 
power that can be held by one word of the 
computer. If it is necessary to design a gener­
ator for the longest possible period, the proce­
dures discussed by Hull and Dobell 12 may be 
used. 

9.4.2 Production of Desired Random 
Variate 

Production of the desired random variate 
drawn from a specified distribution function 
may be explained by use of Figure 9.1, which 
shows the cumulative probability distribution of 
a variable X. Although this distribution curve 
would usually be thought of as representing the 
probability as a function with the value of X 
as the argument, in the present application the 
roles of the variables are reversed. The random 
number (fraction) generated as described in 
section 9.4.1 is interpreted as a probability and 
is used as an argument to enter the distribution, 
giving the value of X as the function. [For this 
procedure it is necessary to use the (cumula­
tive) probability distribution rather than the 
probability density function.] 

When an analytic expression for the cumu­
lative distribution is known, the conversion can 
be accomplished by a simple equation-solving 
procedure. For instance, in obtaining variates 
distributed according to the negative exponen­
tial distribution, the solution proceeds as fol­
lows: 

P(h<t)=l-e-t/T 

which simplifies to 

P=l-e-t/T 
t= -Tf-n(l-P) (9.2) 

t If random numbers are used for several 
functions (beside random arrival), separate gen­
eration routines should be provided if the same 
traffic is to be submitted to several experimental 
conditions. 

TABLE 9.1 Example of Random Numbers 

1.0 

0.9 
I/) 
I/) 

j 0.8 

(5 0.7 

x 0.6 

m Rm 

0 03 
1 91 
2 27 
3 19 
4 43 
5 71 
6 87 
7 39 
8 83 
9 51 

10 47 
11 59 
12 23 
13 31 
14 07 
15 79 
16 63 
17 11 
18 67 
19 99 
20 03 

Value of R 

0 o.5 Random 

ii 0.4 
.c 
0 

-g 0.3 .... 
a.. 

0.2 

0.1 

Variable x 
Figure 9.1 Use of cumulative probability distribution 
to convert random numbers from uniform distribution 

to desired distribution.1° 

A random number may be substituted for 
P or ( 1 - P) and the resulting value of t used 
as the desired headway. 



178 SIMULATION OF TRAFFIC FLOW 

For the shifted negative exponential the 
relationship is: 

t=(T-T)[-En.(1-P)]+r (9.3) 

If, however, a counting distribution such 
as the Poisson distribution is required, a step­
by-step solution must be used. This procedure 
for the Poisson distribution is illustrated by 
Figure 9 .2 and described as follows: First, a 
random fraction, R, is generated as previously 
described. The cumulative Poisson distribution 
is then formed, term by term, using Eq. 3.6. At 
each step the cumulation is compared with R. 
When the first value P(x) satisfying the rela­
tionship P(x) ?.R is found, the corresponding 
value of x is taken as the random variate (num­
ber of arrivals). A flow diagram for accom­
plishing this process on a computer is given by 
Gerlough. 10 

An alternate approach is to generate and 
store in advance a table with probability as an 
argument and time as a function. This may 
be done by assuming various values of t and 
computing P. When in operation, random 
fractions are used to search the P values of the 
table. When a match is found, the correspond­
ing t-value is used as the arrival headway. 

For the production of random variates 
from a normal distribution the following special 
procedure may be used: 

1. Draw 12 random fractions from a uni­
form distribution. 

0.9 

0.8 

0.7 

0.6 

:0 0.5 

~I 0.4 
~ 
a.. 0.3 

0.2 

0.1 

0 

0 

. . 
Value of R 

r-- · --· 
Random Fraction : 

t---"--: First Point 

I : Satisfying 
t--- . R.;;P r---·--· I 

I 

.. -1 
I 
I 
I 
I ·--I 

Value of x 
I 
I __ J Corresponding 

to R 

2 3 4 5 6 1 8 9 ~ 

Value of X 

Figure 9.2 Production of random variates following 
counting distribution, using step-by-step calculation.1° 

2. Take the sum of these fractions, giving 
the first normal variate. 

3. Repeat using 12 different random frac­
tions, giving the second normal variate. 

The results will be variates from a distribution 
having a mean of 6 and a variance of 1. (This 
result may be explained by the central limit 
theorem.) 

9.5 MODEL FORMULATION 

The formulation of a simulation model 
starts with the definition or selection of the 
following items: 

1. The traffic situation to be simulated. 
2. The "figure of merit" or "measure of 

effectiveness" to be used. 
3. The degree of complexity to be in­

cluded. 
4. The traffic generation (arrival) model 

to be used. 
5. Model for processing traffic through the 

simulated situation. 
6. Computer language to be used (see 

section 9 .6). 
7. Computer to be used (which is usually 

the one most readily available). 

At first it may seem inappropriate to in­
clude items 6 and 7 under model generation. 
However, in many cases these items influence 
the selection of other items, especially items 3 
and 5. 

Rather than attempt to describe model 
formulation in general terms, the procedures 
are illustrated by selected examples. 

9.5.1 Simulation Example: Intersection 
Load Factor * 

(NoTE: Intersection load factor has been de­
fined as "a ratio of the total number of green 
signal intervals that are fully utilized by traffic 
during the peak hour to the total number of 
green intervals for that approach during the 
same period.") 

Once it has been decided that a study of 
load factor as it relates to capacity should be 
conducted by simulation, the following steps 
of model formulation are implemented: 

1. Situation to be simulated: Intersection 
approach with fixed-time signal, variable sto-

* In constructing this example the work of 
May et al.""' has been heavily drawn upon. 
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chastic arrival rate, deterministic variable de­
parture rate. 

2. Figures of merit: Individual vehicle 
delay (maximum and average delay over all 
vehicles), degree of saturation, load factor, 
maximum queue length. 

3. A relatively simple model is desired. 
4. Traffic arrivals will follow the com­

posite exponential model of Eq. 3.10. Figure 
9.3 is a flow chart for this generation. Arrival 
times relative to some reference .will be com­
puted by adding the new headway to the 
previous total. Parameters will be calculated 
in accordance with the method of Grecco and 
Sword.15 

5. The following logic will be used in 
processing vehicles from their point of arrival 
through the intersection: 

(a) Discharge from the head of the queue 
will be based on Greenshields' 16 data, 
as follows: 

Position in Queue 
at Start of Green 

(M) 

1 
2 
3 
4 
5 

2:6 

Time from Start 
of Green until 

Arrival at Entrance 
to Intersection (sec) 

3.8 
6.9 
9.6 

12.0 
14.2 
14.2+2.l (M-5) 

(b) If the signal is green and if there is no 
queue, at the arrival time of the next 
vehicle it is processed through the 
intersection without delay. 

( c) If the signal is green and if there is a 
queue, vehicles at the head of the 
queue are processed through the in­
tersection in accordance with Green­
shields' table. Each arrival joins the 
queue until it is its turn to be proc­
essed. 

( d) If the signal is red, arriving vehicles 
queue until the signal turns green. 

( e) On arrival each vehicle's time is re­
corded until it departs, at which time 
the difference between departure and 
arrival times gives the delay. 

(f) The clock is advanced in uniform 
intervals of 0.1 sec. 

(g) As each vehicle leaves the intersec­
tion its delay is entered into the run­
ing average. In addition, its delay is 
compared with the previous maxi-

Generate R
0 

Is R < ( 1 - <>) ? 
0 

No Yes 

Generate R2 Generate R 1 

Generate (-lnR2l Generate (-1nR1 ) 

Multiply by (T 2-2) Multiply by T 1 

Add T 

Figure 9.3 Flow chart for generation of composite 
exponential model of Eq. 3.10.10 

mum delay and the larger value is 
retained. 

(h) As the end of each signal indication 
arrives, the current state of the signal 
is changed within the program. 

(i) Before the signal is turned red, a 
check is made to determine if the 
full green period was utilized. 
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(j) At the end of an experimental run 
the various figures of merit are com­
puted and printed out. 

Start 

Initialize 

Generate Arrival 
Store if Queue Present 

Process Departure 

Compile Statistics 

Is Run Complete? 

No 

Increment Clock 

Check Signal Status 
Update if Ready 

Yes Is New Arrival Needed? 

Compute Results and Print 

Stop 

Figure 9 .4 Flow chart for simulation example. 

6. The program will be written in BASIC. 

7. The simulation will be run on a com­
puter having an on-line time-sharing system 
using a remote terminal. 

The flow chart for this program is shown 
in Figure 9.4. The program listing is given in 
Appendix D-2. This program is relatively sim­
ple in a number of ways; principally, (a) no 
opposing or cross traffic is considered, (b) time 
is advanced in uniform intervals (periodic 
scan), and ( c) only one type of random event 
(arrival time) is generat(!d. The program does, 
however, illustrate the s'teps involved in con­
structing a simulation. 

9.5.2 Simulation Example: Simple Four­
Way Intersection 

It is now possible to progress to the simu­
lation of a more complex situation; namely, the 
four-way intersection shown in Figure 9.5, as 
described by Worrall.1' Several types of event 
are generated randomly. The intersection con­
sists of two one-way streets, each with a single 
lane. The east-west street has priority over the 
north-south street. Low flows are assumed, 
and the arrival headways are assumed to follow 
the negative exponential distribution of Eq. 
3.8. The value T in the equation is taken as 
3,600/ V, where V is the arriving volume in 
vehicles/ hr. Each approach is assigned (as 
input data) probabilities that vehicles will turn 
or continue straight ahead. A gap acceptance 
distribution is provided, in tabular form, and 
the same distribution is used for all gaps. (See 
Table 9.2.) 

Figure 9.5 illustrates the decisions by 
north-south (N-S) vehicles in accepting or 
rejecting gaps between east-west (E-W) ve­
hicles. The simulation model may be described 
with the aid of the flow diagram of Figure 9.6. 

The input data consist of volume levels on 
the two approaches and a gap acceptance table. 
The input operation is indicated by the first box 
at the top of Figure 9.6. This includes the 
initial settings of all counters, etc. The simula­
tion loop starts with the second box, "Generate 
Next N-S Arrival Gap." This arrival gap is 
generated by first generating a random fraction 
and then substituting this fraction in Eq. 9.3. 
The actual arrival time of the new arrival is 
obtained by adding the generated time headway 
to the arrival time of the previous N-S vehicle. 

At this point it is appropriate to test 
whether the undelayed arrival time of the new 
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N-S vehicle exceeds the maximum duration of 
the experiment. If the limit has been reached, 
the program jumps to the calculation and print­
ing of output results; if not, the program con­
tinues. 

Next the effective arrival time of the new 
N-S vehicle is computed. This is the time that 

N 

_J __ ~ N.1 

-c=J E.1 E 

It! 
s 

Stage 1 

N 

J ~ N.2 

-~-....__, N._1 ---
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I 
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E.2 ~E 

the vehicle will arrive at the stop!ine. This 
calculation starts by determining whether the 
previous N-S vehicle has crossed the intersec­
tion: if it has not, the new vehicle joins the 
queue; if it has, the new effective arrival time is 
equal to the new actual arrival time. 

Queues may be handled in several ways. 
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Figure 9.5 Simulated intersection shows schematically the various conditions: 17 Stage 1, vehicles N. l and E. l ap· 
proach intersection; Stage 2, vehicle N. l reaches intersection and examines E·W stream for acceptable gap, but the 
available gap between E. l and E.2 is not acceptable, so vehicle N. l is delayed; Stage 3, vehicle N. l continues to 
examine E-W stream for acceptable gap and vehicle N.2 arrives at intersection and forms a queue; Stage 4, gap 
between vehicles E.2 and E.3 is acceptable to vehicle N. l, so vehicle N. l moves off across intersection, and vehi· 
cle N.2 commences looking for an acceptable gap. However, the lag between N. l moving off and E.3 arriving is not 

· acceptable to N.2, so vehicle N.2 is delayed further. 
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Figure 9.6 Flow chart for intersection simulation.17 
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TABLE 9.2 Gap Acceptance Distribution 
for Example of Section 9.4.2 

Gap (sec) 

0-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 
17-18 
>18 

Percent 
Acceptance 

0 
9 

18 
22 
40 
59 
61 
80 
90 
92 
93 
94 
95 
96 
97 
98 
99 

100 

One effective way is to establish within the 
computer an array three columns wide and of 
sufficient length to accommodate the longest 
queue expected. In addition, a queue counter 
indicates the number of vehicles currently in 
the queue. As each new vehicle joins the queue, 
the queue counter is first increased, then the 
row of the array corresponding to the count is 
selected. Into the three columns of this row are 
placed the actual arrival time, the effective 
arrival time (if it can currently be computed), 
and the departure time (if it can currently be 
computed). As the first vehicle in the queue 
moves out of the queue and across the inter­
section, the first row in the array is removed, 
each of the remaining entries is moved up one 
row, the place vacated by the last vehicle is set 
to zero, and the queue counter is decreased. At 
the same time any further computations of 
departure and actual arrival times are per­
formed. 

The gap in the E-W stream acceptable to 
the first-in-queue N-S vehicle is determined. 
A random fraction is generated; this fraction is 
then compared with the percentage values in 
Table 9.2 (expressed as fractions). The gap 
corresponding to the random fraction is then 
designated as the minimum gap that will be 
accepted by the N-S vehicle. 

Now begins an extensive series of tests 
concerning gaps in the E-W stream. First, test 

whether the effective arrival time of the (first­
in-queue) N-S vehicle is later (greater) than 
the arrival time of the last E-W vehicle gener­
ated. If it is, it is necessary to generate a new 
E-W vehicle arrival gap and arrival time. The 
method used is similar to that used for N-S 
vehicles. If the new E-W arrival time exceeds 
the time limit for the experime,nt, the run is 
terminated (after calculating and printing the 
output results); otherwise, the E-W traffic 
count is increased, and the available gap in the 
E-W traffic is examined for acceptance by the 
first-in-queue N-S car. The available gap is 
the arrival time of the last E-W car minus the 
effective arrival time of the N-S car. After this 
gap is computed it is compared with the previ­
ously computed minimum acceptable gap. 

If the gap is not acceptable, the effective 
arrival time of the first-in-queue N-S vehicle is 
reset to the arrival time of the last E-W vehicle 
and a new E-W vehicle is generated. If th~ 
arrival time of this new E-W vehicle does not 
exceed the time duration of the experiment, 
the E-W traffic count is increased by one, and 
the acceptability of the gap in front of this 
new E-W car is tested. If the available gap 
(discussed in the previous paragraph) is found 
acceptable, it is accepted, and the departure 
time of the N-S vehicle entering the intersec­
tion is computed as its effective arrival time 
plus the appropriate starting delay. Its delay 
in queue is computed by subtracting its arrival 
time from its departure time. This delay is 
added to the cumulative record of delay. After 
correcting the queue for the departure of one 
vehicle,- the N-S count is increased and the 
simulation loop starts again by the generation 
of a new N-S vehicle. 

Two important points are illustrated by 
this example. First, in addition to random 
generation of arrivals on two approaches there 
is random generation of gap acceptance. Sec­
ond, the "clock" is not advanced by a uniform 
periodic interval; instead the examination 
moves from one important time to another 
important time. These differences in the meth­
ods of "review" or "scanning" are known, 
respectively, as "periodic scan" and "event 
scan." 

9.5.3 Simulation Example: Freeway 
Merging Area 

This example, based on a paper by Woh1,1s 
consists of a slightly more complex simulation 
-that of a freeway merging area. Figure 9.7 
shows the schematic layout of the merging area. 
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Next Freeway 
Arrival Gap vailable Entrance Lag 

-
Next Ramp Arrival Gap 

Figure 9.7 Schematic layout of freeway merging area." 

The figure of merit to be measured is delay to 
vehicles entering the freeway from the ramp, 
as a function of freeway and ramp volumes. 
The model formulation starts with several 
assumptions, as follows: 

1. The merging area is sufficiently remote 
from traffic generation sources and traffic con­
trols as to allow the freeway and ramp vehicles 
to approach the intersection in a random 
fashion. 

2. Freeway vehicles will always be given 
preference; thus, when conflicts exist (between 
ramp and freeway vehicles), only ramp vehicles 
will be delayed on entering the flow of freeway 
traffic. 

3. Freeway vehicles will not shift lanes 
within the merging area; thus, only the outside 
lane of traffic (for a multilane freeway) must 
be considered. This area can be represented 
by a single-lane freeway and single-lane ramp. 

4. When looking for an acceptable gap in 
the freeway flow, the ramp vehicle will be con­
sidered either moving or stopped (delayed), 
and a different distribution of acceptable gaps 
will be used for each case. 

5. First-in-line ramp vehicles that are 
stopped while waiting for freeway entrance 
suffer a 5-sec acceleration loss on entering the 
freeway flow; ramp vehicles that are delayed 
but enter directly from a second-in-line position 
have the same acceleration loss. When a first­
in-line vehicle is delayed, there is an additional 
3.0-sec starting reaction delay on entering the 
freeway; for a second-in-line delayed vehicle 
there is a 2.0-sec starting delay when entering 
directly from this position. 

6. Ramp vehicles that are delayed by the 
freeway vehicle directly ahead on entering 
the freeway suffer a delay of 2.0 sec. 

These assumptions allow characterization 
of the freeway merging section in terms of only 
five elements, as follows: 

1. Acceptable low-relative-speed (LRS) en­
trance gap (i.e., moving vehicle case). 

2. Acceptable high-relative-speed (HRS) en-
trance gap (i.e., stopped vehicle case). 

3. Next freeway arrival gap. 
4. Next ramp arrival gap. 
5. Available entrance gap (or lag). 

These various gaps (and lag) are depicted 
schematically in Figure 9.7. An acceptable 
low-relative-speed entrance gap is a gap that is 
accepted by a vehicle that enters without stop­
ping. An acceptable high-relative-speed en­
trance gap is a gap that is acceptable to a 
vehicle that has stopped on the ramp before 
entering. It should be noted, however, that a 
second-in-line vehicle that may have been 
stopped may enter as a moving vehicle after the 
preceding vehicle has entered. The sequence 
of simulation events is indicated in Figure 9.8, 
and Figure 9.9 is a flow chart of the computing 
process. 

As described by Wohl 18 : 

The general philosophy and some of 
the mechanics of the model can best be 
described by following through the ex­
ample of Figure 9.8. In this example the 
experiment starts at some arbitrary time, 
such as T=OOOO. The first step is to gen­
erate the next ramp arrival gap (8 sec) and 
the next freeway arrival gap ( 5 sec) and 
to determine the times at which the next 
ramp and freeway vehicles will arrive at 
the nose of the ramp; these steps are indi­
cated in Figure 9.8(a). The driver of the 
ramp vehicle bases his decision on 
whether or not to enter the freeway upon 
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1. Generate next ramp arrival gap (8 sec for R1 I 
2. Compute ramp veh. arrival time (0008 sec for R 1 I 
3. Generate next freeway arrival gap ( 15 sec for Fl I 
4. Compute freeway veh. arrival time (0005 sec for Fl I 

At Time T = 0000 sec 
(a) 

1. Is freeway veh. IF 11 arrival time later than ramp 
veh. (R 1 I arrival time? No. 

2. Generate next freeway arrival gap (7 sec for F2 ) 
3. Compute freeway veh. arrival time (0012 sec for F2) 
4. Is freeway veh. IF2l arrival time later than ramp veh. 

IR1) arrival time? Yes. 
5. Compute available entrance gap (4 sec for R1) 

At Time T = 0008 sec 
6. Generate acceptable LRS entrance gap (5 sec for R 1) 
7. Is the available gap acceptable? No. 

(b) 

4 sec 

ri 
1. Generate next freeway arrival gap (4 sec for F3) 
2. Compute freeway veh. arrival time (0016 sec for F3l 
3. Compute available entrance gap (4 sec for R1) 
4. Generate acceptable HRS entrance gap (6 sec for R1) 
5. Is the available gap acceptable? No. 

At Time T = 0012 sec (c) 

10 sec 
,.. ""I 1. Generate next freeway arrival gap ( 10 sec for F 41 

2. Compute freeway veh. arrival time (0026 sec for F 41 
3. Compute available entrance gap ( 10 sec for R 1) 
4. Is the available gap acceptable? Yes. 
5. Compute ramp veh. departure time (0019 sec for R1) 
6. Compute ramp veh. delay (16 sec for R 1) 

At Time T = 0016 sec (d) 

4 sec 

t:=1 
1. Generate next ramp arrival gap (6 sec for R2) 
2. Compute ramp veh. arrival time (0014 sec for R21 
3. Is the arrival time (of R2) earlier than the 

departure time of the previous ramp veh. (R1 )? Yes. 
4. Compute looking-for-gap time for R2 (departure time 

of previous veh. plus operating delays= 0019 + 3 = 0022 sec) 

At Time T = 0008 sec (e) 

4 sec 
y 

1. Is freeway veh. (F4) arrival time later than ramp 
veh. IR 21 looking-foriJap time. Yes. 

2. Compute available entrance gap (4 sec for R2) 
3. Generate acceptable LRS entrance gap (3 sec for R2) 
4. Is the available gap acceptable? Yes. 
5. Compute ramp veh. departure time (0024 sec for R21 
6. Compute ramp veh. delay ( 15 sec for R2) 

At Time T = 0022 sec (f) 

Figure 9.8 Sequence of simulation events.18 



MODEL FORMULATION 

his expected arrival time at the nose of 
the ramp and the availability of a proper 
freeway gap. If at the time the ramp 
vehicle arrives at the nose there is an 
acceptable gap in the freeway flow, he 
will enter. If not, he will be delayed and 
must wait for a later gap in the freeway 
flow. Figure 9.8(b) shows the positions of 
the first ramp and freeway vehicles at the 
time the ramp vehicle arrives at the nose. 
Because the first freeway vehicle had 
passed the nose prior to the arrival of the 
first ramp vehicle, the next freeway ar­
rival gap (7 sec) and its arrival time at 
the nose (0012 sec) must be determined; 
also, a check must be made to ensure that 
this freeway arrival time (0012 sec) is 
later than the ramp arrival time (0008 
sec). Because it is, the available entrance 
Jag or gap (that is, the gap available for 
the ramp vehicle to enter the freeway 
flow) must be computed (it is 4 sec). (If 
the freeway arrival time is not later than 
the ramp arrival time, successive freeway 
arrival times must be determined until the 
first one with an arrival time later than 
that of the ramp vehicle is located.) Fol­
lowing this, the acceptable LRS entrance 
gap (5 sec) for the ramp vehicle must be 
"generated." 

Since the available entrance lag is 
not acceptable, the ramp vehicle will be 
delayed at least until the second freeway 
vehicle passes. Figure 9.8(c) shows the 
vehicle positions at the arrival time of the 
second freeway vehicle at the nose (0012 
sec); at this time the ramp vehicle ex­
amines the next freeway arrival gap ( 4 
sec), which in this case is also the avail­
able entrance gap. Since the ramp 
vehicle has been delayed, we must deter­
mine its acceptable HRS gap ( 6 sec). 
Again, the available entrance gap is not 
acceptable to the ramp vehicle, and 
another freeway gap must be examined. 

Figure 9.8(d) shows the vehicles at 
the time when the third freeway vehicle 
arrives at the nose. The next freeway 
arrival gap (10 sec) is determined and the 
freeway arrival time of the fourth free­
way vehicle (0026 sec) is computed. The 
available entrance gap (10 sec) is larger 
than the acceptable HRS gap ( 6 sec); 
therefore, the ramp vehicle can accept 
the gap and enter the freeway. The de­
parture time (0019 sec) for the ramp 
vehicle is the third freeway vehicle ar­
rival (0016 sec) plus the operating delays 
(3 sec) to account for the starting reac­
tion delay, etc. The final step is to com­
pute the ramp vehicle delay, which is its 
departure time (0019 sec) minus its 
original arrival time at the nose (0008 

sec) plus 5-sec acceleration delays on 
entering the freeway flow. Thus the 
total delay is 16 sec. 

The second ramp vehicle cannot 
enter the freeway until some time fol­
lowing the departure of the first ramp 
vehicle. However, the second ramp ve­
hicle may have arrived on the ramp 
earlier than the departure time of the 
first and been waiting in queue. Since 
we are primarily concerned with delays 
to ramp vehicles that enter the freeway 
flow, the original times of arrival of the 
ramp vehicles at the nose must be com­
puted as well as the times at which the 
ramp vehicles actually entered the free­
way flow. Thus, the first two steps of 
Figure 9.8(e) are to "generate" the next 
ramp arrival gap ( 6 sec) and compute 
arrival time of the second ramp vehicle 
(0014 sec). Following this, it must be 
determined whether or not the ramp ve­
hicle was delayed by the previous ramp 
vehicle; that is, Is the arrival time (of 
the second ramp vehicle) earlier than the 
departure time of the previous ramp 
vehicle? If the ramp vehicle was delayed 
by the previous one, the earliest time that 
the ramp vehicle can actually begin 
looking for an acceptable freeway gap 
must be calculated on the basis of the 
departure time of the previous ramp ve­
hicle. Consequently, the so-called "look­
ing-for-gap" time of the second ramp 
vehicle ( 0022 sec) is equal to the de­
parture time of the previous ramp vehicle 
(0019 sec) plus operating delays (3 sec) 
to allow for perception and reaction 
times, etc. 

The next step is to determine the 
earliest freeway vehicle arrival time that 
is later than the look-for-gap time of the 
second ramp vehicle. In this case the last 
computed freeway vehicle arrival time 
(0026 sec for the fourth freeway vehicle) 
is later than the looking-for-gap time of 
the second ramp vehicle (0022 sec); there­
fore, the available entrance lag is the dif­
ference between these two times, or 4 sec. 
Based on earlier assumptions, an accept­
able LRS entrance gap for the waiting 
ramp vehicle (3 sec) must be computed. 
The available entrance gap is acceptable, 
and the second ramp vehicle enters the 
freeway; see Figure 9.8(f). Its departure 
time (0024 sec) is the looking-for-gap 
time (0022 sec) plus operating delays of 
2 sec; its delay ( 15 sec) is the departure 
time (0024 sec) minus arrival time (0014 
sec) plus 5-sec acceleration delays. 

These steps can be repeated for as 
many simulation trials as are desired; the 
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Figure 9.9 Flow chart of computing process.18 
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number of "samples" or trials will, of 
course, be a function of the accuracy re­
quired, and of time and economic con­
sideration. 

The flow chart of Figure 9.9 must be 
broken down into finer details to facilitate 
actual computer programming. For instance, 
the generation of vehicle gap acceptance is 
performed as shown in Figure 9.9 using the 
techniques of Figure 9 .10. 

9.6 THE COMPUTER PROGRAM 

Having formulated the logic of a simula­
tion problem, the next step is to convert it into 
a computer program. In the early days of 
traffic simulation this was done by arduously 
writing a program in machine language. Now, 
however, simulations are aided by the avail­
ability of a variety of languages to aid the 
user. There are general languages, such as 
FORTRAN, that enable the program writer to 
work with statements that are essentially alge­
braic in nature. There are also several higher­
order languages specifically designed for simu­
lation. The two such languages best known in 
the United States are SIMSCRIPT and GP.SS, both 
of which are briefly described in Appendix D-1. 
At present, large simulation programs, espe­
cially those that are to be used at different 
computer centers, can he best written in 
FORTRAN. Where many small programs are 
being written to be used on a "one shot" basis, 
it may be worth considering some special simu­
lation language. (In many cases, of course, the 
selection of a higher-order language is depend­
ent on the computer available or is made by 
the management of the computer center. In 
such situations the user adapts himself to the 
language available.) 

9.7 PROGRAM CHECKOUT 

There are two types of checkout of a 
simulation program: "debugging" and "valida­
tion." Debugging determines whether the pro­
gram is working and, if working, correctly 
representing the model as defined. Validation 
is a test to determine whether the model satis­
factorily represents the system to be simulated. 
Validation, a statistical experiment, is discussed 
further in section 9.8. 

Debugging is carried out in a variety of 
ways. When the simulation program is being 

written, there will undoubtedly be many sub­
routines or other special sections that perform 
particular functions. Each of these should be 
checked out as it is written. Such testing may 
require the writing of special test routines to 
supply data and print the output of the subrou­
tine being tested. Although this entails extra 
work, the insurance that each subroutine is 
working properly within itself more than justi­
fies the effort. These tests should, of course, 
employ test problems or data that lead to 
known results or results that can be easily 
checked by hand calculations. Care should be 
taken to e~sure that tests exercise all possible 
cases in order to avoid some obscure spurious 
result. 

After all of the subroutines have been tested 
and corrected separately, the complete program 
is then assembled and tested. If the total pro­
gram is very long, it is often advisable to put 
it together a few subroutines at a time, testing 
at each step. During testing, if other measures 
fa!! to find the source of a particular "bug," a 
trace may be employed, printing out the result 
after every step in the calculation. (Many 
computing centers have special programs for 
tracing.) Once the complete program has been 
tested and debugged, it is ready for validation 
experiments. 

9.8 EXPERIMENT PLANNING AND 
DESIGN 

As in aU experimental undertakings the 
statistical design of a simuiation experiment is 
important in order to minimize the amount of 
experimentation and to enable inferences with 
the desired levels of significance. Simulation 
experiments have the advantage over field ex­
periments in that simulation enables the experi­
menter to more easily control the various 
variables and to perform additional replica­
tions at will. This leads some experimenters to 
disregard that ( 1) computer time for experi­
ments costs money and (2) any experiment 
should be designed in such a way that cost of 
addit~onal measurements is weighed against the 
value of the additional information to be 
gained. 

With relation to computer simulation ex­
periments, experimental design is considered to 
include: 

1. Consideration of such problems as the 
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selection of factor levels and factor * combina­
tions, the order of experimentation, the mini­
mization of random error, as well as classical 
and computer simulation design problems. 27 

2. A plan for starting simulation runs. 
3. Validation procedures. 

9.8.1 General Simulation Experiment 
Design 

Space does not permit a detailed discourse 
on experiment design. Simulation experiments 
make use of all the usual types of experiment 
design, with emphasis on response surface ex­
ploration 28- 31 and sequential sampling. 32 Some 
investigators 33- 35 advocate the use of variance 
reducing techniques for reducing the sample 
size. A problem that must be given particular 
attention in the design of simulation experi­
ments is the tendency for stochastic processes 
to be autocorrelated and hence unanalyzable 
by traditional statistical methods.36 

9.8.2 Starting the Simulation 

When a simulation is started, the system 
is usually empty and any measurements made 
on measures of effectiveness will be essentially 
worthless. This problem is most simply handled 
by excluding some initial start-up period from 
the system evaluation. 37 The difficult question 
is how to recognize when equilibrium or sta­
bility has been achieved. Sometimes stability 
can be hastened by setting into the system 
some starting conditions more nearly those 
anticipated at equilibrium. Tests should be 
made to assure that the performance is inde­
pendent of starting conditions. Fishman 44 has 
recently treated some of these techniques. 

9.8.3 Validation 

Validation involves a set of experiments 
on the model in which the results are com­
pared with (historical) measurements on the 
real system. Although time series analysis is 
sometimes useful, 45 there are problems in such 
comparisons and Gafarian and co-work­
ers 33 ,39 •42 have described some of these. The 
use of nonparametric statistics is recom­
mended.40 It should be noted that validation 
tests are null experiments: A model that fails 
tests is rejected, but no strong statement can 
be made about a model that is accepted.41 

* Here "factor" is used in the statistical ex­
periment design sense. 
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Yes No 
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+ 1-i 

Veh. Accepts Gap Veh. Rejects Gap 
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Figure 9.10 Generation of freeway gap acceptance.18 
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9.9 INTERPRETING RESULTS 

The interpretation of simulation experi­
ment results is similar to the interpretation of 
any experimental results. Often the result is 
the testing of some hypothesis; in other cases 
the interpretation consists of fitting some curve 
to the output of the experiment. 

9.10 SUMMARY 

In formulating a simulation model, one 
strives for sufficient realism to adequately 
describe the phenomena of interest. However, 
one should not go "overboard" in including 
extra details that will not significantly affect 
the results. 

Programs should be properly checked out 
and validated. 

Traffic simulation .Programs that are prop­
erly modeled and validated constitute important 
experimental facilities for traffic study. 
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Chapter 10 

EPILOGUE 

Although there is at present no unified 
theory of traffic flow, there are many theoretical 
approaches to a variety of traffic phenomena. 
A substantial portion of these theoretical ap­
proaches have made important contributions to 
practical solutions of traffic problems. 

It should be evident from the discussions 
that traffic flow theory is an evolving science. 
Each year sees research that results in impor­
tant theoretical advances. During the course of 

197 

preparation of this document, for instance, the 
new literature has been extensive, and there 
have been several new theoretical developments 
that could not be adequately covered. Never­
theless, the need for further research is great, 
and all who find the theory of traffic flow in­
teresting are seriously urged to consider under­
taking research. 

It is hoped that a unified theory of traffic 
flow will not be long in coming. 





Appendix A 

DATA SUPPLEMENTARY TO CHAPTER 2* 

A-1 RELATIONSHIPS BETWEEN TIME But 
AND SPACE SPEED STATISTICS 

Time Mean Speed from Space Mean Speed 

Using the method of Wardrop,1 segregate 
total flow into m subflows by speed. Define 

and 

But 

Thus, 

"k 2 I I 2 
L ;U; =k """~ 

k kq L q 

where 

But 

q= k u.; Thus 

- k" f!u/ 1 "t '[- ( - )]? ut= L -k-=-=-Li u.+ ui-us -
u. u. 

* Reference citations are listed in Chapter 2. 

by definition of mean and 

Lf;'(ui-u.)2 =a-.2 

by definition of variance about the space mean 
speed; therefore, 

Derivation in the Continuous Case 

Define 

where 

u.= i"' ufg(u)du 

iit= i"' uft(u)du 

ft(u) =speed density in time and 
f.(u) =speed density in space. 

(2.7) 

An important relationship given in Haight and 
Mosher 11 but proved by Breiman 13 is: 

uJt(u) =uf.(u) 

After multiplying both sides by u and integrat­
ing over the entire range of u: 

u. i"' uft(u)du= i"' u 2f 8 (u)du 

u.ut= i"' u2 f.(u)du 

Define 

a-.2 = i"' u2f 8 (u) du- (ii8 )2 

Substituting Eq. A in Eq. B gives 

(A) 

(B) 
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and 

Relationship Between Arithmetic Mean 
and Harmonic Mean * 

To examine this computation, consider the 
arithmetic and harmonic means without any 
context of traffic. Define 

N 

M = ~ .2'.. Xi= arithmetic mean 
t=l 

N 

V m = -1-L, (Xi- M) 2 =variance about arith­
N i=i 

metic mean 

N h . 
-N-- = armomc mean. 

1 
L.x. 
f=l i 

Expand in Taylor series: 

;. = A 0 +A1 (Xi-M) +A 2 (Xi-M) 2 

i 

+A3(Xi-M)3+. 

Evaluate constants by differentiating, 

for 

--
1
-(X -M) 3 + t M4 I 

(C) 

Then 

lNl lNl 1 
N ix.=N IM- NM 2 :L<Xi-M) 

1=1 t l=l 

+ N~3 L (Xi-MF 

__ 1 _"""'(X.-M)3 
NM' L.., ' 

+ - 1
-"""'(X -M) '+ NM5 L.., I 

'''Note the use of approximate methods in 
this development. 

t Eq. C converges for 0 < x < 2M, which is 
usually the case for traffic. 

By the definition of the arithmetic mean 

N 

2:,<Xi-M)=O. 

Similarly, for any distribution that is approxi­
mately symmetrical 

L (Xi-M)a= 0 for odd values of a. 

Thus 

1 N 1 1 1 1 
N4x. = NM(N)- NM2 (0) + M3 (Vm) 

t:::;l i 

-(M~N )(O) 

+~NL (Xi-M)4 . . 

It can be assumed that 

M 5N» L (Xi-M) 4 since Eq. C is converging. 

Thus the last term can be neglected, as can all 
later terms in the expansion. 

Then 

1 ~ 1 - 1 vm - M 2V,,. 
N ?X.-M + M 3 --w-

1=1 i 

1 M 3 

H= (M2 + V)IM3 M 2 + V,,. 

-(l+ v"')(l- v,,.) 
M2 M2 

M 

1+ v,,, 
M2 

M( 1-~) =M(l- V111)=M- V,,, * 
v 2 MZ M. 

1--"-'· 
M' 

Converting to traffic notation gives: 

(2.8) 

as an approximate method for use in traffic 
engineering practice. Note that this relationship 
when combined with Eq. 2.7 implies that 

Thus, in using Eq. 2.8 one must be willing to 
accept this assumption. 

* Yule and Kendall 1° suggest this relationship 
for cases where deviations are small compared to 
the mean. 

.. 
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A-2 DERIVATION OF FORMULAS FOR 
MOVING OBSERVER METHOD 

Consider the traffic stream to have a con­
stant total flow through the area of observation. 
Consider further that the stream is composed of 
m substreams, each having its own uniform 
speed. Let 

qi= flow of the ith substream; 
ki = concentration of the ith substream; 
ui = speed of the ith substream; 
ti= travel time of the ith substream; 
l = length of the roadway section; 

u0 = speed of the observer moving with the 
traffic stream; 

ua = speed of the observer moving against 
the traffic stream; 

t0 = travel time of observer moving with the 
traffic stream; 

ta= travel time of observer moving against 
the traffic stream; 

t= mean travel time of the traffic stream; 
"' 

k= 2, ki=concentration of the (total) 
i 

traffic stream; 
"' 

q = L, qi= flow of · the (total) traffic 

stream; 
u= mean speed of the (total) traffic stream; 
x= total number of vehicles met by the ob­

server moving against the traffic stream; 
y = net number of vehicles that pass the ob­

server while moving with traffic stream 
(i.e., the number that pass the observer 
minus the number he passes); 

xi= number of the population x that are in 
substream i; and 

Yi= number of the population y that are in 
substream i. 

Then 

For Observer Moving Against Stream 

Flow past observer= ki(ua + ui) = ~~Cua+ u;) 
i 

For Observer Moving with Stream 

Flow past observer=ki(ui-uc) =(qi) (ui-uc) 
ui 

For Total Stream 

X= L,xi= Lqi(t~+t;) =ta2.qi+2.qiti (D) 
i=l 

y= LYi= LqJtc-tJ =tc'iqi-2.q;ti (E) 
i=l 

Adding Eqs. D and E gives 

x+y =(ta+ tc) 2.qi= Cta + fc) q 

x+y 
q=--

ta + fc 

qt=2.qiti 

2.q;ti tc2.qi-Y Y 
(---- -t --- q - q c q 

u=ll t 

k=qlu 

(using Eq. E.) 

Berry and Green 16 have suggested the follow­
ing number of runs for travel time within a 
10 percent range of accuracy: (a) for progres­
sive signal timing (volumes below capacity), 8 
runs; (b) for signals not coordinated (volumes 
at or near capacity), 12 runs; ( c) for signals 
not coordinated (volumes below capacity), 8 
runs. 



Appendix B 

DATA SUPPLEMENTARY TO CHAPTER 3* 

8-1 DERIVATION OF THE POISSON 
DISTRIBUTION t 

Consider a line that can represent in a 
general case either distance or time; for the 
present purposes consider it to represent time 
(Figure B.1 ) . Specifically, consider the oc­
currence of random arrivals where the average 
rate of arrival (i.e., probability density) is >.. 
Let P;(t) =the probability of i arrivals up to 
the time t, and P,,(M) =Mt=the probability of 
one arrival in the incremental period M. Be­
cause it is assumed that M is of such short 
duration, the probability of more than one ar­
rival in M is negligible; therefore, ( 1-Ailt) = 
the probability of no arrival in M. Then, 

P;(t +At)= the probability that i arrivals have 
taken place to the time (t+M) 

= [Prob (i- 1 arrivals in t) ·Prob (1 
arrival in M)] +[Prob (i arrivals in 
t) ·Prob (0 arrivals in M) ]; 

Pi(t+At)= P;_1(t) ·P1(M)+P.(t) ·P0 (t1t) 
= Pi-1 (t) "AM+ Pi(t) (1-Mt) 
= [Pi_1(t)-P;(t)](Mt) +Pi(t); and 

Pi(t+At)-Pi(t) =><[P· (t)-P-(t)] 
6t ~1 • . 

Letting M-7 0, 

Now, P_ 1 (t) =0 

Pi(O) =0 

(3.30) 

(i.e., impossible to have 
<0), 
(i.e., no arrivals up to 
time t=O), 
for i"?. l (zero probability 
of i arrivals at time t=O). 

Setting i=O in Eq. 3.30, 

dP0 (t) =><[O-P (t)] 
dt 0 

* Reference citations are listed in Chapter 3. 
t This derivation is adapted from derivations 

by Arley and Buch,05 Feller,56 and Fry.67 

dP0 (t) 

P0 (t) = -Adt 
&P0 (t) = -At+c 

Po(t) =e-Xt+c 

Since P 0 (0) =1 and 1 =e0 =ec, c=O and 

Po(t) =e-M 

Setting i = 1 in Eq. 3 .30 and inserting the above 
value for P 0 (t), 

dP1 (t) =><[e-Xt _ p (t)] 
dt 1 

dP1(t) +>.P (t) =><e-Xt 
dt 1 

Using method of qperators for solving this dif­
ferential equation * 

But 

(D+>.)P1 (t) = >..e-t..t 

1 
p (t) =-->.e-M 

i D+>. 

= (>..t)e-Xt+C2e-Xt 

P 1 (0) =0 :.C2 =0 
:. P 1 (t) = ("At)e-M 

For i=2, 

dP2 (t) =><[P1 (t)-P2 (t)] 
dt 

* Any standard method may be used for solu­
tion of this differential equation. The method of 
operators is particularly simple. See any standard 

1 
text, such as Ford.58 The form Y= D+Au(x) 

results in a solution 

..j.-------+--+-------- Time 

0 (t+At) 

Figure B.1 Schematic representation of uniform prob­
ability density. 

202 
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But 

Similarly, 

1 P 9 (t) =--A(At)e-At 
- D+A 

(At) 3e-At 
P 3 (t) = 3 ! 

(At)4e-At 
P.(t) = 4! 

(3.2) 

If At= m, the result is the most familia1 form 
of the Poisson distribution: 

mxe-m 
P(x)=--

1
-

x. 
(3.1) 

This relationship states the probability that 
exactly x arrivals will occur during an interval 
(of length t) when the mean number of arrivals 
ism (per interval oft). 

Population Mean of Poisson Distribution 

In the foregoing m is defined as the mean ar­
rival rate. To determine the mean value of the 
distribution, begin with the definition of the 
population mean µ, for a discrete distribution: 

oO 

µ,= L,x P(x), forP(x)=--1.i!l_ (3.31) 
oO 

x=O 
L,t(x) 
x=O 

where f(x) is the frequency of occurrence of x. 
For the Poisson distribution, substitute 

mxe-111· 
P(x)=--,­

m. 

Thus 

2m2e-1n 3m3e-m 
= O+me-11i+ +---

2! 3! 

=me-{l+m+ ;,
2 

+-};~ J 
== me-me·m, 

=m 

Population Variance of Poisson 
Distribution 

(3.32) 

(3.33) 

By definition, the population variance, a-2
, 

may be expressed: 

i- 2,f(x) (x-µ,) 2 

a- - 2,f(x) 
(3.34) 

00 

= L (x-µ,) 2 P(x) (3.35) 
x=O 

Because the population mean is m, this variance 
may be stated: 

a-2= 2,(x-m)2P(x) 

= 2,(x2 -2xm+m2 )P(x) 

= 2,x2P(x)-2m2,xP(x) +m22,P(x) 

The last term reduces to m 2 because 2,P ( x) = 1. 
The middle term reduces to - 2m2 because 
2.xP(x) has been shown equal to m in the deri­
vation of the population mean. The first term 
may be reduced by the following steps: 

2,x2P(x) = 2,[x(x-1) +x]P(x) 

= 2,x(x-l)P(x) +2.xP(x) 

=A+B 

B= 2,xP(x) =m 
00 1nxe-in 

A= _L,x(x-l)X! 
x:.:O 

-[ 2m2e-m 6m3e-m 
- o+o+ 2! + 3! 

12m4e-"' J + 4! .. 

-m2e-"'[l+m+m? .J - 2! . 

2,x2P(x) = m 2 +m 

a-2 = [mz + m] - [2m2] + [m2] 

er= m (3.36) 
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Thus, for the Poisson distribution the popula­
tion variance equals the population mean. 

Derivation of the Distribution of the 
Sum of Independent Poisson 
Distributions 4

•
5 

Consider a population made up of two 
subpopulations A and B, each distributed ac­
cording to the Poisson distribution. 

For subpopulation A 

ma; e-1n 
P(Xa) = a a I a 

Xa. 

For subpopulation B 

If k items occur in a trial from the total 
population, there may be a mixture of Xa and 
xb as follows: 

Xa=k 
Xa=k-1 
Xa=k-2 

Xa+xb=k 
Xa+xb=k 
xu+xb=k 

Xa=2 xb=k-2 Xn+xb=k 
Xa=l xb=k-1 xu+xb=k 
Xa=O x 1,=k Xa+xb=k 

P(k) = P(xa = k,xb=O) +P(xa =k-1,xb= 1) ... 
+ P(xa = l,xb= k- 1) +P(xa =0,xb= k) 

rnak e~ma e-111 b lnak-l e-111 a 1nb e-1nh 

k!O! + (k-1)!1! 

(k-2)!2! 
mae-m:-1/nbk-le-mh J._ e-lllambke-mh 

+ ... + l!(k-1)! ' O! k! 

P(k) =e-llla e-111 " 

{
m k km k-1 111 k(k-l)m i.:-2111 2 

k~ + k(k"-l)t+ k(k-l)(k"_2)!b2! 

k(k-1) ... 3·2·1 mambk-1 mbk} 
+ ... + k(k-1) ... 3·2·1(k-1)! +~ 

P(k) = m k+km k-1111 
e-(ll!a+ 111 u>{ 

kl a a b 

[
k(k-1) mk-2 mb2

] 

+ 2! 

k k 1 + /,;} +. · .+ mamb - mb 

e-<111, +111"1 (m + m ) k 
P(k) = a b 

k! 

When there are subpopulations A, B, . . . , Z, 

by application of a similar argument the dis­
tribution for the whole population is found to be 

(m + m + + m ) Ice-<"'. +rn .. + . .. +m.) 
P(k) = a b • • • k; .. " ,, 

B-2 PEARSON TYPE Ill 
DISTRIBUTIONS 

Pearson has shown 59 •60 that a wide variety 
of statistical phenomena can be modeled by 12 
general distributions. Of these distributions, 
type III (together with several of its special 
cases) is .Particularly useful for certain traffic 
situations. In its most general form, the prob­
ability density function of the type III distribu­
tion can be stated (in the notation of this mono­
graph) as follows 14•

25
: 

t--{}, 

p(t) = ,Br~k) c~a r-1 e-13- (3.37) 

where a is a location parameter a~ O; k is 
a shape parameter k > O; (3 is a scale 
parameter (3 > 0. When the location param­
eter, a, equals zero, the distribution reduces to 

1 ( t )1,-1 _ _!_ tlc-1 _ _!_ 

p(t) = ,Br(k) 73 e f3 = f3''r(k) e f3 

By setting a= 1 I (3, this reduces to 

If (3= Tl k. 

a''tk-1 
p(t) = --e-o.t 

r(k) 

(
kt)k-1 k 

p(t) = T Tr(k) e-tfkT 

(3.38) 

(3.39) 

( 3.40) 

Although some writers still refer to this 
distribution as type Ill, it is more commonly 
known as the gamma distribution. When k = 1, 
the gamma distribution reduces to the negative 
exponential distribution. [Note that r(n) = 
(n- 1) !] When k~ CfJ, the distribution is regu­
lar (i.e., all headways are equal). When k is 
restricted to integer values ( > 1), the resulting 
distribution is the Erlang. Sometimes k is ·con­
sidered to be a measure of nonrandomness. 

B-3 PARAMETERS OF EXPONENTIAL 
AND SHIFTED EXPONENTIAL 

DISTRIBUTIONS 

Consider the negative exponential distribu­
tion as defined by Eq. 3 .2 

P(h<t) =I-e-t/T 
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from which the probability density function is 

p(t) =0-(- ~-)e- 1 /1'= ~ e-1/T 

The population mean is 

µ.= f 00 tp(t)dt 

where p(t)dt is the probability oft. Thus, 

µ.=ft ~ e-tf1'dt 

and integrating by parts and inserting limits, 
gives 

µ.=T 

Population Variance of Negative 
Exponential Distribution 

<T 2 = (t-T)' ---J 
00 e-tf1'dt 

T 

( 3.41) 

= -e-t!Tdt-2 te-t!Tdt+ Te-t/Tdt Joo(" 1"' J"' 
T o o 

(]""= T2 (3.42) 

Shifted Exponential Distribution 

In considering Figure 3.5 in text, assume 
an origin through the point of contact of the 
curve and the t (horizontal) axis. About this 
axis 

P(h < t) = 1-e-t'/T' (3.43) 

where t' =abscissa of any point from the origin 
at the point of contact of the curve and the 
vertical axis; and T' =abscissa of the mean or 
center of gravity with respect to the same 
origin. 

Now construct a vertical axis normal to 
the t axis and a distance r to the left of the point 
of contact of the curve and the t axis. Now all 
abscissas t are measured from this new axis. 
In Eq. 3.43, each abscissa t' is now replaced 
by ( t - r) . The value T now represents the 
abscissa of the center of gravity of the curve 
from the new axis, and the value of T' in Eq. 
3.43 is now replaced by (T-r). Thus, for the 
shifted exponential, 

P(h < t) = 1-e-<t-T>!<T-r> for t?.r (3.22) 

Mean of Shifted Exponential 
Distribution 

From Eq. 3.22 the probability density p is 
obtained as 

dp 1 
p(t) = -=--e-11-T•/•T-n. 

dt -T 

By definition, the mean µ. is obtained as 

µ.= 1: tp(t)dt. 

For the shifted exponential, 

µ,= ( ---e-rf-T>/(T-T•dt 1
00 1 

00 
T-r 

=0+ t ·--e-U-r>/CT-r,•dt 1
00 1 

T-T 

erf<T-r) "' 
=·- ·--[- 7 ( T-T)e-rl<T-T1(T-T)2e-r/<T-T)] 

(T-r) 
T 

=T, 

which could have been derived from the defini­
tion of T. 

P?pu_lati~n Variance Shifted Exponential 
D1stnbut1on (about Origin) 

<T2= (t-T)Z--e-U-rl/<T-r•dt 1
00 1 

T-r 

= e ~T t 2 e- T-T dt-2T te- T-T dt _T {1°" I 1°" t 
T T T T 

+ y2 e T-T df 1
00 t 

} . 
Integrating by parts and simplifying, 

(3.44) 

B-4 LOGNORMAL DISTRIBUTION 

The normal distribution is used to describe 
systems where the measured variable is nor­
mally distributed; lognormal distribution is used 
to describe systems where the logarithm of the 
measured variable is normally distributed. 61-63 

Because log is not defined for arguments equal 
to or less than zero, the lognormal distribution 
is defined only for positive measured variables. 
(In the present discussion, use of natural logs 
is assumed; use of common logs (to base 10) 
would require only a change of scale.) To 
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obtain a straight line for the cumulative log­
normal distribution, use graph paper having a 
log scale on one axis .and a normal probability 
scale on the other. (Figure B.2 shows several 
curves plotted on normal probability paper; 
Figure B.3 shows the same curves plotted on 
lognormal paper.) 

The parameters of the lognormal distribu­
tion may be computed as follows 61 : 

Measured variable=yi; xi=log Yi, for xi 
assumed to be normally distributed. 

- 1 N 1 N 
x=N "2.,xi=N :L:,logyi 

t=l i=l 

(3.45) 

and 

To fit the lognormal distribution, estima­
tion of population parameters by the method 
of moments 61 uses the equations 

fl= estimate of population mean 
1 = 2 &(x) - 2 &(mom2 ) 

0-2 = estimate of population variance 
= &(mom2 ) -2&(.X) (3.48) 

where &(x) =natural logarithm of x and 
1 n 

1110111 2 =second moment about origin=-"2.,x;2
• 

11 
i=1 

Estimation of the population parameters by the 
maximum liklihood method may be simpler 61 : 

0-2 == 52 (3.49) 

Fitting then proceeds in the same manner as 
when fitting a normal distribution, making use 
of normal distribution tables. That is, the prob­
ability cp(x;) is obtained from normal probabil­
ity tables using an argument Z;, where 

x,-µ, 
Zi=-- -

er 

8-5 PROB IT ANALYSIS 

(3.50) 

Probit analysis is a method of treating the 
percentages of a population making all-or­
nothing responses to increasingly severe values 
of a stimulus. Principally, using a probit re­
moves the need to record a negative deviation 
from the mean as in a normal probability 
distribution analysis. If µ, is the population 
mean, er the standard deviation of the popula­
tion, and Y the probit of x, 

X-µ, 
Y=5.0+--

er 
( 3 .51) 

The median value of the stimulus is the value 
that produces a response probit of 5.0. Table 
B.1 shows the transformation of cumulative 
percentage to probit. 6

' 

TABLE 8.1 Transformation of Cumulative Percentages to Probits a 

% 0 2 3 4 5 6 7 8 9 

0 2.67 2.95 3.12 3.25 3.36 3.45 3.52 3.59 3.66 
10 3.72 3.77 3.82 3.87 3.92 3.96 4.01 4.05 4.08 4.12 
20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45 
30 4.48 4.50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72 
40 4.75 4.77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97 
50 5.00 5.03 5.05 5.08 5.10 5.13 5.15 5.18 5.20 5.23 
60 5.25 5.28 5.31 5.33 5.36 5.39 5.41 5.44 5.47 5.50 
70 5.52 5.55 5.58 5.61 5.64 5.67 5.71 5.74 5.77 5.81 
80 5.84 5.88 5.92 5.95 5.99 6.04 6.08 6.13 6.18 6.23 
90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
99 7.33 7.37 7.41 7.46 7.51 7.58 7.65 7.75 7.88 8.09 

"From Finney." 

• 
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Figure B.2 Three cumulative lognormal distributions, all with log x = 1.0 and standard deviations of 
log x = 0.1, 0.3, and 0.5 plotted on probability paper." 
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Figure B.3 Same curves as those in Figure B.2 but plotted on logarithmic probability paper.62 
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B-6 FITTING GENERALIZED POISSON 
DISTRIBUTIONS USING INCOMPLETE 

GAMMA FUNCTION TABLES 

The procedure for fitting generalized 
Poisson distributions using tables of the incom­
plete gamma function is as follows: 

1. Enter graph (text Figure 3.13) with 
mean and variance. Select value for k, which 
need not be an integer but may be any value 
greater than 1. (If k = 1, the usual "simple" 
form of the Poisson should be used.) 

2. Compute A from Eq. 3.29. 
3. Form the table: 

x (p+l) u p l(u,p) 1-I(u,p) P(x) 

0 
1 
2 
3 
etc. 

The following equations are used: 

(p+l)= (x+l)k 
U= 'J.../ (p+ 1 ) 1/z 

p=(p+l)-1 

4. Values of I(u,p) are obtained from 
tables.17 

5. The entries in the column [1-/(u,p)) 
are the cumulative probabilities. The prob­
abilities of the individual values of x-i.e., 
P(x)-are obtained by subtraction: 

P(O) = 1-I(u,p) 0 

P(x) = [l-/(u,p),.)-[l-I(u,p),._1 ) 

= I(u,p),._ 1 -I(u,p).,. 

Table 3.11 in text contains observations 
during 64 15-sec counting intervals on a free­
way during the morning peak period. A gener­
alized Poisson distribution has been fitted to 
the data. Table B.2 illustrates the method of 
fitting by means of the incomplete gamma 
function: here the value of k is 2. 

8-7 GOODNESS-OF-FIT TESTS 

When comparing the fit between a theo­
retical distribution and a set of experimental 
data, it is desirable to have some method of 
quantitative evaluation of the fit. Several tests 

of statistical significance of the fit are available. 
These tests permit selection of one of the two 
decisions: (1) It is not very likely that the true 
distribution (of which the observed data consti­
tute a sample) is in fact identical with the 
postulated distribution; (2) the true distribu­
tion (of which the observed data constitute a 
sample) could be identical with the postulated 
distribution. 

It can be seen that either decision can be 
erroneously made. Decision 1 can be wrong 
if in fact the postulated distribution is the true 
distribution. On the other hand, decision 2 
can be wrong if the true distribution is in fact 
different from the postulated distribution. Sta­
tistical tests of significance allow for specifying 
the probability (or risk) of making either of 
these types of error. Usually, the probability 
of making the first type of error (incorrectly 
rejecting the postulated distribution when in 
fact it is identical with the true distribution) is 
specified, and no statement is made with regard 
to the second type of error. The specification 
of the first type of error is expressed as a 
"significance level." Common significance levels 
are 0.01, 0.05, and 0.10. Thus, when a test is 
made at the 0.05 (5%) level, the engineer takes 
the chance (risk) that 5% of the rejected postu­
lated distributions are in fact identical with the 
corresponding true distributions. For a com­
plete discussion of the theory underlying this 
and other statistical tests of significance, the 
reader is referred to any standard text on 
statistics. 

Chi-Square (x2
) Test 

The best known test of goodness-of-fit is 
the chi-square (x2 ) test, which is described as 
follows: 

Let f =observed frequency for any group 
or interval and F =computed or theoretical fre­
quency for the same group. Then, by definition: 

(3 .52) 

where g is the number of groups. 
Expanding, 

0 
[ f·" 2/ F F "] ~~ ~ I ! I 1 I x -L -----c--

i=l F; F; F; 
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In the fitting process, the total number of 
theoretical observations is set equal to the total 
number of experimental observations. Thus, 

where n is the total number of observations. 
Then 

., (!I f;") x·= LT -n 
i=l l 

( 3 .53) 

Either Eq. 3.52 or Eq. 3.53 may be used 
for purposes of computation. Usually, Eq. 3.53 
will simplify the amount of work involved. 

The value of x" obtained by this method is 
then compared with the value from tables of 
x", which may be found m any collection of 
statistical tables. Such tables relate the value of 
x" and significance level to the degrees of free­
dom.* The number of degrees of freedom, v, 
may be expressed so--s•: 

v=(g-1)-A 

where g=number of groups and A =number of 
parameters estimated in the fitting process. 
The following table lists information for sev­
eral distributions: 

Distribution 

Poisson 
Negative binomial 
Generalized Poisson 
Binomial 

A 

1 
2 
2 
2 

v 

g-2 
g-3 
g-3 
g-3 

For this value of v to be valid, however, it is 
necessary that the theoretical number of occur­
rences in any group be at least 5. One writer 67 

further stipulates that the total number of ob­
servations be at least 50. When the number of 
theoretical occurrences in any group is less than 
5, the group interval should be increased. For 
the lowest and highest groups this may be 

* In using a table of x2
, care should be exer­

cised to note the manner in which the table is 
entered with the significance level. If the table is 
so constructed that for a given number of degrees 
of freedom the value of x2 increases with decreas­
ing percentiles (probabilities), the table is entered 
with the percentile corresponding to the significance 
level. If the table is such that the value of x2 in­
creases with increasing percentiles, the table is 
entered with the significance level subtracted from 
one. (In this case, 1.00-0.05=0.95.) 

N 

a:i 
w 
-l 
cc 
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TABLE B.3 Binomial Distribution a Fitted to Congested Traffic Arrivals 
(Interstate 494 at 24th Avenue, median lane, during A.M. peak, for 15-sec intervals) 

Observed Data Binomial Distribution Poisson Distribution 

Number of Cars Observed Total Cars Theoretical Theoretical 
per Interval Frequency Observed Frequency Frequency 

(x,) (f,) (fa,) fa! (F,) fl/F, (F,) 

<3 0 0 0 ''l 13 l 3 3 9 27 1.0 10.4 11.63 2.5 
15.5 4 0 0 0 2.9 4.7 

5 8 40 200 6.2 7.1 
6 10 60 360 9.8 10.20 8.8 
7 11 77 539 12.3 9.84 9.4 
8 10 80 640 12.1 8.26 8.8 
9 11 99 891 9.4 12.87 7.3 

10 9 90 900 

5 'l 5.4 
11 1 11 121 2.8 10.0 12.10 3.7} 
12 1 12 144 1.0 2.3 8.7 

>12 0 0 0 0.4 2.7 
- - -- --- -- --

TOTAL 64 478 3,822 64.0 64.90 64.0 

m= 478/64=7.469 ii= 0.46 m=7.469 
( 478) 2 n= 16.08 e-"'= 0.00057 

3822-~ 'l:f/IF,--:Z.f,= 64.90-64.00 'l:f.2/F,-'l:f,= 75.46-64.00 
s- =0.90 = 11.46 63 

v= 6-3=3 v=7-2=5 = 3.999 
X2o.oo= 7.81 b X2o.os= 11.07 c S-lm= 0.535 

•Poisson distribution used for reference. 
• Accept fit at 0.05 level. 
' Reject fit at 0.05 level. 

• 
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accomplished by making these groups "all less 
than" and "all greater than," respectively. 

Table B.3 demonstrates the computations 
for the x2 test. 

Kolmogorov-Smirnov Test for 
Goodness-of-Fit 

In addition to the x2 test, the Kolmogorov­
Smirnov (K-S) test 68 •69 is another technique 
for testing goodness-of-fit. The necessary cal­
culations are relatively simple; and like the x2 

test, it is nonparametric or distribution-free 
(i.e., no assumption is made concerning the 
shape of the population from which the sam­
ples are drawn). The test is based on the 
simple measurement of the maximum vertical 
difference between the two cumulative prob­
ability distributions. This may be done graph­
ically or it may be done in tabular form. It is 
necessary only to find the maximum absolute 
difference between the theoretical and observed 
cumulative distributions. This maximum differ­
ence is then compared with the tabulated or 
computed value of the K-S statistic. Table B.4 
gives values of the K-S statistic for various 
sample sizes and levels of significance. 

The K-S test is particularly valuable in 
cases where the number of observations is small. 

This test cannot be used when the popu­
lation parameters are estimated from the ob­
servations, inasmuch as the correction of the 
critical value (because of such estimation) is 
unknown. Where adequate data are available, 
this restriction concerning parameter estima­
tion may be overcome by the following proce­
dure: One half of the data is used to estimate 
the parameters; the other half of the data is 
then used for fitting to the population repre­
sented by the parameters.* This procedure is 
illustrated by Tables 3.6 and 3.7 in text. 

8-8 VARIANCE OF EXPERIMENTAL 
OBSERVATIONS 

Over the years there has been no standard­
ization as to the definition of the variance of a 
set of experimental observations. Some writers 
have defined the variance as computed simply 
with respect to the sample and then have ap-

* B. W- Lindgren, personal communication. 

TABLE B.4 Values of the Kolmogorov­
Smirnov Test Statistic "d" a for Various 

Sample Sizes and Levels 
of Significance b 

Sample Level of Significance (a) 
Size 
(n) 0.10 0.05 0.01 

1 0.950 0.975 0.995 
2 0.776 0.842 0.929 
3 0.642 0.708 0.828 
4 0.564 0.624 0.733 
5 0.510 0.565 0.669 
6 0.470 0.521 0.618 
7 0.438 0.486 0.577 
8 0.411 0.457 0.543 
9 0.388 0.432 0.514 

10 0.368 0.410 0.490 
11 0.352 0.391 0.468 
12 0.338 0.375 0.450 
13 0.325 0.361 0.433 
14 0.314 0.349 0.418 
15 0.304 0.338 0.404 
16 0.295 0.328 0.392 
17 0.286 0.318 0.381 
18 0.278 0.309 0.371 
19 0.272 0.301 0.363 
20 0.264 0.294 0.356 
25 0.24 0.27 0.32 
30 0.22 0.24 0.29 
35 0.21 0.23 0.27 

1.22 1.36 1.63 
>35 Vn Vn Vn 

"Maximum vertical difference between two 
cumulative distributions. 

b After Massey.•• 

plied a correction to obtain the unbiased esti­
mate of the population variance; others have 
defined the unbiased estimate of the population 
variance as the experimental variance. For 
purposes of the present volume, the latter defi­
nition has been adopted; namely, 

1 " 1 
s2= n-l .?::, (x;-x)2= n- l L (x;-m)2 

1;;::;1 

where s2 is the unbiased estimate of population 
variance as computed from sample, here termed 
the "variance of experimental data." 

Estimation of the population variance and 
correction of the sample variance to give the 
unbiased population variance (Bessel's correc­
tion) have been clearly described by Neville 
and Kennedy,' 0 as follows: 
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Consider a sample of size n drawn 
from a population with a mean µ. and 
standard deviation a. 

Let x, be an observation in the 
sample. Then 

x,-µ.= (x,-x) + (x-µ.) 
= (x1-x)-e 

where •=µ.-xis the "error" or deviation 
of the sample mean, x. Squaring, we 
obtain 

(x,-µ.) 2=(x1-x)2+e2-2e(x,-x) 

For all the observations in the sample, 
we sum for i from 1 to n and obtain 

:Z(x, -µ.) 2= :Z(x,-x)2+ne2-2e:Z(x,-x) 

But :Z(x,-x) =0 by definition of x. 
Therefore, 

:Z(x,-µ. ) 2 = :Z(x,-x)' +n•' 

If we repeat this calculation for a 
large number of samples, the mean value 
of the left-hand side of the above equa­
tion will (by definition of a') tend to 
110-

2
• Similarly, the mean value of n•'= 

n(µ.-x) 2 will tend to n times the vari­
ance of x because e represents the devia­
tion of the sample mean from the popu­
lation mean. Thus, 

whence 

or 
:Z(x1-i') 2 ~ (n-l)o-2 

Thus 
:Z(x,-x)2 ., 

n-1 ~a--

In other words, for a large number of 
random samples the mean value of 
:Z(x,-x)" . . . 

n _ 
1 

tends to 0-
2

; that 1s, it 1s an un-

biased estimate of the variance of the 
population. The estimate is denoted by 
s'. Thus 

s'= :z(x,-x)
2 

n-1 
Since the variance of the sample (taken 
as a finite population with a mean x) 0-

2 

is given by 
' :Z(x,-x)2 

a-= 
n 

Bessel's correction is 
s2 n 
0-2 n-1 · 
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C-1 PACEY'S PLATOON DIFFUSION 
Pacey 1

" has formulated a model for pla­
toon diffusion that may be described as follows: 
Let 

f ( u) du= the probability distribution of 
platoon speeds, assumed to be a 
normal distribution, 

T= travel time between two observa­
tion points 

= Dlu where D=distance between 
the observation points, 

g(T)dT= distribution of travel times. 

The probability that a trip time lies between T 

and ( T + dr) is the same as the probability that 
the corresponding speed lies between u and 
(u+du). 

-D 
Noting that u=D!T, du=--dr. 

T2 

Thus, 

g(T)dr=f(u)du=f( ~) (~)ctr 
(The minus sign of the expression for du is 
dropped because probabilities are always posi­
tive.) Now, because speeds are assumed to be 
normally distributed, 

f(u) = 
1 

exp [- (u;~)
2

] 
<T\}21T (]" 

where (]" is the population standard deviation of 
speed. Therefore, 

* Reference citations are listed in Chapter 7. 

Letting s=<TI D, 

Considering now the two observation 
points, the number of cars passing the first point 
is q,dt in the interval [t, (t+dt)]. Of this flow, 
the number of cars passing the second obser-. 
vation point will be q 1 (t)g(T)dtdT in the 
interval [(t+T), (t+T+dT)]. 

The total number of cars passing point 
two in the interval [T, ( T + dT)] is 

q 2 (T)dT= f q1 (t)g(T-t)dtdT, 

integration being over all values of t for which 
ql(t) >0. 

For real cases histograms result rather 
than continuous curves. Thus the following 
expression is employed, 

q2(j) = L,qi(i)g(j-i) 
i 

where i and j are discrete intervals of the histo­
gram. 

It should be noted that the foregoing anal­
ysis assumes that passing is possible at will. 
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D-1 DISCUSSION OF SIMSCRIPT 
AND GPSS 

Many simulation languages exist, espe­
cially when one includes those written in 
Europe; the two best known in the United 
States are SIMSCRIPT and GPSS. Before pro­
ceeding with brief descriptions and a compari­
son of these two languages, it will be helpful to 
consider the following glossary. 

Assembler A computer programming lan­
guage that provides a one-to-one correspon­
dence between mnemonic symbols (source lan­
guage) and the natural machine language 
commands (object language), but usually with 
the automation of such tasks as the assignment 
of memory addresses. The program written in 
assembly language is converted to a program 
in machine language by an assembly program. 
The assembled program is then used for com­
puter runs. 

Interpreter A computer programming 
language that provides the capability for pro­
gramming extensive computations by a simple 
(source) language. The conversion to the 
machine (object) language usually involves the 
provision of many machine-language com­
mands for each source command. This con­
version is performed during the computation 
run and is repeated each time the source lan­
guage calls for a particular function or com­
putation. Thus, the interpretation program 
must occupy part of the computer memory dur­
ing running, and the interpretation during each 
iteration can greatly increase the computation 
time. 

Compiler A computer programming lan­
guage in which programs are written in a 
source language closely adapted to the type of 
computation to be performed and in which the 
conversion to machine (object) language in­
volves the compiling of a number of library 
subroutines. The compilation is performed 
prior to the computation run. 

Endogenous event An event affecting the 
program from inside the simulation. 

*Reference citations are listed in Chapter 9. 

Exogenous event An event affecting the 
program from outside the simulation. 

SIMSCRIPT 

SIMSCRIPT is a compiler-type language 
based on FORTRAN 19- 23 • In SIMSCRIPT the sys­
tem is described in terms of entities, attributes, 
sets, and events. For instance, cars, intersec­
tions, streets, etc., would constitute entities. 
Attributes of each car would include destina­
tion, gap acceptance criteria, normal accelera­
tion, desired cruise speed, etc. Sets would in­
clude all cars in queue on the northbound leg 
of intersection 23, all cars moving as a platoon 
from intersection 18 to intersection 19, etc. An 
event represents one or more actions that take 
place instantaneously at a given time (e.g., 
main street signal turns green). An activity is 
an occurrence that takes place between two 
events (e.g., car has left intersection 14 but 
has not yet reached intersection 15). The 
state of the system at any time is given by at­
tribute values and set memberships of all 
individual entities. The state is changed by the 
occurrence of an event. Changes in state may 
be responses to commands such as 

CREA TE or DESTROY an individual 
entity. 
ALTER set membership of an indi­
vidual entity. 
CHANGE numerical value of an attri­
bute. 

Events are handled by FORTRAN-like subrou­
tines. Endogenous events are triggered dy­
namically from within the model. Exogenous 
events may be scheduled prior to the start of 
the simulation run. Statistics may be accumu­
lated. Output is obtained through the use of 
a report generator whose format is defined on 
a format definition form. Input consists of 
definition cards, initialization cards, and sub­
programs. 

The various inputs are handled as follows: 
Defined items are converted directly into 
machine-coded subroutines that will control the 
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storage and retrieval functions; machine-coded 
dynamic control (timing) subroutines are also 
produced directly. s1MSCRIPT subprograms are 
converted into FORTRAN source language sub­
routines. These FORTRAN subroutines are then 
compiled by a standard FORTRAN compiler. 
Initialization cards are treated as data. 

GPSS (General Purpose System 
Simulator) 

GPSS is an interpreter-type simulation lan­
guage that describes the system in terms of 
blocks, transactions, and equipment using block 
diagrams22

-
2
". 

GPSS provides the following elements: 

1. Basic elements 
Blocks 
Transactions 

2. Equipment elements 
Facilities 
Storages 
Logic switches 

3. Statistical elements 
Queues 
Distribution tables 

4. Reference elements 
"Sa vexes" 

5. Computational elements 
Arithmetic variables 
Functions 

Transactions, temporary elements having 
eight parameters and eight priority levels, move 
from one block to another in the model. As a 
transaction enters a block a subroutine asso­
ciated with the bloc;k type causes a change in 
the state of the system. Transactions are 
created by ORIGINATE and GENERATE blocks and 
are destroyed by TERMINATE and ASSEMBLE 

blocks. Time is advanced in discrete steps, the 
value of the step being designated by the user. 

Outputs consist of a standard set of sta­
tistics written on the output tape at the end of 
the run. 

Inputs consist of definition cards, each of 
which defines a block, function, table, arith­
metic variable, or storage capacity. 

Comparison of SIMSCRIPT and GPSS 

Table D.l compares SIMSCRIPT with GPSS, 

based on the work of Murphy 26 and Teichrow 
and Lubin. 23 To summarize, sIMSCRIPT is 
more efficient than GPSS but requires a much 
higher level of skill on the part of the user; thus, 
GPSS is easier for use by the beginner. 

TABLE 0.1 Comparison of SIMSCRIPT and GPSS 

Characteristic 

General type 
Basic language 
User requirements 
Ease of use 

Can be used for 
nonsimulation programs 

Basic unit of program 
Time increments 
Report generator 
Variable names can be 

assigned to parameters 
Memory used for testing problem • 
Run time for test problem 

•In tests by Murphy.2° 

SIM SCRIPT 

Compiler 
FORTRAN 

Must know FORTRAN 

Difficult; diagnostics limited; 
expert help needed 

Yes 
Event routine 
Variable 
Flexible format 

Yes 
y 
J.6 min 

GPSS 

Interpreter 
None 
None 
Easy 

No 
Block 
Fixed 
Fixed format 

No 
2Y 
26.8 min 
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D-2 SIMULATION PROGRAM LISTING 

00100 REM A=ARRIVAL LIST 
00105 REt', A 1=ALPHA=PhOPOhll01'' HE.!:> TRP. lNE.D 
00110 HEM A2=Cl-ALPhA)=Pl\OFOi-:TION UNHE.SThAINE.D 
00115 HE~ B=GHE.EN~HIELDS' DEPARTURES LIST 
00120 HEM Cl=MAIN CLOCK 
00125 REV C2=TIME OF NEXT SIGNAL ChANGE 
00130 REN C3=TIME OF AHkIVAL 
00135 RE.M Dl=SCAN INTEkVAL IN SECONDS 
00140 HEM D2=DUE?TION OF RU~ IN HOLlkS 
00145 REM D3=TIME OF NEXl DEPARTURE 
00150 REM D4=TIME OF LAST DEPARTURE 
00155 REM D9= LARGE DEFA~TUhE TIME 
00160 REM Gl=SIGNAL STATE: O=REDJ l=GkEEN 
00165 REM G2=GREEN+AMBER DURATION IN SECONDS 
00170 HEM G3=TIME CURRENT GHEEN INTERVAL STAHTEL 
00175 HEM Hl=HEADWAY OF AhhIVAL 
00180 REM H2=MINIMUM HEADWAY FOR PASSAGE OF MOVING CAR 
00185 REM Ll=<LOCATIO~ OF LAST AkhIVAL>-1 
00190 REM L2=INDEX OF DEFAkTUhE 
00195 REM N=NUMBEH OF DEPARTUhES FROM QUEUE 
00200 HEM M=NUMBEK OF CARS PASSING THhU WITHOUT QUEUEING 
00205 HEM El=HED INTERVAL DURATION IN SECONDS 
00210 REM R2=FIHST RANDOM NUMBER 
00215 hEM R3=SECOND RANDOM NUMBEh 
00220 REM Sl=SUM OF DELAYS 
00225 REM Tl=AhHIVAL CONSTANT 
00230 REM 12=ARRIVAL CONSTANT 
00235 REM Ul=UlILIZATION: l=FULLY U1ILIZEDJ O=NOT FULLY UTILIZED 
00240 REM U2=COUNT OF GHEEN INTEHVALS NOT FULLY UTILIZED 
00245 REM U3=COUNT OF ALL GHEEN INTEkVALS 
00250 HEM Ql=MAX QUEUE LENGTH 
00255 HE~ Q2=FLOW LEAVING INTERSECTION 
002 60 hEM X 1 : l =MOVING DEPAHTUhEJ O=DEPAHT URE FROM QUEUE 
00265 HEM INITIALIZE 
00270 DIM AC30),8C30) 
00275 MAT A=ZEh 
00280 U2=U3=0 
00285 Ll=Cl=C3=Gl=Sl=M=N=Xl=O 
00290 Ql=O 
00295 PRINT "TYPE VOLUME IN VEHICLES PEh HOUh"J 
00300 INPUT V 
00305 IF V>B69 THEN 00930 
00310 PRINT "TYPE DUHATION OF kED AND DUhATION OF CGHEEN+AMBEH)" 
00315 PHINT "IN SECONDS"; 

INPUT Rl, G2 
PRINT "TYPE DURATION OF RUN IN HOURS"; 
INPUT D2 

00320 
00325 
00330 
00335 
00340 
00345 

PRINT "TYPE SCAN INTEhVAL IN SECONDS"; 
INPUT Dl 
PRINT "TYPE 

00350 INPUT H2 
00355 Tl=2·5 

MIN. 

00360 T2=24-0.0l22*V 
00365 D9=3600*D2+1 
00370 PRINT 
0037 5 PRINT 
00380 D3=D9 

HD\·/Y. FOH MOV. PASSAGE IN SEC"; 



DATA SUPPLEMENTARY TO CHAPTER 9 

00385 El=l.O 
00390 .Al=0.00115*V 
00395 .A2=1-.Al 
00400 BC1)=3.8 
00405 BC2)=6.9 
00410 BC3)=9·6 
00415 8(4)=12.0 
00420 8C5)=14.2 
00425 FOk I=6 TO 30 
00430 BCI>=l4.2+2.l*CI-5> 
00435 NEXT I 
00440 C2= Cl+ Hl 
00445 D4=C2 
00450 HEM 
00455 HEM 
00460 REM GEN EH.ATE .AhhI VAL 
00465 h2=HNDCX> 
00470 h3=HNDCX) 
00475 IF R2<=Al THEN 00490 
00480 H=T2*C-LOGCh3)) 
00485 GO TO 00495 
00490 H=Tl*C-LOGCH3))+El 
00495 C3=C3+H 
00500 GO TO 00685 
00505 REM ENTER .ARhIV.AL INTO QUEUE LIST 
00510 ACLl+l>=C3 
00515 Ll=Ll+l 
00520 IF Ll=<Ql THEN 00530 
00525 Ql=Ll 
00530 GO TO 00535 
00535 HEM PROCESS DEP.AHTUhES 
00540 IF Gl=O THEN 00670 
00545 IF D3>Cl THEN 00670 
00550 IF D3>C2 THEN 00670 
00555 D4=D3 
00560 hEM CHECK IF MOVING 
00565 IF Xl=l THEN 00655 
00570 Sl=Sl+D3-.AC1> 
00575 N=N+ 1 
00580 FOR I=l TO Ql 
00585 .ACI>=ACI+l) 
00590 NEXT I 
00595 L2=L2+1 
00600 IF Ll=O THEN 00615 
00605 IF Ll<O THEN 00920 
00610 Ll=Ll-1 
00615 GO TO 00620 
00620 IF Ll>O THEN 00640 
00625 Xl=l 
00630 D3=D9 
00635 GO TO 00665 
00640 REM 
00645 D3=G3+BCL2) 
00650 GO TO 00665 
00655 M=M+l 
00660 D3=D9 
00665 REM 
00670 REM CHECK IF TIME 10 GENERATE NEW AHRIVAL 
00675 IF Cl>=C3 THEN 00460 
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00680 REM 
00685 REM CHECK COMPLETION OF. RUN AND OUTPUT RESULTS 
00690 IF Cl<D2*3600 THEN 00770 
00695 Q2=CN+M>ID2 
00700 PRINT " SIGNALIZED INTERSECTION SIMULATION" 
00705 PRINT " INPUT VOLUME="V;"VEHICLES PER HOUR" 
00710 PRINT "SIG.CYCLE";Rl;"SEC• RED",G2J"SECo GREEN+AMBER" 
00715 PRINT "MIN. HDVJY FOR MOVING PASSAGE=";H2J"SECONDS" 
00720 PRINT " RESULTS" 
00725 PRINT 
00730 PRINT "FLOVJ LEAVING INTERSECTION="JQ2;"VEHICLES PER HOUR" 
00735 PRINT "MAXIMUM QUEUE LE.NGTH=";Ql 
00740 PRINT "TOTAL DELAY"JSU"VEHICLE SECONDS FOR RUN OF";D2.i"HOURS" 
00745 PRINT "TOTAL GREEN INTE.RVALS="JU3 
00750 PRINT "NUMBER OF. GREEN INTERVALS NOT FULLY UTILIZE.D=";U2 
00755 GO TO 00925 
00760 HEM 
00765 REM INCREMENT CLOCK. CHECK SIGNAL STATUS; CHANGE IF READY. 
00770 Cl=Cl+Dl 
00775 IF C2>Cl THEN 00855 
00780 IF Gl=O THEN 00815 
00785 REM CHANGE TO RED 
00790 Gl=O 
00795 Xl=O 
00800 C2=C2+Rl 
00805 GO TO 00860 
00810 REM CHANGE TO GREEN 
00815 Gl=l 
00820 Ul=l 
00825 U3=U3+1 
00830 L2= l 
00835 G3=C2 
00840 C2=C2+G2 
00845 D4=G3 
00850 D3=G3+BC1> 
00855 hE.M CHECK IF TIME TO PROCESS NEW ARRIVAL 
00860 IF Cl<C3 THEN 00535 
00865 IF Xl=O THEN 00505 
00870 IF Ll>O THEN 00905 
00875 IF C3<=CD4+H2) THEN 00905 
00880 IF Ul=O THEN 00895 
00885 Ul=O 
00890 U2=U2+1 
00895 D3=C3+T3 
00900 GO TO 00535 
00905 Xl=O 
00910 GO TO 00505 
00915 REM 
00920 PRINT "QUEUE INDEX E.hhOR" 
00925 STOP 
00930 PHINT "VOLUME 100 GREAT" 
00935 STOP 
00940 END 
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