2.Newton's Backward Interpolation

Backward Difference

- ightharpoonup If $y_0, y_1, y_2, \dots, y_n$ denote a set of values of y,
- then $y_1 y_0, y_2 y_1, ..., y_n y_{n-1}$ are called the differences of y.
- Denoting the differences by $\nabla y_1, \nabla y_2, ..., \nabla y_n$ respectively,

we have
$$\nabla y_1 = y_1 - y_0$$
,

$$\nabla y_2 = y_2 - y_1,$$

$$\nabla y_n = y_n - y_{n-1}$$

Where ∇ is called the backward difference operator and $\nabla y_1, \nabla y_2, ..., \nabla y_n$ are called first backward differences.

Backward Difference

- The differences of the first backward differences are called second backward differences
- lacktriangle and denoted by $\nabla^2 y_1$, $\nabla^2 y_2$, ..., $\nabla^2 y_n$

We have ,
$$\nabla^2 y_1 = \nabla y_1 - \nabla y_0$$

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1,$$

$$\nabla^2 y_3 = \nabla y_3 - \nabla y_2,$$

•••••

•••••

$$\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$$

Similarly, third, fourth, fifth etc. backward differences can

Third, Fourth backward differences

$$\nabla^{2}y_{2} = \nabla y_{2} - \nabla y_{1}$$

$$= y_{2} - y_{1} \cdot (y_{1} - y_{0})$$

$$= y_{2} - y_{1} \cdot y_{1} + y_{0}$$

$$= y_{2} - 2y_{1} + y_{0}$$

$$\nabla y_1 = y_1 - y_0$$

$$\nabla y_2 = y_2 - y_1$$

$$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2 = y_3 - 3y_2 + 3y_1 - y_0,$$

Third, Fourth backward differences

$$\nabla^{3} y_{4} = \nabla^{2} y_{4} - \nabla^{2} y_{3}
= \nabla y_{4} - \nabla y_{3} - (\nabla y_{3} - \nabla y_{2})
= \nabla y_{4} - \nabla y_{3} - \nabla y_{3} + \nabla y_{2}
= \nabla y_{4} - 2\nabla y_{3} + \nabla y_{2}
= y_{4} - y_{3} - 2(y_{3} - y_{2}) + y_{2} - y_{1}
= y_{4} - y_{3} - 2y_{3} + 2y_{2} + y_{2} - y_{1}
= y_{4} - 3y_{3} + 3y_{2} - y_{1}$$

$$\nabla^2 y_4 = \nabla y_4 - \nabla y_3$$

$$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$$

$$\nabla y_4 = y_4 - y_3$$

$$\nabla y_3 = y_3 - y_2$$

$$\nabla y_2 = y_2 - y_1$$

Prove That, $\nabla^3 y_4 = y_4 - 3y_3 + 3y_2 - y_1$

Backward Difference Table

X	\mathbf{y}						
	y ₀						
	y ₁	$\nabla y_1 = y_1 - y_0$					
	y ₂	∇y_2 = $y_2 - y_1$	$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$				
	y 3	$\nabla y_3 = y_3 - y_2$	$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$	$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2$			
	<u>y</u> 4	$\nabla y_4 = y_4 - y_3$	$\nabla^2 y_4 = \nabla y_4 - \nabla y_3$	$\nabla^3 y_4 = \nabla^2 y_4 \qquad \nabla^2 y_3$	$\nabla^4 y_4 = \nabla^2 y_4 - \nabla^2 y_3$		
	y ₅	$\nabla y_5 = y_5 - y_4$	$\nabla^2 y_5 = \nabla y_5 - \nabla y_4$	$\nabla^3 y_5 = \nabla^2 y_5 - \nabla^2 y_4$	$\nabla^4 y_5 = \nabla^2 y_5 - \nabla^2 y_4$	$\nabla^5 y_5 = \nabla^2 y_5 - \nabla^2 y_4$	
	У6	∇y_6 = y_6-y_5	$\nabla^2 y_6 = \nabla y_6 - \nabla y_5$	$\nabla^3 y_6 = \nabla^2 y_6 - \nabla^2 y_5$	$\nabla^4 \mathbf{y}_6 = \nabla^2 \mathbf{y}_6 - \nabla^2 \mathbf{y}_5$	$\nabla^5 y_6 = \nabla^4 y_6 - \nabla^4 y_5$	$\nabla^6 y_6 = \nabla^5 y_6 - \nabla^5 y_5$

Or Backward Difference Table

	y						
	y ₀						
		$\nabla y_1 = y_1 - y_0$					
y	1		$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$				
		∇y_2 = $y_2 - y_1$		$\nabla^3 y_3 = \nabla^2 y_3 \qquad \nabla^2 y_2$			
у	72		$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$		$\nabla^4 y_4 = \nabla^3 y_4 - \nabla^3 y_3$		
		∇y_3 = $y_3 - y_2$		$\nabla^3 y_4 = \nabla^2 y_4 - \nabla^2 y_3$		$\nabla^5 y_5 = \nabla^2 y_5 - \nabla^2 y_4$	
y	73		$\nabla^2 y_4 = \nabla y_4 - \nabla y_3$		$\nabla^4 y_5 = \nabla^3 y_5 - \nabla^3 y_4$		$\nabla^6 y_6 = \nabla^5 y_6 - \nabla^5 y_5$
		$\nabla y_4 = y_4 - y_3$		$\nabla^3 y_5 = \nabla^2 y_5 - \nabla^2 y_4$		$\nabla^5 y_6 = \nabla^4 y_6 - \nabla^4 y_5$	
y.	4		$\nabla^2 y_5 = \nabla y_5 - \nabla y_4$		$\nabla^4 y_6 = \nabla^2 y_6 - \nabla^2 y_5$		
		$\nabla y_5 = y_5 - y_4$		$\nabla^3 y_6 = \nabla^2 y_6 - \nabla^2 y_5$			
y.	' 5		$\nabla^2 y_6 = \nabla y_6 - \nabla y_5$				
		$\nabla y_6 = y_6 - y_5$					
y	6						
	y	y ₀ y ₁ y ₂ y ₃ y ₄ y ₅ y ₆	y_0 $y_1 = y_1 - y_0$ y_1 $y_2 = y_2 - y_1$ $y_2 = y_2 - y_1$ $y_3 = y_3 - y_2$ $y_4 = y_4 - y_3$ $y_4 = y_4 - y_3$ $y_5 = y_5 - y_4$ $y_5 = y_6 - y_5$	y_0 $y_1 = y_1 - y_0$ $y_1 = y_1 - y_0$ $y_2 = y_2 - y_1$ $y_2 = y_2 - y_1$ $y_2 = y_2 - y_1$ $y_3 = y_3 - y_2$ $y_3 = y_3 - y_2$ $y_4 = y_4 - y_3$ $y_4 = y_4 - y_3$ $y_5 = y_5 - y_4$ $y_5 = y_5 - y_4$ $y_6 = y_6 - y_5$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Example: Find the Backward Difference table by the following data is:

 $\mathbf{x}: 20$

23

26

29

y: 0.342 0.3907 0.4384

0.4848

$$\nabla y_1 = y_1 - y_0$$

$$\nabla y_2 = y_2 - y_1$$

$$\nabla y_3 = y_3 - y_2$$

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$$

 $\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2$

X

$$y_0 = 0.342$$

$$y_1 = 0.3907$$
 $\nabla y_1 = 0.0487$

$$y_2 = 0.4384$$
 $\nabla y_2 = 0.0477$

$$\Delta^2 y_2 = -0.0010$$

$$y_3 = 0.4848$$

$$\nabla y_3 = 0.0464$$

$$\Delta^2 y_3 - 0.0013$$

$$\Delta^3 y_3 = -0.0003$$

Example: Find the Backward Difference table by the following data is:

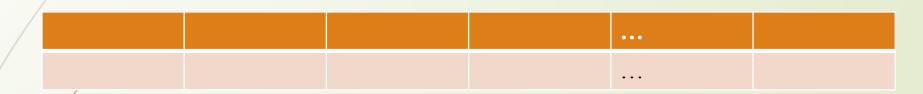
x: 20

23

26

29

y: 0.342 0.3907


0.4384

0.4848

X	y			
	$y_0 = 0.342$			
		$\nabla y_1 = 0.0487$		
	$y_1 = 0.3907$		$\Delta^2 y_2 = -0.0010$	
		$\boxed{\nabla y_2 = 0.0477}$		$\Delta^3 y_3 = -0.0003$
	$y_2 = 0.4384$		$\Delta^2 y_3 - 0.0013$	
		$\nabla y_3 = 0.0464$		
	$y_3 = 0.4848$			

Newton's backward Interpolation

If the given data is,

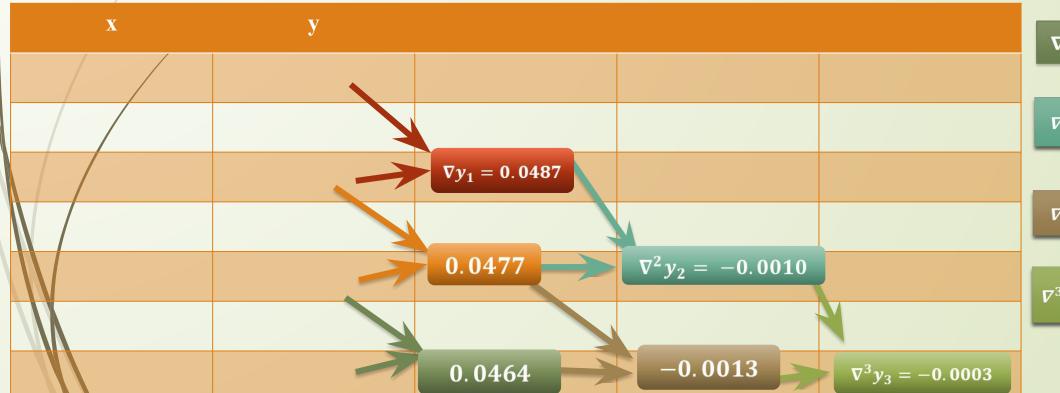
Then the Newton's Backward interpolation formula will be,

$$y(x) = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n + \dots + \frac{u(u+1)(u+2)\dots(u+n-1)}{n!} \nabla^n y_n$$

where, $u = \frac{x - x_n}{h}$; h is the difference of x values in the chart.

Problem 1. Find the value of y at x=28 from the following data:

 $\mathbf{x}: \mathbf{20}$


23

26

 $\nabla y_1 = y_1 - y_0$

Solution: we construct the difference table for the given data is as follows:

$$\nabla y_2 = y_2 - y_1$$

$$\nabla y_3 = y_3 - y_2$$

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$$

$$\nabla^2 y_3$$
 = $\nabla y_3 - \nabla y_2$

$$abla^3y_3$$
= $abla^2y_3$ - $abla^2y_2$

Here X = 28, $x_n = 29$, h = 3We have to find y(28).

Here
$$u = \frac{x - x_n}{h}$$

$$= \frac{28 - 29}{3}$$
$$= -0.3333$$

23-20 = 3 26-23 = 3 29-26 = 3

From the Given Table,

Problem 1. Find the value of y at x=28 from the following data:

x: 20 23

26

29

Since x=28 is the last 2nd of the table, so we use Newton's Backward

formula.

 $y_n = 0.4848$

Now, by Newton's Backward interpolation formula, we get

$$y(x) = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n$$

$$y(28) = 0.4848 + (-0.3333) \times 0.0464$$

$$u = -0.3333$$

$$\nabla y_n = 0.0464$$

$$+\frac{(-0.33333)(-0.3333+1)}{2!}(-0.0013)$$

$$\nabla^2 y_n = -0.0013$$

$$\nabla^3 y_n = -0.0003$$

$$\nabla^3 y_n = -0.0003$$

$$+\frac{(-0.3333)(-0.3333+1)(-0.3333+2)}{3!}(-0.0003)$$

0. 46946 Problem 1. Find the value of y at
$$x=28$$
 from the following data:

x: 20 23 y: 0.342 0.3907 0.4384 0.4848 Problem 2. A second degree polynomial passes through (0,1),(1,3),(2,7), and (3,13). Find the polynomial.

Solution: We construct the difference table for the given data is as follows:

	X	y				
	0	1				
			$\nabla y_1 = 3 - 1 = 2$			
	/ 1	3		$ abla^2 y_2 = 4 - 2 = 2$		
/			$\nabla y_2 = 7 - 3 = 4$		$\nabla^3 y_3 = 2 - 2 = 0$	
	2	7		$ abla^2 y_3 = 6 - 4 = 2$		
\			$\nabla y_2 = 13 - 7 = 6$			
	3	13				

By Newton's Backward interpolation formula, we get

$$y(x) = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n$$

Where
$$u = \frac{x - x_n}{h}$$

$$u = \frac{x-3}{1} = x - 3$$

Where
$$u = \frac{x - x_n}{h}$$
 $\begin{cases} x_n = 3 ; h = 1 \\ 1-0=1 \\ 2-1=1 \\ 3-2=1 \end{cases}$

Problem 2. A second degree polynomial passes through (0,1),(1,3),(2,7), and (3,13). Find the polynomial.

Here X is not given So you can Choose Any methods from Newtons Interpolation Formula, Choose either Forward or Backward Interpolation Formula.

$$y(x) = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n$$

$$= 13 + (x-3) \times 6 + \frac{(x-3) \times (x-3+1)}{2} \times 2 + \frac{(x-3) \times (x-3+1) \times (x-3+2)}{6} \times 0$$

$$y(x) = 13 + 6x - 18 + 6(x-3) \times (x-2)$$

$$= -5 + 6x + 6(x^{2} - 5x + 6)$$

$$= 6x^{2} - 30x + 36 + 6x - 5$$

$$= 6x^{2} - 24x + 31$$

$$y_{n} = 13$$

$$\nabla y_{n} = 6$$

$$\nabla^{2}y_{n} = 2$$

Which is the required polynomial.

Practice Work

3. The values of $\sin x$ are given below for different values of x, find the value of $\sin 38^{\circ}$.

x	15	20	25	30	35	40
$y = \sin x$	0.2588190	0.3420201	0.4226183	0.5	0.5735764	0.6427876

4. The population of a town in the last six censuses was as given below. Estimate the population for the year 1946.

Year(x)		1911	1921	1931	1941	1951	1961
Population	in	12	15	20	27	39	52
thousands(y)							

HOF SIGN WIGH