Numerical Integration

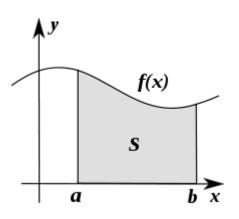
Md. Mehedi Hasan Lecturer @ DIU

NUMERICAL INTEGRATION

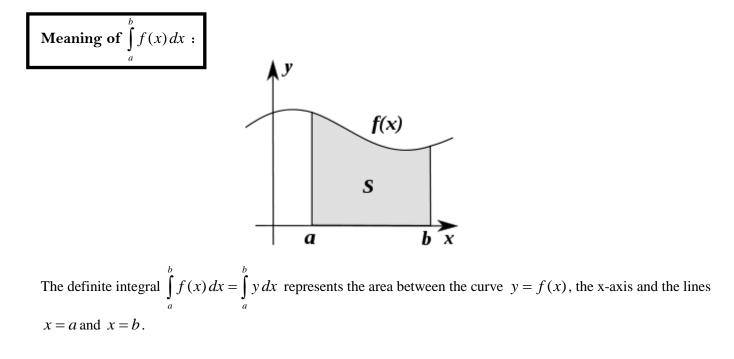
There are two main reasons for you to need to do numerical integration: analytical integration may be impossible or infeasible, or you may wish to integrate tabulated data rather than known functions. In this section, we outline the main approaches to numerical integration.

Numerical integration is the approximate computation of integral using numerical techniques. The numerical computation of an integral is sometimes called quadrature. Therefore, the basic problem in numerical integration is to compute an approximate value to a definite integral

to a given degree of accuracy.



Numerical Integration consists of finding numerical approximations for the value S.



Numerical Integration:

Numerical integration is the process by which we can find the value of definite integral $\int_{a}^{b} f(x) dx$ numerically by using some well-established formulae or rules. The exact value of a definite integral $\int_{a}^{b} f(x) dx$ can be computed only when the function f(x) is integrable in finite terms, whenever the function y = f(x) cannot be exactly integrated in finite terms or the evaluation of its integral is too cumbersome, integration can be more conveniently performed by numerical method. Various methods have been derived to find the above area approximately, in this case when f(x) is not easily integrable. Hence these methods of approximating an area are essential methods for approximating a definite integral. The developed approximating methods are as follows:

i) Trapezoidal Rule

ii) Simpson's
$$\frac{1}{3}$$
 Rule
iii) Simpson's $\frac{3}{8}$ Rule

- iv) Weddle's Rule
- v) Romberg's Integration Rule
- vi) Boole's Rule etc.

General Formula for Numerical Integration:

Let us consider an integral $I = \int_{a}^{b} y dx$ where y = f(x) is continuous on [a,b] and be given for certain

equidistant values of x.

Let the equidistant values of x is, $a = x_0, x_0 + h, x_0 + 2h, x_0 + 3h, \dots, x_0 + nh = b$

$$\therefore I = \int_{a=x_0}^{b=x_0+nh} y dx \qquad (1)$$

From Newton's Forward Interpolation formula, we have,

$$y = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \dots + \dots + u = \frac{x - x_0}{h}$$

From (1) we get,

$$\therefore I = \int_{x_0}^{x_0+nh} [y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \dots]dx \quad \dots (2)$$

Now we know,

$$u = \frac{x - x_0}{h} \Longrightarrow x = x_0 + uh \qquad \therefore dx = hdu$$

Limit Change:

When $x = x_0$ then u = 0When $x = x_n$ then u = n

Therefore, above equation (2) takes the form,

$$I = \int_{0}^{n} \left[y_{0} + u\Delta y_{0} + \frac{u(u-1)}{2!} \Delta^{2} y_{0} + \frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0} + \dots + upto(n+1)terms \right] hdu$$

$$= h \int_{0}^{n} \left[y_{0} + u\Delta y_{0} + \frac{u(u-1)}{2!} \Delta^{2} y_{0} + \frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0} + \dots + upto(n+1)terms \right] du$$

$$= h \int_{0}^{n} \left[y_{0} + u\Delta y_{0} + \frac{(u^{2}-u)}{2!} \Delta^{2} y_{0} + \frac{(u^{2}-u)(u-2)}{3!} \Delta^{3} y_{0} + \dots + upto(n+1)terms \right] du$$

$$= h \int_{0}^{n} \left[y_{0} + u\Delta y_{0} + \frac{(u^{2}-u)}{2!} \Delta^{2} y_{0} + \frac{(u^{3}-3u^{2}+2u)}{3!} \Delta^{3} y_{0} + \dots + upto(n+1)terms \right] du$$

$$= h \left[y_{0}u + \frac{u^{2}}{2} \Delta y_{0} + \frac{1}{2!} \left(\frac{u^{3}}{3} - \frac{u^{2}}{2} \right) \Delta^{2} y_{0} + \frac{1}{3!} \left(\frac{u^{4}}{4} - u^{3} + u^{2} \right) \Delta^{3} y_{0} + \dots + upto(n+1)terms \right]^{n}$$

$$\therefore I = \int_{a}^{b} y dx = \int_{x_{0}}^{x_{0}+nh} y dx = h \left(ny_{0} + \frac{n^{2}}{2} \Delta y_{0} + \left(\frac{n^{3}}{3} - \frac{n^{2}}{2} \right) \Delta^{2} \frac{y_{0}}{2!} + \left(\frac{n^{4}}{4} - n^{3} + n^{2} \right) \frac{\Delta^{3} y_{0}}{3!} + \dots + upto(n+1)terms \right]$$

This Formula is known as general quadrature formula or General formula for numerical integration and also known as General Gauss -Legendre integration formula for equidistant ordinates.

Note:

- 1. This formula is used to compute $\int_{a}^{b} f(x) dx$
- 2. Putting n = 1 in above equation we obtain Trapezoidal rule
- 3. Putting n = 2 in above equation we obtain Simpson's $\frac{1}{3}$ Rule
- 4. Putting n = 3 in above equation we obtain Simpson's $\frac{3}{8}$ Rule
- 5. Putting n = 4 in above equation we obtain Boole's Rule
- 6. Putting n = 6 in above equation we obtain Weddle's Rule

Trapezoidal Rule:

The general integration formula is

$$I = \int_{a}^{b} y dx = \int_{x_{0}}^{x_{0}+nh} y dx = h \left(ny_{0} + \frac{n^{2}}{2} \Delta y_{0} + \left(\frac{n^{3}}{3} - \frac{n^{2}}{2}\right) \frac{\Delta^{2} y_{0}}{2!} + \left(\frac{n^{4}}{4} - n^{3} + n^{2}\right) \frac{\Delta^{3} y_{0}}{3!} + \dots + upto(n+1) terms \right)$$

Setting n = 1 in above equation and neglecting the second and higher order, we get

$$\int_{x_0}^{x_0+h} y dx = h \left(y_0 + \frac{1}{2} \Delta y_0 \right)$$

= $h \left(y_0 + \frac{1}{2} (y_1 - y_0) \right) = h \left(y_0 + \frac{1}{2} (y_1 - y_0) \right) = h \left(y_0 + \frac{1}{2} y_1 - \frac{1}{2} y_0 \right) = h \left(\frac{1}{2} y_0 + \frac{1}{2} y_1 \right)$
 $\therefore \int_{x_0}^{x_0+h} y dx = \frac{h}{2} (y_0 + y_1)$

Similarly, we can get,

 $\int_{x_0+2h}^{x_0+2h} y dx = \frac{h}{2} (y_1 + y_2)$ $\int_{x_0+2h}^{x_0+3h} y dx = \frac{h}{2} (y_2 + y_3)$ \dots $\int_{x_0+nh}^{x_0+nh} y dx = \frac{h}{2} (y_{n-1} + y_n)$

Adding these n integrals, we get

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{h}{2} (y_{0} + y_{1}) + \frac{h}{2} (y_{1} + y_{2}) + \frac{h}{2} (y_{2} + y_{3}) + \dots + \frac{h}{2} (y_{n-1} + y_{n})$$

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{h}{2} (y_{0} + y_{1} + y_{1} + y_{2} + y_{2} + y_{3} + \dots + y_{n-1} + y_{n})$$

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{h}{2} [(y_{0} + y_{n}) + 2(y_{1} + y_{2} + y_{3} + \dots + y_{n-1})]$$

The above formula is known as the trapezoidal rule for numerical integration.

Shortly we can write, $\int_{x_0}^{x_0+nh} y dx = \frac{h}{2} \left[\left(y_0 + y_n \right) + 2 \sum_{k=1}^{n-1} y_k \right]$

Simpson's $\frac{1}{3}$ **Rule:**

The general integration formula is

$$I = \int_{a}^{b} y dx = \int_{x_{0}}^{x_{0}+nh} y dx = h \left(ny_{0} + \frac{n^{2}}{2} \Delta y_{0} + \left(\frac{n^{3}}{3} - \frac{n^{2}}{2}\right) \frac{\Delta^{2} y_{0}}{2!} + \left(\frac{n^{4}}{4} - n^{3} + n^{2}\right) \frac{\Delta^{3} y_{0}}{3!} + \dots + upto(n+1) terms \right)$$

Setting n = 2 in above equation and neglecting the third and higher order, we get

$$\sum_{x_{0}}^{x_{0}+2h} y dx = h \left(2y_{0} + \frac{2^{2}}{2} \Delta y_{0} + \left(\frac{2^{3}}{3} - \frac{2^{2}}{2} \right) \frac{\Delta^{2} y_{0}}{2!} \right)$$

$$= h \left(2y_{0} + 2\Delta y_{0} + \left(\frac{8}{3} - 2 \right) \frac{\Delta^{2} y_{0}}{2} \right) = h \left(2y_{0} + 2\Delta y_{0} + \frac{\Delta^{2} y_{0}}{3} \right) = h \left(2y_{0} + 2(y_{1} - y_{0}) + \frac{1}{3} (\Delta y_{1} - \Delta y_{0}) \right)$$

$$= h \left(2y_{0} + 2(y_{1} - y_{0}) + \frac{1}{3} \{ (y_{2} - y_{1}) - (y_{1} - y_{0}) \} \right) = h \left(2y_{0} + 2y_{1} - 2y_{0} + \frac{1}{3} (y_{2} - 2y_{1} + y_{0}) \right)$$

$$= \frac{h}{3} (6y_{0} + 6y_{1} - 6y_{0} + (y_{2} - 2y_{1} + y_{0}))$$

$$\therefore \sum_{x_{0}}^{x_{0}+2h} y dx = \frac{h}{3} (y_{0} + 4y_{1} + y_{2})$$

Similarly, we can write,

$$x_{0}^{+4h} y dx = \frac{h}{3} (y_{2} + 4y_{3} + y_{4})$$

$$x_{0}^{+6h} \int_{x_{0}+4h}^{y_{0}+6h} y dx = \frac{h}{3} (y_{4} + 4y_{5} + y_{6})$$

$$\dots$$

$$x_{0}^{+nh} y dx = \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_{n})$$

Now adding the n integrals, we can write

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{h}{3} (y_{0} + 4y_{1} + y_{2}) + \frac{h}{3} (y_{2} + 4y_{3} + y_{4}) + \frac{h}{3} (y_{4} + 4y_{5} + y_{6}) + \dots + \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_{n})$$

$$= \frac{h}{3} [y_{0} + 4y_{1} + y_{2} + y_{2} + 4y_{3} + y_{4} + 4y_{5} + y_{6} + \dots + y_{n-2} + 4y_{n-1} + y_{n}]$$

$$\therefore \int_{x_{0}}^{x_{0}+nh} y dx = \frac{h}{3} [(y_{0} + y_{n}) + 4(y_{1} + y_{3} + y_{5} + \dots + y_{n-1}) + 2(y_{2} + y_{4} + y_{6} + \dots + y_{n-2})]$$

The above formula is known as the Simpson's 1/3 rule for numerical integration.

Shortly we can write,

$$\int_{x_0}^{x_0+nh} y dx = \frac{h}{3} \left[\left(y_0 + y_n \right) + 4 \sum_{k=1,3,5,\dots}^{n-1} y_k + 2 \sum_{k=2,4,6,\dots}^{n-2} y_k \right]$$

Note:

This formula is used only when the number of partitions of the interval of integration is even.

Simpson's $\frac{3}{8}$ **Rule:**

The general integration formula is

$$I = \int_{a}^{b} y dx = \int_{x_{0}}^{x_{0}+nh} y dx = h \left(ny_{0} + \frac{n^{2}}{2} \Delta y_{0} + \left(\frac{n^{3}}{3} - \frac{n^{2}}{2}\right) \frac{\Delta^{2} y_{0}}{2!} + \left(\frac{n^{4}}{4} - n^{3} + n^{2}\right) \frac{\Delta^{3} y_{0}}{3!} + \dots + upto(n+1)terms \right)$$

Setting n = 3 in above equation and neglecting the fourth and higher order, we get

$$\int_{x_0}^{x_0+3h} y dx = h \left(3y_0 + \frac{3^2}{2} \Delta y_0 + \left(\frac{3^3}{3} - \frac{3^2}{2} \right) \frac{\Delta^2 y_0}{2!} + \left(\frac{3^4}{4} - 3^3 + 3^2 \right) \frac{\Delta^3 y_0}{3!} \right)$$

$$= h \left(3y_0 + \frac{9}{2} \Delta y_0 + \frac{9}{4} \Delta^2 y_0 + \frac{3}{8} \Delta^3 y_0 \right) = \frac{3h}{8} \left(8y_0 + 12 \Delta y_0 + 6\Delta^2 y_0 + \Delta^3 y_0 \right)$$

$$= \frac{3h}{8} \left(8y_0 + 12 (y_1 - y_0) + 6 (\Delta y_1 - \Delta y_0) + \Delta (\Delta y_1 - \Delta y_0) \right)$$

$$= \frac{3h}{8} \left(8y_0 + 12 (y_1 - y_0) + 6 (y_2 - 2y_1 + y_0) + (\Delta y_2 - 2\Delta y_1 + \Delta y_0) \right)$$

$$= \frac{3h}{8} \left(8y_0 + 12 (y_1 - y_0) + 6 (y_2 - 2y_1 + y_0) + (y_3 - y_2 - 2 (y_2 - y_1) + y_1 - y_0) \right)$$

$$= \frac{3h}{8} \left(8y_0 + 12 y_1 - 12 y_0 + 6 y_2 - 12 y_1 + 6 y_0 + y_3 - 3 y_2 + 3 y_1 - y_0 \right)$$

$$\therefore \int_{x_0}^{x_0+3h} y dx = \frac{3h}{8} (y_0 + 3y_1 + 3y_2 + y_3)$$

Similarly, we can write,

$$\int_{x_{0}+6h}^{x_{0}+6h} y dx = \frac{3h}{8} (y_{3} + 3y_{4} + 3y_{5} + y_{6})$$

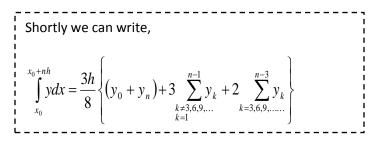
$$\int_{x_{0}+6h}^{x_{0}+9h} y dx = \frac{3h}{8} (y_{6} + 3y_{7} + 3y_{8} + y_{9})$$

$$\int_{x_0+(n-3)h}^{x_0+nh} y dx = \frac{3h}{8} (y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n)$$

Adding all these above integrals, we can write

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{3h}{8} (y_{0} + 3y_{1} + 3y_{2} + y_{3}) + \frac{3h}{8} (y_{3} + 3y_{4} + 3y_{5} + y_{6}) + \frac{3h}{8} (y_{6} + 3y_{7} + 3y_{8} + y_{9}) + \dots + \frac{3h}{8} (y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_{n}) \\ = \frac{3h}{8} \{y_{0} + 3y_{1} + 3y_{2} + y_{3} + 3y_{4} + 3y_{5} + y_{6} + y_{6} + 3y_{7} + 3y_{8} + y_{9} + \dots + y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_{n}\} \\ \therefore \int y dx = \frac{3h}{8} \{(y_{0} + y_{n}) + 3(y_{1} + y_{2} + y_{4} + y_{5} + y_{7} + y_{8} + \dots + y_{n-2} + y_{n-1}) + 2(y_{3} + y_{6} + y_{9} + \dots + y_{n-3})\}$$

The above formula is known as the Simpson's 3/8 rule for numerical integration.



Note: This formula is used only when the number of partitions of the interval of integration is a multiple of the number 3.

Weddle's Rule:

Similarly if we put n=6 in general integration formula then we get Weddle's formula

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{3h}{10} [y_{0} + 5y_{1} + y_{2} + 6y_{3} + y_{4} + 5y_{5} + 2y_{6} + 5y_{7} + y_{8} + \dots]$$
Shortly we can write,

$$\int_{x_{0}}^{x_{0}+nh} y dx = \frac{3h}{10} \left\{ \sum_{k=0,2,4,6,\dots}^{n} y_{k} + 5 \sum_{k=1,3,5,\dots}^{n-1} y_{k} + \sum_{k=3,6,9\dots}^{n-3} y_{k} \right\}$$

Note:

1. This formula requires at least seven consecutive values of the function.

2. This formula is used only when the number of partitions of the interval of integration is a multiple of the number 6.

MATHEMATICAL PROBLEMS

Problem 01: Compute $\int_{1}^{2} x^{2} dx$ by Simpson's one third rule and compare with exact value.

Solution:

Given that the function is, $\int_{1}^{2} x^2 dx$

Here upper limit is b = 2, lower limit is a = 1 and number of subintervals n = 4 and let $y = f(x) = x^2$ Now,

$$h = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4} = 0.25$$

The values of the function y at each subinterval are given in the tabular form:

x	$x_0 = 1$	$x_1 = 1.25$	$x_2 = 1.50$	$x_3 = 1.75$	$x_4 = 2$
$y = f(x) = x^2$	$y_0 = 1$	<i>y</i> ₁ =1.5625	<i>y</i> ₂ = 2.25	<i>y</i> ₃ =3.0625	<i>y</i> ₄ = 4

From Simpson's $\frac{1}{3}$ Rule we have,

$$\therefore \int_{x_0}^{x_0+nh} y dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + y_6 + \dots + y_{n-2})]$$

Now for n = 4 the above formula reduces to the following form,

$$\int_{1}^{2} x^{2} dx = \frac{h}{3} [(y_{0} + y_{4}) + 4(y_{1} + y_{3}) + 2y_{2}]$$

= $\frac{0.25}{3} [(1+4) + 4(1.5625 + 3.0625) + 2 \times 2.25]$
 $\therefore \int_{1}^{2} x^{2} dx = \frac{7}{3}$

Now exact value is $\int_{1}^{2} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{2} = \frac{1}{3}(2^{3} - 1^{3}) = \frac{7}{3}$

It is shown that exact result and Simpson's $\frac{1}{3}$ Rule's result are exactly same so there is no error between two results.

Problem 02: Determine $\int_{4}^{52} \ln x \, dx$ by Simpson's 3/8 rule and Weddle's rule considering the number of intervals six. Find true value and then compare and comment on it.

Solution:

Given that the function is, $\int_{4}^{5.2} \ln x \, dx$

Here upper limit is b = 5.2, lower limit is a = 4 and No. of subintervals n = 6 and let $y = f(x) = \ln x$ Now,

$$h = \frac{5.2 - 4}{6} = \frac{1.2}{6} = 0.2$$

The values of the function y at each subinterval are given in the tabular form:

×	$x_0 = 4$	$x_1 = 4.2$	<i>x</i> ₂ =4.4	<i>x</i> ₃ = 4.6	$x_4 = 4.8$	$x_5 = 5.0$	$x_6 = 5.2$
$y = f(x) = \ln x$	$y_0 = 1.3862$	<i>y</i> ₁ =1.4350	y ₂ = 1.4816	<i>y</i> ₃ =1.5260	$y_4 = 1.5686$	<i>y</i> ₅ =1.6094	$y_6 = 1.6486$

Simpson's 3/8 rule:

We know that

$$\int_{x_0}^{x_0+nh} y dx = \frac{3h}{8} \{ (y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + y_7 + y_8 + \dots + y_{n-2} + y_{n-1}) + 2(y_3 + y_6 + y_9 + \dots + y_{n-3}) \}$$

Now for n = 6 the above formula reduces to the following form,

$$= \frac{3 \times 0.2}{8} \{ (y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3 \}$$
$$= \frac{3 \times 0.2}{8} \{ (1.3862 + 1.6486) + 3(1.4350 + 1.4816 + 1.5686 + 1.6094) + 2 \times 1.5260 \}$$

$$\int_{4}^{5.2} \ln x \, dx = \frac{3 \times 0.2}{8} \{ 3.0348 + 3 \times 6.0946 + 2 \times 1.5260 \} = 1.827795$$

Weddle's Rule:

We know that

$$\int_{x_0}^{x_0+nh} y dx = \frac{3h}{10} \left\{ \sum_{k=0,2,4,6,\dots}^n y_k + 5 \sum_{k=1,3,5,\dots}^{n-1} y_k + \sum_{k=3,6,9\dots}^{n-3} y_k \right\}$$

Now for n = 6 the above formula reduces to the following form,

$$\int_{4}^{5.2} \ln x \, dx = \frac{3 \times 0.2}{10} \left\{ \sum_{k=0,2,4,6,\dots,k}^{6} y_k + 5 \sum_{k=1,3,5,\dots}^{5} y_k + \sum_{k=3,6,9\dots}^{3} y_k \right\}$$

Or,
$$\int_{4}^{52} \ln x \, dx = \frac{3 \times 0.2}{10} \{y_0 + y_2 + y_4 + y_6 + 5(y_1 + y_3 + y_5) + y_3\}$$

Or,
$$\int_{4}^{52} \ln x \, dx = \frac{3 \times 0.2}{10} \{6.085 + 5 \times 4.5704 + 1.5260\}$$

$$\int_{4}^{52} \ln x \, dx = 1.82778$$

Exact value is
$$\int_{4}^{5.2} \ln x \, dx = [x \ln x]_{4}^{5.2} - \int_{4}^{5.2} \left[\frac{d}{dx}(\ln x)\int dx\right] dx$$

$$= [x \ln x]_{4}^{5.2} - \int_{4}^{5.2} \left[\frac{1}{x} \cdot x\right] dx$$

$$= [x \ln x]_{4}^{5.2} - \int_{4}^{5.2} dx$$

$$= [x \ln x]_{4}^{5.2} - \int_{4}^{5.2} dx$$

$$= [x \ln x]_{4}^{5.2} - \int_{4}^{5.2} dx$$

$$= [x \ln x]_{4}^{5.2} - [x]_{4}^{5.2}$$

$$= (5.2 \ln 5.2 - 4 \ln 4) - (5.2 - 4)$$

$$= 1.827847409$$

Result on Simpson's 3/8 rule and Weddle rule are closer to one another and also to the true value. That means both methods work well.

Problem 03: Compute the definite integral $\int_{0.2}^{1.4} (\sin x - \ln x + e^x) dx$ by using various rules using 6 equidistant sub-intervals correct up to three decimal places.

Solution:

Given that the function is, $\int_{0.2}^{1.4} (\sin x - \ln x + e^x) dx$

Here upper limit is b=1.4, lower limit is a=0.2 and No. of subintervals n=6 and let $y=f(x)=\sin x-\ln x+e^x$.

Now,

$$h = \frac{1.4 - 0.2}{6} = 0.2$$

The values of the function y at each subinterval are given in the tabular form:

Х	$x_0 = 0.2$	$x_1 = 0.4$	$x_2 = 0.6$	$x_3 = 0.8$	$x_4 = 1.0$	$x_5 = 1.2$	$x_6 = 1.4$
У	$y_0 = 3.0295$	$y_1 = 2.7975$	$y_2 = 2.8975$	$y_3 = 3.1660$	$y_4 = 3.5597$	$y_5 = 4.0698$	$y_6 = 4.7041$

<u>Trapezoidal Rule:</u>

We know that $\int_{x_0}^{x_0+nh} y dx = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$

Now for n = 6 the above formula reduces to the following form,

$$\int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{h}{2} [(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5)]$$

= $\frac{0.2}{2} [(3.0295 + 4.7041) + 2(2.7975 + 2.8975 + 3.1660 + 3.5597 + 4.0698)]$
= $\frac{0.2}{2} \times 40.7136$
 $\therefore \int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = 4.07136$

\Box Simpson's $\frac{1}{3}$ Rule:

We know that

$$\int_{x_0}^{x_0+nh} y dx = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + y_6 + \dots + y_{n-2}) \right]$$

Now for n = 6 the above formula reduces to the following form,

$$\int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{h}{3} [(y_0 + y_6) + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4)]$$
$$= \frac{0.2}{3} [(3.0295 + 4.7041) + 4(2.7975 + 3.1660 + 4.0698) + 2(2.8975 + 3.5597)]$$
$$\therefore \int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{0.2}{3} [7.7336 + 40.1332 + 12.9144] = 4.05208$$

\Box Simpson's $\frac{3}{8}$ Rule:

We know that $\int_{x_0}^{x_0+nh} y dx = \frac{3h}{8} \{ (y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + y_7 + y_8 + \dots + y_{n-2} + y_{n-1}) + 2(y_3 + y_6 + y_9 + \dots + y_{n-3}) \}$

Now for n = 6 the above formula reduces to the following form,

$$\int_{a}^{b} f(x) dx = \frac{3 \times 0.2}{8} \left\{ \left(y_0 + y_6 \right) + 3 \left(y_1 + y_2 + y_4 + y_5 \right) + 2 y_3 \right\}$$

$$\int_{a}^{b} f(x) dx = \frac{3 \times 0.2}{8} \{ (3.0295 + 4.7041) + 3(2.7975 + 2.8975 + 3.5597 + 4.0698) + 2 \times 3.1660 \}$$

$$\int_{a}^{b} f(x) dx = \frac{3 \times 0.2}{8} \times 54.0391$$

$$\int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{3 \times 0.2}{8} \times 54.0391 = 4.0529$$

□ Weddle's Rule:

We know that

$$\int_{a}^{b} f(x) dx = \frac{3h}{10} \left\{ \sum_{k=0,2,4,6,\dots,k}^{n} y_{k} + 5 \sum_{k=1,3,5,\dots,k}^{n-1} y_{k} + \sum_{k=3,6,9\dots}^{n-3} y_{k} \right\}$$

Now for n = 6 the above formula reduces to the following form,

$$\int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{3 \times 0.2}{10} \left\{ \sum_{k=0,2,4,6,\dots}^{6} y_k + 5 \sum_{k=1,3,5,\dots}^{5} y_k + \sum_{k=3,6,9\dots}^{3} y_k \right\}$$
$$= \frac{3 \times 0.2}{10} \left\{ y_0 + y_2 + y_4 + y_6 + 5(y_1 + y_3 + y_5) + y_3 \right\}$$
$$= \frac{3 \times 0.2}{10} \left\{ 3.0295 + 2.8975 + 3.5597 + 4.7041 + 5(2.7975 + 3.1660 + 4.0698) + 3.1660 \right\}$$

$$\int_{0.2}^{1.4} (\sin x + \ln x - e^x) dx = \frac{3 \times 0.2}{10} \times 67.5233 = 4.051398$$

Example 04: Evaluate $\int_{0}^{6} f(x) dx$ by using trapezoidal rule where the values of f(x) are given by the

following table:

X 0	0	1	2	3	4	5	6
Y=f(x)	0.146	0.161	0.176	0.190	0.204	0.217	0.230

Solution:

Here upper limit is b = 6, lower limit is a = 0 and No. of subintervals n = 6. Now,

$$h = \frac{6-0}{6} = 1$$

The values of the function y at each subinterval are given in the tabular form:

x	$x_0 = 0$	$x_1 = 1$	$x_2 = 2$	$x_3 = 3$	$x_4 = 4$	<i>x</i> ₅ = 5	<i>x</i> ₆ = 6
Y = f(x)	$y_0 = 0.146$	<i>y</i> ₁ =0.161	<i>y</i> ₂ = 0.176	<i>y</i> ₃ =0.190	<i>y</i> ₄ = 0.204	<i>y</i> ₅ =0.217	$y_6 = 0.230$

From trapezoidal rule we have

$$\int_{a}^{b} f(x) dx = \frac{1}{2} [(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$\int_{a}^{b} f(x) dx = \frac{1}{2} [(0.146 + 0.230) + 2(0.161 + 0.176 + 0.190 + 0.204 + 0.217)]$$

$$\int_{0}^{6} f(x) dx = 1.136$$

Try Yourself

- 1. Derive newton's general quadrature formula for numerical integration.
- 2. Obtain the formula for Simpson's one-third rule from general quadrature formula.
- 3. Obtain the formula for Simpson's rule and Weddle's rule from general quadrature formula to find $\int_{a}^{b} f(x) dx$.
- 4. Using Simpson's 3/8 th rule find the value of $\int_{0}^{3} e^{-2x} \sin 4x \, dx$ taking six sub-intervals.

5. Calculate the value of $\int_{1.2}^{1.8} \left(x + \frac{1}{x}\right) dx$, correct up 5D taking six sub-intervals by Simpson's 3/8 th

rule. Also, find the percentage errors and compare to the exact solution.

6. Using Simpson's 3/8 th rule find the value of $\int_{0}^{1} \frac{\ln(1+x^{2})}{1+x^{2}} dx$

- 7. Evaluate $\int_{0}^{2} e^{2x} \sin 3x \, dx$, using Simpson's rule and Weddle's rule.
- 8. Using Simpson's three-eight rule evaluate the integrals $\int_{0.2}^{1.4} (\sin x + e^{2x}) dx$ and hence find the errors. 9. Discuss the necessity of numerical techniques of integration.

10. Calculate the value of the integral $I = \int_{0}^{1} \frac{x \, dx}{1 + x^2}$ by taking seven equidistant ordinates, using the Simpson's 1/3 rule and trapezoidal rule. Find the exact value of I and then compare and comment on it.

11. Find $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's 1/3 and 3/8 rules. Hence obtain the approximate value of π in each case.