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Preface

The main purpose of this second edition is essentially the same as the first edition with changes noted below.
Accordingly, first we quote from the preface by Murray R. Spiegel in the first edition of this text.

“The theory of functions of a complex variable, also called for brevity complex variables or complex
analysis, is one of the beautiful as well as useful branches of mathematics. Although originating in an
atmosphere of mystery, suspicion and distrust, as evidenced by the terms imaginary and complex
present in the literature, it was finally placed on a sound foundation in the 19th century through the
efforts of Cauchy, Riemann, Weierstrass, Gauss, and other great mathematicians.”

“This book is designed for use as a supplement to all current standards texts or as a textbook for a formal
course in complex variable theory and applications. It should also be of considerable value to those taking
courses in mathematics, physics, aerodynamics, elasticity, and many other fields of science and
engineering.”

“Each chapter begins with a clear statement of pertinent definitions, principles and theorems together
with illustrative and other descriptive material. This is followed by graded sets of solved and supplementary
problems. . . .Numerous proofs of theorems and derivations of formulas are included among the solved pro-
blems. The large number of supplementary problems with answers serve as complete review of the material
of each chapter.”

“Topics covered include the algebra and geometry of complex numbers, complex differential and inte-
gral calculus, infinite series including Taylor and Laurent series, the theory of residues with applications to
the evaluation of integrals and series, and conformal mapping with applications drawn from various fields.”

“Considerable more material has been included here than can be covered in most first courses. This has
been done to make the book more flexible, to provide a more useful book of reference and to stimulate
further interest in the topics.”

Some of the changes we have made to the first edition are as follows: (a) We have expanded and cor-
rected many of the sections to make it more accessible for our readers. (b) We have reformatted the
text, such as, the chapter number is now included in the label of all sections, examples, and problems.
(c) Many results are stated formally as Propositions and Theorems.

Finally, we wish to express our gratitude to the staff of McGraw-Hill, particularly to Charles Wall, for
their excellent cooperation at every stage in preparing this second edition.

SEYMOUR LIPSCHUTZ

JOHN J. SCHILLER

DENNIS SPELLMAN

Temple University
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CHAP T E R 1

Complex Numbers

1.1 The Real Number System

The number system as we know it today is a result of gradual development as indicated in the following list.

(1) Natural numbers 1, 2, 3, 4, . . . , also called positive integers, were first used in counting. If a and
b are natural numbers, the sum aþ b and product a � b, (a)(b) or ab are also natural numbers. For
this reason, the set of natural numbers is said to be closed under the operations of addition and
multiplication or to satisfy the closure property with respect to these operations.

(2) Negative integers and zero, denoted by �1, �2, �3, . . . and 0, respectively, permit solutions
of equations such as xþ b ¼ a where a and b are any natural numbers. This leads to the operation
of subtraction, or inverse of addition, and we write x ¼ a� b.

The set of positive and negative integers and zero is called the set of integers and is closed
under the operations of addition, multiplication, and subtraction.

(3) Rational numbers or fractions such as 3
4
, �8

3
, . . . permit solutions of equations such as bx ¼ a

for all integers a and b where b=0. This leads to the operation of division or inverse of multipli-
cation, and we write x ¼ a=b or a 4 b (called the quotient of a and b) where a is the numerator
and b is the denominator.

The set of integers is a part or subset of the rational numbers, since integers correspond to
rational numbers a/b where b ¼ 1.

The set of rational numbers is closed under the operations of addition, subtraction, multipli-
cation, and division, so long as division by zero is excluded.

(4) Irrational numbers such as
ffiffiffi
2

p
and p are numbers that cannot be expressed as a/bwhere a and b

are integers and b=0.

The set of rational and irrational numbers is called the set of real numbers. It is assumed that the student
is already familiar with the various operations on real numbers.

1.2 Graphical Representation of Real Numbers

Real numbers can be represented by points on a line called the real axis, as indicated in Fig. 1-1. The point
corresponding to zero is called the origin.

–4 –3 –2 –1 0 1 2 3 4

–2√3 or  –1.5– 3
2

 3
4 √2 π

Fig. 1-1
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Conversely, to each point on the line there is one and only one real number. If a point A corresponding to
a real number a lies to the right of a point B corresponding to a real number b, we say that a is greater than b
or b is less than a and write a . b or b , a, respectively.

The set of all values of x such that a , x , b is called an open interval on the real axis while a � x � b,
which also includes the endpoints a and b, is called a closed interval. The symbol x, which can stand for any
real number, is called a real variable.

The absolute value of a real number a, denoted by jaj, is equal to a if a . 0, to �a if a , 0 and to 0 if
a ¼ 0. The distance between two points a and b on the real axis is ja� bj.

1.3 The Complex Number System

There is no real number x that satisfies the polynomial equation x2 þ 1 ¼ 0. To permit solutions of this and
similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form aþ bi where a and b are real numbers and i,
which is called the imaginary unit, has the property that i2 ¼ �1. If z ¼ aþ bi, then a is called the real
part of z and b is called the imaginary part of z and are denoted by Refzg and Imfzg, respectively. The
symbol z, which can stand for any complex number, is called a complex variable.

Two complex numbers aþ bi and cþ di are equal if and only if a ¼ c and b ¼ d. We can consider real
numbers as a subset of the set of complex numbers with b ¼ 0. Accordingly the complex numbers 0þ 0i
and�3þ 0i represent the real numbers 0 and�3, respectively. If a ¼ 0, the complex number 0þ bi or bi is
called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number aþ bi is a� bi. The complex
conjugate of a complex number z is often indicated by �z or z�.

1.4 Fundamental Operations with Complex Numbers

In performing operations with complex numbers, we can proceed as in the algebra of real numbers,
replacing i2 by �1 when it occurs.

(1) Addition

(aþ bi)þ (cþ di) ¼ aþ biþ cþ di ¼ (aþ c)þ (bþ d)i

(2) Subtraction

(aþ bi)� (cþ di) ¼ aþ bi� c� di ¼ (a� c)þ (b� d)i

(3) Multiplication

(aþ bi)(cþ di) ¼ acþ adiþ bciþ bdi2 ¼ (ac� bd)þ (ad þ bc)i

(4) Division
If c=0 and d=0, then

aþ bi

cþ di
¼ aþ bi

cþ di
� c� di

c� di
¼ ac� adiþ bci� bdi2

c2 � d2i2

¼ acþ bd þ (bc� ad)i

c2 þ d2
¼ acþ bd

c2 þ d2
þ bc� ad

c2 þ d2
i
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1.5 Absolute Value

The absolute value or modulus of a complex number aþ bi is defined as jaþ bij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
.

EXAMPLE 1.1: j�4þ 2ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�4)2 þ (2)2

p
¼

ffiffiffiffiffi
20

p
¼ 2

ffiffiffi
5

p
:

If z1, z2, z3, . . . , zm are complex numbers, the following properties hold.

(1) jz1z2j ¼ jz1jjz2j or jz1z2 � � � zmj ¼ jz1jjz2j � � � jzmj

(2)
z1

z2

����
���� ¼ z1

z2

����
���� if z2 = 0

(3) jz1 þ z2j � jz1j þ jz2j or jz1 þ z2 þ � � � þ zmj � jz1j þ jz2j þ � � � þ jzmj
(4) jz1 + z2j � jz1j � jz2j

1.6 Axiomatic Foundation of the Complex Number System

From a strictly logical point of view, it is desirable to define a complex number as an ordered pair (a, b) of
real numbers a and b subject to certain operational definitions, which turn out to be equivalent to those
above. These definitions are as follows, where all letters represent real numbers.

A. Equality (a, b) ¼ (c, d) if and only if a ¼ c, b ¼ d
B. Sum (a, b)þ (c, d) ¼ (aþ c, bþ d)
C. Product (a, b) � (c, d) ¼ (ac� bd, ad þ bc)

m(a, b) ¼ (ma, mb)

From these we can show [Problem 1.14] that (a, b) ¼ a(1, 0)þ b(0, 1) and we associate this with aþ bi
where i is the symbol for (0, 1) and has the property that i2 ¼ (0, 1)(0, 1) ¼ (�1, 0) [which can be
considered equivalent to the real number �1] and (1, 0) can be considered equivalent to the real
number 1. The ordered pair (0, 0) corresponds to the real number 0.

From the above, we can prove the following.

THEOREM 1.1: Suppose z1, z2, z3 belong to the set S of complex numbers. Then

(1) z1 þ z2 and z1z2 belong to S Closure law
(2) z1 þ z2 ¼ z2 þ z1 Commutative law of addition
(3) z1 þ (z2 þ z3) ¼ (z1 þ z2)þ z3 Associative law of addition
(4) z1z2 ¼ z2z1 Commutative law of multiplication
(5) z1(z2z3) ¼ (z1z2)z3 Associative law of multiplication
(6) z1(z2 þ z3) ¼ z1z2 þ z1z3 Distributive law
(7) z1 þ 0 ¼ 0þ z1 ¼ z1, 1 � z1 ¼ z1 � 1 ¼ z1, 0 is called the identity with respect to addition, 1 is

called the identity with respect to multiplication.
(8) For any complex number z1 there is a unique number z in S such that zþ z1 ¼ 0;

[z is called the inverse of z1 with respect to addition and is denoted by �z1].
(9) For any z1=0 there is a unique number z in S such that z1z ¼ zz1 ¼ 1;

[z is called the inverse of z1 with respect to multiplication and is denoted by z�1
1 or 1=z1].

In general, any set such as S, whose members satisfy the above, is called a field.

1.7 Graphical Representation of Complex Numbers

Suppose real scales are chosen on two mutually perpendicular axes X0OX and Y 0OY [called the x and y axes,
respectively] as in Fig. 1-2. We can locate any point in the plane determined by these lines by the ordered
pair of real numbers (x, y) called rectangular coordinates of the point. Examples of the location of such
points are indicated by P, Q, R, S, and T in Fig. 1-2.
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Since a complex number xþ iy can be considered as an ordered pair of real numbers, we can represent
such numbers by points in an xy plane called the complex plane or Argand diagram. The complex number
represented by P, for example, could then be read as either (3, 4) or 3þ 4i. To each complex number there
corresponds one and only one point in the plane, and conversely to each point in the plane there corresponds
one and only one complex number. Because of this we often refer to the complex number z as the point z.
Sometimes, we refer to the x and y axes as the real and imaginary axes, respectively, and to the complex
plane as the z plane. The distance between two points, z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2, in the complex plane is
given by jz1�z2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1�x2)

2 þ (y1�y2)
2

p
.

4

3

2

1

1 2 3 4
X

O

Y ′

X ′

–1
–1–2–3

R(–2.5, –1.5)
S(2, –2)

T(2.5, 0)

P(3, 4)

Q(–3, 3)

Y

–4

–2

–3

X

P(x, y)

O x

q

r
y

Y ′

X ′

Y

Fig. 1-2 Fig. 1-3

1.8 Polar Form of Complex Numbers

Let P be a point in the complex plane corresponding to the complex number (x, y) or xþ iy. Then we see
from Fig. 1-3 that

x ¼ r cos u, y ¼ r sin u

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ jxþ iyj is called the modulus or absolute value of z ¼ xþ iy [denoted by mod z or

jzj]; and u, called the amplitude or argument of z ¼ xþ iy [denoted by arg z], is the angle that lineOPmakes
with the positive x axis.

It follows that

z ¼ xþ iy ¼ r(cos uþ i sin u) (1:1)

which is called the polar form of the complex number, and r and u are called polar coordinates. It is some-
times convenient to write the abbreviation cis u for cos uþ i sin u.

For any complex number z=0 there corresponds only one value of u in 0 �u ,2p. However, any other
interval of length 2p, for example �p ,u �p, can be used. Any particular choice, decided upon in
advance, is called the principal range, and the value of u is called its principal value.

1.9 De Moivre’s Theorem

Let z1 ¼ x1 þ iy1 ¼ r1(cos u1 þ i sin u1) and z2 ¼ x2 þ iy2 ¼ r2(cos u2 þ i sin u2), then we can show that
[see Problem 1.19]

z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g (1:2)

z1

z2
¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g (1:3)
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A generalization of (1.2) leads to

z1z2 � � � zn ¼ r1r2 � � � rnfcos(u1 þ u2 þ � � � þ un)þ i sin(u1 þ u2 þ � � � þ un)g (1:4)

and if z1 ¼ z2 ¼ � � � ¼ zn ¼ z this becomes

zn ¼ fr(cos uþ i sin u)gn ¼ rn(cos nuþ i sin nu) (1:5)

which is often called De Moivre’s theorem.

1.10 Roots of Complex Numbers

A number w is called an nth root of a complex number z if wn ¼ z, and we write w ¼ z1=n. From
De Moivre’s theorem we can show that if n is a positive integer,

z1=n ¼ fr(cos uþ i sin u)g1=n

¼ r1=n cos
uþ 2kp

n

� �
þ i sin

uþ 2kp

n

� �� �
k ¼ 0, 1, 2, . . . , n� 1

(1:6)

from which it follows that there are n different values for z1=n, i.e., n different nth roots of z, provided z=0.

1.11 Euler’s Formula

By assuming that the infinite series expansion ex ¼ 1þ xþ (x2=2!)þ (x3=3!)þ � � � of elementary calculus
holds when x ¼ iu, we can arrive at the result

eiu ¼ cos uþ i sin u (1:7)

which is called Euler’s formula. It is more convenient, however, simply to take (1.7) as a definition of eiu.
In general, we define

ez ¼ exþiy ¼ exeiy ¼ ex(cos yþ i sin y) (1:8)

In the special case where y ¼ 0 this reduces to ex.
Note that in terms of (1.7) De Moivre’s theorem reduces to (eiu)n ¼ einu.

1.12 Polynomial Equations

Often in practice we require solutions of polynomial equations having the form

a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an ¼ 0 (1:9)

where a0=0, a1, . . . , an are given complex numbers and n is a positive integer called the degree of
the equation. Such solutions are also called zeros of the polynomial on the left of (1.9) or roots of the
equation.
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A very important theorem called the fundamental theorem of algebra [to be proved in Chapter 5] states
that every polynomial equation of the form (1.9) has at least one root in the complex plane. From this we can
show that it has in fact n complex roots, some or all of which may be identical.

If z1, z2, . . . , zn are the n roots, then (1.9) can be written

a0(z� z1)(z� z2) � � � (z� zn) ¼ 0 (1:10)

which is called the factored form of the polynomial equation.

1.13 The nth Roots of Unity

The solutions of the equation zn ¼ 1 where n is a positive integer are called the nth roots of unity and are
given by

z ¼ cos
2kp

n
þ i sin

2kp

n
¼ e2kpi=n k ¼ 0, 1, 2, . . . , n� 1 (1:11)

If we let v ¼ cos 2p=nþ i sin 2p=n ¼ e2pi=n, the n roots are 1, v, v2, . . . , vn�1. Geometrically, they rep-
resent the n vertices of a regular polygon of n sides inscribed in a circle of radius one with center at the
origin. This circle has the equation jzj ¼ 1 and is often called the unit circle.

1.14 Vector Interpretation of Complex Numbers

A complex number z ¼ xþ iy can be considered as a vector OP whose initial point is the origin O and
whose terminal point P is the point (x, y) as in Fig. 1-4. We sometimes call OP ¼ xþ iy the position
vector of P. Two vectors having the same length or magnitude and direction but different initial points,
such as OP and AB in Fig. 1-4, are considered equal. Hence we write OP ¼ AB ¼ xþ iy.

x

B

A
P(x, y)

O

y

x

A
B

C

O

z2

z2

z1 + z2 z1z1

y

Fig. 1-4 Fig. 1-5

Addition of complex numbers corresponds to the parallelogram law for addition of vectors [see
Fig. 1-5]. Thus to add the complex numbers z1 and z2, we complete the parallelogram OABC whose
sides OA and OC correspond to z1 and z2. The diagonal OB of this parallelogram corresponds to z1 þ z2.
See Problem 1.5.

1.15 Stereographic Projection

Let P [Fig. 1-6] be the the complex plane and consider a sphere S tangent to P at z ¼ 0. The diameter NS is
perpendicular to P and we call points N and S the north and south poles of S. Corresponding to any point A
on P we can construct line NA intersecting S at point A0. Thus to each point of the complex plane P
there corresponds one and only one point of the sphere S, and we can represent any complex number by

6 CHAPTER 1 Complex Numbers



a point on the sphere. For completeness we say that the point N itself corresponds to the “point at infinity” of
the plane. The set of all points of the complex plane including the point at infinity is called the entire
complex plane, the entire z plane, or the extended complex plane.

N

S

A

A'

y

x

Fig. 1-6

The above method for mapping the plane on to the sphere is called stereographic projection. The sphere
is sometimes called the Riemann sphere. When the diameter of the Riemann sphere is chosen to be unity,
the equator corresponds to the unit circle of the complex plane.

1.16 Dot and Cross Product

Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 be two complex numbers [vectors]. The dot product [also called the
scalar product] of z1 and z2 is defined as the real number

z1 � z2 ¼ x1x2 þ y1y2 ¼ jz1jjz2j cos u (1:12)

where u is the angle between z1 and z2 which lies between 0 and p.
The cross product of z1 and z2 is defined as the vector z1 � z2 ¼ (0, 0, x1y2 � y1x2) perpendicular to the

complex plane having magnitude

jz1 � z2j ¼ x1y2 � y1x2 ¼ jz1jjz2j sin u (1:13)

THEOREM 1.2: Let z1 and z2 be non-zero. Then:

(1) A necessary and sufficient condition that z1 and z2 be perpendicular is that z1 � z2 ¼ 0.
(2) A necessary and sufficient condition that z1 and z2 be parallel is that jz1 � z2j ¼ 0.
(3) The magnitude of the projection of z1 on z2 is jz1 � z2j=jz2j.
(4) The area of a parallelogram having sides z1 and z2 is jz1 � z2j.

1.17 Complex Conjugate Coordinates

A point in the complex plane can be located by rectangular coordinates (x, y) or polar coordinates (r, u).
Many other possibilities exist. One such possibility uses the fact that x ¼ 1

2
(zþ �z), y ¼ (1=2i)(z� �z)

where z ¼ xþ iy. The coordinates (z, �z) that locate a point are called complex conjugate coordinates or
briefly conjugate coordinates of the point [see Problems 1.43 and 1.44].

1.18 Point Sets

Any collection of points in the complex plane is called a (two-dimensional) point set, and each point is
called a member or element of the set. The following fundamental definitions are given here for reference.

(1) Neighborhoods. A delta, or d, neighborhood of a point z0 is the set of all points z such that
jz� z0j , d where d is any given positive number. A deleted d neighborhood of z0 is a neigh-
borhood of z0 in which the point z0 is omitted, i.e., 0 , jz� z0j , d.
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(2) Limit Points. A point z0 is called a limit point, cluster point, or point of accumulation of a point
set S if every deleted d neighborhood of z0 contains points of S.

Since d can be any positive number, it follows that S must have infinitely many points. Note
that z0 may or may not belong to the set S.

(3) Closed Sets.A set S is said to be closed if every limit point of S belongs to S, i.e., if S contains all
its limit points. For example, the set of all points z such that jzj � 1 is a closed set.

(4) Bounded Sets. A set S is called bounded if we can find a constantM such that jzj , M for every
point z in S. An unbounded set is one which is not bounded. A set which is both bounded and
closed is called compact.

(5) Interior, Exterior and Boundary Points. A point z0 is called an interior point of a set S
if we can find a d neighborhood of z0 all of whose points belong to S. If every d neighborhood
of z0 contains points belonging to S and also points not belonging to S, then z0 is called a
boundary point. If a point is not an interior or boundary point of a set S, it is an exterior
point of S.

(6) Open Sets. An open set is a set which consists only of interior points. For example, the set of
points z such that jzj , 1 is an open set.

(7) Connected Sets. An open set S is said to be connected if any two points of the set can be
joined by a path consisting of straight line segments (i.e., a polygonal path) all points of
which are in S.

(8) Open Regions or Domains. An open connected set is called an open region or domain.
(9) Closure of a Set. If to a set Swe add all the limit points of S, the new set is called the closure of S

and is a closed set.
(10) Closed Regions. The closure of an open region or domain is called a closed region.
(11) Regions. If to an open region or domain we add some, all or none of its limit points, we obtain a

set called a region. If all the limit points are added, the region is closed; if none are added, the
region is open. In this book whenever we use the word region without qualifying it, we shall
mean open region or domain.

(12) Union and Intersection of Sets. A set consisting of all points belonging to set S1 or set S2 or to
both sets S1 and S2 is called the union of S1 and S2 and is denoted by S1 < S2.

A set consisting of all points belonging to both sets S1 and S2 is called the intersection of S1
and S2 and is denoted by S1 > S2.

(13) Complement of a Set. A set consisting of all points which do not belong to S is called the comp-
lement of S and is denoted by ~S or Sc.

(14) Null Sets and Subsets. It is convenient to consider a set consisting of no points at all. This set is
called the null set and is denoted by1. If two sets S1 and S2 have no points in common (in which
case they are called disjoint or mutually exclusive sets), we can indicate this by writing
S1 > S2 ¼ 1.

Any set formed by choosing some, all or none of the points of a set S is called a subset
of S. If we exclude the case where all points of S are chosen, the set is called a proper
subset of S.

(15) Countability of a Set. Suppose a set is finite or its elements can be placed into a one to one
correspondence with the natural numbers 1, 2, 3, . . . . Then the set is called countable or denu-
merable; otherwise it is non-countable or non-denumerable.

The following are two important theorems on point sets.

(1) Weierstrass–Bolzano Theorem. Every bounded infinite set has at least one limit point.
(2) Heine–Borel Theorem. Let S be a compact set each point of which is contained in one or more

of the open sets A1, A2, . . . [which are then said to cover S]. Then there exists a finite number of
the sets A1, A2, . . . which will cover S.
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SOLVED PROBLEMS

Fundamental Operations with Complex Numbers

1.1. Perform each of the indicated operations.

Solution

(a) (3þ 2i)þ (�7� i) ¼ 3� 7þ 2i� i ¼ �4þ i

(b) (�7� i)þ (3þ 2i) ¼ �7þ 3� iþ 2i ¼ �4þ i

The results (a) and (b) illustrate the commutative law of addition.

(c) (8� 6i)� (2i� 7) ¼ 8� 6i� 2iþ 7 ¼ 15� 8i

(d) (5þ 3i)þ f(�1þ 2i)þ (7� 5i)g ¼ (5þ 3i)þ f�1þ 2iþ 7� 5ig ¼ (5þ 3i)þ (6� 3i) ¼ 11

(e) f(5þ 3i)þ (�1þ 2i)g þ (7� 5i) ¼ f5þ 3i� 1þ 2ig þ (7� 5i) ¼ (4þ 5i)þ (7� 5i) ¼ 11

The results (d) and (e) illustrate the associative law of addition.

(f) (2� 3i)(4þ 2i) ¼ 2(4þ 2i)� 3i(4þ 2i) ¼ 8þ 4i� 12i� 6i2 ¼ 8þ 4i� 12iþ 6 ¼ 14� 8i

(g) (4þ 2i)(2� 3i) ¼ 4(2� 3i)þ 2i(2� 3i) ¼ 8� 12iþ 4i� 6i2 ¼ 8� 12iþ 4iþ 6 ¼ 14� 8i

The results (f) and (g) illustrate the commutative law of multiplication.

(h) (2� i)f(�3þ 2i)(5� 4i)g ¼ (2� i)f�15þ 12iþ 10i� 8i2g

¼ (2� i)(�7þ 22i) ¼ �14þ 44iþ 7i� 22i2 ¼ 8þ 51i

(i) f(2� i)(�3þ 2i)g(5� 4i) ¼ f�6þ 4iþ 3i� 2i2g(5� 4i)

¼ (�4þ 7i)(5� 4i) ¼ �20þ 16iþ 35i� 28i2 ¼ 8þ 51i

The results (h) and (i) illustrate the associative law of multiplication.

( j) (�1þ 2i)f(7� 5i)þ (�3þ 4i)g ¼ (�1þ 2i)(4� i) ¼ �4þ iþ 8i� 2i2 ¼ �2þ 9i

Another Method.

(�1þ 2i)f(7� 5i)þ (�3þ 4i)g ¼ (�1þ 2i)(7� 5i)þ (�1þ 2i)(�3þ 4i)

¼ f�7þ 5iþ 14i� 10i2g þ f3� 4i� 6iþ 8i2g
¼ (3þ 19i)þ (�5� 10i) ¼ �2þ 9i

The above illustrates the distributive law.

(k)
3� 2i

�1þ i
¼ 3� 2i

�1þ i
� �1� i

�1� i
¼ �3� 3iþ 2iþ 2i2

1� i2
¼ �5� i

2
¼ � 5

2
� 1

2
i

Another Method. By definition, (3� 2i)=(�1þ i) is that number aþ bi, where a and b are real, such that

(�1þ i)(aþ bi) ¼ �a� bþ (a� b)i ¼ 3� 2i. Then �a� b ¼ 3, a� b ¼ �2 and solving simultaneously,

a ¼ �5=2, b ¼ �1=2 or aþ bi ¼ �5=2� i=2.

(l) 5þ 5i

3� 4i
þ 20

4þ 3i
¼ 5þ 5i

3� 4i
� 3þ 4i

3þ 4i
þ 20

4þ 3i
� 4� 3i

4� 3i

¼ 15þ 20iþ 15iþ 20i2

9� 16i2
þ 80� 60i

16� 9i2
¼ �5þ 35i

25
þ 80� 60i

25
¼ 3� i

(m) 3i30 � i19

2i� 1
¼ 3(i2)15 � (i2)9i

2i� 1
¼ 3(�1)15 � (�1)9i

�1þ 2i

¼ �3þ i

�1þ 2i
� �1� 2i

�1� 2i
¼ 3þ 6i� i� 2i2

1� 4i2
¼ 5þ 5i

5
¼ 1þ i
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1.2. Suppose z1 ¼ 2þ i, z2 ¼ 3� 2i and z3 ¼ � 1

2
þ

ffiffiffi
3

p

2
i. Evaluate each of the following.

Solution
(a) j3z1 � 4z2j ¼ j3(2þ i)� 4(3� 2i)j ¼ j6þ 3i� 12þ 8ij

¼ j�6þ 11ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�6)2 þ (11)2

q
¼

ffiffiffiffiffiffiffiffi
157

p

(b) z31 � 3z21 þ 4z1 � 8 ¼ (2þ i)3 � 3(2þ i)2 þ 4(2þ i)� 8

¼ f(2)3 þ 3(2)2(i)þ 3(2)(i)2 þ i3g � 3(4þ 4iþ i2)þ 8þ 4i� 8

¼ 8þ 12i� 6� i� 12� 12iþ 3þ 8þ 4i� 8 ¼ �7þ 3i

(c) (�z3)
4 ¼ � 1

2
þ

ffiffiffi
3

p

2
i

 !4

¼ � 1

2
�

ffiffiffi
3

p

2
i

� �4

¼ � 1

2
�

ffiffiffi
3

p

2
i

� �2
" #2

¼ 1

4
þ

ffiffiffi
3

p

2
iþ 3

4
i2

� 	2
¼ � 1

2
þ

ffiffiffi
3

p

2
i

� �2

¼ 1

4
�

ffiffiffi
3

p

2
iþ 3

4
i2 ¼ � 1

2
�

ffiffiffi
3

p

2
i

(d)
2z2 þ z1 � 5� i

2z1 � z2 þ 3� i

����
����2 ¼ 2(3� 2i)þ (2þ i)� 5� i

2(2þ i)� (3� 2i)þ 3� i

����
����2

¼ 3� 4i

4þ 3i

����
����2¼ j3� 4ij2

j4þ 3ij2
¼ (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3)2 þ (�4)2

p
)2

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4)2 þ (3)2

p
)2

¼ 1

1.3. Find real numbers x and y such that 3xþ 2iy� ixþ 5y ¼ 7þ 5i.

Solution

The given equation can be written as 3xþ 5yþ i(2y� x) ¼ 7þ 5i. Then equating real and imaginary parts,

3xþ 5y ¼ 7, 2y� x ¼ 5. Solving simultaneously, x ¼ �1, y ¼ 2.

1.4. Prove: (a) z1 þ z2 ¼ �z1 þ �z2, (b) jz1z2j ¼ jz1jjz2j.

Solution

Let z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2. Then

(a) z1 þ z2 ¼ x1 þ iy1 þ x2 þ iy2 ¼ x1 þ x2 þ i(y1 þ y2)

¼ x1 þ x2 � i(y1 þ y2) ¼ x1 � iy1 þ x2 � iy2 ¼ x1 þ iy1 þ x2 þ iy2 ¼ �z1 þ �z2

(b) jz1z2j ¼ j(x1 þ iy1)(x2 þ iy2)j ¼ jx1x2 � y1y2 þ i(x1y2 þ y1x2)j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1x2 � y1y2)

2 þ (x1y2 þ y1x2)
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q
¼ jz1jjz2j

Another Method.

jz1z2j2 ¼ (z1z2)(z1z2) ¼ z1z2�z1�z2 ¼ (z1�z1)(z2�z2) ¼ jz1j2jz2j2 or jz1z2j ¼ jz1jjz2j

where we have used the fact that the conjugate of a product of two complex numbers is equal to the product of

their conjugates (see Problem 1.55).

Graphical Representation of Complex Numbers. Vectors

1.5. Perform the indicated operations both analytically and graphically:

(a) (3þ 4i)þ (5þ 2i), (b) (6� 2i)� (2� 5i), (c) (� 3þ 5i)þ (4þ 2i)þ (5� 3i)þ (�4� 6i).
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Solution

(a) Analytically: (3þ 4i)þ (5þ 2i) ¼ 3þ 5þ 4iþ 2i ¼ 8þ 6i

Graphically. Represent the two complex numbers by points P1 and P2, respectively, as in Fig. 1-7.

Complete the parallelogram with OP1 and OP2 as adjacent sides. Point P represents the sum, 8þ 6i,

of the two given complex numbers. Note the similarity with the parallelogram law for addition of

vectors OP1 and OP2 to obtain vector OP. For this reason it is often convenient to consider a complex

number aþ bi as a vector having components a and b in the directions of the positive x and y axes,

respectively.

5 + 2i

3
+

4i 8 + 6i

P

P2

x

y

O

P1

P

P2

P1

4 + 3i

–2
+

5i

6 – 2i

x

y

O

Fig. 1-7 Fig. 1-8

(b) Analytically. (6� 2i)� (2� 5i) ¼ 6� 2� 2iþ 5i ¼ 4þ 3i

Graphically. (6� 2i)� (2� 5i) ¼ 6� 2iþ (�2þ 5i). We now add 6� 2i and (�2þ 5i) as in part (a).

The result is indicated by OP in Fig. 1-8.

(c) Analytically.

(�3þ 5i)þ (4þ 2i)þ (5� 3i)þ (�4� 6i) ¼ (�3þ 4þ 5� 4)þ (5iþ 2i� 3i� 6i) ¼ 2� 2i

Graphically. Represent the numbers to be added by z1, z2, z3, z4, respectively. These are shown graphi-

cally in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal point of vector z1
construct vector z2. At the terminal point of z2 construct vector z3, and at the terminal point of z3 construct

vector z4. The required sum, sometimes called the resultant, is obtained by constructing the vector OP

from the initial point of z1 to the terminal point of z4, i.e., OP ¼ z1 þ z2 þ z3 þ z4 ¼ 2� 2i.

O

z1

z2

z3

x

z4

y

O

z1

z2 z3

z4

P

x

y

Fig. 1-9 Fig. 1-10
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1.6. Suppose z1 and z2 are two given complex numbers (vectors) as in Fig. 1-11. Construct graphically

(a) 3z1 � 2z2, (b) 1
2
z2 þ 5

3
z1

Solution

(a) In Fig. 1-12, OA ¼ 3z1 is a vector having length 3 times vecter z1 and the same direction.

OB ¼ �2z2 is a vector having length 2 times vector z2 and the opposite direction.

Then vector OC ¼ OAþ OB ¼ 3z1 � 2z2.

x

z2

z1

y C

A

3z
1 –

2z
2

3z 1

B

O
x

–2z2

y

Fig. 1-11 Fig. 1-12

O
x

P

Q

R

y

z1
 5
3

z2
 1
2

Fig. 1-13

(b) The required vector (complex number) is represented by OP in Fig. 1-13.

1.7. Prove (a) jz1 þ z2j � jz1j þ jz2j, (b) jz1 þ z2 þ z3j � jz1j þ jz2j þ jz3j, (c) jz1 � z2j � jz1j � jz2j
and give a graphical interpretation.

Solution

(a) Analytically. Let z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2. Then we must show thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 þ x2)

2 þ (y1 þ y2)
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q
Squaring both sides, this will be true if

(x1 þ x2)
2 þ (y1 þ y2)

2 � x21 þ y21 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
þ x22 þ y22

i.e., if x1x2 þ y1y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
or if (squaring both sides again)

x21x
2
2 þ 2x1x2y1y2 þ y21y

2
2 � x21x

2
2 þ x21y

2
2 þ y21x

2
2 þ y21y

2
2

or 2x1x2y1y2 � x21y
2
2 þ y21x

2
2

But this is equivalent to (x1y2 � x2y1)
2 � 0, which is true. Reversing the steps, which are reversible,

proves the result.
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Graphically. The result follows graphically from the fact that jz1j, jz2j, jz1 þ z2j represent the lengths of
the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of a triangle is greater

than or equal to the length of the third side.

O
x

y

⎪z1⎪

⎪z2⎪

⎪z1 + z2⎪

O

P
x

y

⎪z 1⎪

⎪z2⎪
⎪ z

3⎪

⎪z1 + z2 + z3⎪

Fig. 1-14 Fig. 1-15

(b) Analytically. By part (a),

jz1 þ z2 þ z3j ¼ jz1 þ (z2 þ z3)j � jz1j þ jz2 þ z3j � jz1j þ jz2j þ jz3j

Graphically. The result is a consequence of the geometric fact that, in a plane, a straight line is the shortest

distance between two points O and P (see Fig. 1-15).

(c) Analytically. By part (a), jz1j ¼ jz1 � z2 þ z2j � jz1 � z2j þ jz2j. Then jz1 � z2j � jz1j � jz2j. An equival-
ent result obtained on replacing z2 by �z2 is jz1 þ z2j � jz1j � jz2j.
Graphically. The result is equivalent to the statement that a side of a triangle has length greater than or

equal to the difference in lengths of the other two sides.

1.8. Let the position vectors of points A(x1, y1) and B(x2, y2) be represented by z1 and z2, respectively.
(a) Represent the vector AB as a complex number. (b) Find the distance between points A and B.

Solution

(a) From Fig. 1-16, OAþ AB ¼ OB or

AB ¼ OB� OA ¼ z2 � z1 ¼ (x2 þ iy2)� (x1 þ iy1) ¼ (x2 � x1)þ i(y2 � y1)

(b) The distance between points A and B is given by

jABj ¼ j(x2 � x1)þ i(y2 � y1)j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2

q

O
x

y

A(x1, y1)

B(x2, y2)
z1

z2

O
x

y

z1

z2

P

A B

C

Fig. 1-16 Fig. 1-17

1.9. Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 represent two non-collinear or non-parallel vectors. If a and b
are real numbers (scalars) such that az1 þ bz2 ¼ 0, prove that a ¼ 0 and b ¼ 0.
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Solution

The given condition az1 þ bz2 ¼ 0 is equivalent to

a(x1 þ iy1)þ b(x2 þ iy2) ¼ 0 or ax1 þ bx2 þ i(ay1 þ by2) ¼ 0:

Then ax1 þ bx2 ¼ 0 and ay1 þ by2 ¼ 0. These equations have the simultaneous solution a ¼ 0, b ¼ 0 if

y1=x1=y2=x2, i.e., if the vectors are non-collinear or non-parallel vectors.

1.10. Prove that the diagonals of a parallelogram bisect each other.

Solution

Let OABC [Fig. 1-17] be the given parallelogram with diagonals intersecting at P.

Since z1 þ AC ¼ z2, AC ¼ z2 � z1. Then AP ¼ m(z2 � z1) where 0 � m � 1.

Since OB ¼ z1 þ z2, OP ¼ n(z1 þ z2) where 0 � n � 1.

But OAþ AP ¼ OP, i.e., z1 þ m(z2 � z1) ¼ n(z1 þ z2) or (1� m� n)z1 þ (m� n)z2 ¼ 0. Hence, by

Problem 1.9, 1� m� n ¼ 0, m� n ¼ 0 or m ¼ 1
2
, n ¼ 1

2
and so P is the midpoint of both diagonals.

1.11. Find an equation for the straight line that passes through two given points A(x1, y1) and B(x2, y2).

Solution

Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 be the position vectors of A and B, respectively. Let z ¼ xþ iy be the

position vector of any point P on the line joining A and B.

From Fig. 1-18,

OAþ AP ¼ OP or z1 þ AP ¼ z, i:e:, AP ¼ z� z1

OAþ AB ¼ OB or z1 þ AB ¼ z2, i:e:, AB ¼ z2 � z1

Since AP and AB are collinear, AP ¼ tAB or z� z1 ¼ t(z2 � z1) where t is real, and the required equation is

z ¼ z1 þ t(z2 � z1) or z ¼ (1� t)z1 þ tz2

Using z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2 and z ¼ xþ iy, this can be written

x� x1 ¼ t(x2 � x1), y� y1 ¼ t(y2 � y1) or
x� x1

x2 � x1
¼ y� y1

y2 � y1

The first two are called parametric equations of the line and t is the parameter; the second is called the equation

of the line in standard form.

Another Method. Since AP and PB are collinear, we have for real numbers m and n:

mAP ¼ nPB or m(z� z1) ¼ n(z2 � z)

Solving,

z ¼ mz1 þ nz2

mþ n
or x ¼ mx1 þ nx2

mþ n
, y ¼ my1 þ ny2

mþ n

which is called the symmetric form.
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Fig. 1-18 Fig. 1-19

1.12. Let A(1, �2), B(�3, 4), C(2, 2) be the three vertices of triangle ABC. Find the length of the median
from C to the side AB.

Solution

The position vectors of A, B, and C are given by z1 ¼ 1� 2i, z2 ¼ �3þ 4i and z3 ¼ 2þ 2i, respectively.

Then, from Fig. 1-19,

AC ¼ z3 � z1 ¼ 2þ 2i� (1� 2i) ¼ 1þ 4i

BC ¼ z3 � z2 ¼ 2þ 2i� (�3þ 4i) ¼ 5� 2i

AB ¼ z2 � z1 ¼ �3þ 4i� (1� 2i) ¼ �4þ 6i

AD ¼ 1
2
AB ¼ 1

2
(� 4þ 6i) ¼ �2þ 3i since D is the midpoint of AB:

AC þ CD ¼ AD or CD ¼ AD� AC ¼ �2þ 3i� (1þ 4i) ¼ �3� i:

Then the length of median CD is jCDj ¼ j�3� ij ¼
ffiffiffiffiffi
10

p
.

1.13. Find an equation for (a) a circle of radius 4 with center at (�2, 1), (b) an ellipse with major axis of
length 10 and foci at (�3, 0) and (3, 0).

Solution

(a) The center can be represented by the complex number�2þ i. If z is any point on the circle [Fig. 1-20], the

distance from z to �2þ i is

jz� (�2þ i)j ¼ 4

Then jzþ 2� ij ¼ 4 is the required equation. In rectangular form, this is given by

j(xþ 2)þ i(y� 1)j ¼ 4, i:e:, (xþ 2)2 þ (y� 1)2 ¼ 16

x

y

z
4

(–2, 1) x

y

z

(–3, 0) (3, 0)

Fig. 1-20 Fig. 1-21
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(b) The sum of the distances from any point z on the ellipse [Fig. 1-21] to the foci must equal 10. Hence, the

required equation is

jzþ 3j þ jz� 3j ¼ 10

In rectangular form, this reduces to x2=25þ y2=16 ¼ 1 (see Problem 1.74).

Axiomatic Foundations of Complex Numbers

1.14. Use the definition of a complex number as an ordered pair of real numbers and the definitions on
page 3 to prove that (a, b) ¼ a(1, 0)þ b(0, 1) where (0, 1)(0, 1) ¼ (�1, 0).

Solution

From the definitions of sum and product on page 3, we have

(a, b) ¼ (a, 0)þ (0, b) ¼ a(1, 0)þ b(0, 1)

where

(0, 1)(0, 1) ¼ (0 � 0� 1 � 1, 0 � 1þ 1 � 0) ¼ (�1, 0)

By identifying (1, 0) with 1 and (0, 1) with i, we see that (a, b) ¼ aþ bi.

1.15. Suppose z1 ¼ (a1, b1), z2 ¼ (a2, b2), and z3 ¼ (a3, b3). Prove the distributive law:

z1(z2 þ z3) ¼ z1z2 þ z1z3:

Solution

We have

z1(z2 þ z3) ¼ (a1, b1)f(a2, b2)þ (a3, b3)g ¼ (a1, b1)(a2 þ a3, b2 þ b3)

¼ fa1(a2 þ a3)� b1(b2 þ b3), a1(b2 þ b3)þ b1(a2 þ a3)g
¼ (a1a2 � b1b2 þ a1a3 � b1b3, a1b2 þ b1a2 þ a1b3 þ b1a3)

¼ (a1a2 � b1b2, a1b2 þ b1a2)þ (a1a3 � b1b3, a1b3 þ b1a3)

¼ (a1, b1)(a2, b2)þ (a1, b1)(a3, b3) ¼ z1z2 þ z1z3

Polar Form of Complex Numbers

1.16. Express each of the following complex numbers in polar form.

(a) 2þ 2
ffiffiffi
3

p
i, (b) 25þ 5i, (c) 2

ffiffiffi
6

p
�

ffiffiffi
2

p
i, (d) 23i

Solution

(a) 2þ 2
ffiffiffi
3

p
i [See Fig. 1-22.]

Modulus or absolute value, r ¼ j2þ 2
ffiffiffi
3

p
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 12

p
¼ 4.

Amplitude or argument, u ¼ sin�1 2
ffiffiffi
3

p
=4 ¼ sin�1

ffiffiffi
3

p
=2 ¼ 608 ¼ p=3 (radians).

Then

2þ 2
ffiffiffi
3

p
i ¼ r(cos uþ i sin u) ¼ 4(cos 608þ i sin 608) ¼ 4(cosp=3þ i sinp=3)

The result can also be written as 4 cis p=3 or, using Euler’s formula, as 4epi=3.
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2

60°
x

y

4

2 + 2√3i

2√3

–5

5
45°

135°
x

y

5√2

Fig. 1-22 Fig. 1-23

(b) �5þ 5i [See Fig. 1-23.]

r ¼ j�5þ 5ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 25

p
¼ 5

ffiffiffi
2

p

u ¼ 1808� 458 ¼ 1358 ¼ 3p=4 (radians)

Then

�5þ 5i ¼ 5
ffiffiffi
2

p
(cos 1358þ i sin 1358) ¼ 5

ffiffiffi
2

p
cis 3p=4 ¼ 5

ffiffiffi
2

p
e3pi=4

(c) �
ffiffiffi
6

p
�

ffiffiffi
2

p
i [See Fig. 1-24.]

r ¼ j�
ffiffiffi
6

p
�

ffiffiffi
2

p
ij ¼

ffiffiffiffiffiffiffiffiffiffiffi
6þ 2

p
¼ 2

ffiffiffi
2

p

u ¼ 1808þ 308 ¼ 2108 ¼ 7p=6 (radians)

Then

�
ffiffiffi
6

p
�

ffiffiffi
2

p
i ¼ 2

ffiffiffi
2

p
(cos 2108þ i sin 2108) ¼ 2

ffiffiffi
2

p
cis 7p=6 ¼ 2

ffiffiffi
2

p
e7pi=e

210°

30°
–√2

–√6

2√2

x

y

–3

27
0°

x

y

Fig. 1-24 Fig. 1-25

(d) �3i [See Fig. 1-25.]

r ¼ j�3ij ¼ j0� 3ij ¼
ffiffiffiffiffiffiffiffiffiffiffi
0þ 9

p
¼ 3

u ¼ 2708 ¼ 3p=2 (radians)

Then

�3i ¼ 3(cos 3p=2þ i sin 3p=2) ¼ 3 cis 3p=2 ¼ 3e3pi=2

1.17. Graph each of the following: (a) 6(cos 2408þ i sin 2408), (b) 4e3pi=5, (c) 2e�pi=4.

Solution

(a) 6(cos 2408þ i sin 2408) ¼ 6 cis 2408 ¼ 6 cis 4p=3 ¼ 6e4pi=3 can be represented graphically by OP in

Fig. 1-26.
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If we start with vector OA, whose magnitude is 6 and whose direction is that of the positive x axis, we can

obtain OP by rotating OA counterclockwise through an angle of 2408. In general, reiu is equivalent to a vector

obtained by rotating a vector of magnitude r and direction that of the positive x axis, counterclockwise through

an angle u.

6

24
0°

x
AO

P

y

6

108°

x

4

O

P

y

x
O

P

A
2

2

45°

y

Fig. 1-26 Fig. 1-27 Fig. 1-28

(b) 4e3pi=5 ¼ 4(cos 3p=5þ i sin 3p=5) ¼ 4(cos 1088þ i sin 1088)
is represented by OP in Fig. 1-27.

(c) 2e�pi=4 ¼ 2fcos(�p=4)þ i sin(�p=4)g ¼ 2fcos(�458)þ i sin(�458)g

This complex number can be represented by vector OP in Fig. 1-28. This vector can be obtained by start-

ing with vector OA, whose magnitude is 2 and whose direction is that of the positive x axis, and rotating

it counterclockwise through an angle of�458 (which is the same as rotating it clockwise through an angle

of 458).

1.18. A man travels 12 miles northeast, 20 miles 308 west of north, and then 18 miles 608 south of west.
Determine (a) analytically and (b) graphically how far and in what direction he is from his starting
point.

Solution

(a) Analytically. Let O be the starting point (see Fig. 1-29). Then

the successive displacements are represented by vectors OA,

AB, and BC. The result of all three displacements is represented

by the vector

OC ¼ OAþ ABþ BC

Now

OA ¼ 12(cos 458þ i sin 458) ¼ 12epi=4

AB ¼ 20fcos(908þ 308)þ i sin(908þ 308)g ¼ 20e2pi=3

BC ¼ 18fcos(1808þ 608)þ i sin(1808þ 608)g ¼ 18e4pi=3

Then

OC ¼ 12epi=4 þ 20e2pi=3 þ 18e4pi=3

¼ f12 cos 458þ 20 cos 1208þ 18 cos 2408g þ if12 sin 458þ 20 sin 1208þ 18 sin 2408g

¼ f(12)(
ffiffiffi
2

p
=2)þ (20)(�1=2)þ (18)(�1=2)g þ if(12)(

ffiffiffi
2

p
=2)þ (20)(

ffiffiffi
3

p
=2)þ (18)(�

ffiffiffi
3

p
=2)

¼ (6
ffiffiffi
2

p
� 19)þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)i

If r(cos uþ i sin u) ¼ 6
ffiffiffi
2

p
� 19þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)i, then r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(6

ffiffiffi
2

p
� 19)2 þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)2

p
¼ 14:7

approximately, and u ¼ cos�1(6
ffiffiffi
2

p
� 19)=r ¼ cos�1(� :717) ¼ 1358490 approximately.

Thus, the man is 14.7 miles from his starting point in a direction 1358490 � 908 ¼ 458490 west of north.
(b) Graphically. Using a convenient unit of length such as PQ in Fig. 1-29, which represents 2 miles, and a

protractor to measure angles, construct vectorsOA, AB, and BC. Then, by determining the number of units

in OC and the angle that OC makes with the y axis, we obtain the approximate results of (a).

C

O

B

A

x

20
18 30°

60°

45°
12

y

Fig. 1-29
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De Moivre’s Theorem

1.19. Suppose z1 ¼ r1(cos u1 þ i sin u1) and z2 ¼ r2(cos u2 þ i sin u2). Prove:

(a) z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g, (b)
z1

z2
¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g.

Solution

(a) z1z2 ¼ fr1(cos u1 þ i sin u1)gfr2(cos u2 þ i sin u2)g
¼ r1r2f(cos u1 cos u2 � sin u1 sin u2)þ i(sin u1 cos u2 þ cos u1 sin u2)g
¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g

(b)
z1

z2
¼ r1(cos u1 þ i sin u1)

r2(cos u2 þ i sin u2)
� (cos u2 � i sin u2)

(cos u2 � i sin u2)

¼ r1

r2

(cos u1 cos u2 þ sin u1 sin u2)þ i(sin u1 cos u2 � cos u1 sin u2)

cos2 u2 þ sin2 u2

� �

¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g

In terms of Euler’s formula, eiu ¼ cos uþ i sin u, the results state that if z1 ¼ r1e
iu1 and z2 ¼ r2e

iu2 , then

z1z2 ¼ r1r2e
i(u1þu2) and z1=z2 ¼ r1e

iu1=r2e
iu2 ¼ (r1=r2)e

i(u1�u2).

1.20. Prove De Moivre’s theorem: (cos uþ i sin u)n ¼ cos nuþ i sin nu where n is any positive integer.

Solution

We use the principle of mathematical induction.Assume that the result is true for the particular positive integer

k, i.e., assume (cos uþ i sin u)k ¼ cos kuþ i sin ku. Then, multiplying both sides by cos uþ i sin u, we find

(cos uþ i sin u)kþ1 ¼ (cos kuþ i sin ku)(cos uþ i sin u) ¼ cos(k þ 1)uþ i sin(k þ 1)u

by Problem 1.19. Thus, if the result is true for n ¼ k, then it is also true for n ¼ k þ 1. But, since the result is

clearly true for n ¼ 1, it must also be true for n ¼ 1þ 1 ¼ 2 and n ¼ 2þ 1 ¼ 3, etc., and so must be true for all

positive integers.

The result is equivalent to the statement (eiu)n ¼ eniu.

1.21. Prove the identities: (a) cos 5u ¼ 16 cos5 u� 20 cos3 uþ 5 cos u;
(b) (sin 5u)=(sin u) ¼ 16 cos4 u� 12 cos2 uþ 1, if u=0,+p, +2p, . . . .

Solution

We use the binomial formula

(aþ b)n ¼ an þ n

1

� �
an�1bþ n

2

� �
an�2b2 þ � � � þ n

r

� �
an�rbr þ � � � þ bn

where the coefficients

n

r

� �
¼ n!

r!(n� r)!

also denoted by C(n, r) or nCr , are called the binomial coefficients. The number n! or factorial n, is defined as

the product n(n� 1) � � � 3 � 2 � 1 and we define 0! ¼ 1.
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From Problem 1.20, with n ¼ 5, and the binomial formula,

cos 5uþ i sin 5u ¼ (cos uþ i sin u)5

¼ cos5 uþ
5

1

� �
(cos4 u)(i sin u)þ

5

2

� �
(cos3 u)(i sin u)2

þ
5

3

� �
(cos2 u)(i sin u)3 þ

5

4

� �
(cos u)(i sin u)4 þ (i sin u)5

¼ cos5 uþ 5i cos4 u sin u� 10 cos3 u sin2 u

� 10i cos2 u sin3 uþ 5 cos u sin4 uþ i sin5 u

¼ cos5 u� 10 cos3 u sin2 uþ 5 cos u sin4 u

þ i(5 cos4 u sin u� 10 cos2 u sin3 uþ sin5 u)

Hence

(a) cos 5u ¼ cos5 u� 10 cos3 u sin2 uþ 5 cos u sin4 u

¼ cos5 u� 10 cos3 u(1� cos2 u)þ 5 cos u(1� cos2 u)2

¼ 16 cos5 u� 20 cos3 uþ 5 cos u

(b) sin 5u ¼ 5 cos4 u sin u� 10 cos2 u sin3 uþ sin5 u

or

sin 5u

sin u
¼ 5 cos4 u� 10 cos2 u sin2 uþ sin4 u

¼ 5 cos4 u� 10 cos2 u(1� cos2 u)þ (1� cos2 u)2

¼ 16 cos4 u� 12 cos2 uþ 1

provided sin u=0, i.e., u=0, +p, +2p, . . . .

1.22. Show that (a) cos u ¼ eiu þ e�iu

2
, (b) sin u ¼ eiu � e�iu

2i
.

Solution

We have

eiu ¼ cos uþ i sin u (1)

e�iu ¼ cos u� i sin u (2)

(a) Adding (1) and (2),

eiu þ e�iu ¼ 2 cos u or cos u ¼ eiu þ e�iu

2

(b) Subtracting (2) from (1),

eiu � e�iu ¼ 2i sin u or sin u ¼ eiu � e�iu

2i
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1.23. Prove the identities (a) sin3 u ¼ 3
4
sin u� 1

4
sin 3u, (b) cos4 u ¼ 1

8
cos 4uþ 1

2
cos 2uþ 3

8
.

Solution

(a) sin3 u ¼ eiu � e�iu

2i

� �3

¼ (eiu � e�iu)3

8i3
¼ � 1

8i
f(eiu)3 � 3(eiu)2(e�iu)þ 3(eiu)(e�iu)2 � (e�iu)3g

¼ � 1

8i
(e3iu � 3eiu þ 3e�iu � e�3iu) ¼ 3

4

eiu � e�iu

2i

� �
� 1

4

e3iu � e�3iu

2i

� �

¼ 3

4
sin u� 1

4
sin 3u

(b) cos4 u ¼ eiu þ e�iu

2

� �4

¼ (eiu þ e�iu)4

16

¼ 1

16
f(eiu)4 þ 4(eiu)3(e�iu)þ 6(eiu)2(e�iu)2 þ 4(eiu)(e�iu)3 þ (e�iu)4g

¼ 1

16
(e4iu þ 4e2iu þ 6þ 4e�2iu þ e�4iu) ¼ 1

8

e4iu þ e�4iu

2

� �
þ 1

2

e2iu þ e�2iu

2

� �
þ 3

8

¼ 1

8
cos 4uþ 1

2
cos 2uþ 3

8

1.24. Given a complex number (vector) z, interpret geometrically zeia where a is real.

Solution

Let z ¼ reiu be represented graphically by vector OA in

Fig. 1-30. Then

zeia ¼ reiu � eia ¼ rei(uþa)

is the vector represented by OB.

Hence multiplication of a vector z by eia amounts to

rotating z counterclockwise through angle a. We can con-

sider eia as an operator that acts on z to produce this

rotation.

1.25. Prove: eiu ¼ ei(uþ2kp), k ¼ 0, +1, +2, . . . .

Solution

ei(uþ2kp) ¼ cos(uþ 2kp)þ i sin(uþ 2kp) ¼ cos uþ i sin u ¼ eiu

1.26. Evaluate each of the following.

(a) [3(cos 408þ i sin 408)][4(cos 808þ i sin 808)], (b)
(2 cis 158)7

(4 cis 458)3
, (c)

1þ
ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10

Solution
(a) [3(cos 408þ i sin 408)][4(cos 808þ i sin 808)] ¼ 3 � 4[cos(408þ 808)þ i sin(408þ 808)]

¼ 12(cos 1208þ i sin 1208)

¼ 12 � 1

2
þ

ffiffiffi
3

p

2
i

� �
¼ �6þ 6

ffiffiffi
3

p
i

O

B

A

zeiα
z = reiθ

x

y

θ

α

Fig. 1-30
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(b)
(2 cis 158)7

(4 cis 458)3
¼ 128 cis 1058

64 cis 1358
¼ 2 cis(1058� 1358)

¼ 2[cos(�308)þ i sin(�308)] ¼ 2[cos 308� i sin 308] ¼
ffiffiffi
3

p
� i

(c)
1þ

ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10

¼ 2 cis(608)
2 cis(�608)

� �10

¼ (cis 1208)10 ¼ cis 12008 ¼ cis 1208 ¼ � 1

2
þ

ffiffiffi
3

p

2
i

Another Method.

1þ
ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10
¼ 2epi=3

2e�pi=3

� �10
¼ (e2pi=3)10 ¼ e20pi=3

¼ e6pie2pi=3 ¼ (1)[cos(2p=3)þ i sin(2p=3)] ¼ � 1

2
þ

ffiffiffi
3

p

2
i

1.27. Prove that (a) arg(z1z2) ¼ arg z1 þ arg z2, (b) arg(z1=z2) ¼ arg z1 � arg z2, stating appropriate con-
ditions of validity.

Solution

Let z1 ¼ r1(cos u1 þ i sin u1), z2 ¼ r2(cos u2 þ i sin u2). Then arg z1 ¼ u1, arg z2 ¼ u2.

(a) Since z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g, arg(z1z2) ¼ u1 þ u2 ¼ arg z1 þ arg z2.

(b) Since z1=z2 ¼ (r1=r2)fcos(u1 � u2)þ i sin(u1 � u2)g, arg z1=z2ð Þ ¼ u1 � u2 ¼ arg z1 � arg z2.

Since there are many possible values for u1 ¼ arg z1 and u2 ¼ arg z2, we can only say that the two sides

in the above equalities are equal for some values of arg z1 and arg z2. They may not hold even if principal

values are used.

Roots of Complex Numbers

1.28. (a) Find all values of z for which z5 ¼ �32, and (b) locate these values in the complex plane.

Solution

(a) In polar form, �32 ¼ 32fcos(pþ 2kp)þ i sin(pþ 2kp)g, k ¼ 0, +1, +2, . . . .

Let z ¼ r(cos uþ i sin u). Then, by De Moivre’s theorem,

z5 ¼ r5(cos 5uþ i sin 5u) ¼ 32fcos(pþ 2kp)þ i sin(pþ 2kp)g

and so r5 ¼ 32, 5u ¼ pþ 2kp, from which r ¼ 2, u ¼ (pþ 2kp)=5. Hence

z ¼ 2 cos
pþ 2kp

5

� �
þ i sin

pþ 2kp

5

� �� �

If k ¼ 0, z ¼ z1 ¼ 2(cosp=5þ i sinp=5).
If k ¼ 1, z ¼ z2 ¼ 2(cos 3p=5þ i sin 3p=5).
If k ¼ 2, z ¼ z3 ¼ 2(cos 5p=5þ i sin 5p=5) ¼ �2.

If k ¼ 3, z ¼ z4 ¼ 2(cos 7p=5þ i sin 7p=5).
If k ¼ 4, z ¼ z5 ¼ 2(cos 9p=5þ i sin 9p=5).
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By considering k ¼ 5, 6, . . . as well as negative
values, �1, �2, . . . , repetitions of the above five

values of z are obtained. Hence, these are the only

solutions or roots of the given equation. These five

roots are called the fifth roots of�32 and are collec-

tively denoted by (�32)1=5. In general, a1=n rep-

resents the nth roots of a and there are n such roots.

(b) The values of z are indicated in Fig. 1-31. Note that

they are equally spaced along the circumference of

a circle with center at the origin and radius

2. Another way of saying this is that the roots are

represented by the vertices of a regular polygon.

1.29. Find each of the indicated roots and locate them graphically.

(a) (�1þ i)1=3, (b) (�2
ffiffiffi
3

p
� 2i)1=4

Solution

(a) (�1þ i)1=3

�1þ i ¼
ffiffiffi
2

p
fcos(3p=4þ 2kp)þ i sin(3p=4þ 2kp)g

(�1þ i)1=3 ¼ 21=6 cos
3p=4þ 2kp

3

� �
þ i sin

3p=4þ 2kp

3

� �� �

If k ¼ 0, z1 ¼ 21=6(cosp=4þ i sinp=4).
If k ¼ 1, z2 ¼ 21=6(cos 11p=12þ i sin 11p=12).
If k ¼ 2, z3 ¼ 21=6(cos 19p=12þ i sin 19p=12).

These are represented graphically in Fig. 1-32.

x

y

z2

z3

z1

π/4

19π/12

11π/12

y

x

z4

z3

z2

z119π/24

7π/24

43π/24

31π/24

Fig. 1-32 Fig. 1-33

(b) (�2
ffiffiffi
3

p
� 2i)1=4

�2
ffiffiffi
3

p
� 2i ¼ 4fcos(7p=6þ 2kp)þ i sin(7p=6þ 2kp)g

(�2
ffiffiffi
3

p
� 2i)1=4 ¼ 41=4 cos

7p=6þ 2kp

4

� �
þ i sin

7p=6þ 2kp

4

� �� �

If k ¼ 0, z1 ¼
ffiffiffi
2

p
(cos 7p=24þ i sin 7p=24).

If k ¼ 1, z2 ¼
ffiffiffi
2

p
(cos 19p=24þ i sin 19p=24).

If k ¼ 2, z3 ¼
ffiffiffi
2

p
(cos 31p=24þ i sin 31p=24).

If k ¼ 3, z4 ¼
ffiffiffi
2

p
(cos 43p=24þ i sin 43p=24).

These are represented graphically in Fig. 1-33.

x

y

z2

z3

z4

z5

z13π/5
π/5

9π/5

7π/5

π

Fig. 1-31
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1.30. Find the square roots of �15� 8i.

Solution

Method 1.

�15� 8i ¼ 17fcos(uþ 2kp)þ i sin(uþ 2kp)g

where cos u ¼ �15=17, sin u ¼ �8=17. Then the square roots of �15� 8i areffiffiffiffiffi
17

p
(cos u=2þ i sin u=2) (1)

and ffiffiffiffiffi
17

p
fcos(u=2þ p)þ i sin(u=2þ p)g ¼ �

ffiffiffiffiffi
17

p
(cos u=2þ i sin u=2) (2)

Now

cos u=2 ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ cos u)=2

p
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 15=17)=2

p
¼ +1=

ffiffiffiffiffi
17

p

sin u=2 ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos u)=2

p
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 15=17)=2

p
¼ +4=

ffiffiffiffiffi
17

p

Since u is an angle in the third quadrant, u=2 is an angle in the second quadrant. Hence,

cos u=2 ¼ �1=
ffiffiffiffiffi
17

p
, sin u=2 ¼ 4=

ffiffiffiffiffi
17

p
, and so from (1) and (2) the required square roots are

�1þ 4i and 1� 4i. As a check, note that (�1þ 4i)2 ¼ (1� 4i)2 ¼ �15� 8i.

Method 2.
Let pþ iq, where p and q are real, represent the required square roots. Then

(pþ iq)2 ¼ p2 � q2 þ 2pqi ¼ �15� 8i

or
p2 � q2 ¼ �15 (3)

pq ¼ �4 (4)

Substituting q ¼ �4=p from (4) into (3), it becomes p2 � 16=p2 ¼ �15 or p4 þ 15p2 � 16 ¼ 0,

i.e., ( p2 þ 16)(p2 � 1) ¼ 0 or p2 ¼ �16, p2 ¼ 1. Since p is real, p ¼ +1. From (4), if p ¼ 1, q ¼ �4;

if p ¼ �1, q ¼ 4. Thus the roots are �1þ 4i and 1� 4i.

Polynomial Equations

1.31. Solve the quadratic equation az2 þ bzþ c ¼ 0, a=0:

Solution

Transposing c and dividing by a=0,

z2 þ b

a
z ¼ � c

a

Adding b=2að Þ2 [completing the square],

z2 þ b

a
zþ b

2a

� �2

¼ � c

a
þ b

2a

� �2

: Then zþ b

2a

� �2

¼ b2 � 4ac

4a2

Taking square roots,

zþ b

2a
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: Hence z ¼ �b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
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1.32. Solve the equation z2 þ (2i� 3)zþ 5� i ¼ 0.

Solution

From Problem 1.31, a ¼ 1, b ¼ 2i� 3, c ¼ 5� i and so the solutions are

z ¼ �b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
¼ �(2i� 3)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2i� 3)2 � 4(1)(5� i)

p
2(1)

¼ 3� 2i+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�15� 8i

p

2

¼ 3� 2i+ (1� 4i)

2
¼ 2� 3i or 1þ i

using the fact that the square roots of�15� 8i are+(1� 4i) [see Problem 1.30]. These are found to satisfy the

given equation.

1.33. Suppose the real rational number p/q (where p and q have no common factor except+1, i.e., p/q is
in lowest terms) satisfies the polynomial equation a0z

n þ a1z
n�1 þ � � � þ an ¼ 0 where

a0, a1, . . . , an are integers. Show that p and q must be factors of an and a0, respectively.

Solution

Substituting z ¼ p=q in the given equation and multiplying by qn yields

a0p
n þ a1p

n�1qþ � � � þ an�1pq
n�1 þ anq

n ¼ 0 (1)

Dividing by p and transposing the last term,

a0p
n�1 þ a1p

n�2qþ � � � þ an�1q
n�1 ¼ � anq

n

p
(2)

Since the left side of (2) is an integer, so also is the right side. But since p has no factor in common with q, it

cannot divide qn and so must divide an.

Similarly, on dividing (1) by q and transposing the first term, we find that q must divide a0.

1.34. Solve 6z4 � 25z3 þ 32z2 þ 3z� 10 ¼ 0.

Solution

The integer factors of 6 and �10 are, respectively, +1, +2, +3, +6 and +1, +2, +5, +10. Hence, by

Problem 1.33, the possible rational solutions are +1, +1=2, +1=3, +1=6, +2, +2=3, +5, +5=2, +5=3,
+5=6, +10, +10=3.

By trial, we find that z ¼ �1=2 and z ¼ 2=3 are solutions, and so the polynomial

(2zþ 1)(3z� 2) ¼ 6z2 � z� 2 is a factor of 6z4 � 25z3 þ 32z2 þ 3z� 10

the other factor being z2 � 4zþ 5 as found by long division. Hence

6z4 � 25z3 þ 32z2 þ 3z� 10 ¼ (6z2 � z� 2)(z2 � 4zþ 5) ¼ 0

The solutions of z2 � 4zþ 5 ¼ 0 are [see Problem 1.31]

z ¼ 4+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 20

p

2
¼ 4+

ffiffiffiffiffiffiffi
�4

p

2
¼ 4+ 2i

2
¼ 2+ i

Then the solutions are �1=2, 2=3, 2þ i, 2� i.

1.35. Prove that the sum and product of all the roots of a0z
n þ a1z

n�1 þ � � � þ an ¼ 0 where a0 = 0, are
�a1=a0 and (�1)nan=a0, respectively.

Solution

If z1, z2, . . . , zn are the n roots, the equation can be written in factored form as

a0(z� z1)(z� z2) � � � (z� zn) ¼ 0
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Direct multiplication shows that

a0fzn � (z1 þ z2 þ � � � þ zn)z
n�1 þ � � � þ (�1)nz1z2 � � � zng ¼ 0

It follows that �a0(z1 þ z2 þ � � � þ zn) ¼ a1 and a0(�1)nz1z2 � � � zn ¼ an, from which

z1 þ z2 þ � � � þ zn ¼ �a1=a0, z1z2 � � � zn ¼ (�1)nan=a0

as required.

1.36. Suppose pþ qi is a root of a0z
n þ a1z

n�1 þ � � � þ an ¼ 0 where a0=0, a1, . . . , an, p and q are real.
Prove that p� qi is also a root.

Solution

Let pþ qi ¼ reiu in polar form. Since this satisfies the equation,

a0r
neinu þ a1r

n�1ei(n�1)u þ � � � þ an�1re
iu þ an ¼ 0

Taking the conjugate of both sides

a0r
ne�inu þ a1r

n�1e�i(n�1)u þ � � � þ an�1re
�iu þ an ¼ 0

we see that re�iu ¼ p� qi is also a root. The result does not hold if a0, . . . , an are not all real (see Problem 1.32).

The theorem is often expressed in the statement: The zeros of a polynomial with real coefficients occur in

conjugate pairs.

The nth Roots of Unity

1.37. Find all the 5th roots of unity.

Solution

z5 ¼ 1 ¼ cos 2kpþ i sin 2kp ¼ e2kpi

where k ¼ 0, +1, +2, . . . : Then

z ¼ cos
2kp

5
þ i sin

2kp

5
¼ e2kpi=5

where it is sufficient to use k ¼ 0, 1, 2, 3, 4 since all other values of k lead to repetition.

Thus the roots are 1, e2pi=5, e4pi=5, e6pi=5, e8pi=5. If we call e2pi=5 ¼ v, these can be denoted by

1, v, v2, v3, v4.

1.38. Suppose n ¼ 2, 3, 4, . . .. Prove that

(a) cos
2p

n
þ cos

4p

n
þ cos

6p

n
þ � � � þ cos

2(n� 1)p

n
¼ �1

(b) sin
2p

n
þ sin

4p

n
þ sin

6p

n
þ � � � þ sin

2(n� 1)p

n
¼ 0

Solution

Consider the equation zn � 1 ¼ 0 whose solutions are the nth roots of unity,

1, e2pi=n, e4pi=n, e6pi=n, . . . , e2(n�1)pi=n
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By Problem 1.35, the sum of these roots is zero. Then

1þ e2pi=n þ e4pi=n þ e6pi=n þ � � � þ e2(n�1)pi=n ¼ 0

i.e.,

1þ cos
2p

n
þ cos

4p

n
þ � � � þ cos

2(n� 1)p

n

� �
þ i sin

2p

n
þ sin

4p

n
þ � � � þ sin

2(n� 1)p

n

� �
¼ 0

from which the required results follow.

Dot and Cross Product

1.39. Suppose z1 ¼ 3� 4i and z2 ¼ �4þ 3i. Find: (a) z1 � z2, (b) jz1 � z2j.

Solution

(a) z1 � z2 ¼ Refz1z2g ¼ Ref(3þ 4i)(�4þ 3i)g ¼ Ref�24� 7ig ¼ �24

Another Method. z1 � z2 ¼ (3)(�4)þ (�4)(3) ¼ �24

(b) jz1 � z2j ¼ jImfz1z2gj ¼ jImf(3þ 4i)(�4þ 3i)gj ¼ jImf�24� 7igj ¼ j�7j ¼ 7

Another Method. jz1 � z2j ¼ j(3)(3)� (�4)(�4)j ¼ j�7j ¼ 7

1.40. Find the acute angle between the vectors in Problem 1.39.

Solution

From Problem 1.39(a), we have

cos u ¼ z1 � z2
jz1jjz2j

¼ �24

j3� 4ijj�4þ 3ij ¼
�24

25
¼ �:96

Then the acute angle is cos�1 :96 ¼ 168160 approximately.

1.41. Prove that the area of a parallelogram having sides z1 and z2 is jz1 � z2j.

Solution
Area of parallelogram [Fig:1-34] ¼ (base)(height)

¼ (jz2j)(jz1j sin u) ¼ jz1jjz2j sin u ¼ jz1 � z2j

h =⎪z1⎪ sinq

θ

z1

z2

x

y

z1
z2

C(x3, y3)

A(x1, y1)
B(x2, y2)

O

Fig. 1-34 Fig. 1-35

CHAPTER 1 Complex Numbers 27



1.42. Find the area of a triangle with vertices at A(x1, y1), B(x2, y2), and C(x3, y3).

Solution

The vectors from C to A and B [Fig. 1-35] are, respectively, given by

z1 ¼ (x1 � x3)þ i(y1 � y3) and z2 ¼ (x2 � x3)þ i(y2 � y3)

Since the area of a triangle with sides z1 and z2 is half the area of the corresponding parallelogram, we have by

Problem 1.41:

Area of triangle ¼ 1
2
jz1 � z2j ¼ 1

2
jImf[(x1 � x3)� i(y1 � y3)][(x2 � x3)þ i(y2 � y3)]gj

¼ 1
2
j(x1 � x3)(y2 � y3)� (y1 � y3)(x2 � x3)j

¼ 1
2
jx1y2 � y1x2 þ x2y3 � y2x3 þ x3y1 � y3x1j

¼ 1
2
j
x1 y1 1

x2 y2 1

x3 y3 1

�������
�������j

in determinant form.

Complex Conjugate Coordinates

1.43. Express each equation in terms of conjugate coordinates: (a) 2xþ y ¼ 5, (b) x2 þ y2 ¼ 36.

Solution

(a) Since z ¼ xþ iy, �z ¼ x� iy, x ¼ (zþ �z)=2, y ¼ (z� �z)=2i. Then, 2xþ y ¼ 5 becomes

2
zþ �z

2

� �
þ z� �z

2i

� �
¼ 5 or (2iþ 1)zþ (2i� 1)�z ¼ 10i

The equation represents a straight line in the z plane.

(b) Method 1. The equation is (xþ iy)(x� iy) ¼ 36 or z�z ¼ 36.

Method 2. Substitute x ¼ (zþ �z)=2, y ¼ (z� �z)=2i in x2 þ y2 ¼ 36 to obtain z�z ¼ 36.

The equation represents a circle in the z plane of radius 6 with center at the origin.

1.44. Prove that the equation of any circle or line in the z plane can be written as az�zþ bzþ �b�zþ g ¼ 0
where a and g are real constants while b may be a complex constant.

Solution

The general equation of a circle in the xy plane can be written

A(x2 þ y2)þ Bxþ Cyþ D ¼ 0

which in conjugate coordinates becomes

Az�zþ B
zþ �z

2

� �
þ C

z� �z

2i

� �
þ D ¼ 0 or Az�zþ B

2
þ C

2i

� �
zþ B

2
� C

2i

� �
�zþ D ¼ 0

Calling A ¼ a, (B=2)þ (C=2i) ¼ b and D ¼ g, the required result follows.

In the special case A ¼ a ¼ 0, the circle degenerates into a line.
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Point Sets

1.45. Given the point set S:fi, 1
2
i, 1

3
i, 1

4
i, . . .g or briefly fi=ng. (a) Is S bounded? (b) What are its limit

points, if any? (c) Is S closed? (d) What are its interior and boundary points? (e) Is S open? (f) Is
S connected? (g) Is S an open region or domain? (h) What is the closure of S? (i) What is the comp-
lement of S? (j) Is S countable? (k) Is S compact? (l) Is the closure of S compact?

Solution

(a) S is bounded since for every point z in S, jzj , 2 (for example), i.e., all points of S lie inside a circle of

radius 2 with center at the origin.

(b) Since every deleted neighborhood of z ¼ 0 contains points of S, a limit point is z ¼ 0. It is the only limit

point.

Note that since S is bounded and infinite, the Weierstrass–Bolzano theorem predicts at least one limit

point.

(c) S is not closed since the limit point z ¼ 0 does not belong to S.

(d) Every d neighborhood of any point i/n (i.e., every circle of radius dwith center at i/n) contains points that

belong to S and points that do not belong to S. Thus every point of S, as well as the point z ¼ 0, is a bound-

ary point. S has no interior points.

(e) S does not consist of any interior points. Hence, it cannot be open. Thus, S is neither open nor closed.

(f) If we join any two points of S by a polygonal path, there are points on this path that do not belong to S.

Thus S is not connected.

(g) Since S is not an open connected set, it is not an open region or domain.

(h) The closure of S consists of the set S together with the limit point zero, i.e., f0, i, 1
2
i, 1

3
i, . . .g.

(i) The complement of S is the set of all points not belonging to S, i.e., all points z = i, i=2, i=3, . . . :

(j) There is a one to one correspondence between the elements of S and the natural numbers 1, 2, 3, . . . as

indicated below:

i 1
2
i 1

3
i 1

4
i . . .

l l l l
1 2 3 4 . . .

Hence, S is countable.

(k) S is bounded but not closed. Hence, it is not compact.

(l) The closure of S is bounded and closed and so is compact.

1.46. Given the point sets A ¼ f3, �i, 4, 2þ i, 5g, B ¼ f�i, 0, �1, 2þ ig, C ¼ f�
ffiffiffi
2

p
i, 1

2
, 3g. Find

(a) A< B, (b) A> B, (c) A> C, (d) A> (B< C), (e) (A> B)< (A> C), (f ) A> (B> C).

Solution

(a) A< B consists of points belonging either to A or B or both and is given by f3, �i, 4, 2þ i, 5, 0,�1g.
(b) A> B consists of points belonging to both A and B and is given by f�i, 2þ ig.
(c) A> C ¼ f3g, consisting of only the member 3.

(d) B< C ¼ f�i, 0,�1, 2þ i, �
ffiffiffi
2

p
i, 1

2
, 3g.

Hence A> (B< C) ¼ f3, �i, 2þ ig, consisting of points belonging to both A and B< C.

(e) A> B ¼ f�i, 2þ ig, A> C ¼ f3g from parts (b) and (c). Hence (A> B)< (A> C) ¼ f�i, 2þ i, 3g.
From this and the result of (d), we see that A> (B< C) ¼ (A> B)< (A> C), which illustrates the

fact that A, B, C satisfy the distributive law. We can show that sets exhibit many of the properties

valid in the algebra of numbers. This is of great importance in theory and application.

(f) B> C ¼ 1, the null set, since there are no points common to both B and C. Hence, A> (B> C) ¼ 1
also.
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Miscellaneous Problems

1.47. A number is called an algebraic number if it is a solution of a polynomial equation

a0z
n þ a1z

n�1 þ � � � þ an�1zþ an ¼ 0 where a0, a1, . . . , an are integers:

Prove that (a)
ffiffiffi
3

p
þ

ffiffiffi
2

p
and (b)

ffiffiffi
43

p
� 2i are algebraic numbers.

Solution

(a) Let z ¼
ffiffiffi
3

p
þ

ffiffiffi
2

p
or z�

ffiffiffi
2

p
¼

ffiffiffi
3

p
. Squaring, z2 � 2

ffiffiffi
2

p
zþ 2 ¼ 3 or z2 � 1 ¼ 2

ffiffiffi
2

p
z. Squaring again,

z4 � 2z2 þ 1 ¼ 8z2 or z4 � 10z2 þ 1 ¼ 0, a polynomial equation with integer coefficients having
ffiffiffi
3

p
þffiffiffi

2
p

as a root. Hence,
ffiffiffi
3

p
þ

ffiffiffi
2

p
is an algebraic number.

(b) Let z ¼
ffiffiffi
43

p
� 2i or zþ 2i ¼

ffiffiffi
43

p
. Cubing, z3 þ 3z2(2i)þ 3z(2i)2 þ (2i)3 ¼ 4 or z3 � 12z� 4 ¼

i(8� 6z2). Squaring, z6 þ 12z4 � 8z3 þ 48z2 þ 96zþ 80 ¼ 0, a polynomial equation with integer

coefficients having
ffiffiffi
43

p
� 2i as a root. Hence,

ffiffiffi
43

p
� 2i is an algebraic number.

Numbers that are not algebraic, i.e., do not satisfy any polynomial equation with integer coefficients, are

called transcendental numbers. It has been proved that the numbers p and e are transcendental. However, it

is still not yet known whether numbers such as ep or eþ p, for example, are transcendental or not.

1.48. Represent graphically the set of values of z for
which (a)

z� 3

zþ 3

����
���� ¼ 2, (b)

z� 3

zþ 3

����
���� , 2.

Solution

(a) The given equation is equivalent to jz� 3j ¼
2jzþ 3j or, if

z ¼ xþ iy, jxþ iy� 3j ¼ 2jxþ iyþ 3j, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 3)2 þ y2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ 3)2 þ y2

q

Squaring and simplifying, this becomes

x2 þ y2 þ 10xþ 9 ¼ 0

or
(xþ 5)2 þ y2 ¼ 16

i.e., jzþ 5j ¼ 4, a circle of radius 4 with center at (�5, 0) as shown in Fig. 1-36.

Geometrically, any point P on this circle is such that the distance from P to point B(3, 0) is twice the

distance from P to point A(�3, 0).

Another Method.

z� 3

zþ 3

����
���� ¼ 2 is equivalent to

z� 3

zþ 3

� �
�z� 3

�zþ 3

� �
¼ 4 or z�zþ 5�zþ 5zþ 9 ¼ 0

i.e., (zþ 5)(�zþ 5) ¼ 16 or jzþ 5j ¼ 4.

(b) The given inequality is equivalent to jz� 3j , 2jzþ 3j or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 3)2 þ y2

p
, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ 3)2 þ y2

p
. Squaring

and simplifying, this becomes x2 þ y2 þ 10xþ 9 . 0 or (xþ 5)2 þ y2 . 16, i.e., jzþ 5j . 4.

The required set thus consists of all points external to the circle of Fig. 1-36.

P

A B
x

y

(3, 0)(–3, 0)

(–5, 0)

4

Fig. 1-36
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1.49. Given the sets A and B represented by jz� 1j , 2 and jz� 2ij , 1:5, respectively. Represent
geometrically (a) A> B, (b) A< B.

Solution

The required sets of points are shown shaded in Figs. 1-37 and 1-38, respectively.

B

A
x

y

2i

1
x

y

A

1

B

2i

Fig. 1-37 Fig. 1-38

1.50. Solve z2(1� z2) ¼ 16.

Solution

Method 1. The equation can be written z4 � z2 þ 16 ¼ 0, i.e., z4 þ 8z2 þ 16� 9z2 ¼ 0, (z2 þ 4)2 � 9z2 ¼ 0 or

(z2 þ 4þ 3z)(z2 þ 4� 3z) ¼ 0. Then, the required solutions are the solutions of z2 þ 3zþ 4 ¼ 0 and

z2 � 3zþ 4 ¼ 0, or

� 3

2
+

ffiffiffi
7

p

2
i and

3

2
+

ffiffiffi
7

p

2
i

.

Method 2. Letting w ¼ z2, the equation can be written w2 � wþ 16 ¼ 0 and w ¼ 1
2
+ 3

2

ffiffiffi
7

p
i. To obtain sol-

utions of z2 ¼ 1
2
+ 3

2

ffiffiffi
7

p
i, the methods of Problem 1.30 can be used.

1.51. Let z1, z2, z3 represent vertices of an equilateral triangle. Prove that

z21 þ z22 þ z23 ¼ z1z2 þ z2z3 þ z3z1

Solution

From Fig. 1-39, we see that

z2 � z1 ¼ epi=3(z3 � z1)

z1 � z3 ¼ epi=3(z2 � z3)

Then, by division,

z2 � z1

z1 � z3
¼ z3 � z1

z2 � z3

or

z21 þ z22 þ z23 ¼ z1z2 þ z2z3 þ z3z1

x

y

z1

z3

z2

π/3
π/3

π/3

Fig. 1-39
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1.52. Prove that for m ¼ 2, 3, . . .

sin
p

m
sin

2p

m
sin

3p

m
� � � sin (m� 1)p

m
¼ m

2m�1

Solution

The roots of zm ¼ 1 are z ¼ 1, e2pi=m, e4pi=m, . . . , e2(m�1)pi=m. Then, we can write

zm � 1 ¼ (z� 1)(z� e2pi=m)(z� e4pi=m) � � � (z� e2(m�1)pi=m)

Dividing both sides by z� 1 and then letting z ¼ 1 [realizing that (zm � 1)=(z� 1) ¼ 1þ zþ z2 þ � � � þ zm�1],

we find

m ¼ (1� e2pi=m)(1� e4pi=m) � � � (1� e2(m�1)pi=m) (1)

Taking the complex conjugate of both sides of (1) yields

m ¼ (1� e�2pi=m)(1� e�4pi=m) � � � (1� e�2(m�1)pi=m) (2)

Multiplying (1) by (2) using (1� e2kpi=m)(1� e�2kpi=m) ¼ 2� 2 cos(2kp=m), we have

m2 ¼ 2m�1 1� cos
2p

m

� �
1� cos

4p

m

� �
� � � 1� cos

2(m� 1)p

m

� �
(3)

Since 1� cos(2kp=m) ¼ 2 sin2(kp=m), (3) becomes

m2 ¼ 22m�2 sin2
p

m
sin2

2p

m
� � � sin2 (m� 1)p

m
(4)

Then, taking the positive square root of both sides yields the required result.

SUPPLEMENTARY PROBLEMS

Fundamental Operations with Complex Numbers

1.53. Perform each of the indicated operations:

(a) (4� 3i)þ (2i� 8), (d) (i� 2)f2(1þ i)� 3(i� 1)g, (g)
(2þ i)(3� 2i)(1þ 2i)

(1� i)2

(b) 3(�1þ 4i)� 2(7� i), (e)
2� 3i

4� i
, (h) (2i� 1)2

4

1� i
þ 2� i

1þ i

� �

(c) (3þ 2i)(2� i), (f ) (4þ i)(3þ 2i)(1� i) (i)
i4 þ i9 þ i16

2� i5 þ i10 � i15

1.54. Suppose z1 ¼ 1� i, z2 ¼ �2þ 4i, z3 ¼
ffiffiffi
3

p
� 2i. Evaluate each of the following:

(a) z21 þ 2z1 � 3 (d) jz1�z2 þ z2�z1j (g) (z2 þ z3)(z1 � z3)

(b) j2z2 � 3z1j2 (e)
z1 þ z2 þ 1

z1 � z2 þ i

����
���� (h) jz21 þ �z22j2 þ j�z23 � z22j2

(c) (z3 � �z3)
5 (f )

1

2

z3

�z3
þ �z3

z3

� �
(i) Ref2z31 þ 3z22 � 5z23g
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1.55. Prove that (a) (z1z2) ¼ �z1�z2, (b) (z1z2z3) ¼ �z1�z2�z3. Generalize these results.

1.56. Prove that (a) (z1=z2) ¼ �z1=�z2, (b) jz1=z2j ¼ jz1j=jz2j if z2 = 0.

1.57. Find real numbers x and y such that 2x� 3iyþ 4ix� 2y� 5� 10i ¼ (xþ yþ 2)� (y� xþ 3)i.

1.58. Prove that (a) Refzg ¼ (zþ �z)=2, (b) Imfzg ¼ (z� �z)=2i.

1.59. Suppose the product of two complex numbers is zero. Prove that at least one of the numbers must be zero.

1.60. Let w ¼ 3iz� z2 and z ¼ xþ iy. Find jwj2 in terms of x and y.

Graphical Representation of Complex Numbers. Vectors.

1.61. Perform the indicated operations both analytically and graphically.

(a) (2þ 3i)þ (4� 5i) (d) 3(1þ i)þ 2(4� 3i)� (2þ 5i)

(b) (7þ i)� (4� 2i) (e) 1
2
(4� 3i)þ 3

2
(5þ 2i)

(c) 3(1þ 2i)� 2(2� 3i)

1.62. Let z1, z2, and z3 be the vectors indicated in Fig. 1-40. Construct

graphically:

(a) 2z1 þ z3

(b) (z1 þ z2)þ z3

(c) z1 þ (z2 þ z3)

(d) 3z1 � 2z2 þ 5z3

(e) 1
3
z2 � 3

4
z1 þ 2

3
z3

1.63. Let z1 ¼ 4� 3i and z2 ¼ �1þ 2i. Obtain graphically and analytically

(a) jz1 þ z2j, (b) jz1 � z2j, (c) �z1 � �z2, (d) j2�z1 � 3�z2 � 2j.

1.64. The position vectors of points A, B, and C of triangle ABC are given by z1 ¼ 1þ 2i, z2 ¼ 4� 2i, and

z3 ¼ 1� 6i, respectively. Prove that ABC is an isosceles triangle and find the lengths of the sides.

1.65. Let z1, z2, z3, z4 be the position vectors of the vertices for quadrilateral ABCD. Prove that ABCD is a

parallelogram if and only if z1 � z2 � z3 þ z4 ¼ 0.

1.66. Suppose the diagonals of a quadrilateral bisect each other. Prove that the quadrilateral is a parallelogram.

1.67. Prove that the medians of a triangle meet in a point.

1.68. Let ABCD be a quadrilateral and E, F, G, H the midpoints of the sides. Prove that EFGH is a parallelogram.

1.69. In parallelogram ABCD, point E bisects side AD. Prove that the point where BE meets AC trisects AC.

1.70. The position vectors of points A and B are 2þ i and 3� 2i, respectively. (a) Find an equation for line AB. (b)

Find an equation for the line perpendicular to AB at its midpoint.

1.71. Describe and graph the locus represented by each of the following: (a) jz� ij ¼ 2,

(b) jzþ 2ij þ jz� 2ij ¼ 6, (c) jz� 3j � jzþ 3j ¼ 4, (d) z(�zþ 2) ¼ 3, (e) Imfz2g ¼ 4.

1.72. Find an equation for (a) a circle of radius 2 with center at (�3, 4), (b) an ellipse with foci at (0, 2) and (0, �2)
whose major axis has length 10.

z1
z2

z3

x

y

Fig. 1-40
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1.73. Describe graphically the region represented by each of the following:

(a) 1 , jzþ ij � 2, (b) Refz2g . 1, (c) jzþ 3ij . 4, (d) jzþ 2� 3ij þ jz� 2þ 3ij , 10.

1.74. Show that the ellipse jzþ 3j þ jz� 3j ¼ 10 can be expressed in rectangular form as x2=25þ y2=16 ¼ 1 [see

Problem 1.13(b)].

Axiomatic Foundations of Complex Numbers

1.75. Use the definition of a complex number as an ordered pair of real numbers to prove that if the product of two

complex numbers is zero, then at least one of the numbers must be zero.

1.76. Prove the commutative laws with respect to (a) addition, (b) multiplication.

1.77. Prove the associative laws with respect to (a) addition, (b) multiplication.

1.78. (a) Find real numbers x and y such that (c, d) � (x, y) ¼ (a, b) where (c, d)=(0, 0).

(b) How is (x, y) related to the result for division of complex numbers given on page 2?

1.79. Prove that

(cos u1, sin u1)(cos u2, sin u2) � � � (cos un, sin un)
¼ (cos[u1 þ u2 þ � � � þ un], sin[u1 þ u2 þ � � � þ un])

1.80. (a) How would you define (a, b)1=n where n is a positive integer?

(b) Determine (a, b)1=2 in terms of a and b.

Polar Form of Complex Numbers

1.81. Express each of the following complex numbers in polar form:

(a) 2� 2i, (b) �1þ
ffiffiffi
3

p
i, (c) 2

ffiffiffi
2

p
þ 2

ffiffiffi
2

p
i, (d) �i, (e) �4, (f ) �2

ffiffiffi
3

p
� 2i, (g)

ffiffiffi
2

p
i, (h)

ffiffiffi
3

p
=2� 3i=2.

1.82. Show that 2þ i ¼
ffiffiffi
5

p
ei tan

�1 (1=2).

1.83. Express in polar form: (a) �3� 4i, (b) 1� 2i.

1.84. Graph each of the following and express in rectangular form:

(a) 6(cos 1358þ i sin 1358), (b) 12 cis 908, (c) 4 cis 3158, (d) 2e5pi=4, (e) 5e7pi=6, (f ) 3e�2pi=3.

1.85. An airplane travels 150 miles southeast, 100 miles due west, 225 miles 308 north of east, and then 200 miles

northeast. Determine (a) analytically and (b) graphically how far and in what direction it is from its starting

point.

1.86. Three forces as shown in Fig. 1-41 act in a plane on an object

placed atO. Determine (a) graphically and (b) analytically what

force is needed to prevent the object from moving. [This force

is sometimes called the equilibrant.]

1.87. Prove that on the circle z ¼ Reiu, jeizj ¼ e�R sin u.

1.88. (a) Prove that r1e
iu1 þ r2e

iu2 ¼ r3e
iu3 where

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ 2r1r2 cos(u1 � u2)

q
and

u3 ¼ tan�1 r1 sin u1 þ r2 sin u2
r1 cos u1 þ r2 cos u2

� �

(b) Generalize the result in (a).

60°

45°

30°

100 lb 75
 lb

50 lb

O
x

y

Fig. 1-41
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De Moivre’s Theorem

1.89. Evaluate each of the following: (a) (5 cis 208)(3 cis 408) (b) (2 cis 508)6

(c)
(8 cis 408)3

(2 cis 608)4
(d)

(3epi=6)(2e�5pi=4)(6e5pi=3)

(4e2pi=3)2
(e)

ffiffiffi
3

p
� iffiffiffi

3
p

þ i

� �4
1þ i

1� i

� �5

1.90. Prove that (a) sin 3u ¼ 3 sin u� 4 sin3 u, (b) cos 3u ¼ 4 cos3 u� 3 cos u.

1.91. Prove that the solutions of z4 � 3z2 þ 1 ¼ 0 are given by

z ¼ 2 cos 368, 2 cos 728, 2 cos 2168, 2 cos 2528.

1.92. Show that (a) cos 368 ¼ (
ffiffiffi
5

p
þ 1)=4, (b) cos 728 ¼ (

ffiffiffi
5

p
� 1)=4. [Hint: Use Problem 1.91.]

1.93. Prove that (a) sin 4u=sin u ¼ 8 cos3 u� 4 cos u ¼ 2 cos 3uþ 2 cos u

(b) cos 4u ¼ 8 sin4 u� 8 sin2 uþ 1

1.94. Prove De Moivre’s theorem for (a) negative integers, (b) rational numbers.

Roots of Complex Numbers

1.95. Find each of the indicated roots and locate them graphically.

(a) (2
ffiffiffi
3

p
� 2i)1=2, (b) (�4þ 4i)1=5, (c) (2þ 2

ffiffiffi
3

p
i)1=3, (d) (�16i)1=4, (e) (64)1=6, (f) (i)2=3.

1.96. Find all the indicated roots and locate them in the complex plane. (a) Cube roots of 8,

(b) square roots of 4
ffiffiffi
2

p
þ 4

ffiffiffi
2

p
i, (c) fifth roots of �16þ 16

ffiffiffi
3

p
i, (d) sixth roots of �27i.

1.97. Solve the equations (a) z4 þ 81 ¼ 0, (b) z6 þ 1 ¼
ffiffiffi
3

p
i.

1.98. Find the square roots of (a) 5� 12i, (b) 8þ 4
ffiffiffi
5

p
i.

1.99. Find the cube roots of �11� 2i.

Polynomial Equations

1.100. Solve the following equations, obtaining all roots:

(a) 5z2 þ 2zþ 10 ¼ 0, (b) z2 þ (i� 2)zþ (3� i) ¼ 0.

1.101. Solve z5 � 2z4 � z3 þ 6z� 4 ¼ 0.

1.102. (a) Find all the roots of z4 þ z2 þ 1 ¼ 0 and (b) locate them in the complex plane.

1.103. Prove that the sum of the roots of a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an ¼ 0 where a0=0 taken r at a time is

(�1)rar=a0 where 0 , r , n.

1.104. Find two numbers whose sum is 4 and whose product is 8.

The nth Roots of Unity

1.105. Find all the (a) fourth roots, (b) seventh roots of unity, and exhibit them graphically.

1.106. (a) Prove that 1þ cos 728þ cos 1448þ cos 2168þ cos 2888 ¼ 0.

(b) Give a graphical interpretation of the result in (a).

1.107. Prove that cos 368þ cos 728þ cos 1088þ cos 1448 ¼ 0 and interpret graphically.
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1.108. Prove that the sum of the products of all the nth roots of unity taken 2, 3, 4, . . . , (n� 1) at a time is zero.

1.109. Find all roots of (1þ z)5 ¼ (1� z)5.

The Dot and Cross Product

1.110. Given z1 ¼ 2þ 5i and z2 ¼ 3� i. Find

(a) z1 � z2, (b) jz1 � z2j, (c) z2 � z1, (d) jz2 � z1j, (e) jz1 � z2j, (f ) jz2 � z1j.

1.111. Prove that z1 � z2 ¼ z2 � z1:

1.112. Suppose z1 ¼ r1e
iu1 and z2 ¼ r2e

iu2 . Prove that

(a) z1 � z2 ¼ r1r2 cos(u2 � u1), (b) jz1 � z2j ¼ r1r2 sin(u2 � u1).

1.113. Prove that z1 � (z2 þ z3) ¼ z1 � z2 þ z1 � z3.

1.114. Find the area of a triangle having vertices at �4� i, 1þ 2i, 4� 3i.

1.115. Find the area of a quadrilateral having vertices at (2, �1), (4, 3), (�1, 2); and (�3, �2).

Conjugate Coordinates

1.116. Describe each of the following loci expressed in terms of conjugate coordinates z, �z.

(a) z�z ¼ 16, (b) z�z� 2z� 2�zþ 8 ¼ 0, (c) zþ �z ¼ 4, (d) �z ¼ zþ 6i.

1.117. Write each of the following equations in terms of conjugate coordinates.

(a) (x� 3)2 þ y2 ¼ 9, (b) 2x� 3y ¼ 5, (c) 4x2 þ 16y2 ¼ 25.

Point Sets

1.118. Let S be the set of all points aþ bi, where a and b are

rational numbers, which lie inside the square shown shaded in

Fig. 1-42. (a) Is S bounded? (b) What are the limit points of S, if

any? (c) Is S closed? (d) What are its interior and boundary points?

(e) Is S open? (f) Is S connected? (g) Is S an open region or

domain? (h) What is the closure of S? (i) What is the complement

of S? (j) Is S countable? (k) Is S compact? (l) Is the closure of S

compact?

1.119. Answer Problem 1.118 if S is the set of all points inside the square.

1.120. Answer Problem 1.118 if S is the set of all points inside or on the square.

1.121. Given the point sets A ¼ f1, i, �ig, B ¼ f2, 1, �ig, C ¼ fi, �i, 1þ ig, D ¼ f0, �i, 1g. Find:
(a) A< (B< C), (b) (A> C)< (B> D), (c) (A< C)> (B< D).

1.122. Suppose A, B, C, and D are any point sets. Prove that (a) A< B ¼ B< A, (b) A> B ¼ B> A,

(c) A< (B< C) ¼ (A< B)< C, (d) A> (B> C) ¼ (A> B)> C,

(e) A> (B< C) ¼ (A> B)< (A> C).

1.123. Suppose A, B, and C are the point sets defined by jzþ ij , 3, jzj , 5, jzþ 1j , 4. Represent graphically each

of the following:

(a) A> B> C, (b) A< B< C, (c) A> B< C, (d) C> (A< B), (e) (A< B)> (B< C),

(f ) (A> B)< (B> C)< (C> A), (g) (A> ~B)< (B> ~C)< (C > ~A).

1.124. Prove that the complement of a set S is open or closed according as S is closed or open.

1.125. Suppose S1, S2, . . . , Sn are open sets. Prove that S1 < S2 < � � �< Sn is open.

1.126. Suppose a limit point of a set does not belong to the set. Prove that it must be a boundary point of the set.

1 + i

O
x

y

i

1

Fig. 1-42
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Miscellaneous Problems

1.127. Let ABCD be a parallelogram. Prove that (AC)2 þ (BD)2 ¼ (AB)2 þ (BC)2 þ (CD)2 þ (DA)2.

1.128. Explain the fallacy: �1 ¼
ffiffiffiffiffiffiffi
�1

p ffiffiffiffiffiffiffi
�1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�1)(�1)

p
¼

ffiffiffi
1

p
¼ 1. Hence 1 ¼ �1.

1.129. (a) Show that the equation z4 þ a1z
3 þ a2z

2 þ a3zþ a4 ¼ 0 where a1, a2, a3, a4 are real constants different

from zero, has a pure imaginary root if a23 þ a21a4 ¼ a1a2a3.

(b) Is the converse of (a) true?

1.130. (a) Prove that cosn f ¼ 1

2n�1
cos nfþ n cos(n� 2)fþ n(n� 1)

2!
cos(n� 4)fþ � � � þ Rn

� �
where

Rn ¼

n!

[(n� 1)=2]![(nþ 1)=2]!
cosf if n is odd

n!

2[(n=2)!]2
if n is even

8>><
>>:

(b) Derive a similar result for sinn f.

1.131. Let z ¼ 6epi=3. Evaluate jeizj.

1.132. Show that for any real numbers p and m, e2mi cot
�1 p piþ 1

pi� 1

� �m

¼ 1.

1.133. Let P(z) be any polynomial in z with real coefficients. Prove that P(z) ¼ P(�z).

1.134. Suppose z1, z2, and z3 are collinear. Prove that there exist real constants a, b, g, not all zero, such that az1 þ
bz2 þ gz3 ¼ 0 where aþ bþ g ¼ 0.

1.135. Given the complex number z, represent geometrically (a) �z, (b) �z, (c) 1/z, (d) z2.

1.136. Consider any two complex numbers z1 and z2 not equal to zero. Show how to represent graphically using only

ruler and compass (a) z1z2, (b) z1=z2, (c) z
2
1 þ z22, (d) z

1=2
1 , (e) z

3=4
2 .

1.137. Prove that an equation for a line passing through the points z1 and z2 is given by

argf(z� z1)=(z2 � z1)g ¼ 0

1.138. Suppose z ¼ xþ iy. Prove that jxj þ jyj �
ffiffiffi
2

p
jxþ iyj.

1.139. Is the converse to Problem 1.51 true? Justify your answer.

1.140. Find an equation for the circle passing through the points 1� i, 2i, 1þ i.

1.141. Show that the locus of z such that jz� ajjzþ aj ¼ a2, a . 0 is a lemniscate as shown in Fig. 1-43.

x

y

a√2
x

y

P4

Fig. 1-43 Fig. 1-44
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1.142. Let pn ¼ a2n þ b2n, n ¼ 1, 2, 3, . . . where an and bn are positive integers. Prove that for every positive integer

M, we can always find positive integers A and B such that p1p2 � � � pM ¼ A2 þ B2. [Example: If 5 ¼ 22 þ 12 and

25 ¼ 32 þ 42, then 5 � 25 ¼ 22 þ 112.]

1.143. Prove that: (a) cos uþ cos(uþ a)þ � � � þ cos(uþ na) ¼ sin 1
2
(nþ 1)a

sin 1
2
a

cos(uþ 1
2
na)

(b) sin uþ sin(uþ a)þ � � � þ sin(uþ na) ¼ sin 1
2
(nþ 1)a

sin 1
2
a

sin(uþ 1
2
na)

1.144. Prove that (a) Refzg . 0 and (b) jz� 1j , jzþ 1j are equivalent statements.

1.145. A wheel of radius 4 feet [Fig. 1-44] is rotating counterclockwise about an axis through its center at 30 revolu-

tions per minute. (a) Show that the position and velocity of any point P on the wheel are given, respectively, by

4eipt and 4pieipt, where t is the time in seconds measured from the instant when Pwas on the positive x axis. (b)

Find the position and velocity when t ¼ 2=3 and t ¼ 15=4.

1.146. Prove that for any integer m . 1,

(zþ a)2m � (z� a)2m ¼ 4maz
Ym�1

k¼1

fz2 þ a2 cot2(kp=2m)g

where
Qm�1

k¼1 denotes the product of all the factors indicated from k ¼ 1 to m� 1.

1.147. Suppose points P1 and P2, represented by z1 and z2 respectively, are such that jz1 þ z2j ¼ jz1 � z2j.
Prove that (a) z1=z2 is a pure imaginary number, (b) /P1OP2 ¼ 908.

1.148. Prove that for any integer m . 1,

cot
p

2m
cot

2p

2m
cot

3p

2m
� � � cot (m� 1)p

2m
¼ 1

1.149. Prove and generalize: (a) csc2(p=7)þ csc2(2p=7)þ csc2(4p=7) ¼ 2

(b) tan2(p=16)þ tan2(3p=16)þ tan2(5p=16)þ tan2(7p=16) ¼ 28

1.150. Let masses m1, m2, m3 be located at points z1, z2, z3, respectively. Prove that the center of mass is given by

ẑ ¼ m1z1 þ m2z2 þ m3z3

m1 þ m2 þ m3

Generalize to n masses.

1.151. Find the point on the line joining points z1 and z2 which divides it in the ratio p : q.

1.152. Show that an equation for a circle passing through three points z1, z2, z3 is given by

z� z1

z� z2

� �
= z3 � z1

z3 � z2

� �
¼ �z� �z1

�z� �z2

� �
= �z3 � �z1

�z3 � �z2

� �

1.153. Prove that the medians of a triangle with vertices at z1, z2, z3 intersect at the point
1
3
(z1 þ z2 þ z3).

1.154. Prove that the rational numbers between 0 and 1 are countable.

[Hint. Arrange the numbers as 0, 1
2
, 1

3
, 2

3
, 1

4
, 3

4
, 1

5
, 2

5
, 3

5
, . . . .]

1.155. Prove that all the real rational numbers are countable.

1.156. Prove that the irrational numbers between 0 and 1 are not countable.

1.157. Represent graphically the set of values of z for which (a) jzj . jz� 1j, (b) jzþ 2j . 1þ jz� 2j.
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1.158. Show that (a)
ffiffiffi
23

p
þ

ffiffiffi
3

p
and (b) 2�

ffiffiffi
2

p
i are algebraic numbers. [See Problem 1.47.]

1.159. Prove that
ffiffiffi
2

p
þ

ffiffiffi
3

p
is an irrational number.

1.160. Let ABCD � � �PQ represent a regular polygon of n sides inscribed in a circle of unit radius. Prove that the

product of the lengths of the diagonals AC, AD, . . . , AP is 1
4
n csc2(p=n).

1.161. Suppose sin u=0. Prove that (a)
sin nu

sin u
¼ 2n�1

Yn�1

k¼1

fcos u� cos(kp=n)g

(b)
sin(2nþ 1)u

sin u
¼ (2nþ 1)

Yn
k¼1

1� sin2 u

sin2 kp=(2nþ 1)

� �
.

1.162. Prove cos 2nu ¼ (�1)n
Yn
k¼1

1� cos2 u

cos2(2k � 1)p=4n

� �
.

1.163. Suppose the product of two complex numbers z1 and z2 is real and different from zero. Prove that there exists a

real number p such that z1 ¼ p�z2.

1.164. Let z be any point on the circle jz� 1j ¼ 1. Prove that arg(z� 1) ¼ 2 arg z ¼ 2
3
arg(z2 � z) and give a geometri-

cal interpretation.

1.165. Prove that under suitable restrictions (a) zmzn ¼ zmþn, (b) (zm)n ¼ zmn.

1.166. Prove (a) Refz1z2g ¼ Refz1gRefz2g � Imfz1gImfz2g

(b) Imfz1z2g ¼ Refz1gImfz2g þ Imfz1gRefz2g.

1.167. Find the area of the polygon with vertices at 2þ 3i, 3þ i, �2�4i, �4� i, �1þ 2i.

1.168. Let a1, a2, . . . , an and b1, b2, . . . , bn be any complex numbers. Prove Schwarz’s inequality,

Xn
k¼1

akbk

�����
�����
2

�
Xn
k¼1

jakj2
 ! Xn

k¼1

jbkj2
 !

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.53. (a) �4� i, (b) �17þ 14i, (c) 8þ i, (d) �9þ 7i, (e) 11=17� (10=17)i, (f) 21þ i,

(g) �15=2þ 5i, (h) �11=2� (23=2)i, (i) 2þ i

1.54. (a) �1� 4i, (b) 170, (c) 1024i, (d) 12, (e) 3/5, (f) �1=7, (g) �7þ 3
ffiffiffi
3

p
þ

ffiffiffi
3

p
i,

(h) 765þ 128
ffiffiffi
3

p
, (i) �35

1.57. x ¼ 1, y ¼ �2

1.60. x4 þ y4 þ 2x2y2 � 6x2y� 6y3 þ 9x2 þ 9y2

1.61. (a) 6� 2i, (b) 3þ 3i, (c) �1þ 12i, (d) 9� 8i, (e) 19=2þ (3=2)i

1.63. (a)
ffiffiffiffiffi
10

p
, (b) 5

ffiffiffi
2

p
, (c) 5þ 5i, (d) 15

1.64. 5, 5, 8

1.70. (a) z� (2þ i) ¼ t(1� 3i) or x ¼ 2þ t, y ¼ 1� 3t or 3xþ y ¼ 7

(b) z� (5=2� i=2) ¼ t(3þ i) or x ¼ 3t þ 5=2, y ¼ t � 1=2 or 3� 3y ¼ 4

1.71. (a) circle, (b) ellipse, (c) hyperbola, (d) z ¼ 1 and x ¼ �3, (e) hyperbola

1.72. (a) jzþ 3� 4ij ¼ 2 or (xþ 3)2 þ (y� 4)2 ¼ 4, (b) jzþ 2ij þ jz� 2ij ¼ 10

1.73. (a) 1 , jzþ ij � 2, (b) Refz2g . 1, (c) jzþ 3ij . 4, (d) jzþ 2� 3ij þ jz� 2þ 3ij , 10

1.81. (a) 2
ffiffiffi
2

p
cis 3158 or 2

ffiffiffi
2

p
e7pi=4, (b) 2 cis 1208 or 2e2pi=3, (c) 4 cis 458 or 4epi=4, (d) cis 2708 or e3pi=2, (e)

4 cis 1808 or 4epi, (f) 4 cis 2108 or 4e7pi=6, (g)
ffiffiffi
2

p
cis 908 or

ffiffiffi
2

p
epi=2, (h)

ffiffiffi
3

p
cis 3008 or

ffiffiffi
3

p
e5pi=3

CHAPTER 1 Complex Numbers 39



1.83. (a) 5 exp[i(pþ tan�1(4=3), (b)
ffiffiffi
5

p
exp[�i tan�1 2]

1.84. (a) �3
ffiffiffi
2

p
þ 3

ffiffiffi
2

p
i, (b) 12i, (c) 2

ffiffiffi
2

p
� 2

ffiffiffi
2

p
i, (d) �

ffiffiffi
2

p
�

ffiffiffi
2

p
i, (e) �5

ffiffiffi
3

p
=2� (5=2)i,

(f) �3
ffiffiffi
3

p
=2� (3=2)i

1.85. 375 miles, 238 north of east (approx.)

1.89. (a) 15=2þ (15
ffiffiffi
3

p
=2)i, (b) 32� 32

ffiffiffi
3

p
i, (c) �16� 16

ffiffiffi
3

p
i, (d) 3

ffiffiffi
3

p
=2� (3

ffiffiffi
3

p
=2)i,

(e) �
ffiffiffi
3

p
=2� (1=2)i

1.95. (a) 2 cis 1658, 2 cis 3458; (b)
ffiffiffi
2

p
cis 278,

ffiffiffi
2

p
cis 998,

ffiffiffi
2

p
cis 1718,

ffiffiffi
2

p
cis 2438,

ffiffiffi
2

p
cis 3158;

(c)
ffiffiffi
43

p
cis 208,

ffiffiffi
43

p
cis 1408,

ffiffiffi
43

p
cis 2608; (d) 2 cis 67:58, 2 cis 157:58, 2 cis 247:58, 2 cis 337:58; (e)

2 cis 08, 2 cis 608, 2 cis 1208, 2 cis 1808, 2 cis 2408, 2 cis 3008; (f ) cis 608, cis 1808, cis 3008

1.96. (a) 2 cis 08, 2 cis 1208, 2 cis 2408; (b)
ffiffiffi
8

p
cis 22:58,

ffiffiffi
8

p
cis 202:58; (c) 2 cis 488, 2 cis 1208,

2 cis 1928, 2 cis 2648, 2 cis 3368; (d)
ffiffiffi
3

p
cis 458,

ffiffiffi
3

p
cis 1058,

ffiffiffi
3

p
cis 1658,

ffiffiffi
3

p
cis 2258,ffiffiffi

3
p

cis 2858,
ffiffiffi
3

p
cis 3458

1.97. (a) 3 cis 458, 3 cis 1358, 3 cis 2258, 3 cis 3158

(b)
ffiffiffi
26

p
cis 408,

ffiffiffi
26

p
cis 1008,

ffiffiffi
26

p
cis 1608,

ffiffiffi
26

p
cis 2208,

ffiffiffi
26

p
cis 2808,

ffiffiffi
26

p
cis 3408

1.98. (a) 3� 2i, �3þ 2i, (b)
ffiffiffiffiffi
10

p
þ

ffiffiffi
2

p
i, �

ffiffiffiffiffi
10

p
�

ffiffiffi
2

p
i

1.99. 1þ 2i, 1
2
�

ffiffiffi
3

p
þ (1þ 1

2

ffiffiffi
3

p
)i, � 1

2
�

ffiffiffi
3

p
þ 1

2

ffiffiffi
3

p
� 1


 �
i

1.100. (a) (�1+ 7i)=5, (b) 1þ i, 1� 2i

1.101. 1, 1, 2, �1+ i

1.102. 1
2
(1+ i

ffiffiffi
3

p
), 1

2
(�1+ i

ffiffiffi
3

p
)

1.104. 2þ 2i, 2� 2i

1.105. (a) e2pik=4 ¼ e2pik=2, k ¼ 0, 1, 2, 3, (b) e2pik=7, k ¼ 0, 1, . . . , 6

1.109. ui(v� 1)=(vþ 1), (v2 � 1)=(v2 þ 1), (v3 � 1)=(v3 þ 1), (v4 � 1)=(v4 þ 1), where v ¼ e2pi=5

1.110. (a) 1, (b) 178, (c) 1, (d) 17, (e) 1, (f) 1

1.114. 17

1.115. 18

1.116. (a) x2 þ y2 ¼ 16, (b) x2 þ y2 � 4xþ 8 ¼ 0, (c) x ¼ 2, (d) y ¼ �3

1.117. (a) (z� 3)(�z� 3) ¼ 9, (b) (2i� 3)zþ (2iþ 3)�z ¼ 10i, (c) 3(z2 þ �z2)� 10z�zþ 25 ¼ 0

1.118. (a) Yes. (b) Every point inside or on the boundary of the square is a limit point. (c) No. (d) All points of the

square are boundary points; there are no interior points. (e) No. (f ) No. (g) No. (h) The closure of S is the set of

all points inside and on the boundary of the square. (i) The complement of S is the set of all points that are not

equal to aþ bi when a and b [where 0 , a , 1, 0 , b , 1] are rational. ( j ) Yes. (k) No. (l) Yes.

1.119. (a) Yes. (b) Every point inside or on the square is a limit point. (c) No. (d) Every point inside is an interior point,

while every point on the boundary is a boundary point. (e) Yes. (f ) Yes. (g) Yes. (h) The closure of S is the set

of all points inside and on the boundary of the square. (i) The complement of S is the set of all points exterior to

the square or on its boundary. ( j ) No. (k) No. (l) Yes.

1.120. (a) Yes. (b) Every point of S is a limit point. (c) Yes. (d) Every point inside the square is an interior point, while

every point on the boundary is a boundary point. (e) No. (f) Yes. (g) No. (h) S itself. (i) All points exterior to the

square. ( j) No. (k) Yes. (l) Yes.

1.121. (a) f2, 1, �i, i, 1þ ig, (b) f1, i,�ig, (c) f1, �ig
1.131. e�3

ffiffi
3

p

1.139. Yes

1.140. jzþ 1j ¼
ffiffiffi
5

p
or (xþ 1)2 þ y2 ¼ 5

1.151. (qz1 þ pz2)=(qþ p)

1.167. 47/2
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CHAP T E R 2

Functions, Limits, and
Continuity

2.1 Variables and Functions

A symbol, such as z, which can stand for any one of a set of complex numbers is called a complex variable.
Suppose, to each value that a complex variable z can assume, there corresponds one or more values of a

complex variable w. We then say that w is a function of z and write w ¼ f (z) or w ¼ G(z), etc. The variable z
is sometimes called an independent variable, while w is called a dependent variable. The value of a function
at z ¼ a is often written f(a). Thus, if f (z) ¼ z2, then f (2i) ¼ (2i)2 ¼ �4.

2.2 Single and Multiple-Valued Functions

If only one value of w corresponds to each value of z, we say that w is a single-valued function of z or that
f(z) is single-valued. If more than one value of w corresponds to each value of z, we say that w is a multiple-
valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions, each member of
which is called a branch of the function. It is customary to consider one particular member as a principal
branch of the multiple-valued function and the value of the function corresponding to this branch as the
principal value.

EXAMPLE 2.1

(a) If w ¼ z2, then to each value of z there is only one value of w. Hence, w ¼ f (z) ¼ z2 is a single-valued

function of z.

(b) If w2 ¼ z, then to each value of z there are two values of w. Hence, w2 ¼ z defines a multiple-valued (in this

case two-valued) function of z.

Whenever we speak of function, we shall, unless otherwise stated, assume single-valued function.

2.3 Inverse Functions

If w ¼ f (z), then we can also consider z as a function, possibly multiple-valued, of w, written
z ¼ g(w) ¼ f�1(w). The function f�1 is often called the inverse function corresponding to f. Thus,
w ¼ f (z) and w ¼ f�1(z) are inverse functions of each other.
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2.4 Transformations

If w ¼ uþ iv (where u and v are real) is a single-valued function of z ¼ xþ iy (where x and y are real), we
can write uþ iv ¼ f (xþ iy). By equating real and imaginary parts, this is seen to be equivalent to

u ¼ u(x, y), v ¼ v(x, y) (2:1)

Thus given a point (x, y) in the z plane, such as P in Fig. 2-1, there corresponds a point (u, v) in the w plane,
say P0 in Fig. 2-2. The set of equations (2.1) [or the equivalent, w ¼ f (z)] is called a transformation. We
say that point P is mapped or transformed into point P0 by means of the transformation and call P0 the
image of P.

EXAMPLE 2.2 If w ¼ z2, then uþ iv ¼ (xþ iy)2 ¼ x2 � y2 þ 2ixy and the transformation is u ¼ x2 � y2,

v ¼ 2xy. The image of a point (1, 2) in the z plane is the point (�3, 4) in the w plane.

z plane

P

Q

x

y

w planeP′

Q′

u

u

Fig. 2-1 Fig. 2-2

In general, under a transformation, a set of points such as those on curve PQ of Fig. 2-1 is mapped into a
corresponding set of points, called the image, such as those on curve P0Q0 in Fig. 2-2. The particular charac-
teristics of the image depend of course on the type of function f(z), which is sometimes called a mapping
function. If f(z) is multiple-valued, a point (or curve) in the z plane is mapped in general into more than one
point (or curve) in the w plane.

2.5 Curvilinear Coordinates

Given the transformation w ¼ f (z) or, equivalently, u ¼ u(x, y), v ¼ v(x, y), we call (x, y) the rectangular
coordinates corresponding to a point P in the z plane and (u, v) the curvilinear coordinates of P.

u(
x,

y)
 =

 c
2

u(x, y) = c1

x

y
z plane

P

u = c2

u
=

c 1

u

u
w plane

P

Fig. 2-3 Fig. 2-4
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The curves u(x, y) ¼ c1, v(x, y) ¼ c2, where c1 and c2 are constants, are called coordinate curves [see
Fig. 2-3] and each pair of these curves intersects in a point. These curves map into mutually orthogonal
lines in the w plane [see Fig. 2-4].

2.6 The Elementary Functions

1. Polynomial Functions are defined by

w ¼ a0z
n þ a1z

n�1 þ � � � þ an�1zþ an ¼ P(z) (2:2)

where a0=0, a1, . . . , an are complex constants and n is a positive integer called the degree of
the polynomial P(z).

The transformation w ¼ azþ b is called a linear transformation.
2. Rational Algebraic Functions are defined by

w ¼ P(z)

Q(z)
(2:3)

where P(z) and Q(z) are polynomials. We sometimes call (2.3) a rational transformation. The
special case w ¼ (azþ b)=(czþ d) where ad � bc=0 is often called a bilinear or fractional
linear transformation.

3. Exponential Functions are defined by

w ¼ ez ¼ exþiy ¼ ex(cos yþ i sin y) (2:4)

where e is the natural base of logarithms. If a is real and positive, we define

az ¼ ez ln a (2:5)

where ln a is the natural logarithm of a. This reduces to (4) if a ¼ e.
Complex exponential functions have properties similar to those of real exponential functions.

For example, ez1 � ez2 ¼ ez1þz2 , ez1=ez2 ¼ ez1�z2 .
4. Trigonometric Functions. We define the trigonometric or circular functions sin z, cos z, etc., in

terms of exponential functions as follows:

sin z ¼ eiz � e�iz

2i
, cos z ¼ eiz þ e�iz

2

sec z ¼ 1

cos z
¼ 2

eiz þ e�iz
, csc z ¼ 1

sin z
¼ 2i

eiz � e�iz

tan z ¼ sin z

cos z
¼ eiz � e�iz

i(eiz þ e�iz)
, cot z ¼ cos z

sin z
¼ i(eiz þ e�iz)

eiz � e�iz

Many of the properties familiar in the case of real trigonometric functions also hold for the
complex trigonometric functions. For example, we have:

sin2 zþ cos2 z ¼ 1, 1þ tan2 z ¼ sec2 z, 1þ cot2 z ¼ csc2 z

sin(�z) ¼ �sin z, cos(�z) ¼ cos z, tan(�z) ¼ �tan z

sin(z1+z2) ¼ sin z1 cos z2+cos z1 sin z2

cos(z1+z2) ¼ cos z1 cos z2+sin z1 sin z2

tan(z1+z2) ¼
tan z1+tan z2

1+tan z1 tan z2
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5. Hyperbolic Functions are defined as follows:

sinh z ¼ ez � e�z

2
, cosh z ¼ ez þ e�z

2

sech z ¼ 1

cosh z
¼ 2

ez þ e�z
, csch z ¼ 1

sinh z
¼ 2

ez � e�z

tanh z ¼ sinh z

cosh z
¼ ez � e�z

ez þ e�z
, coth z ¼ cosh z

sinh z
¼ ez þ e�z

ez � e�z

The following properties hold:

cosh2 z� sinh2 z ¼ 1, 1� tanh2 z ¼ sech2 z, coth2 z� 1 ¼ csch2 z

sinh(�z) ¼ �sinh z, cosh(�z) ¼ cosh z, tanh(�z) ¼ �tanh z

sinh(z1+z2) ¼ sinh z1 cosh z2+cosh z1 sinh z2

cosh(z1+z2) ¼ cosh z1 cosh z2+sinh z1 sinh z2

tanh(z1+z2) ¼
tanh z1+ tanh z2

1+ tanh z1 tanh z2

The following relations exist between the trigonometric or circular functions and the hyperbolic
functions:

sin iz ¼ i sinh z, cos iz ¼ cosh z, tan iz ¼ i tanh z

sinh iz ¼ i sin z, cosh iz ¼ cos z, tanh iz ¼ i tan z

6. Logarithmic Functions. If z ¼ ew, then we write w ¼ ln z, called the natural logarithm of z. Thus
the natural logarithmic function is the inverse of the exponential function and can be defined by

w ¼ ln z ¼ ln r þ i(uþ 2kp); k ¼ 0, +1, +2, . . .

where z ¼ reiu ¼ rei(uþ2kp). Note that ln z is a multiple-valued (in this case, infinitely-many-
valued) function. The principal-value or principal branch of ln z is sometimes defined as
ln r þ iu where 0 � u , 2p. However, any other interval of length 2p can be used, e.g.,
�p , u � p, etc.

The logarithmic function can be defined for real bases other than e. Thus, if z ¼ aw, then
w ¼ loga z where a . 0 and a=0, 1. In this case, z ¼ ew ln a and so, w ¼ (ln z)=(ln a).

7. Inverse Trigonometric Functions. If z ¼ sinw, then w ¼ sin�1 z is called the inverse sine of z
or arc sine of z. Similarly, we define other inverse trigonometric or circular functions cos�1 z,
tan�1 z, etc. These functions, which are multiple-valued, can be expressed in terms of natural
logarithms as follows. In all cases, we omit an additive constant 2kpi, k ¼ 0, +1, +2, . . . , in
the logarithm:

sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 

, csc�1 z ¼ 1

i
ln

iþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

z

 !

cos�1 z ¼ 1

i
ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p� 

, sec�1 z ¼ 1

i
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

z

 !

tan�1 z ¼ 1

2i
ln

1þ iz

1� iz

� �
, cot�1 z ¼ 1

2i
ln

zþ i

z� i

� �
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8. Inverse Hyperbolic Functions. If z ¼ sinhw, then w ¼ sinh�1 z is called the inverse hyperbolic
sine of z. Similarly, we define other inverse hyperbolic functions cosh�1 z, tanh�1 z, etc. These
functions, which are multiple-valued, can be expressed in terms of natural logarithms as
follows. In all cases, we omit an additive constant 2kpi, k ¼ 0, +1, +2, . . . , in the logarithm:

sinh�1 z ¼ ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p� 

, csch�1z ¼ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p

z

 !

cosh�1 z ¼ ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p� 

, sech�1z ¼ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

z

 !

tanh�1 z ¼ 1

2
ln

1þ z

1� z

� �
, coth�1z ¼ 1

2
ln

zþ 1

z� 1

� �

9. The Function za, where a may be complex, is defined as ea ln z. Similarly, if f (z) and g(z) are two
given functions of z, we can define f (z)g(z) ¼ eg(z) ln f (x). In general, such functions are multiple-
valued.

10. Algebraic and Transcendental Functions. If w is a solution of the polynomial equation

P0(z)w
n þ P1(z)w

n�1 þ � � � þ Pn�1(z)wþ Pn(z) ¼ 0 (2:6)

where P0=0, P1(z), . . . , Pn(z) are polynomials in z and h is a positive integer, then w ¼ f (z) is
called an algebraic function of z.

EXAMPLE 2.3 w ¼ z1=2 is a solution of the equation w2 � z ¼ 0 and so is an algebraic function of z.

Any function that cannot be expressed as a solution of (6) is called a transcendental function. The
logarithmic, trigonometric, and hyperbolic functions and their corresponding inverses are examples of
transcendental functions.

The functions considered in 1–9 above, together with functions derived from them by a finite number of
operations involving addition, subtraction, multiplication, division and roots are called elementary
functions.

2.7 Branch Points and Branch Lines

Suppose that we are given the function w ¼ z1=2. Suppose
further that we allow z to make a complete circuit (counter-
clockwise) around the origin starting from point A [Fig. 2-5].
We have z ¼ reiu, w ¼ ffiffi

r
p

eiu=2 so that at A, u ¼ u1 and
w ¼ ffiffi

r
p

eiu1=2. After a complete circuit back to A,
u ¼ u1 þ 2p and w ¼

ffiffi
r

p
ei(u1þ2p)=2 ¼ �

ffiffi
r

p
eiu1=2. Thus, we

have not achieved the same value of w with which we
started. However, by making a second complete circuit
back to A, i.e., u ¼ u1 þ 4p, w ¼

ffiffi
r

p
ei(u1þ4p)=2 ¼

ffiffi
r

p
eiu1=2

and we then do obtain the same value of w with which we
started.

We can describe the above by stating that if 0 � u , 2p, we are on one branch of the multiple-valued
function z1=2, while if 2p � u , 4p, we are on the other branch of the function.

It is clear that each branch of the function is single-valued. In order to keep the function single-valued,
we set up an artificial barrier such as OB where B is at infinity [although any other line from O can be used],

A

O
q = q1

B

z plane

Fig. 2-5
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which we agree not to cross. This barrier [drawn heavy in the figure] is called a branch line or branch cut,
and point O is called a branch point. It should be noted that a circuit around any point other than z ¼ 0 does
not lead to different values; thus, z ¼ 0 is the only finite branch point.

2.8 Riemann Surfaces

There is another way to achieve the purpose of the branch line described above. To see this, we imagine that
the z plane consists of two sheets superimposed on each other. We now cut the sheets along OB and imagine
that the lower edge of the bottom sheet is joined to the upper edge of the top sheet. Then, starting in the
bottom sheet and making one complete circuit about O, we arrive in the top sheet. We must now
imagine the other cut edges joined together so that, by continuing the circuit, we go from the top sheet
back to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the function z1=2. Each sheet
corresponds to a branch of the function and on each sheet the function is single-valued.

The concept of Riemann surfaces has the advantage that the various values of multiple-valued functions
are obtained in a continuous fashion.

The ideas are easily extended. For example, for the function z1=3 the Riemann surface has 3 sheets; for
ln z, the Riemann surface has infinitely many sheets.

2.9 Limits

Let f(z) be defined and single-valued in a neighborhood of z ¼ z0 with the possible exception of z ¼ z0 itself
(i.e., in a deleted d neighborhood of z0). We say that the number l is the limit of f (z) as z approaches z0
and write limz!z0 f (z) ¼ l if for any positive number e (however small), we can find some positive
number d (usually depending on e) such that j f (z)� lj , e whenever 0 , jz� z0j , d.

In such a case, we also say that f(z) approaches l as z approaches z0 and write f (z) ! l as z ! z0. The
limit must be independent of the manner in which z approaches z0.

Geometrically, if z0 is a point in the complex plane, then limz!z0 f (z) ¼ l if the difference in absolute
value between f(z) and l can be made as small as we wish by choosing points z sufficiently close to z0
(excluding z ¼ z0 itself).

EXAMPLE 2.4 Let

f (z) ¼ z2 z= i

0 z ¼ i

�

Then, as z gets closer to i (i.e., z approaches i), f (z) gets closer to i2 ¼ �1. We thus suspect that

limz!i f (z) ¼�1. To prove this, we must see whether the above definition of limit is satisfied. For this proof, see

Problem 2.23.

Note that limz!i f (z)= f (i), i.e., the limit of f (z) as z ! i is not the same as the value of f(z) at z ¼ i, since

f (i) ¼ 0 by definition. The limit would, in fact, be �1 even if f (z) were not defined at z ¼ i.

When the limit of a function exists, it is unique, i.e., it is the only one (see Problem 2.26). If f (z) is
multiple-valued, the limit as z ! z0 may depend on the particular branch.

2.10 Theorems on Limits

THEOREM 2.1. Suppose limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B. Then

1. limz!z0f f (z)þ g(z)g ¼ limz!z0 f (z)þ limz!z0 g(z) ¼ Aþ B
2. limz!z0f f (z)� g(z)g ¼ limz!z0 f (z)� limz!z0 g(z) ¼ A� B
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3. limz!z0f f (z)g(z)g ¼ limz!z0 f (z)
� �

limz!z0 g(z)
� �

¼ AB

4. lim
z!z0

f (z)

g(z)
¼ limz!z0 f (z)

limz!z0 g(z)
¼ A

B
if B=0

2.11 Infinity

By means of the transformation w ¼ 1=z, the point z ¼ 0 (i.e., the origin) is mapped into w ¼ 1, called the
point at infinity in the w plane. Similarly, we denote by z ¼ 1, the point at infinity in the z plane. To con-
sider the behavior of f(z) at z ¼ 1, it suffices to let z ¼ 1=w and examine the behavior of f(1/w) at w ¼ 0.

We say that limz!1 f (z) ¼ l or f(z) approaches l as z approaches infinity, if for any e . 0, we can find
M . 0 such that j f (z)� lj , e whenever jzj . M.

We say that limz!z0 f (z) ¼ 1 or f(z) approaches infinity as z approaches z0, if for any N . 0, we can find
d . 0 such that j f (z)j . N whenever 0 , jz� z0j , d.

2.12 Continuity

Let f(z) be defined and single-valued in a neighborhood of z ¼ z0 as well as at z ¼ z0 (i.e., in a d
neighborhood of z0). The function f(z) is said to be continuous at z ¼ z0 if limz!z0 f (z) ¼ f (z0). Note

that this implies three conditions that must be met in order that f (z) be continuous at z ¼ z0:

1. limz!z0 f (z) ¼ l must exist
2. f (z0) must exist, i.e., f(z) is defined at z0
3. l ¼ f (z0)

Equivalently, if f(z) is continuous at z0, we can write this in the suggestive form

lim
z!z0

f (z) ¼ f lim
z!z0

z
� 


:

EXAMPLE 2.5
(a) Suppose

f (z) ¼ z2 z= i

0 z ¼ i

�

Then, limz!i f (z) ¼ �1. But f (i) ¼ 0. Hence, limz!i f (z) = f (i) and the function is not continuous at z ¼ i.

(b) Suppose f (z) ¼ z2 for all z. Then limz!i f (z) ¼ f (i) ¼ �1 and f(z) is continuous at z ¼ i.

Points in the z plane where f(z) fails to be continuous are called discontinuities of f (z), and f (z) is said
to be discontinuous at these points. If limz!z0 f (z) exists but is not equal to f (z0), we call z0 a removable

discontinuity since by redefining f (z0) to be the same as limz!z0 f (z), the function becomes continuous.

Alternative to the above definition of continuity, we can define f (z) as continuous at z ¼ z0 if for any
e . 0, we can find d . 0 such that j f (z)� f (z0)j , e whenever jz� z0j , d. Note that this is simply the
definition of limit with l ¼ f (z0) and removal of the restriction that z=z0.

To examine the continuity of f(z) at z ¼ 1, we let z ¼ 1=w and examine the continuity of f(1/w) at
w ¼ 0.

Continuity in a Region

A function f(z) is said to be continuous in a region if it is continuous at all points of the region.
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2.13 Theorems on Continuity

THEOREM 2.2. Given f(z) and g(z) are continuous at z ¼ z0. Then so are the functions f (z)þ g(z),
f (z)� g(z), f (z)g(z) and f (z)=g(z), the last if g(z0)=0. Similar results hold for
continuity in a region.

THEOREM 2.3. Among the functions continuous in every finite region are (a) all polynomials, (b) ez,
(c) sin z and cos z.

THEOREM 2.4. Suppose w ¼ f (z) is continuous at z ¼ z0 and z ¼ g(z ) is continuous at z ¼ z0.
If z0 ¼ g(z0), then the function w ¼ f [g(z)], called a function of a function or
composite function, is continuous at z ¼ z0. This is sometimes briefly stated as:
A continuous function of a continuous function is continuous.

THEOREM 2.5. Suppose f(z) is continuous in a closed and bounded region. Then it is bounded in the
region; i.e., there exists a constant M such that j f (z)j , M for all points z of the region.

THEOREM 2.6. If f(z) is continuous in a region, then the real and imaginary parts of f(z) are also
continuous in the region.

2.14 Uniform Continuity

Let f (z) be continuous in a region. Then, by definition at each point z0 of the region and for any e . 0, we can
find d . 0 (which will in general depend on both e and the particular point z0) such that j f (z)� f (z0)j , e
whenever jz� z0j , d. If we can find d depending on e but not on the particular point z0, we say that f (z) is
uniformly continuous in the region.

Alternatively, f (z) is uniformly continuous in a region if for any e . 0 we can find d . 0 such that
j f (z1)� f (z2)j , e whenever jz1 � z2j , d where z1 and z2 are any two points of the region.

THEOREM 2.7. Let f (z) be continuous in a closed and bounded region. Then it is uniformly continuous
there.

2.15 Sequences

A function of a positive integral variable, designated by f(n) or un, where n ¼ 1, 2, 3, . . . , is called a
sequence. Thus, a sequence is a set of numbers u1, u2, u3, . . . in a definite order of arrangement and
formed according to a definite rule. Each number in the sequence is called a term and un is called the
nth term. The sequence u1, u2, u3, . . . is also designated briefly by fung. The sequence is called finite or
infinite according as there are a finite number of terms or not. Unless otherwise specified, we shall only
consider infinite sequences.

EXAMPLE 2.6
(a) The set of numbers i, i2, i3, . . . , i100 is a finite sequence; the nth term is given by

un ¼ in, n ¼ 1, 2, . . . , 100
(b) The set of numbers 1þ i, (1þ i)2=2!, (1þ i)2=3!, . . . is an infinite sequence; the nth term is given by

un ¼ (1þ i)n=n!, n ¼ 1, 2, 3, . . . .
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2.16 Limit of a Sequence

A number l is called the limit of an infinite sequence u1, u2, u3, . . . if for any positive number e we can find
a positive number N depending on e such that jun � lj , e for all n . N. In such case, we write
limn!1 un ¼ l. If the limit of a sequence exists, the sequence is called convergent; otherwise it is called
divergent. A sequence can converge to only one limit, i.e., if a limit exists it is unique.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
u1, u2, u3, . . . has a limit l if the successive terms get “closer and closer” to l. This is often used to
provide a “guess” as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

2.17 Theorems on Limits of Sequences

THEOREM 2.8. Suppose limn!1 an ¼ A and limn!1 bn ¼ B. Then

1. limn!1 (an þ bn) ¼ limn!1 an þ limn!1 bn ¼ Aþ B
2. limn!1 (an � bn) ¼ limn!1 an � limn!1 bn ¼ A� B
3. limn!1 (anbn) ¼ limn!1 anð Þ limn!1 bnð Þ ¼ AB

4. lim
n!1

an

bn
¼ limn!1 an

limn!1 bn
¼ A

B
if B=0

Further discussion of sequences is given in Chapter 6.

2.18 Infinite Series

Let u1, u2, u3, . . . be a given sequence.
Form a new sequence S1, S2, S3, . . . defined by

S1 ¼ u1, S2 ¼ u1 þ u2, S3 ¼ u1 þ u2 þ u3, . . . , Sn ¼ u1 þ u2 þ � � � þ un

where Sn, called the nth partial sum, is the sum of the first n terms of the sequence fung:
The sequence S1, S2, S3, . . . is symbolized by

u1 þ u2 þ u3 þ � � � ¼
X1
n¼1

un

which is called an infinite series. If limn!1 Sn ¼ S exists, the series is called convergent and S is its sum;
otherwise the series is called divergent. A necessary condition that a series converges is limn!1 un ¼ 0;
however, this is not sufficient (see Problems 2.40 and 2.150).

Further discussion of infinite series is given in Chapter 6.

SOLVED PROBLEMS

Functions and Transformations

2.1. Let w ¼ f (z) ¼ z2. Find the values of w that correspond to (a) z ¼ �2þ i and (b) z ¼ 1� 3i, and
show how the correspondence can be represented graphically.
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Solution

(a) w ¼ f (�2þ i) ¼ (�2þ i)2 ¼ 4� 4iþ i2 ¼ 3� 4i

(b) w ¼ f (1� 3i) ¼ (1� 3i)2 ¼ 1� 6iþ 9i2 ¼ �8� 6i

x

1 – 3i

z plane

Q

–2 + i
P

y

Q′

u

3 – 4i

w plane

P′

–8 – 6i

u

Fig. 2-6 Fig. 2-7

The point z ¼ �2þ i, represented by point P in the z plane of Fig. 2-6, has the image point w ¼ 3� 4i

represented by P0 in the w plane of Fig. 2-7. We say that P is mapped into P0 by means of the mapping function

or transformation w ¼ z2. Similarly, z ¼ 1� 3i [point Q of Fig. 2-6] is mapped into w ¼ �8� 6i [point Q0 of
Fig. 2-7]. To each point in the z plane, there corresponds one and only one point (image) in the w plane, so that

w is a single-valued function of z.

2.2. Show that the line joining the points P and Q in the z plane of Problem 2.1 [Fig. 2-6] is mapped by
w ¼ z2 into curve joining points P0Q0 [Fig. 2-7] and determine the equation of this curve.

Solution

Points P and Q have coordinates (�2, 1) and (1, �3). Then, the parametric equations of the line joining these

points are given by

x� (�2)

1� (�2)
¼ y� 1

�3� 1
¼ t or x ¼ 3t � 2, y ¼ 1� 4t

The equation of the line PQ can be represented by z ¼ 3t � 2þ i(1� 4t). The curve in the w plane into which

this line is mapped has the equation

w ¼ z2 ¼ f3t � 2þ i(1� 4t)g2 ¼ (3t � 2)2 � (1� 4t)2 þ 2(3t � 2)(1� 4t)i

¼ 3� 4t � 7t2 þ (�4þ 22t � 24t2)i

Then, since w ¼ uþ iv, the parametric equations of the image curve are given by

u ¼ 3� 4t � 7t2, v ¼ �4þ 22t � 24t2

By assigning various values to the parameter t, this curve may be graphed.

2.3. A point P moves in a counterclockwise direction around a circle in the z plane having center at the
origin and radius 1. If the mapping function is w ¼ z3, show that when Pmakes one complete revo-
lution, the image P0 of P in the w plane makes three complete revolutions in a counterclockwise
direction on a circle having center at the origin and radius 1.
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Solution

Let z ¼ reiu. Then, on the circle jzj ¼ 1 [Fig. 2-8], r ¼ 1 and z ¼ eiu. Hence, w ¼ z3 ¼ (eiu)3 ¼ e3iu. Letting

(r, f) denote polar coordinates in the w plane, we have w ¼ reif ¼ e3iu so that r ¼ 1, f ¼ 3u.

y

x
O

z plane

P1

r

u

f = 3q u
O'

w plane

P'

1

Fig. 2-8 Fig. 2-9

Since r ¼ 1, it follows that the image point P0 moves on a circle in the w plane of radius 1 and center at the

origin [Fig. 2-9]. Also, when P moves counterclockwise through an angle u, P0 moves counterclockwise

through an angle 3u. Thus, when P makes one complete revolution, P0 makes three complete revolutions.

In terms of vectors, it means that vector O0P0 is rotating three times as fast as vector OP.

2.4. Suppose c1 and c2 are any real constants. Determine the set of all points in the z plane that map into
the lines (a) u ¼ c1, (b) v ¼ c2 in the w plane by means of the mapping function w ¼ z2. Illustrate by
considering the cases c1 ¼ 2, 4, �2, �4 and c2 ¼ 2, 4, �2, �4.

Solution

We have w ¼ uþ iv ¼ z2 ¼ (xþ iy)2 ¼ x2 � y2 þ 2ixy so that u ¼ x2 � y2, v ¼ 2xy. Then lines u ¼ c1 and

v ¼ c2 in the w plane correspond, respectively, to hyperbolas x2 � y2 ¼ c1 and 2xy ¼ c2 in the z plane as

indicated in Figs. 2-10 and 2-11.

z plane

2xy = –4
2xy = –2

2xy = 2
2xy = 4

x2 – y2 = 4

x2 – y2 = –4

x
2 – y

2  =
 –4

x
2 – y

2  =
 –2

x
2 – y

2  =
 2

x
2 – y

2  =
 4

x2 – y2 = –2

x2 – y2 = 2

2xy = –4
2xy = –2

x
2xy = 2
2xy = 4

y

R

PT

U Z

Y

XW

V

S
Q

u = 4

u = 2

u = –2

u = –4

u
=

 –
4

u
=

 –
2

u
=

 2

u
=

 4

w plane

Q'R'

S'

u

u

T' or X' U' or Y'

V' or Z'P' or W'

Fig. 2-10 Fig. 2-11

2.5. Referring to Problem 2.4, determine: (a) the image of the region in the first quadrant bounded
by x2 � y2 ¼ �2, xy ¼ 1, x2 � y2 ¼ �4; and xy ¼ 2; (b) the image of the region in the z plane

CHAPTER 2 Functions, Limits, and Continuity 51



bounded by all the branches of x2 � y2 ¼ 2, xy ¼ 1, x2 � y2 ¼ �2, and xy ¼ �1; (c) the
curvilinear coordinates of that point in the xy plane whose rectangular coordinates are (2, �1).

Solution

(a) The region in the z plane is indicated by the shaded portion PQRS of Fig. 2-10. This region maps into the

required image region P0Q0R0S0 shown shaded in Fig. 2-11. It should be noted that curve PQRSP is tra-

versed in a counterclockwise direction and the image curve P0Q0R0S0P0 is also traversed in a counter-

clockwise direction.

(b) The region in the z plane is indicated by the shaded portion PTUVWXYZ of Fig. 2-10. This region maps

into the required image region P0T 0U0V 0 shown shaded in Fig. 2-11.

It is of interest to note that when the boundary of the region PTUVWXYZ is traversed only once, the

boundary of the image region P0T 0U0V 0 is traversed twice. This is due to the fact that the eight points P

andW, T and X,U and Y, V and Z of the z plane map into the four points P0 orW 0, T 0 or X0, U0 or Y 0, V 0 or
Z 0, respectively.

However, when the boundary of region PQRS is traversed only once, the boundary of the image region

is also traversed only once. The difference is due to the fact that in traversing the curve PTUVWXYZP,we

are encircling the origin z ¼ 0, whereas when we are traversing the curve PQRSP, we are not encircling

the origin.

(c) u ¼ x2 � y2 ¼ (2)2 � (�1)2 ¼ 3, v ¼ 2xy ¼ 2(2)(�1) ¼ �4. Then the curvilinear coordinates are

u ¼ 3, v ¼ �4.

Multiple-Valued Functions

2.6. Let w5 ¼ z and suppose that corresponding to the particular value z ¼ z1, we have w ¼ w1. (a) If we
start at the point z1 in the z plane [see Fig. 2-12] and make one complete circuit counterclockwise
around the origin, show that the value of w on returning to z1 is w1e

2pi=5. (b) What are the values of
w on returning to z1, after 2, 3, . . . complete circuits around the origin? (c) Discuss parts (a) and (b)
if the paths do not enclose the origin.

z plane
y

C

x

z1
r1

q1

w plane
u

u

w1

w1 e2pi/5

w1 e4pi/5

w1 e8pi/5

w1 e6pi/5

Fig. 2-12 Fig. 2-13

Solution

(a) We have z ¼ reiu, so that w ¼ z1=5 ¼ r1=5eiu=5. If r ¼ r1 and u ¼ u1, then w1 ¼ r
1=5
1 eiu1=5.

As u increases from u1 to u1 þ 2p, which is what happens when one complete circuit counterclockwise

around the origin is made, we find

w ¼ r
1=5
1 ei(u1þ2p)=5 ¼ r

1=5
1 eiu1=5e2pi=5 ¼ w1e

2pi=5

(b) After two complete circuits around the origin, we find

w ¼ r
1=5
1 ei(u1þ4p)=5 ¼ r

1=5
1 eiu1=5e4pi=5 ¼ w1e

4pi=5
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Similarly, after three and four complete circuits around the origin, we find

w ¼ w1e
6pi=5 and w ¼ w1e

8pi=5

After five complete circuits, the value of w is w1e
10pi=5 ¼ w1, so that the original value of w is obtained

after five revolutions about the origin. Thereafter, the cycle is repeated [see Fig. 2-13].

Another Method. Since w5 ¼ z, we have arg z ¼ 5 arg w from which

Change in arg w ¼ 1
5
(Change in arg z)

Then, if arg z increases by 2p, 4p, 6p, 8p, 10p, . . . , arg w increases by 2p=5, 4p=5, 6p=5,
8p=5, 2p, . . . leading to the same results obtained in (a) and (b).

(c) If the path does not enclose the origin, then the increase in arg z is zero and so the increase in arg w is also

zero. In this case, the value of w is w1, regardless of the number of circuits made.

2.7. (a) In the preceding problem, explain why we can consider w as a collection of five single-valued
functions of z.

(b) Explain geometrically the relationship between these single-valued functions.
(c) Show geometrically how we can restrict ourselves to a particular single-valued function.

Solution

(a) Since w5 ¼ z ¼ reiu ¼ rei(uþ2kp) where k is an integer, we have

w ¼ r1=5ei(uþ2kp)=5 ¼ r1=5fcos(uþ 2kp)=5þ i sin(uþ 2kp)=5g

and so w is a five-valued function of z, the five values being given by k ¼ 0, 1, 2, 3, 4.

Equivalently, we can consider w as a collection of five single-valued functions, called branches of the

multiple-valued function, by properly restricting u. Thus, for example, we can write

w ¼ r1=5(cos u=5þ i sin u=5)

where we take the five possible intervals for u given by 0 � u , 2p, 2p � u , 4p, . . . , 8p � u , 10p, all
other such intervals producing repetitions of these.

The first interval, 0 � u , 2p, is sometimes called the principal range of u and corresponds to the

principal branch of the multiple-valued function.

Other intervals for u of length 2p can also be taken; for example, �p � u , p, p � u , 3p, etc., the first
of these being taken as the principal range.

(b) We start with the (principal) branch

w ¼ r1=5 cos u=5þ i sin u=5ð Þ

where 0 � u , 2p:
After one complete circuit about the origin in the z plane, u increases by 2p to give another branch of

the function. After another complete circuit about the origin, still another branch of the function is

obtained until all five branches have been found, after which we return to the original (principal) branch.

Because different values of f(z) are obtained by successively encircling z ¼ 0, we call z ¼ 0 a branch

point.

(c) We can restrict ourselves to a particular single-valued function, usually the principal branch, by

insuring that not more than one complete circuit about the branch point is made, i.e., by suitably

restricting u.
In the case of the principal range 0 � u , 2p, this is accomplished by constructing a cut, indicated by

OA in Fig. 2-14, called a branch out or branch line, on the positive real axis, the purpose being that we do

not allow ourselves to cross this cut (if we do cross the cut, another branch of the function is obtained).

If another interval for u is chosen, the branch line or cut is taken to be some other line in the z plane

emanating from the branch point.
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For some purposes, as we shall see later, it is useful to consider the curve of Fig. 2-15 of which

Fig. 2-14 is a limiting case.

z plane

y

x
AO

z plane

A
GF

B
C

D

E

H

J

x

y

I

Fig. 2-14 Fig. 2-15

The Elementary Functions

2.8. Prove that (a) ez1 � ez2 ¼ ez1þz2 , (b) jezj ¼ ex, (c) ezþ2kpi ¼ ez, k ¼ 0, +1, +2, . . . .

Solution

(a) By definition ez ¼ ex(cos yþ i sin y) where z ¼ xþ iy. Then, if z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2,

ez1 � ez2 ¼ ex1 (cos y1 þ i sin y1) � ex2 (cos y2 þ i sin y2)

¼ ex1 � ex2 (cos y1 þ i sin y1)(cos y2 þ i sin y2)

¼ ex1þx2fcos(y1 þ y2)þ i sin(y1 þ y2)g ¼ ez1þz2

(b) jezj ¼ jex(cos yþ i sin y)j ¼ jexjj cos yþ i sin yj ¼ ex � 1 ¼ ex

(c) By part (a),

ezþ2kpi ¼ eze2kpi ¼ ez(cos 2kpþ i sin 2kp) ¼ ez

This shows that the function ez has period 2kpi. In particular, it has period 2pi.

2.9. Prove:

(a) sin2 zþ cos2 z ¼ 1 (c) sin(z1 þ z2) ¼ sin z1 cos z2 þ cos z1 sin z2

(b) eiz ¼ cos zþ i sin z, e�iz ¼ cos z� i sin z (d) cos(z1 þ z2) ¼ cos z1 cos z2 � sin z1 sin z2

Solution

By definition, sin z ¼ eiz � e�iz

2i
, cos z ¼ eiz þ e�iz

2
. Then

(a) sin2 zþ cos2 z ¼ eiz � e�iz

2i

� �2

þ eiz þ e�iz

2

� �2

¼ � e2iz � 2þ e�2iz

4

� �
þ e2iz þ 2þ e�2iz

4

� �
¼ 1

(b) eiz � e�iz ¼ 2i sin z (1)

eiz þ e�iz ¼ 2 cos z (2)
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Adding (1) and (2):

2eiz ¼ 2 cos zþ 2i sin z and eiz ¼ cos zþ i sin z

Subtracting (1) from (2):

2e�iz ¼ 2 cos z� 2i sin z and e�iz ¼ cos z� i sin z

(c) sin(z1 þ z2) ¼
ei(z1þz2) � e�i(z1þz2)

2i
¼ eiz1 � eiz2 � e�iz1 � e�iz2

2i

¼ (cos z1 þ i sin z1)(cos z2 þ i sin z2)� (cos z1 � i sin z1)(cos z2 � i sin z2)

2i

¼ sin z1 cos z2 þ cos z1 sin z2

(d) cos(z1 þ z2) ¼
ei(z1þz2) þ e�i(z1þz2)

2
¼ eiz1 � eiz2 þ e�iz1 � e�iz2

2

¼ (cos z1 þ i sin z1)(cos z2 þ i sin z2)þ (cos z1 � i sin z1)(cos z2 � i sin z2)

2

¼ cos z1 cos z2 � sin z1 sin z2

2.10. Prove that the zeros of (a) sin z and (b) cos z are all real and find them.

Solution

(a) If sin z ¼ eiz � e�iz

2i
¼ 0, then eiz ¼ e�iz or e2iz ¼ 1 ¼ e2kpi, k ¼ 0, +1, +2, . . . .

Hence, 2iz ¼ 2kpi and z ¼ kp, i:e:, z ¼ 0, +p, +2p, +3p, . . . are the zeros.

(b) If cos z ¼ eiz þ e�iz

2
¼ 0, then eiz ¼ �e�iz or e2iz ¼ �1 ¼ e(2kþ1)pi, k ¼ 0, +1, +2, . . . .

Hence, 2iz ¼ (2k þ 1)pi and z ¼ (k þ 1
2
)p, i.e., z ¼ +p=2, +3p=2, +5p=2, . . . are the zeros.

2.11. Prove that (a) sin(�z) ¼ �sin z, (b) cos(�z) ¼ cos z, (c) tan(�z) ¼ �tan z.

Solution

(a) sin(�z) ¼ ei(�z) � e�i(�z)

2i
¼ e�iz � eiz

2i
¼ � eiz � e�iz

2i

� �
¼ �sin z

(b) cos(�z) ¼ ei(�z) þ e�i(�z)

2
¼ e�iz þ eiz

2
¼ eiz þ e�iz

2
¼ cos z

(c) tan(�z) ¼ sin(�z)

cos(�z)
¼ �sin z

cos z
¼ �tan z, using (a) and (b).

Functions of z having the property that f (�z) ¼ �f (z) are called odd functions, while those for which

f (�z) ¼ f (z) are called even functions. Thus sin z and tan z are odd functions, while cos z is an even

function.

2.12. Prove: (a) 1� tanh2 z ¼ sech2 z
(b) sin iz ¼ i sinh z
(c) cos iz ¼ cosh z
(d) sin(xþ iy) ¼ sin x cosh yþ i cos x sinh y

Solution

(a) By definition, cosh z ¼ ez þ e�z

2
, sinh z ¼ ez � e�z

2
. Then

cosh2 z� sinh2 z ¼ ez þ e�z

2

� �2

� ez � e�z

2

� �2

¼ e2z þ 2þ e�2z

4
� e2z � 2þ e�2z

4
¼ 1
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Dividing by cosh2 z,
cosh2 z� sinh2 z

cosh2 z
¼ 1

cosh2 z
or 1� tanh2 z ¼ sech2 z

(b) sin iz ¼ ei(iz) � e�i(iz)

2i
¼ e�z � ez

2i
¼ i

ez � e�z

2

� �
¼ i sinh z

(c) cos iz ¼ ei(iz) þ e�i(iz)

2
¼ e�z þ ez

2
¼ ez þ e�z

2
¼ cosh z

(d) From Problem 2.9(c) and parts (b) and (c), we have

sin(xþ iy) ¼ sin x cos iyþ cos x sin iy ¼ sin x cosh yþ i cos x sinh y

2.13. (a) Suppose z ¼ ew where z ¼ r(cos uþ i sin u) and w ¼ uþ iv. Show that u ¼ ln r and
v ¼ uþ 2kp, k ¼ 0, +1, +2, . . . so that w ¼ ln z ¼ ln r þ i(uþ 2kp). (b) Determine the values
of ln(1� i). What is the principal value?

Solution

(a) Since z ¼ r(cos uþ i sin u) ¼ ew ¼ euþiv ¼ eu(cos vþ i sin v), we have on equating real and imaginary

parts,

eu cos v ¼ r cos u (1)

eu sin v ¼ r sin u (2)

Squaring (1) and (2) and adding, we find e2u ¼ r2 or eu ¼ r and u ¼ ln r. Then, from (1) and (2),

r cos v ¼ r cos u, r sin v ¼ r sin u from which v ¼ uþ 2kp. Hence, w ¼ uþ iv ¼ ln r þ i(uþ 2kp).
If z ¼ ew, we say that w ¼ ln z. We thus see that ln z ¼ ln r þ i(uþ 2kp). An equivalent way of saying

the same thing is to write ln z ¼ ln r þ iu where u can assume infinitely many values which differ by 2p.
Note that formally ln z ¼ ln(reiu) ¼ ln r þ iu using laws of real logarithms familiar from elementary

mathematics.

(b) Since 1� i ¼
ffiffiffi
2

p
e7pi=4þ2kpi, we have ln(1� i) ¼ ln

ffiffiffi
2

p
þ 7pi

4
þ 2kpi

� �
¼ 1

2
ln 2þ 7pi

4
þ 2kpi.

The principal value is
1

2
ln 2þ 7pi

4
obtained by letting k ¼ 0.

2.14. Prove that f (z) ¼ ln z has a branch point at z ¼ 0.

Solution

We have ln z ¼ ln r þ iu. Suppose that we start at some point z1=0 in the complex plane for which

r ¼ r1, u ¼ u1 so that ln z1 ¼ ln r1 þ iu1 [see Fig. 2-16]. Then, after making one complete circuit about the

origin in the positive or counterclockwise direction, we find on returning to z1 that r ¼ r1, u ¼ u1 þ 2p so

that ln z1 ¼ ln r1 þ i(u1 þ 2p). Thus, we are on another branch of the function, and so z ¼ 0 is a branch point.

z plane

y

x

z1

r1

q1

Fig. 2-16
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Further complete circuits about the origin lead to other branches and (unlike the case of functions such as

z1=2 or z1=5), we never return to the same branch.

It follows that ln z is an infinitely many-valued function of z with infinitely many branches. That particular

branch of ln z which is real when z is real and positive is called the principal branch. To obtain this branch,

we require that u ¼ 0 when z . 0. To accomplish this, we can take ln z ¼ ln r þ iu where u is chosen so that

0 � u , 2p or �p � u , p, etc.
As a generalization, we note that ln(z� a) has a branch point at z ¼ a.

2.15. Consider the transformation w ¼ ln z. Show that (a) circles with center at the origin in the z plane
are mapped into lines parallel to the v axis in the w plane, (b) lines or rays emanating from the origin
in the z plane are mapped into lines parallel to the u axis in the w plane, (c) the z plane is mapped
into a strip of width 2p in the w plane. Illustrate the results graphically.

Solution

We have w ¼ uþ iv ¼ ln z ¼ ln r þ iu so that u ¼ ln r, v ¼ u.

Choose the principal branch as w ¼ ln r þ iu where 0 � u , 2p.

(a) Circles with center at the origin and radius a have the equation jzj ¼ r ¼ a. These are mapped into lines

in the w plane whose equations are u ¼ ln a. In Figs. 2-17 and 2-18, the circles and lines corresponding

to a ¼ 1=2, 1, 3=2, 2 are indicated.

z plane
y

x

z plane
y

a 
=

 p
/2

a 
=

 3
p/

2

x a = 0a = p

a = p/6

a = 11p/6

a = 5p/3a 
= 

4p
/3

a = 7p/6

α = 5p/6

α = 2p/3 a 
= 

p/
3

a = 2
a = 3/2a = 1a = 1/2

w plane

u

α = π/2

α = π/3

α = π/6

α = 0

α = 2
α = 3/2

α = 1

α = 1/2

u

Fig. 2-17 Fig. 2-18

(b) Lines or rays emanating from the origin in the z plane (dashed in Fig. 2-17) have the equation u ¼ a.
These are mapped into lines in the w plane (dashed in Fig. 2-18) whose equations are v ¼ a. We have

shown the corresponding lines for a ¼ 0, p=6, p=3, and p=2.
(c) Corresponding to any given point P in the z plane defined by z=0 and having polar coordinates (r, u)

where 0 � u , 2p, r > 0 [as in Fig. 2-19], there is a point P0 in the strip of width 2p shown shaded

in Fig. 2-20. Thus, the z plane is mapped into this strip. The point z ¼ 0 is mapped into a point of this

strip sometimes called the point at infinity.

If u is such that 2p � u , 4p, the z plane is mapped into the strip 2p � v , 4p of Fig. 2-20.

Similarly, we obtain the other strips shown in Fig. 2-20.
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It follows that given any point z=0 in the z plane, there are infinitely many image points in the

w plane corresponding to it.

z plane
y

r
z

P

xq

w plane

P'

P'

P'

u

uu = 0

u = 4p

u = 2p
2p

2p

Fig. 2-19 Fig. 2-20

It should be noted that if we had taken u such that �p � u , p, p � u , 3p, etc., the strips of Fig. 2-20
would be shifted vertically a distance p.

2.16. Suppose we choose the principal branch of sin�1 z to be that one for which sin�1 0 ¼ 0. Prove that

sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 


Solution

If w ¼ sin�1 z, then z ¼ sinw ¼ eiw � e�iw

2i
from which

eiw � 2iz� e�iw ¼ 0 or e2iw � 2izeiw � 1 ¼ 0

Solving,

eiw ¼ 2iz+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4z2

p

2
¼ iz+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
since +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is implied by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
. Now, eiw ¼ ei(w�2kp), k ¼ 0, +1, +2, . . . so that

ei(w�2kp) ¼ izþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
or w ¼ 2kpþ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 


The branch for which w ¼ 0 when z ¼ 0 is obtained by taking k ¼ 0 from which we find, as required,

w ¼ sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 


2.17. Suppose we choose the principal branch of tanh�1 z to be that one for which tanh�1 0 ¼ 0. Prove
that

tanh�1 z ¼ 1

2
ln

1þ z

1� z

� �

Solution

If w ¼ tanh�1 z, then z ¼ tanhw ¼ sinhw

coshw
¼ ew � e�w

ew þ e�w
from which

(1� z)ew ¼ (1þ z)e�w or e2w ¼ (1þ z)=(1� z)
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Since e2w ¼ e2(w�kpi), we have

e2(w�kpi) ¼ 1þ z

1� z
or w ¼ kpiþ 1

2
ln

1þ z

1� z

� �

The principal branch is the one for which k ¼ 0 and leads to the required result.

2.18. (a) Suppose z ¼ reiu. Prove that zi ¼ e�(uþ2kp)fcos(ln r)þ i sin(ln r)g where k ¼ 0, +1, +2, . . . :
(b) Suppose z is a point on the unit circle with center at the origin. Prove that zi represents infinitely

many real numbers and determine the principal value.
(c) Find the principal value of ii.

Solution

(a) By definition,

zi ¼ ei ln z ¼ eifln rþi(uþ2kp)g

¼ ei ln r�(uþ2kp) ¼ e�(uþ2kp)fcos(ln r)þ i sin(ln r)g

The principal branch of the many-valued function f (z) ¼ zi is obtained by taking k ¼ 0 and is given by

e�ufcos(ln r)þ i sin(ln r)g where we can choose u such that 0 � u , 2p.

(b) If z is any point on the unit circle with center at the origin, then jzj ¼ r ¼ 1. Hence, by part (a), since

ln r ¼ 0, we have zi ¼ e�(uþ2kp) which represents infinitely many real numbers. The principal value

is e�u where we choose u such that 0 � u , 2p.

(c) By definition, ii ¼ ei ln i ¼ eifi(p=2þ2kp)g ¼ e�(p=2þ2kp) since i ¼ ei(p=2þ2kp) and ln i ¼ i(p=2þ 2kp).
The principal value is given by e�p=2.

Another Method. By part (b), since z ¼ i lies on the unit circle with center at the origin and since

u ¼ p=2, the principal value is e�p=2.

Branch Points, Branch Lines, Riemann Surfaces

2.19. Let w ¼ f (z) ¼ (z2 þ 1)1=2. (a) Show that z ¼+i are branch points of f (z). (b) Show that a complete
circuit around both branch points produces no change in the branches of f(z).

Solution

(a) We have w ¼ (z2 þ 1)1=2 ¼ f(z� i)(zþ i)g1=2. Then, argw ¼ 1
2
arg(z� i)þ 1

2
arg(zþ i) so that

Change in argw ¼ 1
2
fChange in arg(z� i)g þ 1

2
fChange in arg(zþ i)g

Let C [Fig. 2-21] be a closed curve enclosing the point i but not the point �i. Then, as point z goes once

counterclockwise around C,

Change in arg(z� i) ¼ 2p, Change in arg(zþ i) ¼ 0

so that

Change in argw ¼ p

Hence, w does not return to its original value, i.e., a change in branches has occurred. Since a complete

circuit about z ¼ i alters the branches of the function, z ¼ i is a branch point. Similarly, if C is a closed

curve enclosing the point �i but not i, we can show that z ¼ �i is a branch point.

Another Method.
Let z� i ¼ r1e

iu1 , zþ i ¼ r2e
iu2 . Then

w ¼ fr1r2ei(u1þu2)g1=2 ¼ ffiffiffiffiffiffiffiffi
r1r2

p
eiu1=2eiu2=2

Suppose we start with a particular value of z corresponding to u1 ¼ a1 and u2 ¼ a2. Then

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
eia1=2eia2=2. As z goes once counterclockwise around i, u1 increases to a1 þ 2p while u2
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remains the same, i.e., u2 ¼ a2. Hence

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
ei(a1þ2p)=2eia2=2

¼ � ffiffiffiffiffiffiffiffi
r1r2

p
eia1=2eia2=2

showing that we do not obtain the original value of w, i.e., a change of branches has occurred, showing

that z ¼ i is a branch point.

z plane
y

Cz

x

–i

i

z plane
y

z
C

x

–i

i

Fig. 2-21 Fig. 2-22

(b) If C encloses both branch points z ¼ +i as in Fig. 2-22, then as point z goes counterclockwise around C,

Change in arg(z� i) ¼ 2p

Change in arg(zþ i) ¼ 2p

so that

Change in argw ¼ 2p

Hence a complete circuit around both branch points produces no change in the branches.

Another Method.

In this case, referring to the second method of part (a), u1 increases from a1 to a1 þ 2pwhile u2 increases

from a2 to a2 þ 2p. Thus

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
ei(a1þ2p)=2ei(a2þ2p)=2 ¼ ffiffiffiffiffiffiffiffi

r1r2
p

eia1=2eia2=2

and no change in branch is observed.

2.20. Determine branch lines for the function of Problem 2.19.

Solution

The branch lines can be taken as those indicated with a heavy line in either of Figs. 2-23 or 2-24. In both cases,

by not crossing these heavy lines, we ensure the single-valuedness of the function.

z plane
y

x

–i

i

z plane
y

x

–i

i

Fig. 2-23 Fig. 2-24
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2.21. Discuss the Riemann surface for the function of Problem 2.19.

Solution

We can have different Riemann surfaces corresponding to Figs. 2-23 or 2-24 of Problem 2.20. Referring to

Fig. 2-23, for example, we imagine that the z plane consists of two sheets superimposed on each other and

cut along the branch line. Opposite edges of the cut are then joined, forming the Riemann surface. On

making one complete circuit around z ¼ i, we start on one branch and wind up on the other. However, if

we make one circuit about both z ¼ i and z ¼ �i, we do not change branches at all. This agrees with the

results of Problem 2.19.

2.22 Discuss the Riemann surface for the function f (z) ¼ ln z [see Problem 2.14].

Solution

In this case, we imagine the z plane to consist of infinitely many sheets superimposed on each other and cut

along a branch line emanating from the origin z ¼ 0. We then connect each cut edge to the opposite cut edge of

an adjacent sheet. Then, every time we make a circuit about z ¼ 0, we are on another sheet corresponding

to a different branch of the function. The collection of sheets is the Riemann surface. In this case, unlike

Problems 2.6 and 2.7, successive circuits never bring us back to the original branch.

Limits

2.23. (a) Suppose f (z) ¼ z2. Prove that limz!z0 f (z) ¼ z20.

(b) Find limz!z0 f (z) if f (z) ¼
z2 z= z0
0 z ¼ z0

�
.

Solution

(a) We must show that, given any e . 0, we can find d (depending in general on e) such that jz2 � z20j , e
whenever 0 , jz� z0j , d.

If d � 1, then 0 , jz� z0j , d implies that

jz2 � z20j ¼ jz� z0jjzþ z0j , djz� z0 þ 2z0j , dfjz� z0j þ j2z0jg , d(1þ 2jz0j)

Take d as 1 or e=(1þ 2jz0j), whichever is smaller. Then, we have jz2 � z20j , e whenever jz� z0j , d,
and the required result is proved.

(b) There is no difference between this problem and that in part (a), since in both cases we exclude z ¼ z0
from consideration. Hence, limz!z0 f (z) ¼ z20. Note that the limit of f (z) as z ! z0 has nothing whatso-

ever to do with the value of f(z) at z0.

2.24. Interpret Problem 2.23 geometrically.

Solution

(a) The equation w ¼ f (z) ¼ z2 defines a transformation or mapping of points of the z plane into points of the

w plane. In particular, let us suppose that point z0 is mapped into w0 ¼ z20. [See Fig. 2-25 and 2-26.]

z plane
y

x

δ
z0

z

w plane
u

u

'
w0

w

Fig. 2-25 Fig. 2-26
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In Problem 2.23(a), we prove that given any e . 0 we can find d . 0 such that jw� w0j , e whenever

jz� z0j , d. Geometrically, this means that if we wish w to be inside a circle of radius e [see Fig. 2-26]

we must choose d (depending on e) so that z lies inside a circle of radius d [see Fig. 2-25]. According to

Problem 2.23(a), this is certainly accomplished if d is the smaller of 1 and e=(1þ 2jz0j).
(b) In Problem 2.23(a), w ¼ w0 ¼ z20 is the image of z ¼ z0. However, in Problem 2.23(b), w ¼ 0 is the image

of z ¼ z0. Except for this, the geometric interpretation is identical with that given in part (a).

2.25. Prove that lim
z!i

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
¼ 4þ 4i.

Solution

We must show that for any e . 0, we can find d . 0 such that

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
� (4þ 4i)

����
���� , e when 0 , jz� ij , d

Since z=i, we can write

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
¼ [3z3 � (2� 3i)z2 þ (5� 2i)zþ 5i][z� i]

z� i

¼ 3z3 � (2� 3i)z2 þ (5� 2i)zþ 5i

on cancelling the common factor z� i=0.

Then, we must show that for any e . 0, we can find d . 0 such that

j3z3 � (2� 3i)z2 þ (5� 2i)z� 4þ ij , e when 0 , jz� ij , d

If d � 1, then 0 , jz� ij , d implies

j3z3 � (2� 3i)z2 þ (5� 2i)z� 4þ ij ¼ jz� ijj3z2 þ (6i� 2)z� 1� 4ij

¼ jz� ijj3(z� iþ i)2 þ (6i� 2)(z� iþ i)� 1� 4ij

¼ jz� ijj3(z� i)2 þ (12i� 2)(z� i)� 10� 6ij

, df3jz� ij2 þ j12i� 2jjz� ij þ j�10� 6ijg
, d(3þ 13þ 12) ¼ 28d

Taking d as the smaller of 1 and e=28, the required result follows.

Theorems on Limits

2.26. Suppose limz!z0 f (z) exists. Prove that it must be unique.

Solution

We must show that if limz!z0 f (z) ¼ l1 and limz!z0 f (z) ¼ l2, then l1 ¼ l2.

By hypothesis, given any e . 0, we can find d . 0 such that

j f (z)� l1j , e=2 when 0 , jz� z0j , d

j f (z)� l2j , e=2 when 0 , jz� z0j , d

Then

jl1 � l2j ¼ jl1 � f (z)þ f (z)� l2j � jl1 � f (z)j þ j f (z)� l2j , e=2þ e=2 ¼ e

i.e., jl1 � l2j is less than any positive number e (however small) and so must be zero. Thus l1 ¼ l2.
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2.27. Suppose limz!z0 g(z) ¼ B=0. Prove that there exists d . 0 such that

jg(z)j . 1
2
jBj for 0 , jz� z0j , d

Solution

Since limz!z0 g(z) ¼ B, we can find d such that jg(z)� Bj , 1
2
jBj for 0 , jz� z0j , d.

Writing B ¼ B� g(z)þ g(z), we have

jBj � jB� g(z)j þ jg(z)j , 1
2
jBj þ jg(z)j

i.e.,

jBj , 1
2
jBj þ jg(z)j from which jg(z)j > 1

2
jBj

2.28. Given limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B, prove that

(a) limz!z0 [ f (z)þ g(z)] ¼ Aþ B, (c) limz!z0 1=g(z) ¼ 1=B if B=0,

(b) limz!z0 f (z)g(z) ¼ AB, (d) limz!z0 f (z)=g(z) ¼ A=B if B=0.

Solution

(a) We must show that for any e . 0, we can find d . 0 such that

j[ f (z)þ g(z)]� (Aþ B)j , e when 0 , jz� z0j , d

We have

j[ f (z)þ g(z)]� (Aþ B)j ¼ j[ f (z)� A]þ [g(z)� B]j � j f (z)� Aj þ jg(z)� Bj (1)

By hypothesis, given e . 0 we can find d1 . 0 and d2 . 0 such that

jf (z)� Aj , e=2 when 0 , jz� z0j , d1 (2)

jg(z)� Bj , e=2 when 0 , jz� z0j , d2 (3)

Then, from (1), (2), and (3),

j[ f (z)þ g(z)]� (Aþ B)j , e=2þ e=2 ¼ e when 0 , jz� z0j , d

where d is chosen as the smaller of d1 and d2.
(b) We have

j f (z)g(z)� ABj ¼ j f (z)fg(z)� Bg þ Bf f (z)� Agj � j f (z)jjg(z)� Bj þ jBjj f (z)� Aj
� j f (z)jjg(z)� Bj þ (jBj þ 1)j f (z)� Aj (4)

Since limz!z0 f (z) ¼ A, we can find d1 such that j f (z)� Aj , 1 for 0 , jz� z0j , d1. Hence, by
inequalities 4, page 3, Section 1.5.

jf (z)� Aj � j f (z)j � jAj, i:e:, 1 � j f (z)j � jAj or j f (z)j � jAj þ 1

i.e., j f (z)j , P where P is a positive constant.

Since limz!z0 g(z) ¼ B, given e . 0, we can find d2 . 0 such that jg(z)� Bj , e=2P for

0 , jz� z0j , d2.
Since limz!z0 f (z) ¼ A, given e . 0, we can find d3 . 0 such that j f (z)� Aj , e=2(jBj þ 1) for

0 , jz� z0j , d3.
Using these in (4), we have

j f (z)g(z)� ABj , P
e

2P
þ (jBj þ 1)

e

2(jBj þ 1)
¼ e

for 0 , jz� z0j , d where d is the smaller of d1, d2, d3, and the proof is complete.
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(c) We must show that, for any e . 0, we can find d . 0 such that

1

g(z)
� 1

B

����
���� ¼ jg(z)� Bj

jBjjg(z)j , e when 0 , jz� z0j , d (5)

By hypothesis, given any e . 0, we can find d1 . 0 such that

jg(z)� Bj , 1
2
jBj2e when 0 , jz� z0j , d1

By Problem 2.27, since limz!z0 g(z) ¼ B=0, we can find d2 . 0 such that

jg(z)j . 1
2
jBj when 0 , jz� z0j , d2

Then, if d is the smaller of d1 and d2, we can write

1

g(z)
� 1

B

����
���� ¼ jg(z)� Bj

jBjjg(z)j ,
1
2
jBj2e

jBj � 1
2
jBj

¼ e whenever 0 , jz� z0j , d

and the required result is proved.

(d) From parts (b) and (c),

lim
z!z0

f (z)

g(z)
¼ lim

z!z0
f (z) � 1

g(z)

� �
¼ lim

z!z0
f (z) � lim

z!z0

1

g(z)
¼ A � 1

B
¼ A

B

This can also be proved directly [see Problem 2.145].

Note. In the proof of (a), we have used the results j f (z)� Aj , e=2 and jg(z)� Bj , e=2, so that the final

result would come out to be j f (z)þ g(z)� (Aþ B)j , e. Of course, the proof would be just as valid if we had
used 2e [or any other positive multiple of e] in place of e. Similar remarks hold for the proofs of (b), (c),

and (d).

2.29. Evaluate each of the following using theorems on limits:

(a) limz!1þi (z
2 � 5zþ 10) (b) lim

z!�2i

(2zþ 3)(z� 1)

z2 � 2zþ 4
(c) lim

z!2epi=3

z3 þ 8

z4 þ 4z2 þ 16

Solution

(a) limz!1þi (z
2 � 5zþ 10) ¼ limz!1þi z

2 þ limz!1þi (�5z)þ limz!1þi 10

¼ limz!1þi zð Þ limz!1þi zð Þ þ limz!1þi �5ð Þ limz!1þi zð Þ þ limz!1þi 10

¼ (1þ i)(1þ i)� 5(1þ i)þ 10 ¼ 5� 3i

In practice, the intermediate steps are omitted.

(b) lim
z!�2i

(2zþ 3)(z� 1)

z2 � 2zþ 4
¼ limz!�2i (2zþ 3) limz!�2i (z� 1)

limz!�2i (z2 � 2zþ 4)
¼ (3� 4i)(�2i� 1)

4i
¼ � 1

2
þ 11

4
i

(c) In this case, the limits of the numerator and denominator are each zero and the theorems on limits fail

to apply. However, by obtaining the factors of the polynomials, we see that

lim
z!2epi=3

z3 þ 8

z4 þ 4z2 þ 16
¼ lim

z!2epi=3

(zþ 2)(z� 2epi=3)(z� 2e5pi=3)

(z� 2epi=3)(z� 2e2pi=3)(z� 2e4pi=3)(z� 2e5pi=3)

¼ lim
z!2epi=3

(zþ 2)

(z� 2e2pi=3)(z� 2e4pi=3)
¼ epi=3 þ 1

2(epi=3 � e2pi=3)(epi=3 � e4pi=3)

¼ 3

8
�

ffiffiffi
3

p

8
i

Another Method. Since z6 � 64 ¼ (z2 � 4)(z4 þ 4z2 þ 16), the problem is equivalent to finding

lim
z!2epi=3

(z2 � 4)(z3 þ 8)

z6 � 64
¼ lim

z!2epi=3

z2 � 4

z3 � 8
¼ e2pi=3 � 1

2(epi � 1)
¼ 3

8
�

ffiffiffi
3

p

8
i
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2.30. Prove that limz!0 (�z=z) does not exist.

Solution

If the limit is to exist, it must be independent of the manner in which z approaches the point 0.

Let z ! 0 along the x axis. Then y ¼ 0, and z ¼ xþ iy ¼ x and �z ¼ x� iy ¼ x, so that the required limit is

lim
x!0

x

x
¼ 1

Let z ! 0 along the y axis. Then x ¼ 0, and z ¼ xþ iy ¼ iy and �z ¼ x� iy ¼ �iy, so that the required

limit is

lim
y!0

�iy

iy
¼ �1

Since the two approaches do not give the same answer, the limit does not exist.

Continuity

2.31. (a) Prove that f (z) ¼ z2 is continuous at z ¼ z0.

(b) Prove that f (z) ¼ z2 z=z0
0 z ¼ z0

�
, where z0=0, is discontinuous at z ¼ z0.

Solution

(a) By Problem 2.23(a), limz!z0 f (z) ¼ f (z0) ¼ z20 and so f(z) is continuous at z ¼ z0.

Another Method. We must show that given any e . 0, we can find d . 0 (depending on e) such that

j f (z)� f (z0)j ¼ jz2 � z20j , e when jz� z0j , d. The proof patterns that given in Problem 2.23(a).

(b) By Problem 2.23(b), limz!z0 f (z) ¼ z20, but f (z0) ¼ 0. Hence, limz!z0 f (z)= f (z0) and so f(z) is discon-

tinuous at z ¼ z0 if z0 = 0.

If z0 ¼ 0, then f (z) ¼ 0; and since limz!z0 f (z) ¼ 0 ¼ f (0), we see that the function is continuous.

2.32. Is the function f (z) ¼ 3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
continuous at z ¼ i?

Solution

f(i) does not exist, i.e., f(x) is not defined at z ¼ i. Thus f (z) is not continuous at z ¼ i.

By redefining f(z) so that f (i) ¼ limz!i f (z) ¼ 4þ 4i (see Problem 2.25), it becomes continuous at z ¼ i. In

such a case, we call z ¼ i a removable discontinuity.

2.33. Prove that if f(z) and g(z) are continuous at z ¼ z0, so also are

(a) f (z)þ g(z), (b) f (z)g(z), (c)
f (z)

g(z)
if g(z0)=0

Solution

These results follow at once from Problem 2.28 by taking A ¼ f (z0), B ¼ g(z0) and rewriting 0 , jz� z0j , d
as jz� z0j , d, i.e., including z ¼ z0.

2.34. Prove that f (z) ¼ z2 is continuous in the region jzj � 1.

Solution

Let z0 be any point in the region jzj � 1. By Problem 2.23(a), f (z) is continuous at z0. Thus, f(z) is continuous

in the region since it is continuous at any point of the region.
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2.35. For what values of z are each of the following functions continuous?

Solution

(a) f (z) ¼ z=(z2 þ 1) ¼ z=(z� i)(zþ i). Since the denominator is zero when z ¼+i, the function is continu-

ous everywhere except z ¼+i.

(b) f (z) ¼ csc z ¼ 1=sin z. By Problem 2.10(a), sin z ¼ 0 for z ¼ 0, +p, +2p, . . . . Hence, f(z) is continuous
everywhere except at these points.

Uniform Continuity

2.36. Prove that f (z) ¼ z2 is uniformly continuous in the region jzj , 1.

Solution

We must show that given any e . 0, we can find d . 0 such that jz2 � z20j , e when jz� z0j , d, where d
depends only on e and not on the particular point z0 of the region.

If z and z0 are any points in jzj , 1, then

jz2 � z20j ¼ jzþ z0jjz� z0j � fjzj þ jz0jgjz� z0j , 2jz� z0j

Thus, if jz� z0j , d, it follows that jz2 � z20j , 2d. Choosing d ¼ e=2, we see that jz2 � z20j , e when

jz� z0j , d, where d depends only on e and not on z0. Hence, f (z) ¼ z2 is uniformly continuous in the region.

2.37. Prove that f (z) ¼ 1=z is not uniformly continuous in the region jzj , 1.

Solution

Method 1.
Suppose that f (z) is uniformly continuous in the region. Then, for any e . 0, we should be able to find d,

say between 0 and 1, such that j f (z)� f (z0)j , e when jz� z0j , d for all z and z0 in the region.

Let z ¼ d and z0 ¼
d

1þ e
. Then jz� z0j ¼ d� d

1þ e

����
���� ¼ e

1þ e
d , d.

However,
1

z
� 1

z0

����
���� ¼ 1

d
� 1þ e

d

����
���� ¼ e

d
. e (since 0 , d , 1).

Thus, we have a contradiction, and it follows that f (z) ¼ 1=z cannot be uniformly continuous in the region.

Method 2.
Let z0 and z0 þ z be any two points of the region such that jz0 þ z� z0j ¼ jzj ¼ d. Then

j f (z0)� f (z0 þ z )j ¼ 1

z0
� 1

z0 þ z

����
���� ¼ jzj

jz0jjz0 þ zj ¼
d

jz0jjz0 þ zj

can be made larger than any positive number by choosing z0 sufficiently close to 0. Hence, the function cannot

be uniformly continuous in the region.

Sequences and Series

2.38. Investigate the convergence of the sequences

(a) un ¼
in

n
, n ¼ 1, 2, 3, . . . , (b) un ¼

(1þ i)n

n
.

Solution

(a) The first few terms of the sequence are i,
i2

2
,
i3

3
,
i4

4
,
i5

5
, etc., or i, � 1

2
,
�i

3
,
1

4
,
i

5
, . . . : On plotting the

corresponding points in the z plane, we suspect that the limit is zero. To prove this, we must show that

jun � lj ¼ jin=n� 0j , e when n > N (1)
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Now

jin=n� 0j ¼ jin=nj ¼ jijn=n ¼ 1=n , e when n > 1=e

Let us choose N ¼ 1=e. Then we see that (1) is true, and so the sequence converges to zero.

(b) Consider

unþ1

un

����
���� ¼ (1þ i)nþ1=(nþ 1)

(1þ i)n=n

����
���� ¼ n

nþ 1
j1þ ij ¼ n

ffiffiffi
2

p

nþ 1

For all n � 10 (for example), we have n
ffiffiffi
2

p
=(nþ 1) . 6=5 ¼ 1:2. Thus junþ1j . 1:2junj for n . 10, i.e.,

ju11j . 1:2ju10j, ju12j . 1:2ju11j . (1:2)2ju10j, and in general junj . (1:2)n�10ju10j. It follows that junj
can be made larger than any preassigned positive number (no matter how large) and thus the limit of

junj cannot exist, and consequently the limit of un cannot exist. Thus, the sequence diverges.

2.39. Given limn!1 an ¼ A and limn!1 bn ¼ B. Prove that limn!1 (an þ bn) ¼ Aþ B.

Solution

By definition, given e we can find N such that

jan � Aj , e=2, jbn � Bj , e=2 for n > N

Then for n . N,

j(an þ bn)� (Aþ B)j ¼ j(an � A)þ (bn � B)j � jan � Aj þ jbn � Bj , e

which proves the result.

It is seen that this parallels the proof for limits of functions [Problem 2.28].

2.40. Prove that if a series u1 þ u2 þ u3 þ � � � is to converge, we must have limn!1 un ¼ 0.

Solution

If Sn is the sum of the first n terms of the series, then Snþ1 ¼ Sn þ un. Hence, if limn!1 Sn exists and equals S,

we have limn!1 Snþ1 ¼ limn!1 Sn þ limn!1 un or S ¼ Sþ limn!1 un, i.e., limn!1 un ¼ 0.

Conversely, however, if limn!1 un ¼ 0, the series may or may not converge. See Problem 2.150.

2.41. Prove that 1þ zþ z2 þ z3 þ � � � ¼ 1=(1� z) if jzj , 1.

Solution

Let Sn ¼ 1þ zþ z2 þ � � � þ zn�1

Then zSn ¼ zþ z2 þ � � � þ zn�1 þ zn

Subtracting, (1� z)Sn ¼ 1� zn or Sn ¼
1� zn

1� z

If jzj , 1, then we suspect that limn!1 zn ¼ 0. To prove this, we must show that given any e . 0, we can find

N such that jzn � 0j , e for all n . N. The result is certainly true if z ¼ 0; hence, we can consider z=0.

Now jznj ¼ jzjn , e when n ln jzj , ln e or n . (ln e)=(ln jzj) ¼ N [since if jzj , 1, ln jzj is negative]. We

have therefore found the required N and limn!1 zn ¼ 0. Thus

1þ zþ z2 þ � � � ¼ lim
n!1 Sn ¼ lim

n!1
1� zn

1� z
¼ 1� 0

1� z
¼ 1

1� z
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The series

aþ azþ az2 þ � � � ¼ a

1� z

is called a geometric series with first term equal to a and ratio z, and its sum is a=(1� z) provided jzj , 1.

Miscellaneous Problems

2.42. Let w ¼ (z2 þ 1)1=2. (a) If w ¼ 1 when z ¼ 0, and z describes the curve C1 shown in Fig. 2-27,
find the value of w when z ¼ 1. (b) If z describes the curve C2 shown in Fig. 2-28, is the value
of w, when z ¼ 1, the same as that obtained in (a)?

Solution

(a) The branch points of w ¼ f (z) ¼ (z2 þ 1)1=2 ¼ f(z� i)(zþ i)g1=2 are at z ¼+i by Problem 2.19.

r1

θ1

C1

10

θ2
r2

z

i

–i

θ1

C2

10

i

–i

Fig. 2-27 Fig. 2-28

Let (1) z� i ¼ r1e
iu1 , (2) zþ i ¼ r2e

iu2 . Then, since u1 and u2 are determined only within integer multiples

of 2pi, we can write

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
ei(u1þu2)=2e2kpi=2 ¼ ffiffiffiffiffiffiffiffi

r1r2
p

ei(u1þu2)=2ekpi (3)

Referring to Fig. 2-27 [or by using the equations (1) and (2)], we see that when z is at 0, r1 ¼ 1, u1 ¼ 3p=2,
and r2 ¼ 1, u2 ¼ p=2. Since w ¼ 1 at z ¼ 0, we have from (3), 1 ¼ e(kþ1)pi and we choose k ¼ �1

[or 1, �3, . . .]. Then

w ¼ � ffiffiffiffiffiffiffiffi
r1r2

p
ei(u1þu2)=2

As z traverses C1 from 0 to 1, r1 changes from 1 to
ffiffiffi
2

p
, u1 changes from 3p=2 to �p=4, r2 changes from 1

to
ffiffiffi
2

p
, u2 changes from p=2 to p=4. Then

w ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
ffiffiffi
2

p
)(

ffiffiffi
2

p
)

q
ei(�p=4þp=4)=2 ¼ �

ffiffiffi
2

p

(b) As in part (a), w ¼ � ffiffiffiffiffiffiffiffi
r1r2

p
ei(u1þu2)=2. Referring to Fig. 2-28, we see that as z traverses C2, r1 changes

from 1 to
ffiffiffi
2

p
, u1 changes from 3p=2 to 7p=4, r2 changes from 1 to

ffiffiffi
2

p
and u2 changes from p=2 to

p=4. Then

w ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
ffiffiffi
2

p
)(

ffiffiffi
2

p
)

q
ei(7p=4þp=4)=2 ¼

ffiffiffi
2

p

which is not the same as the value obtained in (a).
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2.43. Let
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ 1 for z ¼ 0. Show that as z varies from 0 to p . 1 along the real axis,

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
varies

from 1 to �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
.

z

r

D

EBA

y

xF

p1

q

Fig. 2-29

Solution

Consider the case where z travels along path ABDEF, where BDE is a semi-circle as shown in Fig. 2-29. From

this figure, we have

1� z ¼ 1� x� iy ¼ r cos u� ir sin u

so that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� z)(1þ z)

p
¼

ffiffi
r

p
(cos u=2� i sin u=2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� r cos uþ ir sin u

p

Along AB: z ¼ x, r ¼ 1� x, u ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
.

Along EF: z ¼ x, r ¼ x� 1, u ¼ p and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ �i

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
.

Hence, as z varies from 0 [where x ¼ 0] to p [where x ¼ p],
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
varies from 1 to �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
.

2.44. Find a mapping function which maps the points z ¼ 0, +i, +2i, +3i, . . . of the z plane into the
point w ¼ 1 of the w plane [see Figs. 2-30 and 2-31].

z plane
y

x

3i

0

2i

i

–i

–2i

w plane
u

u

1

Fig. 2-30 Fig. 2-31

Solution

Since the points in the z plane are equally spaced, we are led, because of Problem 2.15, to consider a logar-

ithmic function of the type z ¼ lnw.

Now, if w ¼ 1 ¼ e2kpi, k ¼ 0, +1, +2, . . . , then z ¼ lnw ¼ 2kpi so that the point w ¼ 1 is mapped into

the points 0, +2pi, +4pi, . . . .
If, however, we consider z ¼ (lnw)=2p, the point w ¼ 1 is mapped into z ¼ 0, +i, +2i, . . . as required.

Conversely, by means of this mapping function, the points z ¼ 0, +i, +2i, . . . are mapped into the point

w ¼ 1.

Then, a suitable mapping function is z ¼ (lnw)=2p or w ¼ e2pz.
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2.45. Given limn!1 zn ¼ l. Prove that limn!1 Refzng ¼ Reflg and limn!1 Imfzng ¼ Imflg.

Solution

Let zn ¼ xn þ iyn and l ¼ l1 þ il2, where xn, yn, and l1, l2 are the real and imaginary parts of zn and l,

respectively.

By hypothesis, given any e . 0 we can find N such that jzn � lj , e for n . N, i.e.,

jxn þ iyn � (l1 þ il2)j , e for n > N

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xn � l1)

2 þ (yn � l2)
2

q
, e for n > N

From this, it necessarily follows that

jxn � l1j , e and jyn � l2j , e for n > N

i.e., limn!1 xn ¼ l1 and limn!1 yn ¼ l2, as required.

2.46. Prove that if jaj , 1,

(a) 1þ a cos uþ a2 cos 2uþ a3 cos 3uþ � � � ¼ 1� a cos u

1� 2a cos uþ a2

(b) a sin uþ a2 sin 2uþ a3 sin 3uþ � � � ¼ a sin u

1� 2a cos uþ a2

Solution

Let z ¼ aeiu in Problem 2.41. We can do this since jzj ¼ jaj , 1. Then

1þ aeiu þ a2e2iu þ a3e3iu þ � � � ¼ 1

1� aeiu

or

(1þ a cos uþ a2 cos 2uþ � � � )þ i(a sin uþ a2 sin 2uþ � � � ) ¼ 1

1� aeiu
� 1� ae�iu

1� ae�iu

¼ 1� a cos uþ ia sin u

1� 2a cos uþ a2

The required results follow on equating real and imaginary parts.

SUPPLEMENTARY PROBLEMS

Functions and Transformations

2.47. Let w ¼ f (z) ¼ z(2� z). Find the values of w corresponding to (a) z ¼ 1þ i, (b) z ¼ 2� 2i and graph cor-

responding values in the w and z planes.

2.48. Let w ¼ f (z) ¼ (1þ z)=(1� z). Find: (a) f(i), (b) f (1� i) and represent graphically.

2.49. Suppose f (z) ¼ (2zþ 1)=(3z� 2), z = 2=3. Find (a) f (1=z), (b) f f f (z)g.

2.50. (a) If w ¼ f (z) ¼ (zþ 2)=(2z� 1), find f(0), f(i), f (1þ i). (b) Find the values of z such that f (z) ¼ i,

f (z) ¼ 2� 3i. (c) Show that z is a single-valued function of w. (d) Find the values of z such that f (z) ¼ z

and explain geometrically why we would call such values the fixed or invariant points of the transformation.
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2.51. A square S in the z plane has vertices at (0, 0), (1, 0), (1, 1), (0, 1). Determine the region in the w plane into

which S is mapped under the transformations (a) w ¼ z2, (b) w ¼ 1=(zþ 1).

2.52. Discuss Problem 2.51 if the square has vertices at (1, 1), (�1, 1), (�1, �1), (1, �1).

2.53. Separate each of the following into real and imaginary parts, i.e., find u(x, y) and v(x, y) such that f (z) ¼ uþ iv:

(a) f (z) ¼ 2z2 � 3iz, (b) f (z) ¼ zþ 1=z, (c) f (z) ¼ (1� z)=(1þ z), (d) f (z) ¼ z1=2.

2.54. Suppose f (z) ¼ 1=z ¼ uþ iv. Construct several members of the families u(x, y) ¼ a, v(x, y) ¼ b where a and

b are constants, showing that they are families of circles.

Multiple-Valued Functions

2.55. Let w3 ¼ z and suppose that, corresponding to z ¼ 1, we have w ¼ 1. (a) If we start at z ¼ 1 in the z plane and

make one complete circuit counterclockwise around the origin, find the value of w on returning to z ¼ 1 for the

first time. (b) What are the values of w on returning to z ¼ 1 after 2, 3, 4, . . . complete circuits about the origin?

Discuss (a) and (b) if the paths do not enclose the origin.

2.56. Let w ¼ (1� z2)1=2 and suppose that, corresponding to z ¼ 0, we have w ¼ 1. (a) If we start at z ¼ 0 in the z

plane and make one complete circuit counterclockwise so as to include z ¼ 1 but not to include z ¼ �1, find

the value of w on returning to z ¼ 0 for the first time. (b) What are the values of w if the circuit in (a) is repeated

over and over again? (c) Work parts (a) and (b) if the circuit includes z ¼ �1 but does not include z ¼ 1. (d)

Work parts (a) and (b) if the circuit includes both z ¼ 1 and z ¼ �1. (e) Work parts (a) and (b) if the circuit

excludes both z ¼ 1 and z ¼ �1. (f ) Explain why z ¼ 1 and z ¼ �1 are branch points. (g) What lines can be

taken as branch lines?

2.57. Find branch points and construct branch lines for the functions

(a) f (z) ¼ fz=(1� z)g1=2, (b) f (z) ¼ (z2 � 4)1=3, (c) f (z) ¼ ln(z� z2).

The Elementary Functions

2.58. Prove that (a) ez1=ez2 ¼ ez1�z2 , (b) jeizj ¼ e�y.

2.59. Prove that there cannot be any finite values of z such that ez ¼ 0.

2.60. Prove that 2p is a period of eiz. Are there any other periods?

2.61. Find all values of z for which (a) e3z ¼ 1, (b) e4z ¼ i.

2.62. Prove (a) sin 2z ¼ 2 sin z cos z, (b) cos 2z ¼ cos2 z� sin2 z, (c) sin2(z=2) ¼ 1
2
(1� cos z),

(d) cos2(z=2) ¼ 1
2
(1þ cos z).

2.63. Prove (a) 1þ tan2 z ¼ sec2 z, (b) 1þ cot2 z ¼ csc2 z.

2.64. Let cos z ¼ 2. Find (a) cos 2z, (b) cos 3z.

2.65. Prove that all the roots of (a) sin z ¼ a, (b) cos z ¼ a, where �1 � a � 1, are real.

2.66. Prove that if jsin zj � 1 for all z, then jImfzgj � ln(
ffiffiffi
2

p
þ 1).

2.67. Show that (a) sin z ¼ sin �z, (b) cos z ¼ cos �z, (c) tan z ¼ tan �z.

2.68. For each of the following functions, find u(x, y) and v(x, y) such that f (z) ¼ uþ iv, i.e., separate into real and

imaginary parts: (a) f (z) ¼ e3iz, (b) f (z) ¼ cos z, (c) f (z) ¼ sin 2z, (d) f (z) ¼ z2e2z.

2.69. Prove that (a) sinh(�z) ¼ �sinh z, (b) cosh(�z) ¼ cosh z, (c) tanh(�z) ¼ �tanh z.

2.70. Prove that (a) sinh(z1 þ z2) ¼ sinh z1 cosh z2 þ cosh z1 sinh z2, (b) cosh 2z ¼ cosh2 zþ sinh2 z,

(c) 1� tanh2 z ¼ sech2 z.
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2.71. Prove that (a) sinh2(z=2) ¼ 1
2
(cosh z� 1), (b) cosh2(z=2) ¼ 1

2
(cosh zþ 1).

2.72. Find u(x, y) and v(x, y) such that (a) sinh 2z ¼ uþ iv, (b) z cosh z ¼ uþ iv.

2.73. Find the value of (a) 4 sinh(pi=3), (b) cosh(2k þ 1)pi=2, k ¼ 0, +1, +2, . . . , (c) coth 3pi=4.

2.74. (a) Show that ln � 1

2
�

ffiffiffi
3

p

2
i

� �
¼ 4p

3
þ 2kp

� �
i, k ¼ 0, +1, +2, . . . . (b) What is the principal value?

2.75. Obtain all the values of (a) ln(�4), (b) ln(3i), (c) ln(
ffiffiffi
3

p
� i) and find the principal value in each case.

2.76. Show that ln(z� 1) ¼ 1
2
lnf(x� 1)2 þ y2g þ i tan�1 y=(x� 1), giving restrictions if any.

2.77. Prove that (a) cos�1 z ¼ 1
i
ln(zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
), (b) cot�1 z ¼ 1

2i
ln

zþ i

z� i

� �
indicating any restrictions.

2.78. Prove that (a) sinh�1 z ¼ ln(zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
), (b) coth�1z ¼ 1

2
ln

zþ 1

z� 1

� �
.

2.79. Find all the values of (a) sin�1 2, (b) cos�1 i.

2.80. Find all the values of (a) cosh�1 i, (b) sinh�1fln(�1)g.

2.81. Determine all the values of (a) (1þ i)i, (b) 1
ffiffi
2

p
.

2.82. Find (a) Ref(1� i)1þig, (b) j(�i)�ij.

2.83. Find the real and imaginary parts of zz where z ¼ xþ iy.

2.84. Show that (a) f (z) ¼ (z2 � 1)1=3, (b) f (z) ¼ z1=2 þ z1=3 are algebraic functions of z.

Branch Points, Branch Lines, and Riemann Surfaces

2.85. Prove that z ¼ +i are branch points of (z2 þ 1)1=3.

2.86. Construct a Riemann surface for the functions (a) z1=3, (b) z1=2(z� 1)1=2, (c)
zþ 2

z� 2

� �1=3

.

2.87. Show that the Riemann surface for the function z1=2 þ z1=3 has six sheets.

2.88. Construct Riemann surfaces for the functions (a) ln(zþ 2), (b) sin�1 z, (c) tan�1 z.

Limits

2.89. (a) Suppose f (z) ¼ z2 þ 2z. Prove that limz!i f (z) ¼ 2i� 1.

(b) Suppose f (z) ¼ z2 þ 2z z= i

3þ 2i z ¼ i

�
: Find limz!i f (z) and justify your answer.

2.90. Prove that lim
z!1þi

z2 � zþ 1� i

z2 � 2zþ 2
¼ 1� 1

2
i.

2.91. Guess at a possible value for (a) lim
z!2þi

1� z

1þ z
, (b) lim

z!2þi

z2 � 2iz

z2 þ 4
and investigate the correctness of your guess.

2.92. Let limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B. Prove that (a) limz!z0 f2f (z)� 3ig(z)g ¼ 2A� 3iB,

(b) limz!z0fpf (z)þ qg(z)g ¼ pAþ qB where p and q are any constants.

2.93. Let limz!z0 f (z) ¼ A. Prove that (a) limz!z0 f f (z)g2 ¼ A2, (b) limz!z0 f f (z)g3 ¼ A3. Can you make a

similar statement for limz!z0f f (z)gn? What restrictions, if any, must be imposed?
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2.94. Evaluate using theorems on limits. In each case, state precisely which theorems are used.

(a) limz!2i (iz
4 þ 3z2 � 10i), (c) lim

z!i=2

(2z� 3)(4zþ i)

(iz� 1)2
,

(b) lim
z!epi=4

z2

z4 þ zþ 1
, (d) lim

z!i

z2 þ 1

z6 þ 1
, (e) lim

z!1þi

z� 1� i

z2 � 2zþ 2

� �2

2.95. Find lim
z!epi=3

(z� epi=3)
z

z3 þ 1

� �
:

2.96. Suppose f (z) ¼ 3z2 þ 2z. Prove that lim
z!z0

f (z)� f (z0)

z� z0
¼ 6z0 þ 2.

2.97. Let f (z) ¼ 2z� 1

3zþ 2
. Prove that lim

h!0

f (z0 þ h)� f (z0)

h
¼ 7

(3z0 þ 2)2
provided z0=�2=3.

2.98. Suppose we restrict ourselves to that branch of f (z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 3

p
for which f (0) ¼

ffiffiffi
3

p
. Prove that

lim
z!1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 3

p
� 2

z� 1
¼ 1

2

2.99. Explain exactly what is meant by the statements (a) lim
z!i

1=(z� i)2 ¼ 1, (b) lim
z!1

2z4 þ 1

z4 þ 1
¼ 2.

2.100. Show that (a) limz!p=2 (sin z)=z ¼ 2=p, (b) limz!pi=2 z
2 cosh 4z=3 ¼ p2=8.

2.101. Suppose we restrict ourselves to that branch of f (z) ¼ tanh�1 z such that f (0) ¼ 0. Show that

limz!�i f (z) ¼ 3pi=4.

Continuity

2.102. Let f (z) ¼ z2 þ 4

z� 2i
if z=2i, while f (2i) ¼ 3þ 4i. (a) Prove that limz!i f (z) exists and determine its value. (b) Is

f (z) continuous at z ¼ 2i? Explain. (c) Is f (z) continuous at points z=2i? Explain.

2.103. Answer Problem 2.102 if f (2i) is redefined as equal to 4i and explain why any differences should occur.

2.104. Prove that f (z) ¼ z=(z4 þ 1) is continuous at all points inside and on the unit circle jzj ¼ 1 except at four points,

and determine those points.

2.105. Suppose f(z) and g(z) are continuous at z ¼ z0. Prove that 3f (z)� 4ig(z) is also continuous at z ¼ z0.

2.106. Suppose f(z) is continuous at z ¼ z0. Prove that (a) f f (z)g2 and (b) f f (z)g3 are also continuous at z ¼ z0.

Can you extend the result to f f (z)gn where n is any positive integer?

2.107. Find all points of discontinuity for the following functions.

(a) f (z) ¼ 2z� 3

z2 þ 2zþ 2
, (b) f (z) ¼ 3z2 þ 4

z4 � 16
, (c) f (z) ¼ cot z, (d) f (z) ¼ 1

z
�sec z, (e) f (z) ¼ tanh z

z2 þ 1
.

2.108. Prove that f (z) ¼ z2 � 2zþ 3 is continuous everywhere in the finite plane.

2.109. Prove that f (z) ¼ z2 þ 1

z3 þ 9
is (a) continuous and (b) bounded in the region jzj � 2.

2.110. Prove that if f(z) is continuous in a closed region, it is bounded in the region.

2.111. Prove that f (z) ¼ 1=z is continuous for all z such that jzj . 0, but that it is not bounded.

2.112. Prove that a polynomial is continuous everywhere in the finite plane.

2.113. Show that f (z) ¼ z2 þ 1

z2 � 3zþ 2
is continuous for all z outside jzj ¼ 2.
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Uniform Continuity

2.114. Prove that f (z) ¼ 3z� 2 is uniformly continuous in the region jzj � 10.

2.115. Prove that f (z) ¼ 1=z2 (a) is not uniformly continuous in the region jzj � 1 but (b) is uniformly continuous in

the region 1
2
� jzj � 1.

2.116. Prove that if f(z) is continuous in a closed region R, it is uniformly continuous in R.

Sequences and Series

2.117. Prove that (a) lim
n!1

n2in

n3 þ 1
¼ 0, (b) lim

n!1
n

nþ 3i
� in

nþ 1

� �
¼ 1� i.

2.118. Prove that for any complex number z, limn!1 (1þ 3z=n2) ¼ 1.

2.119. Prove that lim
n!1 n

1þ i

2

� �n

¼ 0.

2.120. Prove that limn!1 nin does not exist.

2.121. Let limn!1 junj ¼ 0. Prove that limn!1 un ¼ 0. Is the converse true? Justify your conclusion.

2.122. Let limn!1 an ¼ A and limn!1 bn ¼ B. Prove that (a) limn!1 (an þ bn) ¼ Aþ B,

(b) limn!1 (an � bn) ¼ A� B, (c) limn!1 anbn ¼ AB, (d) limn!1 an=bn ¼ A=B if B=0.

2.123. Use theorems on limits to evaluate each of the following:

(a) lim
n!1

in2 � inþ 1� 3i

(2nþ 4i� 3)(n� i)
(c) lim

n!1
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2i

p
�

ffiffiffiffiffiffiffiffiffiffi
nþ i

p

(b) lim
n!1

(n2 þ 3i)(n� i)

in3 � 3nþ 4� i

����
���� (d) lim

n!1
ffiffiffi
n

p f
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2i

p
�

ffiffiffiffiffiffiffiffiffiffi
nþ i

p
g

2.124. Let limn!1 un ¼ l. Prove that lim
n!1

u1 þ u2 þ � � � þ un

n
¼ l.

2.125. Prove that the series 1þ i=3þ (i=3)2 þ � � � ¼
P1

n¼1 (i=3)
n�1 converges and find its sum.

2.126. Prove that the series i� 2iþ 3i� diþ � � � diverges.

2.127. Suppose the series
P1

n¼1 an converges to A, and
P1

n¼1 bn converges to B. Prove that
P1

n¼1 (an þ ibn) converges

to Aþ iB. Is the converse true?

2.128. Investigate the convergence of
X1
n¼1

vn

5n=2
where v ¼

ffiffiffi
3

p
þ i.

Miscellaneous Problems

2.129. Let w ¼ f(4� z)(z2 þ 4)g1=2. If w ¼ 4 when z ¼ 0, show that if z

describes the curve C of Fig. 2-32, then the value of w at z ¼ 6 is

�4i
ffiffiffi
5

p
.

2.130. Prove that a necessary and sufficient condition for f (z) ¼ u(x, y)þ
iv(x, y) to be continuous at z ¼ z0 ¼ x0 þ iy0 is that u(x, y) and

v(x, y) be continuous at (x0, y0).

2.131. Prove that the equation tan z ¼ z has only real roots.

2.132. A student remarked that 1 raised to any power is equal to 1. Was the student correct? Explain.

2.133. Show that
sin u

2
þ sin 2u

22
þ sin 3u

23
þ � � � ¼ 2 sin u

5� 4 cos u
.

2.134. Show that the relation j f (xþ iy)j ¼ j f (x)þ f (iy)j is satisfied by f (z) ¼ sin z. Can you find any other functions

for which it is true?

C

y

x
0 6

Fig. 2-32
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2.135. Prove that lim
z!1

z3 � 3zþ 2

z4 þ z2 � 3zþ 5
¼ 0.

2.136. Prove that j csc zj � 2e=(e2 � 1) if jyj � 1.

2.137. Show that Refsin�1 zg ¼ 1
2
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ 2xþ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2xþ 1

p
g.

2.138. Suppose f(z) is continuous in a bounded closed region R. Prove that

(a) there exists a positive number M such that for all z in R, j f (z)j � M,

(b) j f (z)j has a least upper bound m in R and there exists at least one value z0 in R such that j f (z0)j ¼ m.

2.139. Show that jtanhp(1þ i)=4j ¼ 1.

2.140. Prove that all the values of (1� i)
ffiffi
2

p
i lie on a straight line.

2.141. Evaluate (a) coshpi=2, (b) tanh�1 1.

2.142. Let tan z ¼ uþ iv. Show that

u ¼ sin 2x

cos 2xþ cosh 2y
, v ¼ sinh 2y

cos 2xþ cosh 2y

2.143. Evaluate to three decimal place accuracy: (a) e3�2i, (b) sin(5� 4i).

2.144. Prove Re
1þ i tan(u=2)

1� i tan(u=2)

� �
¼ cos u, indicating any exceptional values.

2.145. Let limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B = 0. Prove that limz!z0 f (z)=g(z) ¼ A=B without first proving that

limz!z0 1=g(z) ¼ 1=B.

2.146. Let f (z) ¼ 1 if jzj is rational
0 if jzj is irrational

�
. Prove that f(z) is discontinuous at all values of z.

2.147. Suppose f (z) ¼ u(x, y)þ iv(x, y) is continuous in a region. Prove that (a) Ref f (z)g ¼ u(x, y) and

(b) Imf f (z)g ¼ v(x, y) are continuous in the region.

2.148. Prove that all the roots of z tan z ¼ k, where k . 0, are real.

2.149. Prove that if the limit of a sequence exists, it must be unique.

2.150. (a) Prove that limn!1 (
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
� ffiffiffi

n
p

) ¼ 0.

(b) Prove that the series
P1

n¼1 (
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
� ffiffiffi

n
p

) diverges, thus showing that a series whose nth term approaches

zero need not converge.

2.151. Let znþ1 ¼ 1
2
(zn þ 1=zn), n ¼ 0, 1, 2, . . . and �p=2 , arg z0 , p=2. Prove that limn!1 zn ¼ 1.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.47. (a) 2, 4þ 4i

2.48. (a) i, (b) �1� 2i

2.49. (a) (2þ z)=(3� 2z), (b) z

2.50. (a) �2, �i, 1� i, (b) �i, (2þ i)=3

2.53. (a) u ¼ 2x2 � 2y2 þ 3y, v ¼ 4xy� 3x (c) u ¼ 1� x2 � y2

(1þ x)2 þ y2
, v ¼ �2y

(1þ x)2 þ y2

(b) u ¼ xþ x=(x2 þ y2), v ¼ y� y=(x2 þ y2) (d) u ¼ r1=2 cos u=2, v ¼ r1=2 sin u=2

where x ¼ r cos u, y ¼ r sin u
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2.55. (a) e2pi=3, (b) e4pi=3, 1, e2pi=3

2.61. (a) 2kpi=3, (b) (1=8)piþ (1=2)kpi, where k ¼ +1, +2, . . .

2.64. (a) 7, (b) 26

2.68. (a) u ¼ e�3y cos 3x, v ¼ e�3y sin 3x. (b) u ¼ cos x cosh y, v ¼ � sin x sinh y. (c) u ¼ sin 2x cosh 2y,

v ¼ cos 2x sinh 2y. (d) u ¼ e2xf(x2 � y2) cos 2y� 2xy sin 2yg, v ¼ e2xf2xy cos 2yþ (x2 � y2) sin 2yg:

2.72. (a) u ¼ sinh 2x cos 2y, v ¼ cosh 2x sin 2y

(b) u ¼ x cosh x cos y� y sinh x sin y, v ¼ y cosh x cos yþ x sinh x sin y

2.73. (a) 2i
ffiffiffi
3

p
, (b) 0, (c) i

2.74. (b) 4pi=3

2.75. (a) 2 ln 2þ (pþ 2kp)i, 2 ln 2þ pi. (b) ln 3þ (p=2þ 2kp)i, ln 3þ pi=2. (c) ln 2þ (11p=6þ 2kp)i,

ln 2þ 11pi=6

2.79. (a) +ln(2þ
ffiffiffi
3

p
)þ p=2þ 2kp (b) �i ln(

ffiffiffi
2

p
þ 1)þ p=2þ 2kp, �i ln(

ffiffiffi
2

p
� 1)þ 3p=2þ 2kp

2.80. (a) ln(
ffiffiffi
2

p
þ 1)þ pi=2þ 2kpi, ln(

ffiffiffi
2

p
� 1)þ 3pi=2þ 2kpi

(b) ln (2k þ 1)pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2k þ 1)2p2 � 1

ph i
þ pi=2þ 2mpi,

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2k þ 1)2p2 � 1

q
� (2k þ 1)p

� 	
þ 3pi=2þ 2mpi, k, m ¼ 0, +1, +2, . . .

2.81. (a) e�p=4þ2kp cos 1
2
ln 2


 �
þ i sin 1

2
ln 2


 �� �
, (b) cos(2

ffiffiffi
2

p
kp)þ i sin(2

ffiffiffi
2

p
kp)

2.82. (a) e1=2 ln 2�7p=4�2kp cos 7p=4þ 1
2
ln 2


 �
, (b) e3p=2þ2kp

2.94. (a) �12þ 6i, (b)
ffiffiffi
2

p
(1þ i)=2, (c) �4=3� 4i, (d) 1/3, (e) �1=4

2.95. 1=6� i
ffiffiffi
3

p
=6

2.104. e(2kþ1)pi=4, k ¼ 0, 1, 2, 3

2.107. (a) �1+i (b) +2, +2i (c) kp, k ¼ 0, +1, +2, . . . (d) 0, k þ 1

2

� �
p, k ¼ 0, +1, +2, . . .

(e) +i, k þ 1
2


 �
pi, k ¼ 0, +1, +2, . . .

2.123. (a) 1
2
i, (b) 1, (c) 0, (d) 1

2
i

2.125. (9þ 3i)=10

2.128. Converges

2.141. (a) 0, (b) (2k þ 1)pi=2, k ¼ 0, +1, +2, . . .
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CHAP T E R 3

Complex Differentiation and
the Cauchy–Riemann Equations

3.1 Derivatives

If f(z) is single-valued in some region R of the z plane, the derivative of f(z) is defined as

f 0(z) ¼ lim
Dz!0

f zþ Dzð Þ � f zð Þ
Dz

(3:1)

provided that the limit exists independent of the manner in which Dz ! 0. In such a case, we say that f(z) is
differentiable at z. In the definition (3.1), we sometimes use h instead of Dz. Although differentiability
implies continuity, the reverse is not true (see Problem 3.4).

3.2 Analytic Functions

If the derivative f 0(z) exists at all points z of a regionR, then f(z) is said to be analytic inR and is referred to
as an analytic function inR or a function analytic inR. The terms regular and holomorphic are sometimes
used as synonyms for analytic.

A function f(z) is said to be analytic at a point z0 if there exists a neighborhood jz� z0j , d at all points
of which f 0(z) exists.

3.3 Cauchy–Riemann Equations

A necessary condition that w ¼ f (z) ¼ u(x, y)þ iv(x, y) be analytic in a region R is that, in R, u and v

satisfy the Cauchy–Riemann equations

@u

@x
¼ @v

@y
,

@u

@y
¼ � @v

@x
(3:2)

If the partial derivatives in (3.2) are continuous in R, then the Cauchy–Riemann equations are sufficient
conditions that f (z) be analytic in R. See Problem 3.5.

The functions u(x, y) and v(x, y) are sometimes called conjugate functions. Given u having continuous
first partials on a simply connected region R (see Section 4.6), we can find v (within an arbitrary additive
constant) so that uþ iv ¼ f (z) is analytic (see Problems 3.7 and 3.8).
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3.4 Harmonic Functions

If the second partial derivatives of u and v with respect to x and y exist and are continuous in a region R,
then we find from (3.2) that (see Problem 3.6)

@2u

@x2
þ @2u

@y2
¼ 0,

@2v

@x2
þ @2v

@y2
¼ 0 (3:3)

It follows that under these conditions, the real and imaginary parts of an analytic function satisfy Laplace’s
equation denoted by

@2C

@2x
þ @2C

@2y
¼ 0 or r2C ¼ 0 where r2 ;

@2

@x2
þ @2

@y2
(3:4)

The operator r2 is often called the Laplacian.
Functions such as u(x, y) and v(x, y) which satisfy Laplace’s equation in a region R are called harmonic

functions and are said to be harmonic in R.

3.5 Geometric Interpretation of the Derivative

Let z0 [Fig. 3-1] be a point P in the z plane and let w0 [Fig. 3-2] be its image P0 in the w plane under the
transformation w ¼ f (z). Since we suppose that f (z) is single-valued, the point z0 maps into only one
point w0.

z plane

P

z0 + Dz

z0

Q

x

y

Dz

w plane

w 0
 +

 Dw
=

f (
z 0

 +
 Dz)

Dw
=

f (
z 0

 +
 D

z)
 –

 f
(z

0)

w0
= f (z0)

Q'

P'

u

u

Fig. 3-1 Fig. 3-2

If we give z0 an increment Dz, we obtain the point Q of Fig. 3-1. This point has image Q0 in the w plane.
Thus, from Fig. 3-2, we see that P0Q0 represents the complex number Dw ¼ f (z0 þ Dz)� f (z0). It follows
that the derivative at z0 (if it exists) is given by

lim
Dz!0

f z0 þ Dzð Þ � f z0ð Þ
Dz

¼ lim
Q!P

P0Q0

PQ
(3:5)

that is, the limit of the ratio P0Q0 to PQ as point Q approaches point P. The above interpretation clearly holds
when z0 is replaced by any point z.
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3.6 Differentials

Let Dz ¼ dz be an increment given to z. Then

Dw ¼ f (zþ Dz)� f (z) (3:6)

is called the increment inw ¼ f (z). If f (z) is continuous and has a continuous first derivative in a region, then

Dw ¼ f 0(z)Dzþ eDz ¼ f 0(z) dzþ e dz (3:7)

where e ! 0 as Dz ! 0. The expression

dw ¼ f 0(z) dz (3:8)

is called the differential of w or f(z), or the principal part of Dw. Note that Dw=dw in general. We call dz
the differential of z.

Because of the definitions (3.1) and (3.8), we often write

dw

dz
¼ f 0(z) ¼ lim

Dx!0

f zþ Dzð Þ � f zð Þ
Dz

¼ lim
Dz!0

Dw

Dz
(3:9)

It is emphasized that dz and dw are not the limits of Dz and Dw as Dz ! 0, since these limits are zero
whereas dz and dw are not necessarily zero. Instead, given dz, we determine dw from (3.8), i.e., dw is a
dependent variable determined from the independent variable dz for a given z.

It is useful to think of d/dz as being an operator that, when operating on w ¼ f (z), leads to
dw=dz ¼ f 0(z).

3.7 Rules for Differentiation

Suppose f(z), g(z), and h(z) are analytic functions of z. Then the following differentiation rules (identical
with those of elementary calculus) are valid.

1.
d

dz
f f (z)þ g(z)g ¼ d

dz
f (z)þ d

dz
g(z) ¼ f 0(z)þ g0(z)

2.
d

dz
f f (z)� g(z)g ¼ d

dz
f (z)� d

dz
g(z) ¼ f 0(z)� g0(z)

3.
d

dz
fcf (z)g ¼ c

d

dz
f (z) ¼ cf 0(z) where c is any constant

4.
d

dz
f f (z)g(z)g ¼ f zð Þ d

dz
g zð Þ þ g zð Þ d

dz
f zð Þ ¼ f (z)g0(z)þ g(z)f 0(z)

5.
d

dz

f (z)

g(z)

� �
¼ g zð Þ(d=dz)f zð Þ � f zð Þ(d=dz)g zð Þ

g zð Þ½ �2
¼ g zð Þf 0 zð Þ � f zð Þg0 zð Þ

g zð Þ½ �2
if g(z)=0

6. If w ¼ f (z ) where z ¼ g(z) then

dw

dz
¼ dw

dz
� dz
dz

¼ f 0(z )
dz

dz
¼ f 0fg(z)gg0(z) (3:10)

Similarly, if w ¼ f (z ) where z ¼ g(h) and h ¼ h(z), then

dw

dz
¼ dw

dz
� dz
dh

� dh
dz

(3:11)

The results (3.10) and (3.11) are often called chain rules for differentiation of composite functions.

7. If w ¼ f (z) has a single-valued inverse f�1, then z ¼ f�1(w), and dw/dz and dz/dw are related by

dw

dz
¼ 1

dz=dw
(3:12)
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8. If z ¼ f (t) and w ¼ g(t) where t is a parameter, then

dw

dz
¼ dw=dt

dz=dt
¼ g0 tð Þ

f 0 tð Þ (3:13)

Similar rules can be formulated for differentials. For example,

df f (z)þ g(z)g ¼ df (z)þ dg(z) ¼ f 0(z) dzþ g0(z) dz ¼ f f 0(z)þ g0(z)g dz
df f (z)g(z)g ¼ f (z) dg(z)þ g(z) df (z) ¼ f f (z)g0(z)þ g(z) f 0(z)g dz

3.8 Derivatives of Elementary Functions

In the following, we assume that the functions are defined as in Chapter 2. In the cases where functions have
branches, i.e., are multi-valued, the branch of the function on the right is chosen so as to correspond to the
branch of the function on the left. Note that the results are identical with those of elementary calculus.

1.
d

dz
(c) ¼ 0

2.
d

dz
zn ¼ nzn�1

3.
d

dz
ez ¼ ez

4.
d

dz
az ¼ az ln a

5.
d

dz
sin z ¼ cos z

6.
d

dz
cos z ¼ �sin z

7.
d

dz
tan z ¼ sec2 z

8.
d

dz
cot z ¼ �csc2 z

9.
d

dz
sec z ¼ sec z tan z

10.
d

dz
csc z ¼ �csc z cot z

11.
d

dz
loge z ¼

d

dz
ln z ¼ 1

z

12.
d

dz
loga z ¼

loga e

z

13.
d

dz
sin�1 z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

14.
d

dz
cos�1 z ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

15.
d

dz
tan�1 z ¼ 1

1þ z2

16.
d

dz
cot�1 z ¼ �1

1þ z2

17.
d

dz
sec�1 z ¼ 1

z
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

18.
d

dz
csc�1 z ¼ �1

z
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

19.
d

dz
sinh z ¼ cosh z

20.
d

dz
cosh z ¼ sinh z

21.
d

dz
tanh z ¼ sech2z

22.
d

dz
coth z ¼ �csch2z

23.
d

dz
sech z ¼ �sech z tanh z

24.
d

dz
csch z ¼ �csch z coth z

25.
d

dz
sinh�1 z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

26.
d

dz
cosh�1 z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 1
p

27.
d

dz
tanh�1 z ¼ 1

1� z2

28.
d

dz
coth�1 z ¼ 1

1� z2

29.
d

dz
sech�1 z ¼ �1

z
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

30.
d

dz
csch�1 z ¼ �1

z
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
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3.9 Higher Order Derivatives

If w ¼ f (z) is analytic in a region, its derivative is given by f 0(z), w0, or dw/dz. If f 0(z) is also analytic in the

region, its derivative is denoted by f 00(z), w00, or d=dzð Þ dw=dzð Þ ¼ d2w=dz2. Similarly, the nth derivative of

f(z), if it exists, is denoted by f (n)(z), w(n), or dnw=dzn where n is called the order of the derivative. Thus
derivatives of first, second, third, . . . orders are given by f 0(z), f 00(z), f 000(z), . . . . Computations of these
higher order derivatives follow by repeated application of the above differentiation rules.

One of the most remarkable theorems valid for functions of a complex variable and not necessarily valid
for functions of a real variable is the following:

THEOREM 3.1. Suppose f(z) is analytic in a regionR. Then so also are f 0(z), f 00(z), . . . analytic inR, i.e.,
all higher derivatives exist in R.

This important theorem is proved in Chapter 5.

3.10 L’Hospital’s Rule

Let f(z) and g(z) be analytic in a region containing the point z0 and suppose that f (z0) ¼ g(z0) ¼ 0 but
g0(z0)=0. Then, L’Hospital’s rule states that

lim
z!z0

f zð Þ
g zð Þ ¼

f 0 z0ð Þ
g0 z0ð Þ (3:14)

In the case of f 0(z0) ¼ g0(z0) ¼ 0, the rule may be extended. See Problems 3.21–3.24.
We sometimes say that the left side of (3.14) has the “indeterminate form” 0/0, although such terminol-

ogy is somewhat misleading since there is usually nothing indeterminate involved. Limits represented by
so-called indeterminate forms 1=1, 0 �1, 18, 08, 11, and 1�1 can often be evaluated by appropriate
modifications of L’Hospital’s rule.

3.11 Singular Points

A point at which f(z) fails to be analytic is called a singular point or singularity of f(z). Various types of
singularities exist.

1. Isolated Singularities. The point z ¼ z0 is called an isolated singularity or isolated singular point
of f (z) if we can find d . 0 such that the circle jz� z0j ¼ d encloses no singular point other than
z0 (i.e., there exists a deleted d neighborhood of z0 containing no singularity). If no such d can be
found, we call z0 a non-isolated singularity.
If z0 is not a singular point and we can find d . 0 such that jz� z0j ¼ d encloses no singular

point, then we call z0 an ordinary point of f(z).
2. Poles. If z0 is an isolated singularity and we can find a positive integer n such that

limz!z0 (z� z0)
nf (z) ¼ A=0, then z ¼ z0 is called a pole of order n. If n ¼ 1, z0 is called a

simple pole.

EXAMPLE 3.1
(a) f (z) ¼ 1= z� 2ð Þ3 has a pole of order 3 at z ¼ 2.

(b) f (z) ¼ (3z� 2)= z� 1ð Þ2 zþ 1ð Þ z� 4ð Þ has a pole of order 2 at z ¼ 1, and simple poles at z ¼ �1

and z ¼ 4.

If g(z) ¼ (z� z0)
nf (z), where f (z0)=0 and n is a positive integer, then z ¼ z0 is called a zero of

order n of g(z). If n ¼ 1, z0 is called a simple zero. In such a case, z0 is a pole of order n of the
function 1/g(z).

3. Branch Points of multiple-valued functions, already considered in Chapter 2, are non-isolated
singular points since a multiple-valued function is not continuous and, therefore, not analytic
in a deleted neighborhood of a branch point.
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EXAMPLE 3.2
(a) f (z) ¼ (z� 3)1=2 has a branch point at z ¼ 3.

(b) f (z) ¼ ln(z2 þ z� 2) has branch points where z2 þ z� 2 ¼ 0, i.e., at z ¼ 1 and z ¼ �2.

4. Removable Singularities. An isolated singular point z0 is called a removable singularity of f(z) if
limz!z0 f (z) exists. By defining f (z0) ¼ limz!z0 f (z), it can then be shown that f (z) is not only con-

tinuous at z0 but is also analytic at z0.

EXAMPLE 3.3 The singular point z ¼ 0 is a removable singularity of f (z) ¼ sin z=z since limz!0 (sin z=z) ¼ 1.

5. Essential Singularities. An isolated singularity that is not a pole or removable singularity is
called an essential singularity.

EXAMPLE 3.4 f (z) ¼ e1=(z�2) has an essential singularity at z ¼ 2.

If a function has an isolated singularity, then the singularity is either removable, a pole, or an
essential singularity. For this reason, a pole is sometimes called a non-essential singularity.
Equivalently, z ¼ z0 is an essential singularity if we cannot find any positive integer n such
that limz!z0 (z� z0)

nf (z) ¼ A=0.

6. Singularities at Infinity. The type of singularity of f(z) at z ¼ 1 [the point at infinity; see pages 7
and 47] is the same as that of f (1/w) at w ¼ 0.

EXAMPLE 3.5 The function f (z) ¼ z3 has a pole of order 3 at z ¼ 1, since f (1=w) ¼ 1=w3 has a pole of

order 3 at w ¼ 0.

For methods of classifying singularities using infinite series, see Chapter 6.

3.12 Orthogonal Families

Let w ¼ f (z) ¼ u(x, y)þ iv(x, y) be analytic and f 0(z)=0. Then the one-parameter families of curves

u(x, y) ¼ a, v(x, y) ¼ b (3:15)

where a and b are constants, are orthogonal, i.e., each member of one family [shown heavy in Fig. 3-3] is
perpendicular to each member of the other family [shown dashed in Fig. 3-3] at the point of intersection.
The corresponding image curves in the w plane consisting of lines parallel to the u and v axes also form
orthogonal families [see Fig. 3-4].

z plane
y

x

w plane
u

u

Fig. 3-3 Fig. 3-4

In view of this, one might conjecture that if the mapping function f (z) is analytic and f 0(z)=0, then the
angle between any two intersecting curves C1 and C2 in the z plane would equal (both in magnitude and
sense) the angle between corresponding intersecting image curves C0

1 and C
0
2 in the w plane. This conjecture
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is in fact correct and leads to the subject of conformal mapping, which is of such great importance in both
theory and application that two chapters (8 and 9) will be devoted to it.

3.13 Curves

Suppose f(t) and c(t) are real functions of the real variable t assumed continuous in t1 � t � t2. Then the
parametric equations

z ¼ xþ iy ¼ f(t)þ ic(t) ¼ z(t), t1 � t � t2 (3:16)

define a continuous curve or arc in the z plane joining points a ¼ z(t1) and b ¼ z(t2) [see Fig. 3-5].
If t1= t2 while z(t1) ¼ z(t2), i.e., a ¼ b, the endpoints coincide and the curve is said to be closed. A closed

curve that does not intersect itself anywhere is called a simple closed curve. For example, the curve of
Fig. 3-6 is a simple closed curve while that of Fig. 3-7 is not.

If f(t) and c(t) [and thus z(t)] have continuous derivatives in t1 � t � t2, the curve is often called a
smooth curve or arc. A curve, which is composed of a finite number of smooth arcs, is called a piecewise
or sectionally smooth curve or sometimes a contour. For example, the boundary of a square is a piecewise
smooth curve or contour.

y

x

a

b

y

x

y

x

Fig. 3-5 Fig. 3-6 Fig. 3-7

Unless otherwise specified, whenever we refer to a curve or simple closed curve, we shall assume it to be
piecewise smooth.

3.14 Applications to Geometry and Mechanics

We can consider z(t) as a position vector whose
terminal point describes a curve C in a definite
sense or direction as t varies from t1 to t2. If z(t)
and z(t þ Dt) represent position vectors of points
P and Q, respectively, then

Dz

Dt
¼ z(t þ Dt)� z(t)

Dt

is a vector in the direction of Dz [Fig. 3-8]. If
limDt!0 Dz=Dt ¼ dz=dt exists, the limit is a vector
in the direction of the tangent to C at point P and
is given by

dz

dt
¼ dx

dt
þ i

dy

dt

y

x

z(t)

z(t + Δt)

Δz = z(t + Δt) – z(t)

C

Q

P

Fig. 3-8
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If t is time, dz/dt represents the velocity with which the terminal point describes the curve. Similarly,

d2z=dt2 represents its acceleration along the curve.

3.15 Complex Differential Operators

Let us define the operators r (del) and r (del bar) by

r ;
@

@x
þ i

@

@y
¼ 2

@

@�z
, r ;

@

@x
� i

@

@y
¼ 2

@

@z
(3:17)

where the equivalence in terms of the conjugate coordinates z and �z (page 7) follows from Problem 3.32.

3.16 Gradient, Divergence, Curl, and Laplacian

The operator r enables us to define the following operations. In all cases, we consider F(x, y) as a real
continuously differentiable function of x and y (scalar), while A(x, y) ¼ P(x, y)þ iQ(x, y) is a complex
continuously differentiable function of x and y (vector).

In terms of conjugate coordinates,

F(x, y) ¼ F
zþ �z

2
,
z� �z

2i

� �
¼ G(z, �z) and A(x, y) ¼ B(z, �z)

.

1. Gradient. We define the gradient of a real function F (scalar) by

grad F ¼ rF ¼ @F

@x
þ i

@F

@y
¼ 2

@G

@�z
(3:18)

Geometrically, if rF=0, then rF represents a vector normal to the curve F(x, y) ¼ c where c is
a constant (see Problem 3.33).

Similarly, the gradient of a complex function A ¼ Pþ iQ (vector) is defined by

grad A ¼ rA ¼ @

@x
þ i

@

@y

� �
(Pþ iQ)

¼ @P

@x
� @Q

@y
þ i

@P

@y
þ @Q

@x

� �
¼ 2

@B

@�z
(3:19)

In particular, if B is an analytic function of z, then @B=@�z ¼ 0 and so the gradient is zero, i.e.,
@P=@x ¼ @Q=@y, @P=@y ¼ �(@Q=@x), which shows that the Cauchy–Riemann equations are sat-
isfied in this case.

2. Divergence. By using the definition of dot product of two complex numbers (page 7) extended to
the case of operators, we define the divergence of a complex function (vector) by

div A ¼ r � A ¼ RefrAg ¼ Re
@

@x
� i

@

@y

� �
(Pþ iQ)

� �

¼ @P

@x
þ @Q

@y
¼ 2 Re

@B

@z

� �
(3:20)

Similarly, we can define the divergence of a real function. It should be noted that the divergence
of a complex or real function (vector or scalar) is always a real function (scalar).
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3. Curl. By using the definition of cross product of two complex numbers (page 7), we define the
curl of a complex function as the vector

r � A ¼ 0, 0,
@Q

@x
� @P

@y

� �

orthogonal to the x-y plane having magnitude

jcurl Aj ¼ jr � Aj ¼ jImfrAgj ¼ Im
@

@x
� i

@

@y

� �
(Pþ iQ)

� �����
����

¼ @Q

@x
� @P

@y

����
���� ¼ 2 Im

@B

@z

� �����
���� (3:21)

4. Laplacian. The Laplacian operator is defined as the dot or scalar product of r with itself, i.e.,

r � r ; r2 ; Refrrg ¼ Re
@

@x
� i

@

@y

� �
@

@x
þ i

@

@y

� �� �

¼ @2

@x2
þ @2

@y2
¼ 4

@2

@z@�z
(3:22)

Note that if A is analytic, r2A ¼ 0 so that r2P ¼ 0 and r2Q ¼ 0, i.e., P and Q are harmonic.

Some Identities Involving Gradient, Divergence, and Curl

Suppose A1, A2, and A are differentiable functions. Then the following identities hold

1. grad(A1 þ A2) ¼ grad A1 þ grad A2

2. div(A1 þ A2) ¼ div A1 þ div A2

3. curl(A1 þ A2) ¼ curl A1 þ curl A2

4. grad(A1A2) ¼ (A1)(grad A2)þ (grad A1)(A2)
5. jcurl grad Aj ¼ 0 if A is real or, more generally, if Im{A} is harmonic.
6. div grad A ¼ 0 if A is imaginary or, more generally, if Re{A} is harmonic.

SOLVED PROBLEMS

Derivatives

3.1. Using the definition, find the derivative of w ¼ f (z) ¼ z3 � 2z at the point where
(a) z ¼ z0, (b) z ¼ �1.

Solution

(a) By definition, the derivative at z ¼ z0 is

f 0(z0) ¼ lim
Dz!0

f (z0 þ Dz)� f (z0)

Dz
¼ lim

Dz!0

(z0 þ Dz)3 � 2(z0 þ Dz)� fz30 � 2z0g
Dz

¼ lim
Dz!0

z30 þ 3z20Dzþ 3z0(Dz)
2 þ (Dz)3 � 2z0 � 2Dz� z30 þ 2z0

Dz

¼ lim
Dz!0

3z20 þ 3z0Dzþ (Dz)2 � 2 ¼ 3z20 � 2

In general, f 0(z) ¼ 3z2 � 2 for all z.

(b) From (a), or directly, we find that if z0 ¼ �1, then f 0(�1) ¼ 3(�1)2 � 2 ¼ 1.
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3.2. Show that (d=dz)�z does not exist anywhere, i.e., f (z) ¼ �z is non-analytic anywhere.

Solution

By definition,

d

dz
f (z) ¼ lim

Dz!0

f (zþ Dz)� f (z)

Dz

if this limit exists independent of the manner in which Dz ¼ Dxþ iDy approaches zero.
Then

d

dz
�z ¼ lim

Dz!0

zþ Dz� �z

Dz
¼ lim

Dx!0
Dy!0

xþ iyþ Dxþ iDy� xþ iy

Dxþ iDy

¼ lim
Dx!0
Dy!0

x� iyþ Dx� iDy� (x� iy)

Dxþ iDy
¼ lim

Dx!0
Dy!0

Dx� iDy

Dxþ iDy

If Dy ¼ 0, the required limit is

lim
Dx!0

Dx

Dx
¼ 1

If Dx ¼ 0, the required limit is

lim
Dy!0

�iDy

iDy
¼ �1

Then, since the limit depends on the manner in which Dz ! 0, the derivative does not exist, i.e., f (z) ¼ �z is
non-analytic anywhere.

3.3. Given w ¼ f (z) ¼ (1þ z)=(1� z), find (a) dw=dz and (b) determine where f(z) is non-analytic.

Solution

(a) Method 1. Using the definition

dw

dz
¼ lim

Dz!0

f (zþ Dz)� f (z)

Dz
¼ lim

Dz!0

1þ (zþ Dz)

1� (zþ Dz)
� 1þ z

1� z

Dz

¼ lim
Dz!0

2

(1� z� Dz)(1� z)
¼ 2

(1� z)2

independent of the manner in which Dz ! 0, provided z=1.

Method 2. Using differentiation rules. By the quotient rule [see Problem 3.10(c)], we have if z=1,

d

dz

1þ z

1� z

� �
¼

(1� z)
d

dz
(1þ z)� (1þ z)

d

dz
(1� z)

(1� z)2
¼ (1� z)(1)� (1þ z)(�1)

(1� z)2
¼ 2

(1� z)2

(b) The function f(z) is analytic for all finite values of z except z ¼ 1 where the derivative does not exist and

the function is non-analytic. The point z ¼ 1 is a singular point of f(z).

3.4. (a) If f(z) is analytic at z0, prove that it must be continuous at z0.

(b) Give an example to show that the converse of (a) is not necessarily true.
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Solution

(a) Since

f (z0 þ h)� f (z0) ¼
f (z0 þ h)� f (z0)

h
� h

where h ¼ Dz=0, we have

lim
h!0

f (z0 þ h)� f (z0) ¼ lim
h!0

f (z0 þ h)� f (z0)

h
� lim
h!0

h ¼ f 0(z0) � 0 ¼ 0

because f 0(z0) exists by hypothesis. Thus

lim
h!0

f (z0 þ h)� f (z0) ¼ 0 or lim
h!0

f (z0 þ h) ¼ f (z0)

showing that f (z) is continuous at z0.

(b) The function f (z) ¼ �z is continuous at z0. However, by Problem 3.2, f (z) is not analytic anywhere. This

shows that a function, which is continuous, need not have a derivative, i.e., need not be analytic.

Cauchy–Riemann Equations

3.5. Prove that a (a) necessary and (b) sufficient condition thatw ¼ f (z) ¼ u(x, y)þ iv(x, y) be analytic in
a regionR is that the Cauchy–Riemann equations @u=@x ¼ @v=@y, @u=@y ¼ �(@v=@x) are satisfied in
R where it is supposed that these partial derivatives are continuous in R.

Solution

(a) Necessity. In order for f(z) to be analytic, the limit

lim
Dz!0

f (zþ Dz)� f (z)

Dz
¼ f 0(z)

¼ lim
Dx!0
Dy!0

fu(xþ Dx, yþ Dy)þ iv(xþ Dx, yþ Dy)g � fu(x, y)þ iv(x, y)g
Dxþ iDy

(1)

must exist independent of the manner in which Dz (or Dx and Dy) approaches zero. We consider two poss-

ible approaches.

Case 1. Dy ¼ 0, Dx ! 0. In this case, (1) becomes

lim
Dx!0

u(xþ Dx, y)� u(x, y)

Dx
þ i

v(xþ Dx, y)� v(x, y)

Dx

� 	� �
¼ @u

@x
þ i

@v

@x

provided the partial derivatives exist.

Case 2. Dx ¼ 0, Dy ! 0. In this case, (1) becomes

lim
Dy!0

u(x, yþ Dy)� u(x, y)

iDy
þ v(x, yþ Dy)� v(x, y)

Dy

� �
¼ 1

i

@u

@y
þ @v

@y
¼ �i

@u

@y
þ @v

@y

Now f(z) cannot possibly be analytic unless these two limits are identical. Thus, a necessary condition

that f(z) be analytic is

@u

@x
þ i

@v

@x
¼ �i

@u

@y
þ @v

@y
or

@u

@x
¼ @v

@y
,
@v

@x
¼ � @u

@y

(b) Sufficiency. Since @u=@x and @u=@y are supposed to be continuous, we have

Du ¼ u(xþ Dx, yþ Dy)� u(x, y)

¼ fu(xþ Dx, yþ Dy)� u(x, yþ Dy)g þ fu(x, yþ Dy)� u(x, y)g

¼ @u

@x
þ e1

� �
Dxþ @u

@y
þ h1

� �
Dy ¼ @u

@x
Dxþ @u

@y
Dyþ e1Dxþ h1Dy
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where e1 ! 0 and h1 ! 0 as Dx ! 0 and Dy ! 0.

Similarly, since @v=@x and @v=@y are supposed to be continuous, we have

Dv ¼ @v

@x
þ e2

� �
Dxþ @v

@y
þ h2

� �
Dy ¼ @v

@x
Dxþ @v

@y
Dyþ e2Dxþ h2Dy

where e2 ! 0 and h2 ! 0 as Dx ! 0 and Dy ! 0. Then

Dw ¼ Duþ iDv ¼ @u

@x
þ i

@v

@x

� �
Dxþ @u

@y
þ i

@v

@y

� �
Dyþ eDxþ hDy (2)

where e ¼ e1 þ ie2 ! 0 and h ¼ h1 þ ih2 ! 0 as Dx ! 0 and Dy ! 0.

By the Cauchy–Riemann equations, (2) can be written

Dw ¼ @u

@x
þ i

@v

@x

� �
Dxþ � @v

@x
þ i

@u

@x

� �
Dyþ eDxþ hDy

¼ @u

@x
þ i

@v

@x

� �
(Dxþ iDy)þ eDxþ hDy

Then, on dividing by Dz ¼ Dxþ iDy and taking the limit as Dz ! 0, we see that

dw

dz
¼ f 0(z) ¼ lim

Dz!0

Dw

Dz
¼ @u

@x
þ i

@v

@x

so that the derivative exists and is unique, i.e., f(z) is analytic in R.

3.6. Given f (z) ¼ uþ iv is analytic in a region R. Prove that u and v are harmonic in R if they have
continuous second partial derivatives in R.

Solution

If f(z) is analytic in R, then the Cauchy–Riemann equations

@u

@x
¼ @v

@y
(1)

and

@v

@x
¼ � @u

@y
(2)

are satisfied inR. Assuming u and v have continuous second partial derivatives, we can differentiate both sides

of (1) with respect to x and (2) with respect to y to obtain

@2u

@x2
¼ @2v

@x@y
(3)

and

@2v

@y@x
¼ � @2u

@y2
(4)

from which

@2u

@x2
¼ � @2u

@y2
or

@2u

@x2
þ @2u

@y2
¼ 0

i.e., u is harmonic.
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Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find

@2v

@x2
þ @2v

@y2
¼ 0

and v is harmonic.

It will be shown later (Chapter 5) that if f (z) is analytic in R, all its derivatives exist and are continuous in

R. Hence, the above assumptions will not be necessary.

3.7. (a) Prove that u ¼ e�x(x sin y� y cos y) is harmonic.

(b) Find v such that f (z) ¼ uþ iv is analytic.

Solution

(a) @u

@x
¼ (e�x)(sin y)þ (�e�x)(x sin y� y cos y) ¼ e�x sin y� xe�x sin yþ ye�x cos y

@2u

@x2
¼ @

@x
(e�x sin y� xe�x sin yþ ye�x cos y) ¼ �2e�x sin yþ xe�x sin y� ye�x cos y (1)

@u

@y
¼ e�x(x cos yþ y sin y� cos y) ¼ xe�x cos yþ ye�x sin y� e�x cos y

@2u

@y2
¼ @

@y
(xe�x cos yþ ye�x sin y� e�x cos y) ¼ �xe�x sin yþ 2e�x sin yþ ye�x cos y (2)

Adding (1) and (2) yields (@2u=@x2)þ (@2u=@y2) ¼ 0 and u is harmonic.

(b) From the Cauchy–Riemann equations,

@v

@y
¼ @u

@x
¼ e�x sin y� xe�x sin yþ ye�x cos y (3)

@v

@x
¼ � @u

@y
¼ e�x cos y� xe�x cos y� ye�z sin y (4)

Integrate (3) with respect to y, keeping x constant. Then

v ¼ �e�x cos yþ xe�x cos yþ e�x(y sin yþ cos y)þ F(x)

¼ ye�x sin yþ xe�x cos yþ F(x) (5)

where F(x) is an arbitrary real function of x.

Substitute (5) into (4) and obtain

�ye�x sin y� xe�x cos yþ e�x cos yþ F0(x) ¼ �ye�x sin y� xe�x cos y� ye�x sin y

or F0(x) ¼ 0 and F(x) ¼ c, a constant. Then, from (5),

v ¼ e�x(y sin yþ x cos y)þ c

For another method, see Problem 3.40.

3.8. Find f(z) in Problem 3.7.

Solution

Method 1

We have f (z) ¼ f (xþ iy) ¼ u(x, y)þ iv(x, y):
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Putting y ¼ 0 f (x) ¼ u(x, 0)þ iv(x, 0):

Replacing x by z, f (z) ¼ u(z, 0)þ iv(z, 0):

Then, from Problem 3.7, u(z, 0) ¼ 0, v(z, 0) ¼ ze�z and so f (z) ¼ u(z, 0)þ iv(z, 0) ¼ ize�z, apart from an

arbitrary additive constant.

Method 2

Apart from an arbitrary additive constant, we have from the results of Problem 3.7,

f (z) ¼ uþ iv ¼ e�x(x sin y� y cos y)þ ie�x(y sin yþ x cos y)

¼ e�x x
eiy � e�iy

2i

� �
� y

eiy þ e�iy

2

� �� �
þ ie�x y

eiy � e�iy

2i

� �
þ x

eiy þ e�iy

2

� �� �

¼ i(xþ iy)e�(xþiy) ¼ ize�z

Method 3

We have x ¼ (zþ �z)=2, y ¼ (z� �z)=2i. Then, substituting into u(x, y)þ iv(x, y), we find after much tedious

labor that �z disappears and we are left with the result ize�z.

In general, method 1 is preferable over methods 2 and 3 when both u and v are known. If only u (or v) is

known, another procedure is given in Problem 3.101.

Differentials

3.9. Given w ¼ f (z) ¼ z3 � 2z2. Find: (a) Dw, (b) dw, (c) Dw� dw.

Solution

(a) Dw ¼ f (zþ Dz)� f (z) ¼ (zþ Dz)3 � 2(zþ Dz)2
� �

� z3 � 2z2
� �

¼ z3 þ 3z2Dzþ 3z(Dz)2 þ (Dz)3 � 2z2 � 4zDz� 2(Dz)2 � z3 þ 2z2

¼ (3z2 � 4z)Dzþ (3z� 2)(Dz)2 þ (Dz)3

(b) dw ¼ principal part of Dw ¼ (3z2 � 4z)Dz ¼ (3z2 � 4z) dz, since, by definition, Dz ¼ dz.

Note that f 0(z) ¼ 3z2 � 4z and dw ¼ (3z2 � 4z) dz, i.e., dw=dz ¼ 3z2 � 4z.

(c) From (a) and (b), Dw� dw ¼ (3z� 2)(Dz)2 þ (Dz)3 ¼ eDz where e ¼ (3z� 2)Dzþ (Dz)2.
Note that e ! 0 as Dz ! 0, i.e., (Dw� dw)=Dz ! 0 as Dz ! 0. It follows that Dw� dw is an infinitesi-

mal of higher order than Dz.

Differentiation Rules. Derivatives of Elementary Functions

3.10. Prove the following assuming that f (z) and g(z) are analytic in a region R.

(a)
d

dz
f f (z)þ g(z)g ¼ d

dz
f (z)þ d

dz
g(z)

(b)
d

dz
f f (z)g(z)g ¼ f (z)

d

dz
g(z)þ g(z)

d

dz
f (z)

(c)
d

dz

f (z)

g(z)

� �
¼

g(z)
d

dz
f (z)� f (z)

d

dz
g(z)

[g(z)]2
if g(z)=0
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Solution

(a)
d

dz
f f (z)þ g(z)g ¼ lim

Dz!0

f (zþ Dz)þ g(zþ Dz)� f f (z)þ g(z)g
Dz

¼ lim
Dz!0

f (zþ Dz)� f (z)

Dz
þ lim

Dz!0

g(zþ Dz)� g(z)

Dz

¼ d

dz
f (z)þ d

dz
g(z)

(b)
d

dz
f f (z)g(z)g ¼ lim

Dz!0

f (zþ Dz)g(zþ Dz)� f (z)g(z)

Dz

¼ lim
Dz!0

f (zþ Dz)fg(zþ Dz)� g(z)g þ g(z)f f (zþ Dz)� f (z)g
Dz

¼ lim
Dz!0

f (zþ Dz)
g(zþ Dz)� g(z)

Dz

� �
þ lim

Dz!0
g(z)

f (zþ Dz)� f (z)

Dz

� �

¼ f (z)
d

dz
g(z)þ g(z)

d

dz
f (z)

Note that we have used the fact that limDz!0 f (zþ Dz) ¼ f (z) which follows since f(z) is analytic and

thus continuous (see Problem 3.4).

Another Method

Let U ¼ f (z), V ¼ g(z). Then DU ¼ f (zþ Dz)� f (z) and DV ¼ g(zþ Dz)� g(z), i.e.,

f (zþ Dz) ¼ U þ DU, g(zþ Dz) ¼ V þ DV . Thus

d

dz
UV ¼ lim

Dz!0

(U þ DU)(V þ DV)� UV

Dz
¼ lim

Dz!0

UDV þ VDU þ DUDV

Dz

¼ lim
Dz!0

U
DV

Dz
þ V

DU

Dz
þ DU

Dz
DV

� �
¼ U

dV

dz
þ V

dU

dz

where it is noted that DV ! 0 as Dz ! 0, since V is supposed analytic and thus continuous.

A similar procedure can be used to prove (a).

(c) We use the second method in (b). Then

d

dz

U

V

� �
¼ lim

Dz!0

1

Dz

U þ DU

V þ DV
� U

V

� �
¼ lim

Dz!0

VDU � UDV

Dz(V þ DV)V

¼ lim
Dz!0

1

(V þ DV)V
V
DU

Dz
� U

DV

Dz

� �
¼ V(dU=dz)� U(dV=dz)

V2

The first method of (b) can also be used.

3.11. Prove that (a) (d=dz)ez ¼ ez, (b) (d=dz)eaz ¼ aeaz where a is any constant.

Solution

(a) By definition, w ¼ ez ¼ exþiy ¼ ex(cos yþ i sin y) ¼ uþ iv or u ¼ ex cos y, v ¼ ex sin y.

Since @u=@x ¼ ex cos y ¼ @v=@y and @v=@x ¼ ex sin y ¼ �(@u=@y), the Cauchy–Riemann equations are

satisfied. Then, by Problem 3.5, the required derivative exists and is equal to

@u

@x
þ i

@v

@x
¼ �i

@u

@y
þ @v

@y
¼ ex cos yþ iex sin y ¼ ez
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(b) Let w ¼ ez where z ¼ az. Then, by part (a) and Problem 3.39,

d

dz
eaz ¼ d

dz
ez ¼ d

dz
ez � dz

dz
¼ ez � a ¼ aeaz

We can also proceed as in part (a).

3.12. Prove that: (a)
d

dz
sin z ¼ cos z, (b)

d

dz
cos z ¼ � sin z, (c)

d

dz
tan z ¼ sec2 z.

Solution

(a) We have w ¼ sin z ¼ sin(xþ iy) ¼ sin x cosh yþ i cos x sinh y. Then

u ¼ sin x cosh y, v ¼ cos x sinh y

Now @u=@x ¼ cos x cosh y ¼ @v=@y and @v=@x ¼ �sin x sinh y ¼ �(@u=@y) so that the Cauchy–Riemann

equations are satisfied. Hence, by Problem 3.5, the required derivative is equal to

@u

@x
þ i

@v

@x
¼ �i

@u

@y
þ @v

@y
¼ cos x cosh y� i sin x sinh y ¼ cos(xþ iy) ¼ cos z

Another Method

Since sin z ¼ eiz � e�iz

2i
, we have, using Problem 3.11(b),

d

dz
sin z ¼ d

dz

eiz � e�iz

2i

� �
¼ 1

2i

d

dz
eiz � 1

2i

d

dz
e�iz ¼ 1

2
eiz þ 1

2
e�iz ¼ cos z

(b)
d

dz
cos z ¼ d

dz

eiz þ e�iz

2

� �
¼ 1

2

d

dz
eiz þ 1

2

d

dz
e�iz

¼ i

2
eiz � i

2
e�iz ¼ � eiz � e�iz

2i
¼ �sin z

The first method of part (a) can also be used.

(c) By the quotient rule of Problem 3.10(c), we have

d

dz
tan z ¼ d

dz

sin z

cos z

� �
¼

cos z
d

dz
sin z� sin z

d

dz
cos z

cos2 z

¼ (cos z)(cos z)� (sin z)(�sin z)

cos2 z
¼ cos2 zþ sin2 z

cos2 z
¼ 1

cos2 z
¼ sec2 z

3.13. Prove that
d

dz
z1=2 ¼ 1

2z1=2
, realizing that z1=2 is a multiple-valued function.

Solution

A function must be single-valued in order to have a derivative. Thus, since z1=2 is multiple-valued (in this case

two-valued), we must restrict ourselves to one branch of this function at a time.

Case 1
Let us first consider that branch of w ¼ z1=2 for which w ¼ 1 where z ¼ 1. In this case, w2 ¼ z so that

dz

dw
¼ 2w and so

dw

dz
¼ 1

2w
or

d

dz
z1=2 ¼ 1

2z1=2
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Case 2
Next, we consider that branch of w ¼ z1=2 for which w ¼ �1 where z ¼ 1. In this case too, we have w2 ¼ z

so that

dz

dw
¼ 2w and

dw

dz
¼ 1

2w
or

d

dz
z1=2 ¼ 1

2z1=2

In both cases,we have (d=dz)z1=2 ¼ 1=(2z1=2). Note that the derivative does not exist at the branchpoint z ¼ 0.

In general, a function does not have a derivative, i.e., is not analytic, at a branch point. Thus branch points are

singular points.

3.14. Prove that
d

dz
ln z ¼ 1

z
.

Solution

Let w ¼ ln z. Then z ¼ ew and dz=dw ¼ ew ¼ z. Hence

d

dz
ln z ¼ dw

dz
¼ 1

dz=dw
¼ 1

z

Note that the result is valid regardless of the particular branch of ln z. Also observe that the derivative does

not exist at the branch point z ¼ 0, illustrating further the remark at the end of Problem 3.13.

3.15. Prove that
d

dz
ln f (z) ¼ f 0(z)

f (z)
.

Solution

Let w ¼ ln z where z ¼ f (z). Then

dw

dz
¼ dw

dz
� dz
dz

¼ 1

z
� dz
dz

¼ f 0(z)

f (z)

3.16. Prove that: (a)
d

dz
sin�1 z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p , (b)

d

dz
tanh�1 z ¼ 1

1� z2
.

Solution

(a) If we consider the principal branch of sin�1 z, we have by Problem 2.22 and by Problem 3.15

d

dz
sin�1 z ¼ d

dz

1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 
� �
¼ 1

i

d

dz
izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 
�
izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 


¼ 1

i
iþ 1

2
(1� z2)�1=2(�2z)

� ��
izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 


¼ 1þ izffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� ��

izþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

The result is also true if we consider other branches.

(b) We have, on considering the principal branch,

tanh�1 z ¼ 1

2
ln

1þ z

1� z

� �
¼ 1

2
ln(1þ z)� 1

2
ln(1� z)
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Then

d

dz
tanh�1 z ¼ 1

2

d

dz
ln(1þ z)� 1

2

d

dz
ln(1� z) ¼ 1

2

1

1þ z

� �
þ 1

2

1

1� z

� �
¼ 1

1� z2

Note that in both parts (a) and (b), the derivatives do not exist at the branch points z ¼ +1.

3.17. Using rules of differentiation, find the derivatives of each of the following:

(a) cos2(2zþ 3i), (b) z tan�1(ln z), (c) ftanh�1(izþ 2)g�1, (d) (z� 3i)4zþ2.

Solution

(a) Let h ¼ 2zþ 3i, z ¼ cosh, w ¼ z2 from which w ¼ cos2(2zþ 3i). Then, using the chain rule, we have

dw

dz
¼ dw

dz
� dz
dh

� dh
dz

¼ (2z )(�sinh)(2) ¼ (2 cosh)(�sinh)(2) ¼ �4 cos(2zþ 3i) sin(2zþ 3i)

Another Method

d

dz
fcos(2zþ 3i)g2 ¼ 2fcos(2zþ 3i)g d

dz
cos(2zþ 3i)

� �

¼ 2fcos(2zþ 3i)gf�sin(2zþ 3i)g d

dz
(2zþ 3i)

� �

¼ �4 cos(2zþ 3i) sin(2zþ 3i)

(b)
d

dz
f(z)[tan�1(ln z)]g ¼ z

d

dz
[tan�1(ln z)]þ [tan�1(ln z)]

d

dz
(z)

¼ z
1

1þ (ln z)2

� �
d

dz
(ln z)þ tan�1(ln z) ¼ 1

1þ (ln z)2
þ tan�1(ln z)

(c)
d

dz
ftanh�1(izþ 2)g�1 ¼ �1ftanh�1(izþ 2)g�2 d

dz
ftanh�1(izþ 2)g

¼ �ftanh�1(izþ 2)g�2 1

1� (izþ 2)2

� �
d

dz
(izþ 2)

¼ �iftanh�1(izþ 2)g�2

1� (izþ 2)2

(d)

d

dz
(z� 3i)4zþ2
� �

¼ d

dz
e(4zþ2) ln(z�3i)
� �

¼ e(4zþ2) ln(z�3i) d

dz
f(4zþ 2) ln(z� 3i)g

¼ e(4zþ2) ln(z�3i) (4zþ 2)
d

dz
[ln(z� 3i)]þ ln(z� 3i)

d

dz
(4zþ 2)

� �

¼ e(4zþ2) ln(z�3i) 4zþ 2

z� 3i
þ 4 ln(z� 3i)

� �
¼ (z� 3i)4zþ1(4zþ 2)þ 4(z� 3i)4zþ2 ln(z� 3i)

3.18. Suppose w3 � 3z2wþ 4 ln z ¼ 0. Find dw=dz.

Solution

Differentiating with respect to z, considering w as an implicit function of z, we have

d

dz
(w3)� 3

d

dz
(z2w)þ 4

d

dz
(ln z) ¼ 0 or 3w2 dw

dz
� 3z2

dw

dz
� 6zwþ 4

z
¼ 0

Then, solving for dw/dz, we obtain
dw

dz
¼ 6zw� 4=z

3w2 � 3z2
.
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3.19. Given w ¼ sin�1(t � 3) and z ¼ cos(ln t). Find dw/dz.

Solution

dw

dz
¼ dw=dt

dz=dt
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (t � 3)2

p
�sin(ln t)(1=t)

¼ � t

sin(ln t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (t � 3)2

p

3.20. In Problem 3.18, find d2w=dz2.

Solution

d2w

dz2
¼ d

dz

dw

dz

� �
¼ d

dz

6zw� 4=z

3w2 � 3z2

� �

¼ (3w2 � 3z2)(6z dw=dzþ 6wþ 4=z2)� (6zw� 4=z)(6w dw=dz� 6z)

(3w2 � 3z2)2

The required result follows on substituting the value of dw/dz from Problem 3.18 and simplifying.

L’Hospital’s Rule

3.21. Suppose f(z) is analytic in a region R including the point z0. Prove that

f (z) ¼ f (z0)þ f 0(z0)(z� z0)þ h(z� z0)

where h ! 0 as z ! z0.

Solution

Let
f (z)� f (z0)

z� z0
� f 0(z0) ¼ h so that

f (z) ¼ f (z0)þ f 0(z0)(z� z0) ¼ h(z� z0)

Then, since f (z) is analytic at z0, we have as required

lim
z!z0

h ¼ lim
z!z0

f (z)� f (z0)

z� z0
� f 0(z0)

� �
¼ f 0(z0)� f 0(z0) ¼ 0

3.22. Suppose f(z) and g(z) are analytic at z0, and f (z0) ¼ g(z0) ¼ 0 but g0(z0) = 0. Prove that

lim
z!z0

f (z)

g(z)
¼ f 0(z0)

g0(z0)

Solution

By Problem 3.21 we have, using the fact that f (z0) ¼ g(z0) ¼ 0,

f (z) ¼ f (z0)þ f 0(z0)(z� z0)þ h1(z� z0) ¼ f 0(z0)(z� z0)þ h1(z� z0)

g(z) ¼ g(z0)þ g0(z0)(z� z0)þ h2(z� z0) ¼ g0(z0)(z� z0)þ h2(z� z0)

where limz!z0h1 ¼ limz!z0h2 ¼ 0. Then, as required,

lim
z!z0

f (z)

g(z)
¼ lim

z!z0

f f 0(z0)þ h1g(z� z0)

fg0(z0)þ h2g(z� z0)
¼ f 0(z0)

g0(z0)
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Another Method

lim
z!z0

f (z)

g(z)
¼ lim

z!z0

f (z)� f (z0)

z� z0

. g(z)� g(z0)

z� z0

¼ lim
z!z0

f (z)� f (z0)

z� z0

� �.
lim
z!z0

g(z)� g(z0)

z� z0

� �
¼ f 0(z0)

g0(z0)
:

3.23. Evaluate (a) lim
z!i

z10 þ 1

z6 þ 1
, (b) lim

z!0

1� cos z

z2
, (c) lim

z!0

1� cos z

sin z2
.

Solution

(a) Let f (z) ¼ z10 þ 1 and g(z) ¼ z6 þ 1. Then f (i) ¼ g(i) ¼ 0. Also, f (z) and g(z) are analytic at z ¼ i.

Hence, by L’Hospital’s rule,

lim
z!i

z10 þ 1

z6 þ 1
¼ lim

z!i

10z9

6z5
¼ lim

z!i

5

3
z4 ¼ 5

3

(b) Let f (z) ¼ 1� cos z and g(z) ¼ z2. Then f (0) ¼ g(0) ¼ 0. Also, f (z) and g(z) are analytic at z ¼ 0. Hence,

by L’Hospital’s rule,

lim
z!0

1� cos z

z2
¼ lim

z!0

sin z

2z

Since f1(z) ¼ sin z and g1(z) ¼ 2z are analytic and equal to zero when z ¼ 0, we can apply L’Hospital’s

rule again to obtain the required limit,

lim
z!0

sin z

2z
¼ lim

z!0

cos z

2
¼ 1

2

(c) Method 1. By repeated application of L’Hospital’s rule, we have

lim
z!0

1� cos z

sin z2
¼ lim

z!0

sin z

2z cos z2
¼ lim

z!0

cos z

2 cos z2 � 4z2 sin z2
¼ 1

2

Method 2. Since lim
z!0

sin z

z
¼ 1, we have by one application of L’Hospital’s rule,

lim
z!0

1� cos z

sin z2
¼ lim

z!0

sin z

2z cos z2
¼ lim

z!0

sin z

z

� �
1

2 cos z2

� �

¼ lim
z!0

sin z

z

� �
lim
z!0

1

2 cos z2

� �
¼ (1)

1

2

� �
¼ 1

2

Method 3. Since lim
z!0

sin z2

z2
¼ 1 or, equivalently, lim

z!0

z2

sin z2
¼ 1, we can write

lim
z!0

1� cos z

sin z2
¼ lim

z!0

1� cos z

z2

� �
z2

sin z2

� �
¼ lim

z!0

1� cos z

z2
¼ 1

2

using part (b).

3.24. Evaluate limz!0 (cos z)
1=z2 .

Solution

Let w ¼ (cos z)1=z
2

. Then lnw ¼ (ln cos z)=z2 where we consider the principal branch of the logarithm. By

L’Hospital’s rule,

lim
z!0

lnw ¼ lim
z!0

ln cos z

z2
¼ lim

z!0

(�sin z)= cos z

2z

¼ lim
z!0

sin z

z

� �
� 1

2 cos z

� �
¼ (1) � 1

2

� �
¼ � 1

2
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But since the logarithm is a continuous function, we have

lim
z!0

lnw ¼ ln lim
z!0

w

� �
¼ � 1

2

or limz!0 w ¼ e�1=2, which is the required value.

Note that since limz!0 cos z ¼ 1 and limz!0 1=z
2 ¼ 1, the required limit has the “indeterminate form” 11.

Singular Points

3.25. For each of the following functions, locate and name the singularities in the finite z plane and deter-
mine whether they are isolated singularities or not.

(a) f (z) ¼ z

(z2 þ 4)2
, (b) f (z) ¼ sec(1=z), (c) f (z) ¼ ln(z� 2)

(z2 þ 2zþ 2)4
, (d) f (z) ¼ sin

ffiffi
z

pffiffi
z

p

Solution

(a) f (z) ¼ z

(z2 þ 4)2
¼ z

f(zþ 2i)(z� 2i)g2
¼ z

(zþ 2i)2(z� 2i)2
.

Since

lim
z!2i

(z� 2i)2f (z) ¼ lim
z!2i

z

(zþ 2i)2
¼ 1

8i
=0

z ¼ 2i is a pole of order 2. Similarly, z ¼ �2i is a pole of order 2.

Since we can find d such that no singularity other than z ¼ 2i lies inside the circle jz� 2ij ¼ d (e.g.,

choose d ¼ 1), it follows that z ¼ 2i is an isolated singularity. Similarly, z ¼ �2i is an isolated

singularity.

(b) Since sec(1=z) ¼ 1=cos(1=z), the singularities occur where cos(1=z) ¼ 0, i.e., 1=z ¼ (2nþ 1)p=2 or

z ¼ 2=(2nþ 1)p, where n ¼ 0,+1,+2,+3, . . . . Also, since f(z) is not defined at z ¼ 0, it follows

that z ¼ 0 is also a singularity.

Now, by L’Hospital’s rule,

lim
z!2=(2nþ1)p

z� 2

(2nþ 1)p

� �
f (z) ¼ lim

z!2=(2nþ1)p

z� 2=(2nþ 1)p

cos(1=z)

¼ lim
z!2=(2nþ1)p

1

� sin(1=z)f�1=z2g

¼ f2=(2nþ 1)pg2
sin(2nþ 1)p=2

¼ 4(�1)n

(2nþ 1)2p2
=0

Thus the singularities z ¼ 2=(2nþ 1)=p,

n ¼ 0, +1, +2, . . . are poles of order one,

i.e., simple poles. Note that these poles are

located on the real axis at z ¼ +2=p,

+2=3p, +2=5p, . . . and that there are infi-

nitely many in a finite interval which includes

0 (see Fig. 3-9).

Since we can surround each of these by a

circle of radius d, which contains no other

singularity, it follows that they are isolated

singularities. It should be noted that the d
required is smaller the closer the singularity is to the origin.

Since we cannot find any positive integer n such that limz!0 (z� 0)nf (z) ¼ A=0, it follows that z ¼ 0 is

an essential singularity. Also, since every circle of radius dwith center at z ¼ 0 contains singular points other

than z ¼ 0, no matter how small we take d, we see that z ¼ 0 is a non-isolated singularity.

y

x
–2/p 2/p–2/3p 2/3p

–2/5p 2/5p

Fig. 3-9
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(c) The point z ¼ 2 is a branch point and is a non-isolated singularity. Also, since z2 þ 2zþ 2 ¼ 0 where

z ¼ �1+ i, it follows that z2 þ 2zþ 2 ¼ (zþ 1þ i)(zþ 1� i) and that z ¼ �1+ i are poles of order 4

which are isolated singularities.

(d) At first sight, it appears as if z ¼ 0 is a branch point. To test this, let z ¼ reiu ¼ rei(uþ2p) where

0 � u , 2p.

If z ¼ reiu, we have

f (z) ¼ sin(
ffiffi
r

p
eiu=2)ffiffi

r
p

eiu=2

If z ¼ rei(uþ2p), we have

f (z) ¼ sin(
ffiffi
r

p
eiu=2epi)ffiffi

r
p

eiu=2epi
¼ sin(�

ffiffi
r

p
eiu=2)

� ffiffi
r

p
eiu=2

¼ sin(
ffiffi
r

p
eiu=2)ffiffi

r
p

eiu=2

Thus, there is actually only one branch to the function, and so z ¼ 0 cannot be a branch point.

Since limz!0 sin
ffiffi
z

p
=
ffiffi
z

p
¼ 1, it follows in fact that z ¼ 0 is a removable singularity.

3.26. (a) Locate and name all the singularities of f (z) ¼ z8 þ z4 þ 2

(z� 1)3(3zþ 2)2
.

(b) Determine where f (z) is analytic.

Solution

(a) The singularities in the finite z plane are located at z ¼ 1 and z ¼ �2=3; z ¼ 1 is a pole of order 3 and

z ¼ �2=3 is a pole of order 2.

To determine whether there is a singularity at z ¼ 1 (the point at infinity), let z ¼ 1=w. Then

f (1=w) ¼ (1=w)8 þ (1=w)4 þ 2

(1=w� 1)3(3=wþ 2)2
¼ 1þ w4 þ 2w8

w3(1� w)3(3þ 2w)2

Thus, since w ¼ 0 is a pole of order 3 for the function f (1=w), it follows that z ¼ 1 is a pole of order 3

for the function f (z).

Then the given function has three singularities: a pole of order 3 at z ¼ 1, a pole of order 2 at

z ¼ �2=3, and a pole of order 3 at z ¼ 1.

(b) From (a) it follows that f(z) is analytic everywhere in the finite z plane except at the points z ¼ 1 and�2=3.

Orthogonal Families

3.27. Let u(x, y) ¼ a and v(x, y) ¼ b, where u and v are the real and imaginary parts of an analytic func-
tion f(z) and a and b are any constants, represent two families of curves. Prove that if f 0(z)=0, then
the families are orthogonal (i.e., each member of one family is perpendicular to each member of the
other family at their point of intersection).

Solution

Consider any two members of the respective families, say u(x, y) ¼ a1 and v(x, y) ¼ b1 where a1 and b1 are

particular constants [Fig. 3-10].

Differentiating u(x, y) ¼ a1 with respect to x yields

@u

@x
þ @u

@y

dy

dx
¼ 0

Then the slope of u(x, y) ¼ a1 is

dy

dx
¼ � @u

@x

. @u

@y
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Similarly, the slope of v(x, y) ¼ b1 is

dy

dx
¼ � @v

@x

. @v

@y
Now

f 0(z) ¼ @u

@x
þ i

@v

@x
¼ @v

@y
� i

@u

@y
=0 ) either

@u

@x
¼ @v

@y
=0 or

@v

@x
¼ � @u

@y
=0

From these equations and inequalities, it follows that either the product of the slopes is �1 (when none of the

partials is zero) or one slope is 0 and the other infinity, i.e., one tangent line is horizontal and the other is vertical,

when

@u

@x
¼ @v

@y
¼ 0 or

@v

@x
¼ � @u

@y
¼ 0

Thus, the curves are orthogonal if f 0(z)=0.

y

u(x, y) = b
1

u(x, y) =
 a 1

x

D

y

xA

B C z

E

O a

b
w t

Fig. 3-10 Fig. 3-11

3.28. Find the orthogonal trajectories of the family of curves in the xy plane which are defined by
e�x(x sin y� y cos y) ¼ a where a is a real constant.

Solution

By Problems 3.7 and 3.27, it follows that e�x(y sin yþ x cos y) ¼ b, where b is a real constant, is the required

equation of the orthogonal trajectories.

Applications to Geometry and Mechanics

3.29. An ellipse C has the equation z ¼ a cosvt þ bi sinvt where a, b, v are positive constants, a . b,
and t is a real variable. (a) Graph the ellipse and show that as t increases from t ¼ 0 the ellipse
is traversed in a counterclockwise direction. (b) Find a unit tangent vector to C at any point.

Solution

(a) As t increases from 0 to p=2v, p=2v to p=v, p=v to 3p=2v, and 3p=2v to 2p=v, point z on C

moves from A to B, B to D, D to E, and E to A, respectively (i.e., it moves in a counterclockwise direction

as shown in Fig. 3-11).

(b) A tangent vector to C at any point t is

dz

dt
¼ �av sinvt þ bvi cosvt

Then a unit tangent vector to C at any point t is

dz=dt

jdz=dtj ¼
�av sinvt þ bvi cosvt

j�av sinvt þ bvi cosvtj ¼
�a sinvt þ bi cosvtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 vt þ b2 cos2 vt

p
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3.30. In Problem 3.29, suppose that z is the position vector of a particle moving on C and that t is the time.

(a) Determine the velocity and speed of the particle at any time.

(b) Determine the acceleration both in magnitude and direction at any time.

(c) Prove that d2z=dt2 ¼ �v2z and give a physical interpretation.

(d) Determine where the velocity and acceleration have the greatest and least magnitudes.

Solution

(a) Velocity ¼ dz=dt ¼ �av sinvt þ bvi cosvt:

Speed ¼ magnitude of velocity ¼ jdz=dtj ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 vt þ b2 cos2 vt

p

(b) Acceleration ¼ d2z=dt2 ¼ �av2 cosvt � bv2i sinvt:

Magnitude of acceleration ¼ jd2z=dt2j ¼ v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 vt þ b2 sin2 vt

p

(c) From (b) we see that

d2z=dt2 ¼ �av2 cosvt � bv2i sinvt ¼ �v2(a cosvt þ bi sinvt) ¼ �v2z

Physically, this states that the acceleration at any time is always directed toward point O and has magni-

tude proportional to the instantaneous distance fromO. As the particle moves, its projection on the x and y

axes describes what is sometimes called simple harmonic motion of period 2p=v. The acceleration is

sometimes known as the centripetal acceleration.

(d) From (a) and (b), we have

Magnitude of velocity ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 vt þ b2(1� sin2 vt)

q
¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � b2) sin2 vt þ b2

q
Magnitude of acceleration ¼ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 vt þ b2(1� cos2 vt)

p
¼ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � b2) cos2 vt þ b2

p
Then, the velocity has the greatest magnitude [given by va] where sinvt ¼ +1, i.e., at points B and E

[Fig. 3-11], and the least magnitude [given by vb] where sinvt ¼ 0, i.e., at points A and D.

Similarly, the acceleration has the greatest magnitude [given by v2a] where cosvt ¼ +1, i.e., at

points A and D, and the least magnitude [given by v2b] where cosvt ¼ 0, i.e., at points B and E.

Theoretically, the planets of our solar system move in elliptical paths with the Sun at one focus. In

practice, there is some deviation from an exact elliptical path.

Gradient, Divergence, Curl, and Laplacian

3.31. Prove the equivalence of the operators:

(a)
@

@x
¼ @

@z
þ @

@�z
, (b)

@

@y
¼ i

@

@z
� @

@�z

� �
where z ¼ xþ iy, �z ¼ x� iy.

Solution

If F is any continuously differentiable function, then

(a)
@F

@x
¼ @F

@z

@z

@x
þ @F

@�z

@�z

@x
¼ @F

@z
þ @F

@�z
showing the equivalence

@

@x
¼ @

@z
þ @

@�z
.

(b)
@F

@y
¼ @F

@z

@z

@y
þ @F

@�z

@�z

@y
¼ @F

@z
(i)þ @F

@�z
(�i) ¼ i

@F

@z
� @F

@�z

� �
showing the equivalence

@

@y
¼ i

@

@z
� @

@�z

� �
.
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3.32. Show that (a) r ;
@

@x
þ i

@

@y
¼ 2

@

@�z
, (b) r ;

@

@x
� i

@

@y
¼ 2

@

@z
.

Solution

From the equivalences established in Problem 3.31, we have

(a) r ;
@

@x
þ i

@

@y
¼ @

@z
þ @

@�z
þ i2

@

@z
� @

@�z

� �
¼ 2

@

@�z

(b) r ;
@

@x
� i

@

@y
¼ @

@z
þ @

@�z
� i2

@

@z
� @

@�z

� �
¼ 2

@

@z

3.33. Suppose F(x, y) ¼ c [where c is a constant and F is continuously differentiable] is a curve in the xy
plane. Show that grad F ¼ rF ¼ (@F=@x)þ i(@F=@y), is a vector normal to the curve.

Solution

We have dF ¼ (@F=@x)dxþ (@F=@y)dy ¼ 0. In terms of dot product [see page X], this can be written

@F

@x
þ i

@F

@y

� �
� (dxþ i dy) ¼ 0

But dxþ i dy is a vector tangent to C. Hence rF ¼ (@F=@x)þ i(@F=@y) must be perpendicular to C.

3.34. Show that
@P

@x
� @Q

@y
þ i

@Q

@x
þ @P

@y

� �
¼ 2

@B

@�z
where B(z, �z) ¼ P(x, y)þ iQ(x, y).

Solution

From Problem 3.32, rB ¼ 2(@B=@�z). Hence

rB ¼ @

@x
þ i

@

@y

� �
(Pþ iQ) ¼ @P

@x
� @Q

@y
þ i

@Q

@x
þ @P

@y

� �
¼ 2

@B

@�z

3.35. Let C be the curve in the xy plane defined by 3x2y� 2y3 ¼ 5x4y2 � 6x2. Find a unit vector normal
to C at (1,�1).

Solution

Let F(x, y) ¼ 3x2y� 2y3 � 5x4y2 þ 6x2 ¼ 0. By Problem 3.33, a vector normal to C at (1, 21) is

rF ¼ @F

@x
þ i

@F

@y
¼ (6xy� 20x3y2 þ 12x)þ i(3x2 � 6y2 � 10x4y) ¼ �14þ 7i

Then a unit vector normal to C at (1,�1) is
�14þ 7i

j�14þ 7ij ¼
�2þ iffiffiffi

5
p . Another such unit vector is

2� iffiffiffi
5

p .

3.36. Suppose A(x, y) ¼ 2xy� ix2y3. Find (a) grad A, (b) div A, (c) jcurl Aj, (d) Laplacian of A.

Solution

(a) grad A ¼ rA ¼ @

@x
þ i

@

@y

� �
2xy� ix2y3

 �

¼ @

@x
2xy� ix2y3

 �

þ i
@

@y
2xy� ix2y3

 �

¼ 2y� 2ixy3 þ i 2x� 3ix2y3

 �

¼ 2yþ 3x2y2 þ i 2x� 2xy3

 �
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(b) div A ¼ r � A ¼ RefrAg ¼ Re
@

@x
� i

@

@y

� �
2xy� ix2y3

 �� �

¼ @

@x
(2xy)� @

@y
(x2y3) ¼ 2y� 3x2y2

(c) jcurl Aj ¼ jr � Aj ¼ jImfrAgj ¼ Im
@

@x
� i

@

@y

� �
2xy� ix2y3

 �� �����

����
¼ @

@x
(�x2y3)� @

@y
(2xy)

����
���� ¼ ����2xy3 � 2x

���
(d) Laplacian A ¼ r2A ¼ RefrrAg ¼ @2A

@x2
þ @2A

@y2
¼ @2

@x2
(2xy� ix2y3)þ @2

@y2
(2xy� ix2y3)

¼ @

@x
(2y� 2ixy3)þ @

@y
(2x� 3ix2y2) ¼ �2iy3 � 6ix2y

Miscellaneous Problems

3.37. Prove that in polar form the Cauchy–Riemann equations can be written

@u

@r
¼ 1

r

@v

@u
,

@v

@r
¼ � 1

r

@u

@u

Solution

We have x ¼ r cos u, y ¼ r sin u or r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, u ¼ tan�1( y=x). Then

@u

@x
¼ @u

@r

@r

@x
þ @u

@u

@u

@x
¼ @u

@r

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
 !

þ @u

@u

�y

x2 þ y2

� �
¼ @u

@r
cos u� 1

r

@u

@u
sin u (1)

@u

@y
¼ @u

@r

@r

@y
þ @u

@u

@u

@y
¼ @u

@r

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
 !

þ @u

@u

x

x2 þ y2

� �
¼ @u

@r
sin uþ 1

r

@u

@u
cos u (2)

Similarly,

@v

@x
¼ @v

@r

@r

@x
þ @v

@u

@u

@x
¼ @v

@r
cos u� 1

r

@v

@u
sin u (3)

@v

@y
¼ @v

@r

@r

@y
þ @v

@u

@u

@y
¼ @v

@r
sin uþ 1

r

@v

@u
cos u (4)

From the Cauchy–Riemann equation @u=@x ¼ @v=@y we have, using (1) and (4),

@u

@r
� 1

r

@v

@u

� �
cos u� @v

@r
þ 1

r

@u

@u

� �
sin u ¼ 0 (5)

From the Cauchy–Riemann equation @u=@y ¼ �(@v=@x) we have, using (2) and (3),

@u

@r
� 1

r

@v

@u

� �
sin uþ @v

@r
þ 1

r

@u

@u

� �
cos u ¼ 0 (6)

Multiplying (5) by cos u, (6) by sin u and adding yields

@u

@r
� 1

r

@v

@u
¼ 0 or

@u

@r
¼ 1

r

@v

@u.

Multiplying (5) by �sin u, (6) by cos u and adding yields

@v

@r
þ 1

r

@u

@u
¼ 0 or

@v

@r
¼ � 1

r

@u

@u.
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3.38. Prove that the real and imaginary parts of an analytic function of a complex variable when expressed
in polar form satisfy the equation [Laplace’s equation in polar form]

@2C

@r2
þ 1

r

@C

@r
þ 1

r2
@2C

@u2
¼ 0

Solution

From Problem 3.37,

@v

@u
¼ r

@u

@r
(1)

@v

@r
¼ � 1

r

@u

@u
(2)

To eliminate v differentiate (1) partially with respect to r and (2) with respect to u. Then

@2v

@r @u
¼ @

@r

@v

@u

� �
¼ @

@r
r
@u

@r

� �
¼ r

@2u

@r2
þ @u

@r
(3)

@2v

@u @r
¼ @

@u

@v

@r

� �
¼ @

@u
� 1

r

@u

@u

� �
¼ � 1

r

@2u

@u2
(4)

But

@2v

@r @u
¼ @2v

@u @r

assuming the second partial derivatives are continuous. Hence, from (3) and (4),

r
@2u

@r2
þ @u

@r
¼ � 1

r

@2u

@u2
or

@2u

@r2
þ 1

r

@u

@r
þ 1

r2
@2u

@u2
¼ 0

Similarly, by elimination of u, we find

@2v

@r2
þ 1

r

@v

@r
þ 1

r2
@2v

@u2
¼ 0

so that the required result is proved.

3.39. Suppose w ¼ f (z ) where z ¼ g(z). Assuming f and g are analytic in a region R, prove that

dw

dz
¼ dw

dz
� dz
dz

Solution

Let z be given an increment Dz=0 so that zþ Dz is inR. Then, as a consequence, z and w take on increments

Dz and Dw, respectively, where

Dw ¼ f (zþ Dz )� f (z ), Dz ¼ g(zþ Dz)� g(z) (1)

Note that as Dz ! 0, we have Dw ! 0 and Dz ! 0.

If Dz=0, let us write e ¼ (Dw=Dz )� (dw=dz ) so that e ! 0 as Dz ! 0 and

Dw ¼ dw

dz
Dzþ eDz (2)
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IfDz ¼ 0 for values ofDz, then (1) shows thatDw ¼ 0 for these values ofDz. For such cases, we define e ¼ 0.

It follows that in both cases, Dz=0 or Dz ¼ 0, (2) holds. Then dividing (2) by Dz=0 and taking the limit

as Dz ! 0, we have

dw

dz
¼ lim

Dz!0

Dw

Dz
¼ lim

Dz!0

dw

dz

Dz

Dz
þ e

Dw

Dz

� �

¼ dw

dz
� lim
Dz!0

Dz

Dz
þ lim

Dz!0
e � lim

Dz!0

Dw

Dz

¼ dw

dz
� dz
dz

þ 0 � dz
dz

¼ dw

dz
� dz
dz

3.40. (a) Suppose u1(x, y) ¼ @u=@x and u2(x, y) ¼ @u=@y. Prove that f 0(z) ¼ u1(z, 0)� iu2(z, 0).

(b) Show how the result in (a) can be used to solve Problems 3.7 and 3.8.

Solution

(a) From Problem 3.5, we have f 0(z) ¼ @u

@x
� i

@u

@y
¼ u1(x, y)� iu2(x, y).

Putting y ¼ 0, this becomes f 0(x) ¼ u1(x, 0)� iu2(x, 0).

Then, replacing x by z, we have as required f 0(z) ¼ u1(z, 0)� iu2(z, 0).

(b) Since we are given u ¼ e�x(x sin y� y cos y), we have

u1(x, y) ¼
@u

@x
¼ e�x sin y� xe�x sin yþ ye�x cos y

u2(x, y) ¼
@u

@y
¼ xe�z cos yþ ye�z sin y� e�x cos y

so that from part (a),

f 0(z) ¼ u1(z, 0)� iu2(z, 0) ¼ 0� i(ze�z � e�z) ¼ �i(ze�z � e�z)

Integrating with respect to z we have, apart from a constant, f (z) ¼ ize�z. By separating this into real and

imaginary parts, v ¼ e�x(y sin yþ x cos y) apart from a constant.

3.41. Suppose A is real or, more generally, suppose Im A is harmonic. Prove that jcurl grad Aj ¼ 0.

Solution

If A ¼ Pþ Qi, we have

grad A ¼ @

@x
þ i

@

@y

� �
(Pþ iQ) ¼ @P

@x
� @Q

@y
þ i

@P

@y
þ @Q

@x

� �
Then

jcurl grad Aj ¼ Im
@

@x
� i

@

@y

� �
@P

@x
� @Q

@y
þ i

@P

@y
þ @Q

@x

� �� �� 	����
����

¼ Im
@2P

@x2
� @2Q

@x @y
þ i

@2P

@x @y
þ @2Q

@x2

� �
� i

@2P

@y @x
� @2Q

@y2

� �
þ @2P

@y2
þ @2Q

@y @x

� �� 	����
����

¼ @2Q

@x2
þ @2Q

@y2

����
����

Hence if Q ¼ 0, i.e., A is real, or if Q is harmonic, jcurl grad Aj ¼ 0.
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3.42. Solve the partial differential equation
@2U

@x2
þ @2U

@y2
¼ x2 � y2.

Solution

Let z ¼ xþ iy, �z ¼ x� iy so that x ¼ (zþ �z)=2, y ¼ (z� �z)=2i: Then x2 � y2 ¼ 1
2
(z2 þ �z2) and

@2U

@x2
þ @2U

@y2
¼ r2U ¼ 4

@2U

@z @�z

Thus, the given partial differential equation becomes 4(@2U=@z @�z) ¼ 1
2
(z2 þ �z2) or

@

@z

@U

@�z

� �
¼ 1

8
(z2 þ �z2) (1)

Integrating (1) with respect to z (treating �z as constant),

@U

@�z
¼ z3

24
þ z�z2

8
þ F1(�z) (2)

where F1(�z) is an arbitrary function of �z. Integrating (2) with respect to �z,

U ¼ z3�z

24
þ z�z3

24
þ F(�z)þ G(z) (3)

where F(�z) is the function obtained by integrating F1(�z), andG(z) is an arbitrary function of z. Replacing z and �z
by xþ iy and x� iy, respectively, we obtain

U ¼ 1

12
x4 � y4

 �

þ F(x� iy)þ G(xþ iy)

SUPPLEMENTARY PROBLEMS

Derivatives

3.43. Using the definition, find the derivative of each function at the indicated points.

(a) f (z) ¼ 3z2 þ 4iz� 5þ i; z ¼ 2, (b) f (z) ¼ 2z� i

zþ 2i
; z ¼ �i, (c) f (z) ¼ 3z�2; z ¼ 1þ i.

3.44. Prove that
d

dz
(z2�z) does not exist anywhere.

3.45. Determine whether jzj2 has a derivative anywhere.

3.46. For each of the following functions determine the singular points, i.e., points at which the function is not

analytic. Determine the derivatives at all other points. (a)
z

zþ i
, (b)

3z� 2

z2 þ 2zþ 5
.

Cauchy–Riemann Equations

3.47. Verify that the real and imaginary parts of the following functions satisfy the Cauchy–Riemann equations and

thus deduce the analyticity of each function:

(a) f (z) ¼ z2 þ 5izþ 3� i, (b) f (z) ¼ ze�z, (c) f (z) ¼ sin 2z.

3.48. Show that the function x2 þ iy3 is not analytic anywhere. Reconcile this with the fact that the Cauchy–

Riemann equations are satisfied at x ¼ 0, y ¼ 0.

3.49. Prove that if w ¼ f (z) ¼ uþ iv is analytic in a region R, then dw=dz ¼ @w=@x ¼ �i(@w=@y).
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3.50. (a) Prove that the function u ¼ 2x(1� y) is harmonic. (b) Find a function v such that f (z) ¼ uþ iv is analytic

[i.e., find the conjugate function of u]. (c) Express f (z) in terms of z.

3.51. Answer Problem 3.50 for the function u ¼ x2 � y2 � 2xy� 2xþ 3y.

3.52. Verify that the Cauchy–Riemann equations are satisfied for the functions (a) ez
2

, (b) cos 2z, (c) sinh 4z.

3.53. Determine which of the following functions u are harmonic. For each harmonic function, find the conjugate

harmonic function v and express uþ iv as an analytic function of z.

(a) 3x2yþ 2x2 � y3 � 2y2, (b) 2xyþ 3xy2 � 2y3, (c) xez cos y� yez sin y, (d) e�2xy sin(x2 � y2).

3.54. (a) Prove that c ¼ ln[(x� 1)2 þ (y� 2)2] is harmonic in every region which does not include the point (1, 2).

(b) Find a function f such that fþ ic is analytic. (c) Express fþ ic as a function of z.

3.55. Suppose Imf f 0(z)g ¼ 6x(2y� 1) and f (0) ¼ 3� 2i, f (1) ¼ 6� 5i. Find f (1þ i).

Differentials

3.56. Let w ¼ iz2 � 4zþ 3i. Find (a) Dw, (b) dw, (c) Dw� dw at the point z ¼ 2i.

3.57. Suppose w ¼ (2zþ 1)3, z ¼ �i, Dz ¼ 1þ i. Find (a) Dw and (b) dw.

3.58. Suppose w ¼ 3iz2 þ 2zþ 1� 3i. Find (a) Dw, (b) dw, (c) Dw=Dz, (d) dw/dz where z ¼ i.

3.59. (a) Suppose w ¼ sin z. Show that
Dw

Dz
¼cos z

sinDz

Dz

� �
� 2 sin z

sin2 (Dz=2)

Dz

� �
.

(b) Assuming limDz!0

sinDz

Dz
¼ 1, prove that

dw

dz
¼ cos z.

(c) Show that dw ¼ (cos z) dz.

3.60. (a) Let w ¼ ln z. Show that if Dz=z ¼ z, then Dw=Dz ¼ 1=zð Þ lnf(1þ z)1=zg.

(b) Assuming limz!0 (1þ z)1=z ¼ e prove that dw=dz ¼ 1=z.

(c) Show that d(ln z) ¼ dz=z.

3.61. Giving restrictions on f (z) and g(z), prove that

(a) df f (z)g(z)g ¼ ff (z)g0(z)þ g(z)f 0(z)gdz
(b) df f (z)=g(z)g ¼ fg(z)f 0(z)� f (z)g0(z)gdz=fg(z)g2

Differentiation Rules. Derivatives of Elementary Functions

3.62. Suppose f(z) and g(z) are analytic in a region R. Then prove that

(a) d=dzf2if (z)� (1þ i)g(z)g ¼ 2if 0(z)� (1þ i)g0(z), (b) d=dzf f (z)g2 ¼ 2f (z)f 0(z),

(c) d=dzf f (z)g�1 ¼ �ff (z)g�2f 0(z).

3.63. Using differentiation rules, find the derivatives of each of the following functions:

(a) (1þ 4i)z2 � 3z� 2, (b) (2zþ 3i)(z� i), (c) (2z� i)=(zþ 2i), (d) (2izþ 1)2, (e) (iz� 1)�3.

3.64. Find the derivatives of each of the following at the indicated points:

(a) (zþ 2i)(i� z)=(2z� 1), z ¼ i, (b) fzþ (z2 þ 1)2g2, z ¼ 1þ i.
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3.65. Prove that (a)
d

dz
sec z ¼ sec z tan z, (b)

d

dz
cot z ¼ �csc2 z.

3.66. Prove that (a)
d

dz
(z2 þ 1)1=2 ¼ z

(z2 þ 1)1=2
, (b)

d

dz
ln(z2 þ 2zþ 2) ¼ 2zþ 2

z2 þ 2zþ 2
indicating restrictions if any.

3.67. Find the derivatives of each of the following, indicating restrictions if any.

(a) 3 sin2(z=2), (b) tan3(z2 � 3zþ 4i), (c) ln(sec zþ tan z), (d) cscf(z2 þ 1)1=2g, (e) (z2 � 1) cos(zþ 2i).

3.68. Prove that (a)
d

dz
(1þ z2)3=2 ¼ 3z(1þ z2)1=2, (b)

d

dz
(zþ 2

ffiffi
z

p
)1=3 ¼ 1

3
z�1=2(zþ 2

ffiffi
z

p
)�2=3(

ffiffi
z

p
þ 1).

3.69. Prove that (a)
d

dz
(tan�1 z) ¼ 1

z2 þ 1
, (b)

d

dz
(sec�1 z) ¼ 1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p .

3.70. Prove that (a)
d

dz
sinh�1 z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p , (b)

d

dz
csch�1z ¼ �1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p .

3.71. Find the derivatives of each of the following:

(a) fsin�1(2z� 1)g2, (c) cos�1(sin z� cos z), (e) coth�1(z csc 2z)

(b) lnfcot�1 z2g, (d) tan�1 (zþ 3i)�1=2, ( f ) ln(z� 3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 3zþ 2i

p
)

3.72. Suppose w ¼ cos�1(z� 1), z ¼ sinh(3zþ 2i) and z ¼
ffiffi
t

p
. Find dw/dt.

3.73. Let w ¼ t sec(t � 3i) and z ¼ sin�1(2t � 1). Find dw/dz.

3.74. Suppose w2 � 2wþ sin 2z ¼ 0. Find (a) dw/dz, (b) d2w=dz2.

3.75. Given w ¼ cos z, z ¼ tan(zþ pi). Find d2w=dz2 at z ¼ 0.

3.76. Find (a) d=dzfzln zg, (b) d=dz
�
[sin(iz� 2)]tan

�1(zþ3i)
�
:

3.77. Find the second derivatives of each of the following:

(a) 3 sin2(2z� 1þ i), (b) ln tan z2, (c) sinh(zþ 1)2, (d) cos�1(ln z), (e) sech�1
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
.

L’Hospital’s Rule

3.78. Evaluate (a) lim
z!2i

z2 þ 4

2z2 þ (3� 4i)z� 6i
, (b) lim

z!epi=3
(z� epi=3)

z

z3 þ 1

� �
, (c) lim

z!i

z2 � 2iz� 1

z4 þ 2z2 þ 1
.

3.79. Evaluate (a) lim
z!0

z� sin z

z3
, (b) lim

z!mpi
(z� mpi)

ez

sin z

� �
.

3.80. Find lim
z!i

tan�1(z2 þ 1)2

sin2(z2 þ 1)
where the branch of the inverse tangent is chosen such that tan�1 0 ¼ 0.

3.81. Evaluate lim
z!0

sin z

z

� �1=z2

.

Singular Points

3.82. For each of the following functions locate and name the singularities in the finite z plane.

(a)
z2 � 3z

z2 þ 2zþ 2
, (b)

ln(zþ 3i)

z2
, (c) sin�1(1=z), (d)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(z2 þ 1)

p
, (e)

cos z

(zþ i)3

3.83. Show that f (z) ¼ (zþ 3i)5=(z2 � 2zþ 5)2 has double poles at z ¼ 1+ 2i and a simple pole at infinity.

3.84. Show that ex
2

has an essential singularity at infinity.

CHAPTER 3 Complex Differentiation 107



3.85. Locate and name all the singularities of each of the following functions.

(a) (zþ 3)=(z2 � 1), (b) csc(1=z2), (c) (z2 þ 1)=z3=2.

Orthogonal Families

3.86. Find the orthogonal trajectories of the following families of curves:

(a) x3y� xy3 ¼ a, (b) e�x cos yþ xy ¼ a.

3.87. Find the orthogonal trajectories of the family of curves r2 cos 2u ¼ a.

3.88. By separating f (z) ¼ zþ 1=z into real and imaginary parts, show that the families (r2 þ 1) cos u ¼ ar and

(r2 � 1) sin u ¼ br are orthogonal trajectories and verify this by another method.

3.89. Let n be any real constant. Prove that rn ¼ a sec nu and rn ¼ b csc nu are orthogonal trajectories.

Applications to Geometry and Mechanics

3.90. A particle moves along a curve z ¼ e�t(2 sin t þ i cos t).

(a) Find a unit tangent vector to the curve at the point where t ¼ p=4.

(b) Determine the magnitudes of velocity and acceleration of the particle at t ¼ 0 and p=2.

3.91. A particle moves along the curve z ¼ aeivt. (a) Show that its speed is always constant and equal to va.

(b) Show that the magnitude of its acceleration is always constant and equal to v2a.

(c) Show that the acceleration is always directed toward z ¼ 0.

(d) Explain the relationship of this problem to the problem of a stone being twirled at the end of a string in a

horizontal plane.

3.92. The position at time t of a particle moving in the z plane is given by z ¼ 3te�4it. Find the magnitudes of

(a) the velocity, (b) the acceleration of the particle at t ¼ 0 and t ¼ p.

3.93. A particle P moves along the line xþ y ¼ 2 in the z plane with a uniform speed of 3
ffiffiffi
2

p
ft=sec from the point

z ¼ �5þ 7i to z ¼ 10� 8i. If w ¼ 2z2 � 3 and P0 is the image of P in the w plane, find the magnitudes of

(a) the velocity and (b) the acceleration of P0 after 3 seconds.

Gradient, Divergence, Curl, and Laplacian

3.94. Let F ¼ x2y� xy2. Find (a) rF, (b) r2F.

3.95. Let B ¼ 3z2 þ 4�z. Find (a) grad B, (b) div B, (c) j curl B j, (d) Laplacian B.

3.96. Let C be the curve in the xy plane defined by x2 � xyþ y2 ¼ 7. Find a unit vector normal to C at

(a) the point (�1, 2), (b) any point.

3.97. Find an equation for the line normal to the curve x2y ¼ 2xyþ 6 at the point (3, 2).

3.98. Show that r2j f (z) j2 ¼ 4j f 0(z) j2. Illustrate by choosing f (z) ¼ z2 þ iz.

3.99. Prove r2fFGg ¼ Fr2Gþ Gr2F þ 2rF � rG

3.100. Prove div grad A ¼ 0 if A is imaginary or, more generally, if RefAg is harmonic.

Miscellaneous Problems

3.101. Let f (z) ¼ u(x, y)þ iv(x, y). Prove that:

(a) f (z) ¼ 2u(z=2,� iz=2)þ constant, (b) f (z) ¼ 2iv(z=2,� iz=2)þ constant.
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3.102. Use Problem 3.101 to find f (z) if (a) u(x, y) ¼ x4 � 6x2y2 þ y4, (b) v(x, y) ¼ sinh x cos y.

3.103. Suppose V is the instantaneous speed of a particle moving along any plane curve C. Prove that the normal com-

ponent of the acceleration at any point of C is given by V2=R where R is the radius of curvature at the point.

3.104. Find an analytic function f (z) such that Reff 0(z)g ¼ 3x2 � 4y� 3y2 and f (1þ i) ¼ 0.

3.105. Show that the family of curves

x2

a2 þ l
þ y2

b2 þ l
¼ 1

with �a2 , l , �b2 is orthogonal to the family with l . �b2 . �a2.

3.106. Prove that the equation F(x, y) ¼ constant can be expressed as u(x, y) ¼ constant where u is harmonic if and

only if the following is a function of F:

@2F=@x2 þ @2F=@y2

(@F=@x)2 þ (@F=@y)2

3.107. Illustrate the result in Problem 3.106 by considering (yþ 2)=(x� 1) ¼ constant.

3.108. Let f 0(z) ¼ 0 in a region R. Prove that f (z) must be a constant in R.

3.109. Suppose w ¼ f (z) is analytic and expressed in polar coordinates (r, u). Prove that

dw

dz
¼ e�iu @w

@r

3.110. Suppose u and v are conjugate harmonic functions. Prove that

dv ¼ @u

@x
dy� @u

@y
dx

3.111. Given u and v are harmonic in a region R. Prove that the following is analytic in R:

@u

@y
� @v

@x

� �
þ i

@u

@x
þ @v

@y

� �

3.112. Prove that f (z) ¼ jzj4 is differentiable but not analytic at z ¼ 0.

3.113. Given f (z) is analytic in a region R and f (z) f 0(z)=0 in R, prove that c ¼ ln j f (z)j is harmonic in R.

3.114. Express the Cauchy–Riemann equations in terms of the curvilinear coordinates (j, h) where

x ¼ ej coshh, y ¼ ej sinhh.

3.115. Show that a solution of the differential equation

L
d2Q

dt2
þ R

dQ

dt
þ Q

C
¼ E0 cosvt

where L, R, C, E0 and v are constants, is given by

Q ¼ Re
E0e

ivt

iv[Rþ i(vL� 1=vC)]

� �

The equation arises in the theory of alternating currents of electricity.

[Hint. Rewrite the right hand side as E0e
ivt and then assume a solution of the form Aeivt where A is to be

determined.]

3.116. Show that r2f f (z)gn ¼ n2j f (z)jn�2j f 0(z)j2, stating restrictions on f(z).

3.117. Solve the partial differential equation
@2U

@x2
þ @2U

@y2
¼ 8

x2 þ y2
.
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3.118. Prove that r4U ¼ r2(r2U) ¼ @4U
@x4

þ 2
@4U

@x2@y2
þ @4U

@y4
¼ 16

@4U

@z2@�z2
.

3.119. Solve the partial differential equation
@4U

@x4
þ 2

@4U

@x2@y2
þ @4U

@y4
¼ 36(x2 þ y2).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 12þ 4i, (b) �5i, (c) 3=2þ 3i=2 3.50. (b) 2yþ x2 � y2, (c) iz2 þ 2z

3.46. (a) �i, i=(zþ i)2; (b) �1+2i, (19þ 4z� 3z2)=(z2 þ 2zþ 5)2 3.51. (b) x2 � y2 þ 2xy� 3x� 2y

3.53. (a) v ¼ 4xy� x3 þ 3xy2 þ c, f (z) ¼ 2z2 � iz3 þ ic, (b) Not harmonic

(c) yex cos yþ xex sin yþ c, zez þ ic, (d) �e2xy cos(x2 � y2)þ c, �ieix
2 þ ic

3.54. (b) �2 tan�1f(y� 2)=(x� 1)g, (c) 2i ln(z� 1� 2i) 3.55. 6þ 3i

3.56. (a) �8Dzþ i(Dz)2 ¼ �8 dz ¼ i(dz)2, (b) �8 dz, (c) i(dz)2 3.57. (a) 38� 2i, (b) 6� 42i

3.58. (a) �4Dzþ 3i(Dz)2, (b) �4 dz, (c) �4þ 3iDz, (d) �4

3.63. (a) (2þ 8i)z� 3, (b) 4zþ i, (c) 5i=(zþ 2i)2, (d) 4i� 8z, (e) �3i(iz� 1)�4

3.64. (a) �6=5þ 3i=5, (b) �108� 78i

3.67. (a) 3 sin(z=2) cos(z=2), (b) 3(2z� 3) tan2(z2 � 3zþ 4i) sec2(z2 � 3zþ 4i) (c) sec z

(d)
�z cscf(z2 þ 1)1=2g cotf(z2 þ 1)1=2g

(z2 þ 1)1=2
, (e) (1� z2) sin(zþ 2i)þ 2z cos(zþ 2i)

3.71. (a) 2 sin�1(2z� 1)=(z� z2)1=2, (b) �2z=(1þ z4) cot�1 z2, (c) �(sin zþ cos z)=(sin 2z)1=2,

(d) �1=2(zþ 1þ 3i)(zþ 3i)1=2, (e) (csc 2z)(1� 2z cot 2z)=(1� z2 csc2 2z), (f ) 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 3zþ 2i

p

3.72. �3[cosh(3zþ 2i)]=2(2z� z2)1=2t1=2 3.73. sec(t � 3i)f1þ t tan(t � 3i)g(t � t2)1=2

3.74. (a) (cos 2z)=(1� w), (b) fcos2 2z� 2(1� w)2 sin 2zg=(1� w)3, 3.75. �cosh4 p

3.76. (a) 2zln z�1 ln z, (b) f[sin(iz� 2)]tan
�1(zþ3i)gfi tan�1(zþ 3i) cot(iz� 2)þ [ln sin(iz� 2)]=[z2 þ 6iz� 8]g

3.77. (a) 24 cos(4z� 2þ 2i), (b) 4 csc 2z2 � 16z2 csc 2z2 cot 2z2

(c) 2 cosh(zþ 1)2 þ 4(zþ 1)2 sinh(zþ 1)2, (d) (1� ln z� ln2 z)=z2(1� ln2 z)3=2

(e) �i(1þ 3z)=4(1þ z)2z3=2

3.78. (a) (16þ 12i)=25, (b) 1� i
ffiffiffi
3

p
 �
=6, (c) �1=4 3.79. (a) 1/6, (b) empi=coshmp 3.80. 1 3.81. e�1=6

3.82. (a) z ¼ �1+ i; simple poles (d) z ¼ 0,+i; branch points

(b) z ¼ �3i; branch point, z ¼ 0; pole of order 2 (e) z ¼ �i; pole of order 3

(c) z ¼ 0; logarithmic branch point

3.85. (a) z ¼+1; simple pole

(b) z ¼ 1=
ffiffiffiffiffiffiffi
mp

p
, m ¼+1,+2,+3, . . .; simple poles, z ¼ 0; essential singularity, z ¼ 1; pole of order 2

(c) z ¼ 0; branch point, z ¼ 1; branch point

3.86. (a) x4 � 6x2y2 þ y4 ¼ b, (b) 2e�x sin yþ x2 � y2 ¼ b 3.87. r2 sin 2u ¼ b

3.90. (a) +i, (b) Velocity:
ffiffiffi
5

p
,

ffiffiffi
5

p
e�p=2. Acceleration: 4, 2e�p=2

3.92. (a) 3, 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16p2

p
, (b) 24, 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

p
3.93. 24

ffiffiffiffiffi
10

p
, (b) 72

3.94. (a) (2xy� y2)þ i(x2 � 2xy), (b) 2y� 2x 3.95. (a) 8, (b) 12x, (c) j12yj, (d) 0

3.96. (a) (�4þ 5i)=
ffiffiffiffiffi
41

p
, (b) f2x� yþ i(2y� x)g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x2 � 8xyþ 5y2

p
3.97. x ¼ 8t þ 3, y ¼ 3t þ 2

3.104. z3 þ 2iz2 þ 6� 2i, 3.117. U ¼ 1
2
fln(x2 þ y2)g2 þ 2ftan�1(y=x)g2 þ F(xþ iy)þ G(x� iy)

3.119. U ¼ 1
16
(x2 þ y2)3 þ (xþ iy)F1(x� iy)þ G1(x� iy)þ (x� iy)F2(xþ iy)þ G2(xþ iy)
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CHAP T E R 4

Complex Integration
and Cauchy’s Theorem

4.1 Complex Line Integrals

Let f(z) be continuous at all points of a curve C [Fig. 4-1], which we shall assume has a finite length, i.e., C
is a rectifiable curve.

y

x

a

b
C

z1

zk–1 zn–1

zk

z2
x2

xk

xn

x1

Fig. 4-1

Subdivide C into n parts by means of points z1, z2, . . . , zn�1, chosen arbitrarily, and call a ¼ z0, b ¼ zn.
On each arc joining zk�1 to zk [where k goes from 1 to n], choose a point jk. Form the sum

Sn ¼ f (j1)(z1 � a)þ f (j2)(z2 � z1)þ � � � þ f (jn)(b� zn�1) (4:1)

On writing zk � zk�1 ¼ Dzk, this becomes

Sn ¼
Xn
k¼1

f (jk)(zk � zk�1) ¼
Xn
k¼1

f (jk)Dzk (4:2)

Let the number of subdivisions n increase in such a way that the largest of the chord lengths jDzkj
approaches zero. Then, since f(z) is continuous, the sum Sn approaches a limit that does not depend on
the mode of subdivision and we denote this limit by

ðb
a

f (z) dz or

ð
C

f (z) dz (4:3)
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called the complex line integral or simply line integral of f (z) along curve C, or the definite integral of f(z)
from a to b along curve C. In such a case, f(z) is said to be integrable along C. If f(z) is analytic at all points
of a region R and if C is a curve lying in R, then f(z) is continuous and therefore integrable along C.

4.2 Real Line Integrals

Let P(x, y) and Q(x, y) be real functions of x and y continuous at all points of curve C. Then the real line
integral of P dxþ Qdy along curve C can be defined in a manner similar to that given above and is
denoted by ð

C

[P(x, y) dxþ Q(x, y) dy] or

ð
C

P dxþ Qdy (4:4)

the second notation being used for brevity. If C is smooth and has parametric equations x ¼ f(t), y ¼ c(t)
where t1 � t � t2, it can be shown that the value of (4) is given byðt2

t1

[Pff(t), c(t)gf0(t) dt þ Qff(t), c(t)gc0(t) dt]

Suitable modifications can be made if C is piecewise smooth (see Problem 4.1).

4.3 Connection Between Real and Complex Line Integrals

Suppose f (z) ¼ u(x, y)þ iv(x, y) ¼ uþ iv. Then the complex line integral (3) can be expressed in terms of
real line integrals as follows: ð

C

f (z) dz ¼
ð
C

(uþ iv)(dxþ i dy)

¼
ð
C

u dx� v dyþ i

ð
C

v dxþ u dy (4:5)

For this reason, (4.5) is sometimes taken as a definition of a complex line integral.

4.4 Properties of Integrals

Suppose f (z) and g(z) are integrable along C. Then the following hold:

(a)

ð
C

f (z)þ g(z)g dz ¼
ð
C

f (z) dzþ
ð
C

g(z) dz

(b)

ð
C

Af (z) dz ¼ A

ð
C

f (z) dz where A ¼ any constant

(c)

ðb
a

f (z) dz ¼ �
ða
b

f (z) dz

(d)

ðb
a

f (z) dz ¼
ðm
a

f (z) dzþ
ðb
m

f (z) dz where points a, b, m are on C

(e)
��� ð
C

f (z) dz
��� � ML

where j f (z)j � M, i.e., M is an upper bound of j f (z)j on C, and L is the length of C.
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There are various other ways in which the above properties can be described. For example, if T, U, and V

are successive points on a curve, property (c) can be written
Ð
TUV

f (z) dz ¼ �
Ð
VUT

f (z) dz.

Similarly, if C, C1, and C2 represent curves from a to b, a tom, andm to b, respectively, it is natural for us
to consider C ¼ C1 þ C2 and to write property (d) as

ð
C1þC2

f (z) dz ¼
ð
C1

f (z) dzþ
ð
C2

f (z) dz

4.5 Change of Variables

Let z ¼ g(z ) be a continuous function of a complex variable z ¼ uþ iv. Suppose that curve C in the z plane
corresponds to curve C0 in the z plane and that the derivative g0(z ) is continuous on C0. Thenð

C

f (z) dz ¼
ð
C0

f fg(z )gg0(z ) dz (4:6)

These conditions are certainly satisfied if g is analytic in a region containing curve C0.

4.6 Simply and Multiply Connected Regions

A region R is called simply-connected if any simple closed curve [Section 3.13], which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called multiply-
connected.

For example, suppose R is the region defined by jzj , 2 shown shaded in Fig. 4-2. If G is any simple
closed curve lying in R [i.e., whose points are in R], we see that it can be shrunk to a point that lies in
R, and thus does not leave R, so that R is simply-connected. On the other hand, if R is the region
defined by 1 , jzj , 2, shown shaded in Fig. 4-3, then there is a simple closed curve G lying in R that
cannot possibly be shrunk to a point without leaving R, so that R is multiply-connected.

y

x

Γ

|z| =
 2

Γ

y

x

|z| 
= 2

|z| 
= 1

y

x

Fig. 4-2 Fig. 4-3 Fig. 4-4

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a multiply-
connected region is one that does. The multiply-connected regions of Figs. 4-3 and 4-4 have, respectively,
one and three holes in them.
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4.7 Jordan Curve Theorem

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called
a Jordan curve [see Problem 4.30]. An important theorem that, although very difficult to prove, seems intui-
tively obvious is the following.

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve as a
common boundary. That region, which is bounded [i.e., is such that all points of it satisfy jzj , M
where M is some positive constant], is called the interior or inside of the curve, while the other region is
called the exterior or outside of the curve.

Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve is a
simply-connected region whose boundary is the simple closed curve.

4.8 Convention Regarding Traversal of a Closed Path

The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling
in this direction [and perpendicular to the plane] has the region to the left. This convention leads to the
directions indicated by the arrows in Figs. 4-2, 4-3, and 4-4. We use the special symbolþ

C

f (z) dz

to denote integration of f(z) around the boundary C in the positive sense. In the case of a circle [Fig. 4-2], the
positive direction is the counterclockwise direction. The integral around C is often called a contour integral.

4.9 Green’s Theorem in the Plane

Let P(x, y) andQ(x, y) be continuous and have continuous partial derivatives in a regionR and on its bound-
ary C. Green’s theorem states thatþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy (4:7)

The theorem is valid for both simply- and multiply-connected regions.

4.10 Complex Form of Green’s Theorem

Let F(z, �z) be continuous and have continuous partial derivatives in a region R and on its boundary C,
where z ¼ xþ iy, �z ¼ x� iy are complex conjugate coordinates [see page 7]. Then Green’s theorem can
be written in the complex form þ

C

F(z, �z) dz ¼ 2i

ðð
R

@F

@�z
dA (4:8)

where dA represents the element of area dx dy.
For a generalization of (4.8), see Problem 4.56.
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4.11 Cauchy’s Theorem. The Cauchy–Goursat Theorem

Let f(z) be analytic in a region R and on its boundary C. Thenþ
C

f (z) dz ¼ 0 (4:9)

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is valid for
both simply- and multiply-connected regions. It was first proved by use of Green’s theorem with the added
restriction that f 0(z) be continuous inR [see Problem 4.11]. However, Goursat gave a proof which removed
this restriction. For this reason, the theorem is sometimes called the Cauchy–Goursat theorem [see
Problems 4.13–4.16] when one desires to emphasize the removal of this restriction.

4.12 Morera’s Theorem

Let f(z) be continuous in a simply-connected region R and suppose thatþ
C

f (z) dz ¼ 0 (4:10)

around every simple closed curve C in R. Then f (z) is analytic in R.
This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be extended to

multiply-connected regions. For a proof, which assumes that f 0(z) is continuous in R, see Problem 4.27.
For a proof, which eliminates this restriction, see Problem 5.7, Chapter 5.

4.13 Indefinite Integrals

Suppose f(z) and F(z) are analytic in a regionR and such that F0(z) ¼ f (z). Then F(z) is called an indefinite
integral or anti-derivative of f (z) denoted by

F(z) ¼
ð
f (z) dz (4:11)

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an arbitrary con-
stant c is often added to the right of (11).

EXAMPLE 4.1: Since
d

dz
3z2 � 4 sin z

 �

¼ 6z� 4 cos z, we can writeð
(6z� 4 cos z) dz ¼ 3z2 � 4 sin zþ c

4.14 Integrals of Special Functions

Using results on page 80 [or by direct differentiation], we can arrive at the results in Fig. 4-5 (omitting a
constant of integration).
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1.

ð
zn dz ¼ znþ1

nþ 1
n=�1 18.

ð
coth z dz ¼ ln sinh z

2.

ð
dz

z
¼ ln z 19.

ð
sech z dz ¼ tan�1(sinh z)

3.

ð
ez dz ¼ ez 20.

ð
csch z dz ¼ �coth�1(cosh z)

4.

ð
az dz ¼ az

ln a
21.

ð
sech2 z dz ¼ tanh z

5.

ð
sin z dz ¼ �cos z 22.

ð
csch2 z dz ¼ �coth z

6.

ð
cos z dz ¼ sin z 23.

ð
sech z tanh z dz ¼ �sech z

7.

ð
tan z dz ¼ ln sec z ¼ �ln cos z 24.

ð
csch z coth z dz ¼ �csch z

8.

ð
cot z dz ¼ ln sin z 25.

ð
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 + a2
p ¼ ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p� 


9.

ð
sec z dz ¼ ln(sec zþ tan z)

¼ ln tan(z=2þ p=4)
26.

ð
dz

z2 þ a2
¼ 1

a
tan�1 z

a
or � 1

a
cot�1 z

a

10.

ð
csc z dz ¼ ln(csc z� cot z)

¼ ln tan(z=2)
27.

ð
dz

z2 � a2
¼ 1

2a
ln

z� a

zþ a

� �

11.

ð
sec2 z dz ¼ tan z 28.

ð
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � z2
p ¼ sin�1 z

a
or �cos�1 z

a

12.

ð
csc2 z dz ¼ �cot z 29.

ð
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + z2

p ¼ 1

a
ln

z

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + z2

p
� �

13.

ð
sec z tan z dz ¼ sec z 30.

ð
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p ¼ 1

a
cos�1 a

z
or

1

a
sec�1 z

a

14.

ð
csc z cot z dz ¼ � csc z 31.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p
dz ¼ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p

+
a2

2
ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p� 


15.

ð
sinh z dz ¼ cosh z 32.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
dz ¼ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
þ a2

2
sin�1 z

a

16.

ð
cosh z dz ¼ sinh z 33.

ð
eax sin bz dz ¼ eaz a sin bz� b cos bzð Þ

a2 þ b2

17.

ð
tanh z dz ¼ ln cosh z 34.

ð
eax cos bz dz ¼ eax a cos bzþ b sin bzð Þ

a2 þ b2

Fig. 4-5
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4.15 Some Consequences of Cauchy’s Theorem

Let f(z) be analytic in a simply-connected region R. Then the following theorems hold.

THEOREM 4.1. Suppose a and z are any two points in R. Then

ðz
a

f (z) dz

is independent of the path in R joining a and z.

THEOREM 4.2. Suppose a and z are any two points in R and

G(z) ¼
ðz
a

f (z) dz (4:12)

Then G(z) is analytic in R and G0(z) ¼ f (z).

Occasionally, confusion may arise because the variable of integration z in (4.12) is the same as the upper
limit of integration. Since a definite integral depends only on the curve and limits of integration, any symbol
can be used for the variable of integration and, for this reason, we call it a dummy variable or dummy
symbol. Thus (4.12) can be equivalently written

G(z) ¼
ðz
a

f (z ) dz (4:13)

THEOREM 4.3. Suppose a and b are any two points in R and F0(z) ¼ f (z). Then

ðb
a

f (z) dz ¼ F(b)� F(a) (4:14)

This can also be written in the form, familiar from elementary calculus,

ðb
a

F0(z) dz ¼ F(z)

����
b

a

or [F(z)]ba ¼ F(b)� F(a) (4:15)

EXAMPLE 4.2:

ð1�i

3i

4z dz ¼ 2z2
����
1�i

3i

¼ 2ð1� iÞ2 � 2ð3iÞ2 ¼ 18� 4i

THEOREM 4.4. Let f(z) be analytic in a region bounded by two simple closed curves C and C1 [where C1

lies inside C as in Fig. 4-6(a)] and on these curves. Thenþ
C

f (z) dz ¼
þ
C1

f (z) dz (4:16)

where C and C1 are both traversed in the positive sense relative to their interiors [counter-
clockwise in Fig. 4-6(a)].

The result shows that if we wish to integrate f(z) along curve C, we can equivalently replace C by any
curve C1 so long as f (z) is analytic in the region between C and C1 as in Fig. 4-6(a).
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y

x

C

C1

C2

Cn

y

x

(a) (b)

C

C1

Fig. 4-6

THEOREM 4.5. Let f(z) be analytic in a region bounded by the non-overlapping simple closed curves
C, C1, C2, C3, . . . , Cn where C1, C2, . . . , Cn are inside C [as in Fig. 4-6(b)] and on
these curves. Thenþ

C

f (z) dz ¼
þ
C1

f (z) dzþ
þ
C2

f (z) dzþ � � � þ
þ
Cn

f (z) dz (4:17)

This is a generalization of Theorem 4.4.

SOLVED PROBLEMS

Line Integrals

4.1. Evaluate
Ð (2,4)
(0,3)

(2yþ x2) dxþ (3x� y) dy along: (a) the parabola x ¼ 2t, y ¼ t2 þ 3; (b) straight lines
from (0, 3) to (2, 3) and then from (2, 3) to (2, 4); (c) a straight line from (0, 3) to (2, 4).

Solution

(a) The points (0, 3) and (2, 4) on the parabola correspond to t ¼ 0 and t ¼ 1, respectively. Then, the given

integral equals

ð1
t¼0

[2(t2 þ 3)þ (2t)2]2 dt þ [3(2t)� (t2 þ 3)]2t dt ¼
ð1
0

(24t2 þ 12� 2t3 � 6t) dt ¼ 33

2

(b) Along the straight line from (0, 3) to (2, 3), y ¼ 3, dy ¼ 0 and the line integral equals

ð2
x¼0

(6þ x2) dxþ (3x� 3)0 ¼
ð2

x¼0

(6þ x2) dx ¼ 44

3

Along the straight line from (2, 3) to (2, 4), x ¼ 2, dx ¼ 0 and the line integral equals

ð4
y¼3

(2yþ 4)0þ (6� y) dy ¼
ð4

y¼3

(6� y) dy ¼ 5

2

Then, the required value ¼ 44=3þ 5=2 ¼ 103=6.
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(c) An equation for the line joining (0, 3) and (2, 4) is 2y� x ¼ 6. Solving for x, we have x ¼ 2y� 6. Then,

the line integral equals

ð4
y¼3

2yþ (2y� 6)2
� �

2 dyþ [3(2y� 6)� y] dy ¼
ð4
3

(8y2 � 39yþ 54) dy ¼ 97

6

The result can also be obtained by using y ¼ 1
2
(xþ 6).

4.2. Evaluate
Ð
C
�z dz from z ¼ 0 to z ¼ 4þ 2i along the curve C given by: (a) z ¼ t2 þ it,

(b) the line from z ¼ 0 to z ¼ 2i and then the line from z ¼ 2i to z ¼ 4þ 2i.

Solution

(a) The points z ¼ 0 and z ¼ 4þ 2i on C correspond to t ¼ 0 and t ¼ 2, respectively. Then, the line integral

equals

ð2
t¼0

(t2 þ it) d(t2 þ it) ¼
ð2
0

(t2 � it)(2t þ i) dt ¼
ð2
0

(2t3 � it2 þ t) dt ¼ 10� 8i

3

Another Method. The given integral equalsð
C

(x� iy)(dxþ i dy) ¼
ð
C

x dxþ y dyþ i

ð
C

x dy� y dx

The parametric equations of C are x ¼ t2, y ¼ t from t ¼ 0 to t ¼ 2. Then, the line integral equals

ð2
t¼0

(t2)(2t dt)þ (t)(dt)þ i

ð2
t¼0

(t2)(dt)� (t)(2t dt)

¼
ð2
0

(2t3 þ t) dt þ i

ð2
0

(�t2) dt ¼ 10� 8i

3

(b) The given line integral equalsð
C

(x� iy)(dxþ i dy) ¼
ð
C

x dxþ y dyþ i

ð
C

x dy� y dx

The line from z ¼ 0 to z ¼ 2i is the same as the line from (0, 0) to (0, 2) for which x ¼ 0, dx ¼ 0 and the

line integral equals

ð2
y¼0

(0)(0)þ y dyþ i

ð2
y¼0

(0)(dy)� y(0) ¼
ð2

y¼0

y dy ¼ 2

The line from z ¼ 2i to z ¼ 4þ 2i is the same as the line from (0, 2) to (4, 2) for which y ¼ 2, dy ¼ 0

and the line integral equalsð4
x¼0

x dxþ 2 � 0þ i

ð4
x¼0

x � 0� 2 dx ¼
ð4
0

x dxþ i

ð4
0

�2 dx ¼ 8� 8i

Then, the required value ¼ 2þ (8� 8i) ¼ 10� 8i.
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4.3. Suppose f (z) is integrable along a curve C having finite length L and suppose there exists a positive
number M such that j f (z)j � M on C. Prove that

ð
C

f (z) dz

������
������ � ML

Solution

By definition, we have on using the notation of page 111,ð
C

f (z) dz ¼ lim
n!1

Xn
k¼1

f (jk)Dzk (1)

Now

Xn
k¼1

f (jk)Dzk

�����
����� �

Xn
k¼1

j f (jk) j jDzkj

� M
Xn
k¼1

jDzkj

� ML

(2)

wherewe have used the facts that j f (z)j � M for all points z onC and that
Pn

k¼1 jDzkj represents the sumof all the

chord lengths joining points zk�1 and zk, where k ¼ 1, 2, . . . , n, and that this sum is not greater than the length

of C.

Taking the limit of both sides of (2), using (1), the required result follows. It is possible to show, more

generally, that ð
C

f (z) dz

������
������ �

ð
C

j f (z)j jdzj

Green’s Theorem in the Plane

4.4. Prove Green’s theorem in the plane if C is a simple closed curve which has the property that any
straight line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves EGF and EHF (see Fig. 4-7) be y ¼ Y1(x) and y ¼ Y2(x), respectively. If R is

the region bounded by C, we have

ðð
R

@P

@y
dx dy ¼

ðf
x¼e

ðY2(x)
y¼Y1(x)

@P

@y
dy

2
64

3
75dx

¼
ðf
x¼e

P(x, y)
���Y2(x)
y¼Y1(x)

dx ¼
ðf
e

[P(x, Y2)� P(x, Y1)] dx

¼ �
ðf
e

P(x, Y1) dx�
ðe
f

P(x, Y2) dx ¼ �
þ
C

P dx

Then þ
C

P dx ¼ �
ðð
R

@P

@y
dx dy (1)
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Similarly, let the equations of curves GEH and GFH be x ¼ X1( y) and x ¼ X2( y), respectively. Then

ðð
R

@Q

@x
dx dy ¼

ðh
y¼g

ðX2(y)

x¼X1(y)

@Q

@x
dx

2
64

3
75 dy ¼

ðh
g

[Q(X2, y)� Q(X1, y)] dy

¼
ðg
h

Q(X1, y) dyþ
ðh
g

Q(X2, y) dy ¼
þ
C

Q dy

Then þ
C

Q dy ¼
ðð
R

@Q

@x
dx dy (2)

Adding (1) and (2), þ
C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

y
h

g

e f

G

E

H

F

x

(1, 1)

R

y =
 x
2

y
2  = x

x

y

C

O

Fig. 4-7 Fig. 4-8

4.5. Verify Green’s theorem in the plane forþ
C

(2xy� x2) dxþ (xþ y2) dy

where C is the closed curve of the region bounded by y ¼ x2 and y2 ¼ x.

Solution

The plane curves y ¼ x2 and y2 ¼ x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as

shown in Fig. 4-8.

Along y ¼ x2, the line integral equals

ð1
x¼0

(2x)(x2)� x2
� �

dxþ xþ (x2)2
� �

d(x2) ¼
ð1
0

(2x3 þ x2 þ 2x5) dx ¼ 7

6

Along y2 ¼ x, the line integral equals

ð0
y¼1

f2( y2)( y)� ( y2)2g d( y2)þ f y2 þ y2g dy ¼
ð0
1

(4y4 � 2y5 þ 2y2) dy ¼ � 17

15
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Then the required integral ¼ 7=6� 17=15 ¼ 1=30. On the other hand,

ðð
R

@Q

@x
� @P

@y

� �
dx dy ¼

ðð
R

@

@x
(xþ y2)� @

@y
(2xy� x2)

� �
dx dy

¼
ðð
R

(1� 2x) dx dy ¼
ð1

x¼0

ðffiffixp

y¼x2

(1� 2x) dy dx

¼
ð1

x¼0

( y� 2xy)

������
ffiffi
x

p

y¼x2

dx ¼
ð1
0

(x1=2 � 2x3=2 � x2 þ 2x3) dx ¼ 1

30

Hence, Green’s theorem is verified.

4.6. Extend the proof of Green’s theorem in the plane given in Problem 4.4 to curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a simple closed curve C such as shown in Fig. 4-9 in which lines parallel to the axes may meet C in

more than two points. By constructing line ST, the region is divided into two regions R1 and R2 which are of

the type considered in Problem 4.4 and for which Green’s theorem applies, i.e.,ð
STUS

P dxþ Qdy ¼
ðð
R1

@Q

@x
� @P

@y

� �
dx dy (1)

ð
SVTS

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy (2)

Adding the left-hand sides of (1) and (2), we have, omitting the integrand Pdxþ Qdy in each case,ð
STUS

þ
ð

SVTS

¼
ð
ST

þ
ð

TUS

þ
ð

SVT

þ
ð
TS

¼
ð

TUS

þ
ð

SVT

¼
ð

TUSVT

using the fact that
Ð
ST

¼ �
Ð
TS
.

Adding the right-hand sides of (1) and (2), omitting the integrand,ðð
R1

þ
ðð
R2

¼
ðð
R

Then ð
TUSVT

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

and the theorem is proved. We have proved Green’s theorem for the simply-connected region of Fig. 4-9

bounded by the simple closed curve C. For more complicated regions, it may be necessary to construct

more lines, such as ST, to establish the theorem.

Green’s theorem is also true for multiply-connected regions, as shown in Problem 4.7.
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Fig. 4-9 Fig. 4-10

4.7. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as
shown shaded in Fig. 4-10.

Solution

The boundary ofR, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is to

be traversed in the positive direction so that a person traveling in this direction always has the region on his/her
left. It is seen that the positive directions are as indicated in the figure.

In order to establish the theorem, construct a line, such as AD, called a cross-out, connecting the exterior and

interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is

valid. Then þ
ADEFGDALKJHA

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

But the integral on the left, leaving out the integrand, is equal to

ð
AD

þ
ð

DEFGD

þ
ð
DA

þ
ð

ALKJHA

¼
ð

DEFGD

þ
ð

ALKJHA

since
Ð
AD

¼ �
Ð
DA
. Thus, if C1 is the curve ALKJHA, C2 is the curve DEFGD and C is the boundary of R con-

sisting of C1 and C2 (traversed in the positive directions with respect to R), then
Ð
C1
þ
Ð
C2

¼
Þ
C
and soþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

4.8. Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point of a
simply-connected regionR. Prove that a necessary and sufficient condition that

Þ
C
P dxþ Qdy ¼ 0

around every closed path C in R is that @P=@y ¼ @Q=@x identically in R.

Solution

Sufficiency. Suppose @P=@y ¼ @Q=@x. Then, by Green’s theorem,þ
C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy ¼ 0

where R is the region bounded by C.
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Necessity. Suppose
Þ
C
P dxþ Qdy ¼ 0 around every closed path C inR and that @P=@y=@Q=@x at some point

of R. In particular, suppose @P=@y� @Q=@x . 0 at the point (x0, y0).

By hypothesis, @P=@y and @Q=@x are continuous inR so that there must be some region t containing (x0, y0)
as an interior point for which @P=@y� @Q=@x . 0. If G is the boundary of t, then by Green’s theorem

þ
G

Pdxþ Qdy ¼
ðð
t

@Q

@x
� @P

@y

� �
dx dy . 0

contradicting the hypothesis that
Þ
C
P dxþ Qdy ¼ 0 for all closed curves in R. Thus, @Q=@x� @P=@y cannot

be positive.

Similarly, we can show that @Q=@x� @P=@y cannot be negative and it follows that it must be identically

zero, i.e., @P=@y ¼ @Q=@x identically in R.

The results can be extended to multiply-connected regions.

4.9. Let P and Q be defined as in Problem 4.8. Prove
that a necessary and sufficient condition thatÐ B
A
P dxþ Qdy be independent of the path in R

joining points A and B is that @P=@y ¼ @Q=@x
identically in R.

Solution

Sufficiency. If @P=@y ¼ @Q=@x, then by Problem 4.8

ð
ADBEA

P dxþ Qdy ¼ 0

[see Fig. 4-11]. From this, omitting for brevity the

integrand Pdxþ Qdy, we have

ð
ADB

þ
ð

BEA

¼ 0,

ð
ADB

¼ �
ð

BEA

¼
ð

AEB

and so

ð
C1

¼
ð
C2

i.e., the integral is independent of the path.

Necessity. If the integral is independent of the path, then for all paths C1 and C2 in R, we have

ð
C1

¼
ð
C2

,

ð
ADB

¼
ð

AEB

and

ð
ADBEA

¼ 0

From this, it follows that the line integral around any closed path in R is zero and hence, by Problem 4.8, that

@P=@y ¼ @Q=@x.
The results can be extended to multiply-connected regions.

Complex Form of Green’s Theorem

4.10. Suppose B(z, �z) is continuous and has continuous partial derivatives in a region R and on its
boundary C, where z ¼ xþ iy and �z ¼ x� iy. Prove that Green’s theorem can be written in
complex form as

þ
C

B(z, �z) dz ¼ 2i

ðð
R

@B

@�z
dx dy

y

x

E

A

D

C1

C2

B

Fig. 4-11

124 CHAPTER 4 Complex Integration and Cauchy’s Theorem



Solution

Let B(z, �z) ¼ P(x, y)þ iQ(x, y). Then, using Green’s theorem, we have

þ
C

B(z, �z) dz ¼
þ
C

(Pþ iQ)(dxþ i dy) ¼
þ
C

P dx� Qdyþ i

þ
C

Q dxþ Pdy

¼ �
ðð
R

@Q

@x
þ @P

@y

� �
dx dyþ i

ðð
R

@P

@x
� @Q

@y

� �
dx dy

¼ i

ðð
R

@P

@x
� @Q

@y

� �
þ i

@P

@y
þ @Q

@x

� �� 	
dx dy

¼ 2i

ðð
R

@B

@�z
dx dy

from Problem 3.34, page 101. The result can also be written in terms of curl B [see page 85].

Cauchy’s Theorem and the Cauchy–Goursat Theorem

4.11. Prove Cauchy’s theorem
Þ
C
f (z) dz ¼ 0 if f(z) is analytic with derivative f 0(z) which is continuous at

all points inside and on a simple closed curve C.

Solution

Since f (z) ¼ uþ iv is analytic and has a continuous derivative

f 0(z) ¼ @u

@x
þ i

@v

@x
¼ @v

@y
� i

@u

@y

it follows that the partial derivatives

@u

@x
¼ @v

@y
(1)

@v

@x
¼ � @u

@y
(2)

are continuous inside and on C. Thus, Green’s theorem can be applied and we haveþ
C

f (z) dz ¼
þ
C

(uþ iv)(dxþ i dy) ¼
þ
C

u dx� v dyþ i

þ
C

v dxþ u dy

¼
ðð
R

� @v

@x
� @u

@y

� �
dx dyþ i

ðð
R

@u

@x
� @v

@y

� �
dx dy ¼ 0

using the Cauchy–Riemann equations (1) and (2).

By using the fact that Green’s theorem is applicable to multiply-connected regions, we can extend the result

to multiply-connected regions under the given conditions on f (z).

The Cauchy–Goursat theorem [see Problems 4.13–4.16] removes the restriction that f 0(z) be continuous.

Another Method.
The result can be obtained from the complex form of Green’s theorem [Problem 4.10] by noting that if

B(z, �z) ¼ f (z) is independent of �z, then @B=@�z ¼ 0 and so
Þ
C
f (z) dz ¼ 0.
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4.12. Prove (a)
Þ
C
dz ¼ 0, (b)

Þ
C
z dz ¼ 0, (c)

Þ
C
(z� z0) dz ¼ 0 where C is any simple closed curve and z0

is a constant.

Solution

These follow at once from Cauchy’s theorem since the functions 1, z, and z� z0 are analytic inside C and have

continuous derivatives.

The results can also be established directly from the definition of an integral (see Problem 4.90).

4.13. Prove the Cauchy–Goursat theorem for the case of a triangle.

A

E

B CF

D

ΔI

ΔII ΔIII

ΔIV
Δn

z0

Fig. 4-12 Fig. 4-13

Solution

Consider any triangle in the z plane such as ABC, denoted briefly by D, in Fig. 4-12. Join the midpoints D, E,

and F of sides AB, AC, and BC, respectively, to form four triangles (DI, DII, DIII, and DIV).

If f(z) is analytic inside and on triangle ABC, we have, omitting the integrand on the right,þ
ABCA

f (z) dz ¼
ð

DAE

þ
ð

EBF

þ
ð

FCD

¼
ð

DAE

þ
ð
ED

8<
:

9=
;þ

ð
EBF

þ
ð
FE

8<
:

9=
;þ

ð
FCD

þ
ð
DF

8<
:

9=
;þ

ð
DE

þ
ð
EF

þ
ð
FD

8<
:

9=
;

¼
ð

DAED

þ
ð

EBFE

þ
ð

FCDF

þ
ð

DEFD

¼
þ
DI

f (z) dzþ
þ
DII

f (z) dzþ
þ
DIII

f (z) dzþ
þ
DIV

f (z) dz

where, in the second line, we have made use of the fact thatð
ED

¼ �
ð
DE

,

ð
FE

¼ �
ð
EF

,

ð
DF

¼ �
ð
FD

Then

þ
D

f (z) dz

������
������ �

þ
DI

f (z) dz

�������
�������þ

þ
DII

f (z) dz

�������
�������þ

þ
DIII

f (z) dz

�������
�������þ

þ
DIV

f (z) dz

�������
������� (1)

Let D1 be the triangle corresponding to that term on the right of (1) having largest value (if there are two or

more such terms, then D1 is any of the associated triangles). Then

þ
D

f (z) dz

������
������ � 4

þ
D1

f (z) dz

�������
������� (2)
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By joining midpoints of the sides of triangle D1, we obtain similarly a triangle D2 such that

þ
D1

f (z) dz

�������
������� � 4

þ
D2

f (z) dz

�������
������� (3)

so that

þ
D

f (z) dz

������
������ � 42

þ
D2

f (z) dz

�������
������� (4)

After n steps, we obtain a triangle Dn such that

þ
D

f (z) dz

������
������ � 4n

þ
Dn

f (z) dz

�������
������� (5)

Now D, D1, D2, D3, . . . is a sequence of triangles, each of which is contained in the preceding (i.e., a sequence
of nested triangles), and there exists a point z0 which lies in every triangle of the sequence.

Since z0 lies inside or on the boundary of D, it follows that f (z) is analytic at z0. Then, by Problem 3.21,

page 95,

f (z) ¼ f (z0)þ f 0(z0)(z� z0)þ h(z� z0) (6)

where, for any e . 0, we can find d such that jh j , e whenever jz� z0j , d.
Thus, by integration of both sides of (6) and using Problem 4.12,þ

Dn

f (z) dz ¼
þ
Dn

h(z� z0) dz (7)

Now, if P is the perimeter of D, then the perimeter of Dn is Pn ¼ P=2n. If z is any point on Dn, then as seen

from Fig. 4-13, we must have jz� z0j , P=2n , d. Hence, from (7) and Property e, page 112, we have

þ
Dn

f (z) dz

�������
������� ¼

þ
Dn

h(z� z0) dz

�������
������� � e � P

2n
� P
2n

¼ eP2

4n

Then (5) becomes

þ
D

f (z) dz

������
������ � 4n � eP

2

4n
¼ eP2

Since e can be made arbitrarily small, it follows that, as required,þ
D

f (z) dz ¼ 0

4.14. Prove the Cauchy–Goursat theorem for any closed polygon.

Solution

Consider, for example, a closed polygon ABCDEFA such as indicated in Fig. 4-14. By constructing the

lines BF, CF, and DF, the polygon is subdivided into triangles. Then, by Cauchy’s theorem for triangles

[Problem 4.13] and the fact that the integrals along BF and FB, CF and FC, and DF and FD cancel, we
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find as required ð
ABCDEFA

f (z) dz ¼
ð

ABFA

f (z) dzþ
ð

BCFB

f (z) dzþ
ð

CDFC

f (z) dzþ
ð

DEFD

f (z) dz ¼ 0

where we suppose that f(z) is analytic inside and on the polygon.

It should be noted that we have proved the result for simple polygons whose sides do not cross. A proof can

also be given for any polygon that intersects itself (see Problem 4.66).

D

E

F

A

B

C

zn–1

z0 = znz1

z2

z3

C

Fig. 4-14 Fig. 4-15

4.15. Prove the Cauchy–Goursat theorem for any simple closed curve.

Solution

Let us assume that C is contained in a region R in which f (z) is analytic.

Choose n points of subdivision z1, z2, . . . , zn on curve C [Fig. 4-15] where, for convenience of notation, we

consider z0 ¼ zn. Construct polygon P by joining these points.

Let us define the sum

Sn ¼
Xn
k¼1

f (zk)Dzk

where Dzk ¼ zk � zk�1. Since

lim Sn ¼
þ
C

f (z) dz

where the limit on the left means that n ! 1 in such a way that the largest of jDzkj ! 0. It follows that, given

any e . 0, we can choose N so that for n . N

þ
C

f (z) dz� Sn

������
������ ,

e

2
(1)

Consider now the integral along polygon P. Since this is zero by Problem 4.14, we have

þ
P

f (z) dz ¼ 0 ¼
ðz1
z0

f (z) dzþ
ðz2
z1

f (z) dzþ � � � þ
ðzn

zn�1

f (z) dz

¼
ðz1
z0

f f (z)� f (z1)þ f (z1)g dzþ � � � þ
ðzn

zn�1

f f (z)� f (zn)þ f (zn)g dz

¼
ðz1
z0

f f (z)� f (z1)g dzþ � � � þ
ðzn

zn�1

f f (z)� f (zn)g dzþ Sn
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so that

Sn ¼
ðz1
z0

f f (z1)� f (z)g dzþ � � � þ
ðzn

zn�1

f f (zn)� f (z)g dz (2)

Let us now choose N so large that on the lines joining z0 and z1, z1 and z2, . . . , zn�1 and zn,

j f (z1)� f (z) j , e

2L
, j f (z2)� f (z) j , e

2L
, . . . , j f (zn)� f (z)j , e

2L
(3)

where L is the length of C. Then, from (2) and (3), we have

jSnj �
ðz1
z0

f f (z1)� f (z)g dz

������
������þ

ðz2
z1

f f (z2)� f (z)g dz

������
������þ � � � þ

ðzn
zn�1

f f (zn)� f (z)g dz

������
������

or

jSnj �
e

2L
fjz1 � z0j þ jz2 � z1j þ � � � þ jzn � zn�1jg ¼

e

2
(4)

From þ
C

f (z) dz ¼
þ
C

f (z) dz� Sn þ Sn

we have, using (1) and (4),

þ
C

f (z) dz

������
������ �

þ
C

f (z) dz� Sn

������
������þ jSnj ,

e

2
þ e

2
¼ e

Thus, since e is arbitrary, it follows that
Þ
C
f (z) dz ¼ 0 as required.

4.16. Prove the Cauchy–Goursat theorem for multiply-connected regions.

Solution

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C1 and C2

as indicated in Fig. 4-16. Extensions to other multiply-connected regions are easily made (see Problem 4.67).

G

I

J

H A

F

E

C1

C2

D

B

R

Fig. 4-16

Construct cross-cut AH. Then the region bounded by ABDEFGAHJIHA is simply-connected so that by

Problem 4.15, þ
ABDEFGAHJIHA

f (z) dz ¼ 0

Hence ð
ABDEFGA

f (z) dzþ
ð
AH

f (z) dzþ
ð

HJIH

f (z) dzþ
ð
HA

f (z) dz ¼ 0
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Since
Ð
AH

f (z) dz ¼ �
Ð
HA

f (z) dz, this becomesð
ABDEFGA

f (z) dzþ
ð

HJIH

f (z) dz ¼ 0

This, however, amounts to saying that þ
C

f (z) dz ¼ 0

where C is the complete boundary of R (consisting of ABDEFGA and HJIH) traversed in the sense that an

observer walking on the boundary always has the region R on his/her left.

Consequences of Cauchy’s Theorem

4.17. Suppose f (z) is analytic in a simply-connected region R. Prove that
Ð b
a
f (z) dz is independent of the

path in R joining any two points a and b in R [as in Fig. 4-17].

Solution

By Cauchy’s theorem, ð
ADBEA

f (z) dz ¼ 0

or ð
ADB

f (z) dzþ
ð

BEA

f (z) dz ¼ 0

Hence ð
ADB

f (z) dz ¼ �
ð

BEA

f (z) dz ¼
ð

AEB

f (z) dz

Thus

ð
C1

f (z) dz ¼
ð
C2

f (z) dz ¼
ðb
a

f (z) dz

which yields the required result.

y

x

A

B

b

D

C1

C2

E

a

y

R

x

z a
z + Dz

Fig. 4-17 Fig. 4-18
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4.18. Let f (z) be analytic in a simply-connected region R and let a and z be points in R. Prove that
(a) F(z) ¼

Ð z
a
f (u) du is analytic in R and (b) F0(z) ¼ f (z).

Solution

We have

F(zþ Dz)� F(z)

Dz
� f (z) ¼ 1

Dz

ðzþDz

a

f (u) du�
ðz
a

f (u) du

8<
:

9=
;� f (z)

¼ 1

Dz

ðzþDz

z

f f (u)� f (z)g du

(1)

By Cauchy’s theorem, the last integral is independent of the path joining z and zþ Dz so long as the path is in

R. In particular, we can choose as a path the straight line segment joining z and zþ Dz (see Fig. 4-18) provided
we choose jDzj small enough so that this path lies in R.

Now, by the continuity of f (z), we have for all points u on this straight line path j f (u)� f (z)j , e whenever
ju� zj , d, which will certainly be true if jDzj , d.

Furthermore, we have

ðzþDz

z

f (u)� f (z)
� �

du

������
������ , ejDzj (2)

so that from (1)

F(zþ Dz)� F(z)

Dz
� f (z)

����
���� ¼ 1

jDzj

ðzþDz

z

[ f (u)� f (z)] du

������
������ , e

for jDzj , d. This, however, amounts to saying that

lim
Dz!0

F(zþ Dz)� F(z)

Dz
¼ f (z),

i.e., F(z) is analytic and F0(z) ¼ f (z).

4.19. A function F(z) such that F0(z) ¼ f (z) is called an indefinite integral of f(z) and is denoted byÐ
f (z) dz. Show that (a)

Ð
sin z dz ¼ �cos zþ c, (b)

Ð
dz=z ¼ ln zþ cwhere c is an arbitrary constant.

Solution

(a) Since d=dz(�cos zþ c) ¼ sin z, we have
Ð
sin z dz ¼ �cos zþ c.

(b) Since d=dz(ln zþ c) ¼ 1=z, we have
Ð
dz=z ¼ ln zþ c.

4.20. Let f(z) be analytic in a region R bounded by two simple closed curves C1 and C2 [shaded in
Fig. 4-19] and also on C1 and C2. Prove that

Þ
C1
f (z) dz ¼

Þ
C2
f (z) dz, where C1 and C2 are both tra-

versed in the positive sense relative to their interiors [counterclockwise in Fig. 4-19].

Solution

Construct cross-cut DE. Then, since f (z) is analytic in the region R, we have by Cauchy’s theoremð
DEFGEDHJKLD

f (z) dz ¼ 0

or ð
DE

f (z) dzþ
ð

EFGE

f (z) dzþ
ð
ED

f (z) dzþ
ð

DHJKLD

f (z) dz ¼ 0
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Hence since
Ð
DE

f (z) dz ¼ �
Ð
ED

f (z) dz,ð
DHJKLD

f (z) dz ¼ �
ð

EFGE

f (z) dz ¼
ð

EGFE

f (z) dz or

þ
C1

f (z) dz ¼
þ
C2

f (z) dz

L

R

E
F

K

G

D

H
J

C1

C2

C

G

a
Œ

Fig. 4-19 Fig. 4-20

4.21. Evaluate
Þ
C
dz=z� a where C is any simple closed curve C and z ¼ a is (a) outside C, (b) inside C.

Solution

(a) If a is outside C, then f (z) ¼ 1=(z� a) is analytic everywhere inside and on C. Hence, by Cauchy’s

theorem,
Þ
C
dx=z� a ¼ 0:

(b) Suppose a is inside C and let G be a circle of radius e with center at z ¼ a so that G is inside C (this can be

done since z ¼ a is an interior point).

By Problem 4.20, þ
C

dz

z� a
¼
þ
G

dz

z� a
(1)

Now on G, jz� aj ¼ e or z� a ¼ eeiu, i.e., z ¼ aþ eeiu, 0 � u , 2p. Thus, since dz ¼ ieeiu du, the
right side of (1) becomes

ð2p
u¼0

ieeiu du

eeiu
¼ i

ð2p
0

du ¼ 2pi

which is the required value.

4.22. Evaluate

þ
C

dz

(z� a)n
, n ¼ 2, 3, 4, . . . where z ¼ a is inside the simple closed curve C.

Solution

As in Problem 4.21, þ
C

dz

(z� a)n
¼
þ
G

dz

(z� a)n

¼
ð2p
0

ieeiu du

eneinu
¼ i

e n�1

ð2p
0

e(1�n)iu du

¼ i

e n�1

e(1�n)iu

(1� n)i

����
2p

0

¼ 1

(1� n)e n�1
[e2(1�n)pi � 1] ¼ 0

where n=1.
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4.23. Let C be the curve y ¼ x3 � 3x2 þ 4x� 1 joining points (1, 1) and (2, 3). Find the value ofÐ
C
(12z2 � 4iz) dz.

Solution

Method 1. By Problem 4.17, the integral is independent of the path joining (1, 1) and (2, 3). Hence, any path can

be chosen. In particular, let us choose the straight line paths from (1, 1) to (2, 1) and then from (2, 1) to (2, 3).

Case 1. Along the path from (1, 1) to (2, 1), y ¼ 1, dy ¼ 0 so that z ¼ xþ iy ¼ xþ i, dz ¼ dx. Then, the

integral equals

ð2
x¼1

�
12(xþ i)2 � 4i(xþ i)

�
dx ¼

�
4(xþ i)3 � 2i(xþ i)2

�����
2

1

¼ 20þ 30i

Case 2. Along the path from (2, 1) to (2, 3), x ¼ 2, dx ¼ 0 so that z ¼ xþ iy ¼ 2þ iy, dz ¼ i dy. Then, the

integral equals

ð3
y¼1

�
12(2þ iy)2 � 4i(2þ iy)

�
i dy ¼

�
4(2þ iy)3 � 2i(2þ iy)2

�����
3

1

¼�176þ 8i

Then, adding the required value ¼ (20þ 30i)þ (�176þ 8i) ¼ �156þ 38i.

Method 2. The given integral equals

ð2þ3i

1þi

(12z2 � 4iz) dz ¼ (4z3 � 2iz2)

����
2þ3i

1þi

¼ �156þ 38i

It is clear that Method 2 is easier.

Integrals of Special Functions

4.24. Determine (a)
Ð
sin 3z cos 3z dz, (b)

Ð
cot(2zþ 5) dz.

Solution

(a) Method 1. Let sin 3z ¼ u. Then, du ¼ 3 cos 3z dz or cos 3z dz ¼ du=3. Thenð
sin 3z cos 3z dz ¼

ð
u
du

3
¼ 1

3

ð
u du ¼ 1

3

u2

2
þ c

¼ 1

6
u2 þ c ¼ 1

6
sin2 3zþ c

Method 2. ð
sin 3z cos 3z dz ¼ 1

3

ð
sin 3z d(sin 3z) ¼ 1

6
sin2 3zþ c

Method 3. Let cos 3z ¼ u. Then, du ¼ �3 sin 3z dz or sin 3z dz ¼ �du=3. Thenð
sin 3z cos 3z dz ¼ � 1

3

ð
u du ¼ � 1

6
u2 þ c1 ¼ � 1

6
cos2 3zþ c1

Note that the results of Methods 1 and 3 differ by a constant.

(b) Method 1. ð
cot(2xþ 5) dz ¼

ð
cos(2zþ 5)

sin(2zþ 5)
dz
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Let u ¼ sin(2zþ 5). Then du ¼ 2 cos(2zþ 5) dz and cos(2zþ 5) dz ¼ du=2. Thusð
cos(2zþ 5) dz

sin(2zþ 5)
¼ 1

2

ð
du

u
¼ 1

2
ln uþ c ¼ 1

2
ln sin(2zþ 5)þ c

Method 2. ð
cot(2zþ 5) dz ¼

ð
cos(2zþ 5)

sin(2zþ 5)
dz ¼ 1

2

ð
dfsin(2zþ 5)g
sin(2zþ 5)

¼ 1

2
ln sin(2zþ 5)þ c

4.25. (a) Prove that
Ð
F(z)G0(z) dz ¼ F(z)G(z)�

Ð
F0(z)G(z) dz.

(b) Find
Ð
ze2z dz and

Ð 1
0
ze2z dz.

(c) Find
Ð
z2 sin 4z dz and

Ð 2p
0

z2 sin 4z dz.

(d) Evaluate
Ð
C
(zþ 2)eiz dz along the parabola C defined by p2y ¼ x2 from (0, 0) to (p, 1).

Solution

(a) We have

dfF(z)G(z)g ¼ F(z)G0(z) dzþ F0(z)G(z) dz

Integrating both sides yieldsð
dfF(z)G(z)g ¼ F(z)G(z) ¼

ð
F(z)G0(z) dzþ

ð
F0(z)G(z) dz

Then ð
F(z)G0(z) dz ¼ F(z)G(z)�

ð
F0(z)G(z) dz

The method is often called integration by parts.

(b) Let F(z) ¼ z, G0(z) ¼ e2z. Then F0(z) ¼ 1 and G(z) ¼ 1
2
e2z, omitting the constant of integration. Thus, by

part (a), ð
ze2z dz ¼

ð
F(z)G0(z) dz ¼ F(z)G(z)�

ð
F0(z)G(z) dz

¼ (z)
1

2
e2z

� �
�
ð
1 � 1

2
e2z dz ¼ 1

2
ze2z � 1

4
e2z þ c

Hence ð1
0

ze2z dz ¼ 1

2
ze2z � 1

4
e2z þ c

� �����1
0

¼ 1

2
e2 � 1

4
e2 þ 1

4
¼ 1

4
(e2 þ 1)

(c) Integrating by parts choosing F(z) ¼ z2, G0(z) ¼ sin 4z, we haveð
z2 sin 4z dz ¼ (z2) � 1

4
cos 4z

� �
�
ð
(2z) � 1

4
cos 4z

� �
dz

¼ � 1

4
z2 cos 4zþ 1

2

ð
z cos 4z dz

Integrating this last integral by parts, this time choosing F(z) ¼ z and G0(z) ¼ cos 4z, we findð
z cos 4z dz ¼ (z)

1

4
sin 4z

� �
�
ð
(1)

1

4
sin 4z

� �
dz ¼ 1

4
z sin 4zþ 1

16
cos 4z
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Hence ð
z2 sin 4z dz ¼ � 1

4
z2 cos 4zþ 1

8
z sin 4zþ 1

32
cos 4zþ c

and

ð2p
0

z2 sin 4z dz ¼ �p2 þ 1

32
� 1

32
¼ �p3

The double integration by parts can be indicated in a suggestive manner by writing

ð
z2 sin 4z dz ¼ (z2) � 1

4
cos 4z

� �
� (2z) � 1

16
sin 4z

� �
þ (2)

1

64
cos 4z

� �
þ c

¼ � 1

4
z2 cos 4z þ 1

8
z sin 4zþ 1

32
cos 4z

where the first parentheses in each term (after the first) is obtained by differentiating z2 successively, the

second parentheses is obtained by integrating sin 4z successively, and the terms alternate in sign.

(d) The points (0, 0) and (p, 1) correspond to z ¼ 0 and z ¼ pþ i. Since (zþ 2)eiz is analytic, we see by

Problem 4.17 that the integral is independent of the path and is equal to

ð1þi

0

(zþ 2)eizdz ¼ (zþ 2)
eiz

i

� �
� (1)(�eiz)

� �����
pþi

0

¼ (pþ iþ 2)
ei(pþi)

i

� �
þ ei(pþi) � 2

i
� 1

¼ �2e�1 � 1þ i(2þ pe�1 þ 2e�1)

4.26. Show that

ð
dz

z2 þ a2
¼ 1

a
tan�1 z

a
þ c1 ¼

1

2ai
ln

z� ai

zþ ai

� �
þ c2.

Solution

Let z ¼ a tan u. Then ð
dz

z2 þ a2
¼
ð

a sec2 u du

a2(tan2 uþ 1)
¼ 1

a

ð
du ¼ 1

a
tan�1 z

a
þ c1

Also,

1

z2 þ a2
¼ 1

(z� ai)(zþ ai)
¼ 1

2ai

1

z� ai
� 1

zþ ai

� �

and so ð
dz

z2 þ a2
¼ 1

2ai

ð
dz

z� ai
� 1

2ai

ð
dz

zþ ai

¼ 1

2ai
ln(z� ai)� 1

2ai
ln(zþ ai)þ c2 ¼

1

2ai
ln

z� ai

zþ ai

� �
þ c2
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Miscellaneous Problems

4.27. Prove Morera’s theorem [page 115] under the assumption that f (z) has a continuous derivative inR.

Solution

If f(z) has a continuous derivative in R, then we can apply Green’s theorem to obtainþ
C

f (z) dz ¼
þ
C

u dx� v dyþ i

þ
C

v dxþ u dy

¼
ðð
R

� @v

@x
� @u

@y

� �
dx dyþ i

ðð
R

@u

@x
� @v

@y

� �
dx dy

Then, if
Þ
C
f (z) dz ¼ 0 around every closed path C in R, we must haveþ

C

u dx� v dy ¼ 0,

þ
C

v dxþ u dy ¼ 0

around every closed path C in R. Hence, from Problem 4.8, the Cauchy–Riemann equations

@u

@x
¼ @v

@y
,

@v

@x
¼ � @u

@y

are satisfied and thus (since these partial derivatives are continuous) it follows [Problem 3.5] that

uþ iv ¼ f (z) is analytic.

4.28. A force field is given by F ¼ 3zþ 5. Find the work done in moving an object in this force field along
the parabola z ¼ t2 þ it from z ¼ 0 to z ¼ 4þ 2i.

Solution

Total work done ¼
ð
C

F � dz ¼ Re

ð
C

F � dz ¼ Re

ð
C

(3�zþ 5) dz

8<
:

9=
;

¼ Re 3

ð
C

�z dzþ 5

ð
C

dz

8<
:

9=
; ¼ Re 3 10� 1

2
i

� �
þ 5(4þ 2i)

� �
¼ 50

using the result of Problem 4.2.

4.29. Find: (a)

ð
eax sin bx dx, (b)

ð
eax cos bx dx.

Solution

Omitting the constant of integration, we haveð
e(aþib)x dx ¼ e(aþib)x

aþ ib

which can be writtenð
eax(cos bxþ i sin bx) dx ¼ eax(cos bxþ i sin bx)

aþ ib
¼ eax(cos bxþ i sin bx)(a� ib)

a2 þ b2
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Then equating real and imaginary parts,ð
eax cos bx dx ¼ eax(a cos bxþ b sin bx)

a2 þ b2ð
eax sin bx dx ¼ eax(a sin bx� b cos bx)

a2 þ b2

4.30. Give an example of a continuous, closed, non-intersecting curve that lies in a bounded regionR but
which has an infinite length.

Solution

Consider equilateral triangle ABC [Fig. 4-21] with sides of unit length. By trisecting each side, construct equi-

lateral triangles DEF, GHJ, and KLM. Then omitting sides DF, GJ, and KM, we obtain the closed

non-intersecting curve ADEFBGHJCKLMA of Fig. 4-22.

A C

B

B

H

J

C
KM

L

A

E

D

F G

Fig. 4-21 Fig. 4-22 Fig. 4-23

The process can now be continued by trisecting sides DE, EF, FB, BG, GH, etc., and constructing equilat-

eral triangles as before. By repeating the process indefinitely [see Fig. 4-23], we obtain a continuous closed

non-intersecting curve that is the boundary of a region with finite area equal to

1

4

ffiffiffi
3

p
þ (3)

1

3

� �2
ffiffiffi
3

p

4
þ (9)

1

9

� �2
ffiffiffi
3

p

4
þ (27)

1

27

� �2
ffiffiffi
3

p

4
þ � � �

¼
ffiffiffi
3

p

4
1þ 1

3
þ 1

9
þ � � �

� �
¼

ffiffiffi
3

p

4

1

1� 1=3
¼ 3

ffiffiffi
3

p

8

or 1.5 times the area of triangle ABC, and which has infinite length (see Problem 4.91).

4.31. Let F(x, y) and G(x, y) be continuous and have continuous first and second partial derivatives in a
simply-connected region R bounded by a simple closed curve C. Prove thatþ

C

F
@G

@y
dx� @G

@x
dy

� �
¼ �

ðð
R

F
@2G

@x2
þ @2G

@y2

� �
þ @F

@x

@G

@x
þ @F

@y

@G

@y

� �� 	
dx dy

Solution

Let P ¼ F
@G

@y
, Q ¼ �F

@G

@x
in Green’s theorem soþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy
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Then as requiredþ
C

F
@G

@y
dx� @G

@x
dy

� �
¼
ðð
R

@

@x
�F

@G

@x

� �
� @

@y
F
@G

@y

� �� �
dx dy

¼ �
ðð
R

F
@2G

@x2
þ @2G

@y2

� �
þ @F

@x

@G

@x
þ @F

@y

@G

@y

� �� 	
dx dy

SUPPLEMENTARY PROBLEMS

Line Integrals

4.32. Evaluate
Ð (2,5)
(0,1)

(3xþ y) dxþ (2y� x) dy along (a) the curve y ¼ x2 þ 1, (b) the straight line joining (0, 1) and

(2, 5), (c) the straight lines from (0, 1) to (0, 5) and then from (0, 5) to (2, 5), (d) the straight lines from (0, 1) to

(2, 1) and then from (2, 1) to (2, 5).

4.33. (a) Evaluate
Þ
C
(xþ 2y) dxþ ( y� 2x) dy around the ellipse C defined by x ¼ 4 cos u, y ¼ 3 sin u, 0 � u , 2p

if C is described in a counterclockwise direction.

(b) What is the answer to (a) if C is described in a clockwise direction?

4.34. Evaluate
Ð
C
(x2 � iy2) dz along (a) the parabola y ¼ 2x2 from (1, 2) to (2, 8), (b) the straight lines from (1, 1)

to (1, 8) and then from (1, 8) to (2, 8), (c) the straight line from (1, 1) to (2, 8).

4.35. Evaluate
Þ
C
jzj2 dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

4.36. Evaluate
Ð
C
(z2 þ 3z) dz along (a) the circle jzj ¼ 2 from (2, 0) to (0, 2) in a counterclockwise direction, (b) the

straight line from (2, 0) to (0, 2), (c) the straight lines from (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

4.37. Suppose f (z) and g(z) are integrable. Prove that

(a)

ðb
a

f (z) dz ¼ �
ða
b

f (z) dz, (b)

ð
C

f2f (z)� 3ig(z)g dz ¼ 2

ð
C

f (z) dz� 3i

ð
C

g(z) dz.

4.38. Evaluate
Ð 2�i

i
(3xyþ iy2) dz (a) along the straight line joining z ¼ i and z ¼ 2� i,

(b) along the curve x ¼ 2t � 2, y ¼ 1þ t � t2.

4.39. Evaluate
Þ
C
�z2 dz around the circles (a) jzj ¼ 1, (b) jz� 1j ¼ 1.

4.40. Evaluate
Þ
C
(5z4 � z3 þ 2) dz around (a) the circle jzj ¼ 1, (b) the square with vertices at (0, 0), (1, 0), (1, 1),

and (0, 1), (c) the curve consisting of the parabolas y ¼ x2 from (0, 0) to (1, 1) and y2 ¼ x from (1, 1) to (0, 0).

4.41. Evaluate
Ð
C
(z2 þ 1)2 dz along the arc of the cycloid x ¼ a(u� sin u), y ¼ a(1� cos u) from the point where

u ¼ 0 to the point where u ¼ 2p.

4.42. Evaluate
Ð
C
�z2 dzþ z2 d�z along the curve C defined by z2 þ 2z�zþ �z2 ¼ (2� 2i)zþ (2þ 2i)�z from the point

z ¼ 1 to z ¼ 2þ 2i.

4.43. Evaluate
Þ
C
dz=z� 2 around

(a) the circle jz� 2j ¼ 4, (b) the circle jz� 1j ¼ 5, (c) the square with vertices at 3+ 3i,�3+ 3i.

4.44. Evaluate
Þ
C
(x2 þ iy2) ds around the circle jzj ¼ 2 where s is the arc length.

Green’s Theorem in the Plane

4.45. Verify Green’s theorem in the plane for
Þ
C
(x2 � 2xy) dxþ ( y2 � x3y) dy where C is a square with vertices at

(0, 0), (2, 0), (2, 2), and (0, 2).
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4.46. Evaluate
Þ
C
(5xþ 6y� 3) dxþ (3x� 4yþ 2) dy around a triangle in the xy plane with vertices at (0, 0), (4, 0),

and (4, 3).

4.47. Let C be any simple closed curve bounding a region having area A. Prove that

A ¼ 1

2

þ
C

x dy� y dx

4.48. Use the result of Problem 4.47 to find the area bounded by the ellipse x ¼ a cos u, y ¼ b sin u, 0 � u , 2p.

4.49. Find the area bounded by the hypocycloid x2=3 þ y2=3 ¼
a2=3 shown shaded in Fig. 4-24. [Hint. Parametric

equations are x ¼ a cos3 u, y ¼ a sin3 u, 0 � u , 2p.]

4.50. Verify Green’s theorem in the plane for
Þ
C
x2y dxþ

( y3 � xy2) dy where C is the boundary of the region

enclosed by the circles x2 þ y2 ¼ 4, x2 þ y2 ¼ 16.

4.51. (a) Prove that
Þ
C
(y2 cos x� 2ey) dxþ (2y sin x� 2xey)

dy ¼ 0 around any simple closed curve C.

(b) Evaluate the integral in (a) along the parabola y ¼ x2

from (0, 0) to (p, p2).

4.52. (a) Show that
Ð (3,2)
(2,1)

(2xy3 � 2y2 � 6y) dxþ (3x2y2 � 4xy� 6x) dy is independent of the path joining points (2, 1)

and (3, 2). (b) Evaluate the integral in (a).

Complex Form of Green’s Theorem

4.53. If C is a simple closed curve enclosing a region of area A, prove that A ¼ 1

2i

þ
C

�z dz.

4.54. Evaluate
Þ
C
�z dz around (a) the circle jz� 2j ¼ 3, (b) the square with vertices at z ¼ 0, 2, 2i, and 2þ 2i,

(c) the ellipse jz� 3j þ jzþ 3j ¼ 10.

4.55. Evaluate
Þ
C
(8�zþ 3z) dz around the hypocycloid x2=3 þ y2=3 ¼ a2=3.

4.56. Let P(z, �z) and Q(z, �z) be continuous and have continuous partial derivatives in a regionR and on its boundary

C. Prove that þ
C

P(z, �z) dzþ Q(z, �z) d�z ¼ 2i

ðð
R

@P

@�z
� @Q

@z

� �
dA

4.57. Show that the area in Problem 4.53 can be written in the form A ¼ 1

4i

þ
C

�z dz� z d�z.

4.58. Show that the centroid of the region of Problem 4.53 is given in conjugate coordinates by (ẑ, �̂z) where

ẑ ¼ � 1

4Ai

þ
C

z2 d�z, �̂z ¼ 1

4Ai

þ
C

�z2 dz

4.59. Find the centroid of the region bounded above by jzj ¼ a . 0 and below by Im z ¼ 0.

Cauchy’s Theorem and the Cauchy–Goursat Theorem

4.60. Verify Cauchy’s theorem for the functions (a) 3z2 þ iz� 4, (b) 5 sin 2z, (c) 3 cosh(zþ 2)

where C is the square with vertices at 1+ i,�1+ i.

y

x

Fig. 4-24
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4.61. Verify Cauchy’s theorem for the function z3 � iz2 � 5zþ 2i if C is

(a) the circle jzj ¼ 1, (b) the circle jz� 1j ¼ 2, (c) the ellipse jz� 3ij þ jzþ 3ij ¼ 20.

4.62. Let C be the circle jz� 2j ¼ 5. (a) Determine whether

þ
C

dz

z� 3
¼ 0. (b) Does your answer to (a) contradict

Cauchy’s theorem?

4.63. For any simple closed curve C, explain clearly the relationship between the observationsþ
C

(x2 � y2 þ 2y) dxþ (2x� 2xy) dy ¼ 0 and

þ
C

(z2 � 2iz) dz ¼ 0

4.64. By evaluating
Þ
C
ez dz around the circle jzj ¼ 1, show that

ð2p
0

ecos u cos(uþ sin u) du ¼
ð2p
0

ecos u sin(uþ sin u) du ¼ 0

4.65. State and prove Cauchy’s theorem for multiply-connected regions.

4.66. Prove the Cauchy–Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-25, which may inter-

sect itself.

4.67. Prove the Cauchy–Goursat theorem for the multiply-connected regionR shown shaded in Fig. 4-26.

B

A

GE

F

C

D

R

Fig. 4-25 Fig. 4-26

4.68. (a) Prove the Cauchy–Goursat theorem for a rectangle and (b) show how the result of (a) can be used to prove

the theorem for any simple closed curve C.

4.69. Let P and Q be continuous and have continuous first partial derivatives in a region R. Let C be any simple

closed curve in R and suppose that for any such curveþ
C

P dxþ Qdy ¼ 0

(a) Prove that there exists an analytic function f(z) such that Ref f (z) dzg ¼ Pdxþ Qdy is an exact differential.

(b) Determine p and q in terms of P and Q such that Imf f (z) dzg ¼ p dxþ q dy and verify thatÞ
C
p dxþ q dy ¼ 0.

(c) Discuss the connection between (a) and (b) and Cauchy’s theorem.

4.70. Illustrate the results of Problem 4.69 if P ¼ 2xþ y� 2xy, Q ¼ x� 2y� x2 þ y2 by finding p, q, and f(z).

4.71. Let P and Q be continuous and have continuous partial derivatives in a region R. Suppose that for any

simple closed curve C in R, we have
Þ
C
P dxþ Qdy ¼ 0.

(a) Prove that
Þ
C
Q dx� Pdy ¼ 0. (b) Discuss the relationship of (a) with Cauchy’s theorem.
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Consequences of Cauchy’s Theorem

4.72. Show directly that
Ð 4�3i

3þ4i
(6z2 þ 8iz) dz has the same value along the following paths C joining the points 3þ 4i

and 4� 3i: (a) a straight line, (b) the straight lines from 3þ 4i to 4þ 4i and then from 4þ 4i to 4� 3i,

(c) the circle jzj ¼ 5. Determine this value.

4.73. Show that
Ð
C
e�2z dz is independent of the path C joining the points 1� pi and 2þ 3pi and determine its value.

4.74. Given G(z) ¼
Ð z
p�pi cos 3z dz. (a) Prove that G(z) is independent of the path joining p� pi and the arbitrary

point z. (b) Determine G(pi). (c) Prove that G0(z) ¼ cos 3z.

4.75. Given G(z) ¼
Ð z
1þi

sin z2 dz. (a) Prove that G(z) is an analytic function of z. (b) Prove that G0(z) ¼ sin z2.

4.76. For the real line integral
Ð
C
P dxþ Qdy, state and prove a theorem corresponding to:

(a) Problem 4.17, (b) Problem 4.18, (c) Problem 4.20.

4.77. Prove Theorem 4.5, page 118 for the region of Fig. 4-26.

4.78. (a) If C is the circle jzj ¼ R, show that lim
R!1

þ
C

z2 þ 2z� 5

(z2 þ 4)(z2 þ 2zþ 2)
dz ¼ 0

(b) Use the result of (a) to deduce that if C1 is the circle jz� 2j ¼ 5, thenþ
C1

z2 þ 2z� 5

(z2 þ 4)(z2 þ 2zþ 2)
dz ¼ 0

(c) Is the result in (b) true if C1 is the circle jzþ 1j ¼ 2? Explain.

Integrals of Special Functions

4.79. Find each of the following integrals:

(a)

ð
e�2z dz, (b)

ð
z sin z2 dz, (c)

ð
z2 þ 1

z3 þ 3zþ 2
dz, (d)

ð
sin4 2z cos 2z dz, (e)

ð
z2 tanh(4z3) dz

4.80. Find each of the following integrals:

(a)

ð
z cos 2z dz, (b)

ð
z2e�z dz, (c)

ð
z ln z dz, (d)

ð
z3 sinh z dz.

4.81. Evaluate each of the following: (a)

ð2pi
pi

e3z dz, (b)

ðpi
0

sinh 5z dz, (c)

ðpþi

0

z cos 2z dz.

4.82. Show that
Ð p=2
0

sin2 z dz ¼
Ð p=2
0

cos2 z dz ¼ p=4.

4.83. Show that

ð
dz

z2 � a2
¼ 1

2a
ln

z� a

zþ a

� �
þ c1 ¼

1

a
coth�1 z

a
þ c2.

4.84. Show that if we restrict ourselves to the same branch of the square root,ð
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ 5

p
dz ¼ 1

20
(2zþ 5)5=2 � 5

6
(2zþ 5)3=2 þ c

4.85. Evaluate
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

pp
dz, stating conditions under which your result is valid.

Miscellaneous Problems

4.86. Use the definition of an integral to prove that along any arbitrary path joining points a and b,

(a)

ðb
a

dz ¼ b� a, (b)

ðb
a

z dz ¼ 1

2
(b2 � a2).
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4.87. Prove the theorem concerning change of variable on page XX. [Hint. Express each side as two real line

integrals and use the Cauchy–Riemann equations.]

4.88. Let u(x, y) be harmonic and have continuous derivatives, of order two at least, in a region R.

(a) Show that the following integral is independent of the path in R joining (a, b) to (x, y):

v(x, y) ¼
ð(x,y)

(a,b)

� @u

@y
dxþ @u

@x
dy

(b) Prove that uþ iv is an analytic function of z ¼ xþ iy in R.

(c) Prove that v is harmonic in R.

4.89. Work Problem 4.88 for the special cases (a) u ¼ 3x2yþ 2x2 � y3 � 2y2, (b) u ¼ xex cos y� yex sin y. [See

Problem 4.53(a) and (c), page XX.]

4.90. Using the definition of an integral, verify directly that when C is a simple closed curve and z0 is any constant.

(a)

þ
C

dz ¼ 0, (b)

þ
C

z dz ¼ 0, (c)

þ
C

(z� z0) dz ¼ 0

4.91. Find the length of the closed curve of Problem 4.30 after n steps and verify that as n ! 1, the length of the

curve becomes infinite.

4.92. Evaluate

ð
C

dz

z2 þ 4
along the line xþ y ¼ 1 in the direction of increasing x.

4.93. Show that
Ð1
0
xe�x sin x dx ¼ 1

2
.

4.94. Evaluate

ð�2þ2
ffiffi
3

p
i

�2�2
ffiffi
3

p
i

z1=2 dz along a straight line path if we choose that branch of z1=2 such that z1=2 ¼ 1 for z ¼ 1.

4.95. Does Cauchy’s theorem hold for the function f (z) ¼ z1=2 where C is the circle jzj ¼ 1? Explain.

4.96. Does Cauchy’s theorem hold for a curve, such as

EFGHFJE in Fig. 4-27, which intersects itself? Justify

your answers.

4.97. If n is the direction of the outward drawn normal to a

simple closed curve C, s is the arc length parameter and

U is any continuously differentiable function, prove that

@U

@n
¼ @U

@x

dx

ds
þ @U

@y

dy

ds

4.98. Prove Green’s first identity,ðð
R

Ur2V dx dyþ
ðð
R

@U

@x

@V

@x
þ @U

@y

@V

@y

� �
dx dy ¼

þ
C

U
@V

@n
ds

whereR is the region bounded by the simple closed curve C, r2 ¼ (@2=@x2)þ (@2=@y2), while n and s are as in

Problem 4.97.

4.99. Use Problem 4.98 to prove Green’s second identityðð
R

(Ur2V � Vr2U) dA ¼
þ
C

U
@V

@n
� V

@U

@n

� �
ds

where dA is an element of area of R.

4.100. Write the result of Problem 4.31 in terms of the operator r.

y

H F

J

G

E

x

Fig. 4-27
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4.101. Evaluate

þ
C

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 2zþ 2

p around the unit circle jzj ¼ 1 starting with z ¼ 1, assuming the integrand positive for

this value.

4.102. Let n be a positive integer. Show that

ð2p
0

esin nu cos(u� cos nu) du ¼
ð2p
0

esin nu sin(u� cos nu) du ¼ 0

ANSWERS TO SUPPLEMENTARY PROBLEMS

4.32. (a) 88/3, (b) 32, (c) 40, (d) 24 4.54. (a) 18pi, (b) 8i, (c) 40pi

4.33. (a) �48p, (b) 48p 4.55. 6pia2

4.34. (a)
511

3
� 49

5
i, (b)

518

3
� 57i, (c)

518

3
� 8i 4.59. ẑ ¼ 2ai

p
, ẑ ¼ �2ai

p

4.35. �1þ i 4.70. One possibility is p ¼ x2 � y2 þ 2y� x,

q ¼ 2xþ y� 2xy, f (z) ¼ iz2 þ (2� i)z

4.36. � 44

3
� 8

3
i in all cases 4.72. 338� 266i

4.38. (a) � 4

3
þ 8

3
i, (b) � 1

3
þ 79

30
i 4.73. 1

2
e�2(1� e�2)

4.39. (a) 0, (b) 4pi 4.74. (b) 0

4.40. 0 in all cases 4.79. (a) � 1

2
e�2z þ c, (b) � 1

2
cos z2 þ c,

(c)
1

3
ln (z3 þ 3zþ 2)þ c, (d)

1

10
sin5 2zþ c,

(e)
1

12
ln cosh(4z3)þ c

4.41. (96p 5a5 þ 80p 3a3 þ 30pa)=15

4.42.
248

15

4.43. 2pi in all cases

4.80. (a)
1

2
z sin 2zþ 1

4
cos 2zþ c, (b) �e�z(z2 þ 2zþ 2)þ c,

(c)
1

2
z2 ln z� 1

4
þ c,

(d) (z3 þ 6z) cosh z� 3(z2 þ 2) sinh zþ c

4.44. 8p (1þ i)

4.45. Common value ¼ �8

4.46. �18

4.81. (a)
2

3
, (b) � 2

5
, (c)

1

4
cosh 2� 1

2
sinh 2þ 1

2
pi sinh 2

4.48. pab

4.85.
4

5
1þ

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
 �5=2 � 4

3
1þ

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p

Þ3=2 þ c

4.49.
3pa2

8

4.92.
p

2

4.50. Common value ¼ 120p

4.94.
32

3

4.51. (b) �2pep
2

4.52. (b) 24

CHAPTER 4 Complex Integration and Cauchy’s Theorem 143



CHAP T E R 5

Cauchy’s Integral Formulas
and Related Theorems

5.1 Cauchy’s Integral Formulas

Let f (z) be analytic inside and on a simple closed curve C and let a be any point inside C [Fig. 5-1]. Then

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz (5:1)

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f(z) at z ¼ a is given by

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 1, 2, 3, . . . (5:2)

The result (5.1) can be considered a special case of (5.2) with n ¼ 0 if we define 0! ¼ 1.

y

x

a

C

Fig. 5-1

The results (5.1) and (5.2) are called Cauchy’s integral formulas and are quite remarkable because they
show that if a function f(z) is known on the simple closed curve C, then the values of the function and all its
derivatives can be found at all points inside C. Thus, if a function of a complex variable has a first
derivative, i.e., is analytic, in a simply-connected region R, all its higher derivatives exist in R. This is
not necessarily true for functions of real variables.
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5.2 Some Important Theorems

The following is a list of some important theorems that are consequences of Cauchy’s integral formulas.

1. Morera’s theorem (converse of Cauchy’s theorem)
If f (z) is continuous in a simply-connected region R and if

Þ
C
f (z) dz ¼ 0 around every simple

closed curve C in R, then f(z) is analytic in R.

2. Cauchy’s inequality
Suppose f(z) is analytic inside and on a circle C of radius r and center at z ¼ a. Then

j f (n)(a)j � M � n!
rn

n ¼ 0, 1, 2, . . . (5:3)

where M is a constant such that j f (z)j , M on C, i.e., M is an upper bound of j f (z)j on C.

3. Liouville’s theorem
Suppose that for all z in the entire complex plane, (i) f (z) is analytic and (ii) f (z) is bounded, i.e.,
j f (z)j , M for some constant M. Then f (z) must be a constant.

4. Fundamental theorem of algebra
Every polynomial equationP(z) ¼ a0 þ a1zþ a2z

2 þ � � � þ anz
n ¼ 0with degree n � 1 and an=0

has at least one root.
From this it follows that P(z) ¼ 0 has exactly n roots, due attention being paid to multiplicities

of roots.

5. Gauss’ mean value theorem
Suppose f(z) is analytic inside and on a circle Cwith center at a and radius r. Then f(a) is the mean
of the values of f (z) on C, i.e.,

f (a) ¼ 1

2p

ð2p
0

f aþ reiu

 �

du (5:4)

6. Maximum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal to a
constant. Then the maximum value of j f (z)j occurs on C.

7. Minimum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and f (z)=0 inside C. Then j f (z)j
assumes its minimum value on C.

8. The argument theorem
Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles
inside C. Then

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ N � P (5:5)

where N and P are, respectively, the number of zeros and poles of f (z) inside C.
For a generalization of this theorem, see Problem 5.90.

9. Rouché’s theorem
Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose
jg(z)j , j f (z)j on C. Then f (z)þ g(z) and f (z) have the same number of zeros inside C.

10. Poisson’s integral formulas for a circle
Let f(z) be analytic inside and on the circle C defined by jzj ¼ R. Then, if z ¼ reiu is any point
inside C, we have

f (reiu) ¼ 1

2p

ð2p
0

(R2 � r2) f (Reif)

R2 � 2Rr cos(u� f)þ r2
df (5:6)
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If u(r, u) and v(r, u) are the real and imaginary parts of f (reiu) while u(R, f) and v(R, f) are
the real and imaginary parts of f (Reif), then

u(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)u(R, f)

R2 � 2Rr cos(u� f)þ r2
df (5:7)

v(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)v(R, f)

R2 � 2Rr cos(u� f)þ r2
df (5:8)

These results are called Poisson’s integral formulas for a circle. They express the values of a
harmonic function inside a circle in terms of its values on the boundary.

11. Poisson’s integral formulas for a half plane
Let f (z) be analytic in the upper half y � 0 of the z plane and let z ¼ jþ ih be any point in this
upper half plane. Then

f (z ) ¼ 1

p

ð1
�1

h f (x)

(x� j )2 þ h2
dx (5:9)

In terms of the real and imaginary parts of f (z); this can be written

u(j, h) ¼ 1

p

ð1
�1

hu(x, 0)

(x� j )2 þ h2
dx (5:10)

v(j, h) ¼ 1

p

ð1
�1

hv(x, 0)

(x� j )2 þ h2
dx (5:11)

These are called Poisson’s integral formulas for a half plane. They express the values of a
harmonic function in the upper half plane in terms of the values on the x axis [the boundary]
of the half plane.

SOLVED PROBLEMS

Cauchy’s Integral Formulas

5.1. Let f (z) be analytic inside and on the boundary C of a simply-connected regionR. Prove Cauchy’s
integral formula

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

Solution

Method 1. The function f (z)=(z� a) is analytic inside and on C except at the point z ¼ a (see Fig. 5-2). By

Theorem 4.4, page 117, we have

þ
C

f (z)

z� a
dz ¼

þ
G

f (z)

z� a
dz (1)

where we can choose G as a circle of radius e with center at a. Then an equation for G is jz� aj ¼ e or

z� a ¼ eeiu where 0 � u , 2p. Substituting z ¼ aþ eeiu, dz ¼ ieeiu, the integral on the right of (1) becomes
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þ
G

f (z)

z� a
dz ¼

ð2p
0

f (aþ eeiu)ieeiu

eeiu
du ¼ i

ð2p
0

f (aþ eeiu) du

Thus we have from (1),

þ
C

f (z)

z� a
dz ¼ i

ð2p
0

f (aþ eeiu) du (2)

Taking the limit of both sides of (2) and making use of the continuity of f (z), we have

þ
C

f (z)

z� a
dz ¼ lim

e!0
i

ð2p
0

f (aþ eeiu) du

¼ i

ð2p
0

lim
e!0

f (aþ eeiu) du ¼ i

ð2p
0

f (a) du ¼ 2pi f (a) (3)

so that we have, as required,

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

Method 2. The right side of equation (1) of Method 1 can be written as

þ
G

f (z)

z� a
dz ¼

þ
G

f (z)� f (a)

z� a
dzþ

þ
G

f (a)

z� a
dz

¼
þ
G

f (z)� f (a)

z� a
dzþ 2pi f (a)

using Problem 4.21. The required result will follow if we can show that

þ
G

f (z)� f (a)

z� a
dz ¼ 0

But by Problem 3.21,

þ
G

f (z)� f (a)

z� a
dz ¼

þ
G

f 0(a) dzþ
þ
G

h dz ¼
þ
G

h dz

Then choosing G so small that for all points on G we have jhj , d=2p, we find

þ
G

h dz

������
������ ,

d

2p

� �
(2pe) ¼ e

Thus
Þ
Gh dz ¼ 0 and the proof is complete.
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Fig. 5-2 Fig. 5-3

5.2. Let f(z) be analytic inside and on the boundary C of a simply-connected region R. Prove that

f 0(a) ¼ 1

2pi

þ
C

f (z)

(z� a)2
dz

Solution

From Problem 5.1, if a and aþ h lie in R, we have

f (aþ h)� f (a)

h
¼ 1

2pi

þ
C

1

h

1

z� (aþ h)
� 1

z� a

� �
f (z) dz ¼ 1

2pi

þ
C

f (z) dz

(z� a� h)(z� a)

¼ 1

2pi

þ
C

f (z) dz

(z� a)2
þ h

2pi

þ
C

f (z) dz

(z� a� h)(z� a)2

The result follows on taking the limit as h ! 0 if we can show that the last term approaches zero.

To show this we use the fact that if G is a circle of radius e and center a which lies entirely in R
(see Fig. 5-3), then

h

2pi

þ
C

f (z) dz

(z� a� h)(z� a)2
¼ h

2pi

þ
G

f (z) dz

(z� a� h)(z� a)2

Choosing h so small in absolute value that aþ h lies in G and jhj , e=2, we have by Problem 1.7(c), and the

fact that G has equation jz� aj ¼ e,

jz� a� hj � jz� aj � jhj . e� e=2 ¼ e=2

Also since f(z) is analytic in R, we can find a positive number M such that j f (z)j , M.

Then, since the length of G is 2pe, we have

h

2pi

þ
G

f (z) dz

(z� a� h)(z� a)2

������
������ �

jhj
2p

M(2pe)

(e=2)(e2)
¼ 2jhjM

e2

and it follows that the left side approaches zero as h ! 0, thus completing the proof.

It is of interest to observe that the result is equivalent to

d

da
f (a) ¼ d

da

1

2pi

þ
C

f (z)

z� a
dz

8<
:

9=
; ¼ 1

2pi

þ
C

@

@a

f (z)

z� a

� �
dz

which is an extension to contour integrals of Leibnitz’s rule for differentiating under the integral sign.
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5.3. Prove that under the conditions of Problem 5.2,

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, 1, 2, 3, . . .

Solution

The cases where n ¼ 0 and 1 follow from Problems 5.1 and 5.2, respectively, provided we define f (0)(a) ¼ f (a)

and 0! ¼ 1.

To establish the case where n ¼ 2, we use Problem 5.2 where a and aþ h lie in R to obtain

f 0(aþ h)� f 0(a)

h
¼ 1

2pi

þ
C

1

h

1

(z� a� h)2
� 1

(z� a)2

� �
f (z) dz

¼ 2!

2pi

þ
C

f (z)

(z� a)3
dzþ h

2pi

þ
C

3(z� a)� 2h

(z� a� h)2(z� a)3
f (z) dz

The result follows on taking the limit as h ! 0 if we can show that the last term approaches zero. The proof

is similar to that of Problem 5.2, for using the fact that the integral around C equals the integral around G,
we have

h

2pi

þ
G

3(z� a)� 2h

(z� a� h)2(z� a)3
f (z) dz

������
������ �

jhj
2p

M(2pe)

(e=2)2(e3)
¼ 4jhjM

e 4

Since M exists such that jf3(z� a)� 2hg f (z)j , M.

In a similar manner, we can establish the result for n ¼ 3, 4, . . . (see Problems 5.36 and 5.37).

The result is equivalent to (see last paragraph of Problem 5.2)

dn

dan
f (a) ¼ dn

dan
1

2pi

þ
C

f (z)

(z� a)
dz

8<
:

9=
; ¼ 1

2pi

þ
C

@n

@an
f (z)

z� a

� �
dz

5.4. Suppose f(z) is analytic in a region R. Prove that f 0(z), f 00(z), . . . are analytic in R.

Solution

This follows from Problems 5.2 and 5.3.

5.5. Evaluate:

(a)

þ
C

sinpz2 þ cospz2

(z� 1)(z� 2)
dz, (b)

þ
C

e2z

(zþ 1)4
dz where C is the circle jzj ¼ 3.

Solution

(a) Since
1

(z� 1)(z� 2)
¼ 1

z� 2
� 1

z� 1
, we have

þ
C

sinpz2 þ cospz2

(z� 1)(z� 2)
dz ¼

þ
C

sinpz2 þ cospz2

z� 2
dz�

þ
C

sinpz2 þ cospz2

z� 1
dz

By Cauchy’s integral formula with a ¼ 2 and a ¼ 1, respectively, we haveþ
C

sinpz2 þ cospz2

z� 2
dz ¼ 2pifsinp(2)2 þ cosp(2)2g ¼ 2pi

þ
C

sinpz2 þ cospz2

z� 1
dz ¼ 2pifsinp(1)2 þ cosp(1)2g ¼ �2pi
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since z ¼ 1 and z ¼ 2 are inside C and sinpz2 þ cospz2 is analytic inside C. Then, the required integral

has the value 2pi� (�2pi) ¼ 4pi.

(b) Let f (z) ¼ e2z and a ¼ �1 in the Cauchy integral formula

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz (1)

If n ¼ 3, then f 000(z) ¼ 8e2z and f 000(�1) ¼ 8e�2. Hence (1) becomes

8e�2 ¼ 3!

2pi

þ
C

e2z

(zþ 1)4
dz

from which we see that the required integral has the value 8pie�2=3.

5.6. Prove Cauchy’s integral formula for multiply-connected regions.

Solution

We present a proof for the multiply-connected region R
bounded by the simple closed curves C1 and C2 as indi-

cated in Fig. 5-4. Extensions to other multiply-connected

regions are easily made (see Problem 5.40).

Construct a circle G having center at any point a inR so

that G lies entirely in R. Let R0 consist of the set of points
in R that are exterior to G. Then, the function f (z)=(z� a)

is analytic inside and on the boundary of R0. Hence, by
Cauchy’s theorem for multiply-connected regions

(Problem 4.16),

1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
G

f (z)

z� a
dz ¼ 0 (1)

But, by Cauchy’s integral formula for simply-connected regions, we have

f (a) ¼ 1

2pi

þ
G

f (z)

z� a
dz (2)

so that from (1),

f (a) ¼ 1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
C2

f (z)

z� a
dz (3)

Then, if C represents the entire boundary ofR (suitably traversed so that an observer moving around C always

has R lying to his left), we can write (3) as

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

In a similar manner, we can show that the other Cauchy integral formulas

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 1, 2, 3, . . .

hold for multiply-connected regions (see Problem 5.40).

C1

C2

a R

G

Fig. 5-4
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Morera’s Theorem

5.7. Prove Morera’s theorem (the converse of Cauchy’s theorem): Suppose f (z) is continuous in a
simply-connected region R and suppose þ

C

f (z) dz ¼ 0

around every simple closed curve C in R. Then f (z) is analytic in R.

Solution

If
Þ
C
f (z) dz ¼ 0 independent of C, it follows by Problem 4.17, that F(z) ¼

Ð z
a
f (z) dz is independent of the path

joining a and z, so long as this path is in R.

Then, by reasoning identical with that used in Problem 4.18, it follows that F(z) is analytic in R and

F0(z) ¼ f (z). However, by Problem 5.2, it follows thatF0(z) is also analytic ifF(z) is. Hence, f (z) is analytic inR.

Cauchy’s Inequality

5.8. Let f(z) be analytic inside and on a circle C of radius r and center at z ¼ a. Prove Cauchy’s
inequality

j f (n)(a)j � M � n!
rn

n ¼ 0, 1, 2, 3, . . .

where M is a constant such that j f (z)j , M.

Solution

We have by Cauchy’s integral formulas,

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, 1, 2, 3, . . .

Then, by Problem 4.3, since jz� aj ¼ r on C and the length of C is 2pr,

j f (n)(a)j ¼ n!

2p

þ
C

f (z)

(z� a)nþ1
dz

������
������ �

n!

2p
� M

rnþ1
� 2pr ¼ M � n!

rn

Liouville’s Theorem

5.9. Prove Liouville’s theorem: Suppose for all z in the entire complex plane, (i) f (z) is analytic and (ii)
f(z) is bounded [i.e., we can find a constant M such that j f (z)j , M ]. Then f(z) must be a constant.

Solution

Let a and b be any two points in the z plane. Suppose that C is a

circle of radius r having center at a and enclosing point b (see

Fig. 5-5).

From Cauchy’s integral formula, we have

f (b)� f (a) ¼ 1

2pi

þ
C

f (z)

z� b
dz� 1

2pi

þ
C

f (z)

z� a
dz

¼ b� a

2pi

þ
C

f (z) dz

(z� b)(z� a)

Now we have

jz� aj ¼ r, jz� bj ¼ jz� aþ a� bj � jz� aj � ja� bj ¼ r � ja� bj � r=2

y

C r

a

x

b

Fig. 5-5
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if we choose r so large that ja� bj , r=2. Then, since j f (z)j , M and the length of C is 2pr, we have by

Problem 4.3,

j f (b)� f (a)j ¼ jb� aj
2p

þ
C

f (z) dz

(z� b)(z� a)

������
������ �

jb� ajM(2pr)

2p(r=2)r
¼ 2jb� ajM

r

Letting r ! 1, we see that j f (b)� f (a)j ¼ 0 or f (b) ¼ f (a), which shows that f(z) must be a constant.

Another Method. Letting n ¼ 1 in Problem 5.8 and replacing a by z we have,

j f 0(z)j � M=r

Letting r ! 1, we deduce that j f 0(z)j ¼ 0 and so f 0(z) ¼ 0. Hence, f (z) ¼ constant, as required.

Fundamental Theorem of Algebra

5.10. Prove the fundamental theorem of algebra: Every polynomial equation P(z) ¼ a0 þ a1zþ
a2z

2 þ � � � þ anz
n ¼ 0, where the degree n � 1 and an=0, has at least one root.

Solution

If P(z) ¼ 0 has no root, then f (z) ¼ 1=P(z) is analytic for all z. Also, j f (z)j ¼ 1=jP(z)j is bounded (and in fact

approaches zero) as jzj ! 1.

Then by Liouville’s theorem (Problem 5.9), it follows that f(z) and thus P(z) must be a constant. Thus, we

are led to a contradiction and conclude that P(z) ¼ 0 must have at least one root or, as is sometimes said, P(z)

has at least one zero.

5.11. Prove that every polynomial equation P(z) ¼ a0 þ a1zþ a2z
2 þ � � � þ anz

n ¼ 0, where the degree
n � 1 and an=0, has exactly n roots.

Solution

By the fundamental theorem of algebra (Problem 5.10), P(z) has at least one root. Denote this root by a. Then
P(a) ¼ 0. Hence

P(z)� P(a) ¼ a0 þ a1zþ a2z
2 þ � � � þ anz

n � (a0 þ a1aþ a2a
2 þ � � � þ ana

n)

¼ a1(z� a)þ a2(z
2 � a2)þ � � � þ an(z

n � an)

¼ (z� a)Q(z)

where Q(z) is a polynomial of degree (n� 1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero, which we can

denote by b [which may equal a], and so P(z) ¼ (z� a)(z� b)R(z). Continuing in this manner, we see that

P(z) has exactly n zeros.

Gauss’ Mean Value Theorem

5.12. Let f(z) be analytic inside and on a circle C with center at a. Prove Gauss’ mean value theorem that
the mean of the values of f(z) on C is f(a).

Solution

By Cauchy’s integral formula,

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz (1)

152 CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems



If C has radius r, the equation of C is jz� aj ¼ r or z ¼ aþ reiu. Thus, (1) becomes

f (a) ¼ 1

2pi

ð2p
0

f (aþ reiu)ireiu

reiu
du ¼ 1

2p

ð2p
0

f (aþ reiu) du

which is the required result.

Maximum Modulus Theorem

5.13. Prove the maximum modulus theorem: Suppose f(z) is analytic inside and on a simple closed curve
C. Then the maximum value of j f (z)j occurs on C, unless f (z) is a constant.

Solution

Method 1

Since f (z) is analytic and hence continuous inside and on C, it

follows that j f (z)j does have a maximum value M for at least

one value of z inside or on C. Suppose this maximum value is

not attained on the boundary of C but is attained at an interior

point a, i.e., j f (a)j ¼ M. Let C1 be a circle inside C with

center at a (see Fig. 5-6). If we exclude f(z) from being a constant

inside C1, then there must be a point inside C1, say b, such that

j f (b)j , M or, what is the same thing, j f (b)j ¼ M � e where

e . 0.

Now, by the continuity of j f (z)j at b, we see that for any e . 0

we can find d . 0 such that

jj f (z)j � j f (b)jj , 1

2
e whenever jz� bj , d (1)

i.e.,

j f (z)j , j f (b)j þ 1

2
e ¼ M � eþ 1

2
e ¼ M � 1

2
e (2)

for all points interior to a circle C2 with center at b and radius d, as shown shaded in the figure.

Construct a circle C3 with a center at a that passes through b (dashed in Fig. 5-6). On part of this circle

[namely that part PQ included in C2], we have from (2), j f (z)j , M � 1
2
e. On the remaining part of the

circle, we have j f (z)j � M.

If we measure u counterclockwise from OP and let /POQ ¼ a, it follows from Problem 5.12 that if

r ¼ jb� aj,

f (a) ¼ 1

2p

ða
0

f (aþ reiu) duþ 1

2p

ð2p
a

f (aþ reiu) du

Then

j f (a)j � 1

2p

ða
0

j f (aþ reiu)j duþ 1

2p

ð2p
a

j f (aþ reiu)j du

� 1

2p

ða
0

M � 1

2
e

� �
duþ 1

2p

ð2p
a

M du

¼ a

2p
M � 1

2
e

� �
þ M

2p
(2p� a)

= M � ae

4p

i.e., j f (a)j ¼ M � M � (ae=4p), an impossible situation. By virtue of this contradiction, we conclude that

j f (z)j cannot attain its maximum at any interior point of C and so must attain its maximum on C.

C1

C2

C3

O

Q

a

P

b

a

Fig. 5-6
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Method 2

From Problem 5.12, we have

jf (a)j � 1

2p

ð2p
0

j f (aþ reiu)j du (3)

Let us suppose that j f (a)j is a maximum so that j f (aþ reiu)j � jf (a)j. If j f (aþ reiu)j , j f (a)j for one
value of u then, by continuity of f, it would hold for a finite arc, say u1 , u , u2. But, in such case, the

mean value of j f (aþ reiu)j is less than j f (a)j, which would contradict (3). It follows, therefore, that in any

d neighborhood of a, i.e., for jz� aj , d, f (z) must be a constant. If f (z) is not a constant, the maximum

value of j f (z)j must occur on C.

For another method, see Problem 5.57.

Minimum Modulus Theorem

5.14. Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple closed curve C.
Prove that if f (z)=0 inside C, then j f (z)j must assume its minimum value on C.

Solution

Since f(z) is analytic inside and on C and since f (z)=0 inside C, it follows that 1/f(z) is analytic inside C.

By the maximum modulus theorem, it follows that 1=j f (z)j cannot assume its maximum value inside C and

so j f (z)j cannot assume its minimum value inside C. Then, since j f (z)j has a minimum, this minimum

must be attained on C.

5.15. Give an example to show that if f (z) is analytic inside and on a simple closed curve C and f (z) ¼ 0
at some point inside C, then j f (z)j need not assume its minimum value on C.

Solution

Let f (z) ¼ z for jzj � 1, so that C is a circle with center at the origin and radius 1. We have f (z) ¼ 0 at z ¼ 0.

If z ¼ reiu, then j f (z)j ¼ r and it is clear that the minimum value of j f (z)j does not occur on C but occurs inside

C where r ¼ 0, i.e., at z ¼ 0.

The Argument Theorem

5.16. Let f(z) be analytic inside and on a simple closed curve C except for a pole z ¼ a of order (multi-
plicity) p inside C. Suppose also that inside C, f(z) has only one zero z ¼ b of order (multiplicity)
n and no zeros on C. Prove that

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ n� p

Solution

Let C1 and G1 be non-overlapping circles lying inside C and enclosing z ¼ a and z ¼ b, respectively. [See
Fig. 5-7.] Then

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

f 0(z)

f (z)
dzþ 1

2pi

þ
G1

f 0(z)

f (z)
dz (1)

Since f (z) has a pole of order p at z ¼ a, we have

f (z) ¼ F(z)

(z� a) p
(2)
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where F(z) is analytic and different from zero inside and on C1. Then, taking logarithms in (2) and differen-

tiating, we find

f 0(z)

f (z)
¼ F0(z)

F(z)
� p

z� a
(3)

so that

1

2pi

þ
C1

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

F0(z)

F(z)
dz� p

2pi

þ
C1

dz

z� a
¼ 0� p ¼ �p (4)

Since f (z) has a zero of order n at z ¼ b, we have

f (z) ¼ (z� b)nG(z) (5)

where G(z) is analytic and different from zero inside and on G1.

Then, by logarithmic differentiation, we have

f 0(z)

f (z)
¼ n

z� b
þ G0(z)

G(z)
(6)

so that

1

2pi

þ
G1

f 0(z)

f (z)
dz ¼ n

2pi

þ
G1

dz

z� b
þ 1

2pi

þ
G0(z)

G(z)
dz ¼ n (7)

Hence, from (1), (4), and (7), we have the required result

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

f 0(z)

f (z)
dzþ 1

2pi

þ
G1

f 0(z)

f (z)
dz ¼ n� p

C
C1

a

G1 b

C

C1

Cj

aj

bk

a1
b1

G1

Gk

Fig. 5-7 Fig. 5-8

5.17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside
C. Suppose that f (z)=0 on C. If N and P are, respectively, the number of zeros and poles of f(z)
inside C, counting multiplicities, prove that

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ N � P

Solution

Let a1, a2, . . . , aj and b1, b2, . . . , bk be the respective poles and zeros of f(z) lying inside C [Fig. 5-8] and

suppose their multiplicities are p1, p2, . . . , pj and n1, n2, . . . , nk.
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Enclose each pole and zero by non-overlapping circles C1, C2, . . . , Cj and G1, G2, . . . , Gk. This can always

be done since the poles and zeros are isolated.

Then, we have, using the results of Problem 5.16,

1

2pi

þ
C

f 0(z)

f (z)
dz ¼

Xj
r¼1

1

2pi

þ
Gr

f 0(z)

f (z)
dzþ

Xk
r¼1

1

2pi

þ
Cr

f 0(z)

f (z)
dz

¼
Xj
r¼1

nr �
Xk
r¼1

pr

¼ N � P

Rouché’s Theorem

5.18. Prove Rouché’s theorem: Suppose f(z) and g(z) are analytic inside and on a simple closed curve C
and suppose jg(z)j , j f (z)j on C. Then f (z)þ g(z) and f(z) have the same number of zeros inside C.

Solution

Let F(z) ¼ g(z)=f (z) so that g(z) ¼ f (z)F(z) or briefly g ¼ fF. Then, if N1 and N2 are the number of zeros

inside C of f þ g and f, respectively, we have by Problem 5.17, using the fact that these functions have no

poles inside C,

N1 ¼
1

2pi

þ
C

f 0 þ g0

f þ g
dz, N2 ¼

1

2pi

þ
C

f 0

f
dz

Then

N1 � N2 ¼
1

2pi

þ
C

f 0 þ f 0F þ fF0

f þ fF
dz� 1

2pi

þ
C

f 0

f
dz ¼ 1

2pi

þ
C

f 0(1þ F)þ fF0

f (1þ F)
dz� 1

2pi

þ
C

f 0

f
dz

¼ 1

2pi

þ
C

f 0

f
þ F0

1þ F

� �
dz� 1

2pi

þ
C

f 0

f
dz ¼ 1

2pi

þ
C

F0

1þ F
dz

¼ 1

2pi

ð
C

F0(1� F þ F2 � F3 þ � � � ) dz ¼ 0

using the given fact that jFj , 1 on C so that the series is uniformly convergent on C and term by term

integration yields the value zero. Thus, N1 ¼ N2 as required.

5.19. Use Rouché’s theorem (Problem 5.18) to prove that every polynomial of degree n has exactly n
zeros (fundamental theorem of algebra).

Solution

Suppose the polynomial to be a0 þ a1zþ a2z
2 þ � � � þ anz

n, where an=0. Choose f (z) ¼ anz
n and

g(z) ¼ a0 þ a1zþ a2z
2 þ � � � þ an�1z

n�1.

If C is a circle having center at the origin and radius r . 1, then on C we have

g(z)

f (z)

����
���� ¼ ja0 þ a1zþ a2z

2 þ � � � þ an�1z
n�1j

janznj
� ja0j þ ja1jr þ ja2jr2 þ � � � þ jan�1jrn�1

janjrn

� ja0jrn�1 þ ja1jrn�1 þ ja2jrn�1 þ � � � þ jan�1jrn�1

janjrn
¼ ja0j þ ja1j þ ja2j þ � � � þ jan�1j

janjr

Then, by choosing r large enough, we can make g(z)=f (z)
�� �� , 1, i.e., jg(z)j , j f (z)j. Hence, by Rouché’s

theorem, the given polynomial f (z)þ g(z) has the same number of zeros as f (z) ¼ anz
n. But, since this last

function has n zeros all located at z ¼ 0, f (z)þ g(z) also has n zeros and the proof is complete.
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5.20. Prove that all the roots of z7 � 5z3 þ 12 ¼ 0 lie between the circles jzj ¼ 1 and jzj ¼ 2.

Solution

Consider the circle C1: jzj ¼ 1. Let f (z) ¼ 12, g(z) ¼ z7 � 5z3. On C1 we have

jg(z)j ¼ jz7 � 5z3j � jz7j þ j5z3j � 6 , 12 ¼ j f (z)j

Hence, by Rouché’s theorem, f (z)þ g(z) ¼ z7 � 5z3 þ 12 has the same number of zeros inside jzj ¼ 1 as

f (z) ¼ 12, i.e., there are no zeros inside C1.

Consider the circle C2: jzj ¼ 2. Let f (z) ¼ z7, g(z) ¼ 12� 5z3. On C2 we have

jg(z)j ¼ j12� 5z3j � j12j þ j5z3j � 60 , 27 ¼ j f (z)j

Hence, by Rouché’s theorem, f (z)þ g(z) ¼ z7 � 5z3 þ 12 has the same number of zeros inside jzj ¼ 2 as

f (z) ¼ z7, i.e., all the zeros are inside C2.

Hence, all the roots lie inside jzj ¼ 2 but outside jzj ¼ 1, as required.

Poisson’s Integral Formulas for a Circle

5.21. (a) Let f(z) be analytic inside and on the circle C defined by jzj ¼ R, and let z ¼ reiu be any point
inside C (see Fig. 5-9). Prove that

f (reiu) ¼ 1

2p

ð2p
0

R2 � r2

R2 � 2Rr cos(u� f)þ r2
f (Reif) df

(b) Let u(r, u) and v(r, u) be the real and imaginary parts of f (reiu). Prove that

u(r, u) ¼ 1

2p

ð2p
0

(R2 � r2) u(R, f) df

R2 � 2Rr cos(u� f)þ r2

v(r, u) ¼ 1

2p

ð2p
0

(R2 � r2) v(R, f) df

R2 � 2Rr cos(u� f)þ r2

The results are called Poisson’s integral formulas for the circle.

Solution

(a) Since z ¼ reiu is any point inside C, we have by Cauchy’s integral formula

f (z) ¼ f (reiu) ¼ 1

2pi

þ
C

f (w)

w� z
dw (1)

The inverse of the point z with respect to C lies outside C and is given by

R2=�z. Hence, by Cauchy’s theorem,

0 ¼ 1

2pi

þ
C

f (w)

w� R2=�z
dw (2)

C

R

z = reiq

Fig. 5-9
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If we subtract (2) from (1), we find

f (z) ¼ 1

2pi

þ
C

1

w� z
� 1

w� R2=�z

� �
f (w) dw

¼ 1

2pi

þ
C

z� R2=�z

(w� z)(w� R2=�z)
f (w) dw (3)

Now, let z ¼ reiu and w ¼ Reif. Then, since �z ¼ re�iu, (3) yields

f (reiu) ¼ 1

2pi

ð2p
0

freiu � (R2=r)eiug f (Reif)iReif df
fReif � reiugfReif � (R2=r)eiug ¼ 1

2p

ð2p
0

(r2 � R2)ei(uþf)f (Reif) df

(Reif � reiu)(reif � Reiu)

¼ 1

2p

ð2p
0

(R2 � r2) f (Reif) df

(Reif � reiu)(Re�if � re�iu)
¼ 1

2p

ð2p
0

(R2 � r2) f (Reif) df

R2 � 2Rr cos(u� f)þ r2

(b) Since f (reiu) ¼ u(r, u)þ iv(r, u) and f (Reif) ¼ u(R, f)þ iv(R, f), we have from part (a),

u(r, u)þ iv(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)fu(R, f)þ iv(R, f)g df
R2 � 2Rr cos(u� f)þ r2

¼ 1

2p

ð2p
0

(R2 � r2)u(R, f) df

R2 � 2Rr cos(u� f)þ r2
þ i

2p

ð2p
0

(R2 � r2)v(R, f) df

R2 � 2Rr cos(u� f)þ r2

Then the required result follows on equating real and imaginary parts.

Poisson’s Integral Formulas for a Half Plane

5.22. Derive Poisson’s formulas for the half plane [see page 146].

Solution

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing z as an interior point. Since C

encloses z but does not enclose �z, we have by Cauchy’s integral formula,

f (z ) ¼ 1

2pi

þ
C

f (z)

z� z
dz, 0 ¼ 1

2pi

þ
C

f (z)

z� �z
dz

Then, by subtraction,

f (z ) ¼ 1

2pi

þ
C

f (z)
1

z� z
� 1

z� �z

� �
dz ¼ 1

2pi

þ
C

(z� �z ) f (z) dz

(z� z )(z� �z )

Letting z ¼ jþ ih, �z ¼ j� ih, this can be written

f (z ) ¼ 1

p

ðR
�R

h f (x) dx

(x� j )2 þ h2
þ 1

p

ð
G

h f (z) dz

(z� z )(z� �z )

158 CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems



where G is the semicircular arc of C. As R ! 1, this last integral approaches zero [see Problem 5.76] and

we have

f (z ) ¼ 1

p

ð1
�1

h f (x) dx

(x� j )2 þ h2

Writing f (z ) ¼ f (jþ ih) ¼ u(j, h)þ iv(j, h), f (x) ¼ u(x, 0)þ iv(x, 0), we obtain as required,

u(j, h) ¼ 1

p

ð1
�1

hu(x, 0) dx

(x� j)2 þ h2
, v(j, h) ¼ 1

p

ð1
�1

hv(x, 0) dx

(x� j)2 þ h2

y

C

x
R–R

z

z
–

C1

C2

GKH

JR

F

z0
E

Fig. 5-10 Fig. 5-11

Miscellaneous Problems

5.23. Let f(z) be analytic in a regionR bounded by two concentric circles C1 and C2 and on the boundary
[Fig. 5-11]. Prove that, if z0 is any point in R, then

f (z0) ¼
1

2pi

þ
C1

f (z)

z� z0
dz� 1

2pi

þ
C2

f (z)

z� z0
dz

Solution

Method 1. Construct cross-cut EH connecting circles C1 and C2. Then f(z) is analytic in the region bounded by

EFGEHKJHE. Hence, by Cauchy’s integral formula,

f (z0) ¼
1

2pi

þ
EFGEHKJHE

f (z)

z� z0
dz

¼ 1

2pi

þ
EFGE

f (z)

z� z0
dzþ 1

2pi

ð
EH

f (z)

z� z0
dzþ 1

2pi

þ
HKJH

f (z)

z� z0
dzþ 1

2pi

ð
HE

f (z)

z� z0
dz

¼ 1

2pi

þ
C1

f (z)

z� z0
dz� 1

2pi

þ
C2

f (z)

z� z0
dz

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f (z).

Method 2. The result also follows from equation (3) of Problem 5.6 if we replace the simple closed curves C1

and C2 by the circles of Fig. 5-11.

5.24. Prove that, for n ¼ 1, 2, 3, . . . ,

ð2p
0

cos2nu du ¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � (2n) 2p
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Solution

Let z ¼ eiu. Then, dz ¼ ieiu du ¼ iz du or du ¼ dz=iz and cos u ¼ 1
2
(eiu þ e�iu) ¼ 1

2
(zþ 1=z). Hence,

if C is the unit circle jzj ¼ 1, we have

ð2p
0

cos2n u du ¼
þ
C

1

2
zþ 1

z

� �� �2n
dz

iz

¼ 1

22ni

þ
C

1

z
z2n þ 2n

1

� �
(z2n�1)

1

z

� �
þ � � � þ 2n

k

� �
(z2n�k)

1

z

� �k

þ � � � þ 1

z

� �2n
( )

dz

¼ 1

22ni

þ
C

z2n�1 þ 2n

1

� �
z2n�3 þ � � � þ 2n

k

� �
z2n�2k�1 þ � � � þ z�2n

� �
dz

¼ 1

22ni
� 2pi 2n

n

� �
¼ 1

22n
2n

n

� �
2p

¼ 1

22n
(2n)!

n!n!
2p ¼ (2n)(2n� 1)(2n� 2) � � � (n)(n� 1) � � � 1

22nn!n!
2p

¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � 2n 2p

5.25. Suppose f (z) ¼ u(x, y)þ iv(x, y) is analytic in a region R. Prove that u and v are harmonic in R.

Solution

In Problem 3.6, we proved that u and v are harmonic inR, i.e., satisfy the equation (@2f=@x2)þ (@2f=@y2) ¼ 0,

under the assumption of existence of the second partial derivatives of u and v, i.e., the existence of f 00(z).
This assumption is no longer necessary since we have in fact proved in Problem 5.4 that, if f (z) is analytic

in R, then all the derivatives of f (z) exist.

5.26. Prove Schwarz’s theorem: Let f(z) be analytic for jzj � R, f (0) ¼ 0, and j f (z)j � M. Then

j f (z)j � Mjzj
R

Solution

The function f(z)/z is analytic in jzj � R. Hence, on jzj ¼ R, we have by the maximum modulus theorem,

f (z)

z

����
���� � M

R

However, since this inequality must also hold for points inside jzj ¼ R, we have for jzj � R, j f (z)j � Mjzj=R
as required.

5.27. Let

f (x) ¼ x2 sin(1=x) x= 0

0 x¼ 0

�

where x is real. Show that the function f(x) (a) has a first derivative at all values of x for which
0 � x � 1 but (b) does not have a second derivative in 0 � x � 1. (c) Reconcile these conclusions
with the result of Problem 5.4.
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Solution

(a) The only place where there is any question as to existence of the first derivative is at x ¼ 0. But, at x ¼ 0,

the derivative is

lim
Dx!0

f (0þ Dx)� f (0)

Dx
¼ lim

Dx!0

(Dx)2 sin(1=Dx)� 0

Dx
¼ lim

Dx!0
Dx sin(1=Dx) ¼ 0

and so exists.

At all other values of x in 0 � x � 1, the derivative is given (using elementary differentiation rules) by

x2 cos(1=x)f�1=x2g þ (2x) sin(1=x) ¼ 2x sin(1=x)� cos(1=x)

(b) From part (a), we have

f 0(x) ¼ 2x sin(1=x)� cos(1=x) x=0

0 x ¼ 0

n

The second derivative exists for all x such that 0 , x � 1. At x ¼ 0, the second derivative is given by

lim
Dx!0

f 0(0þ Dx)� f 0(0)

Dx
¼ lim

Dx!0

2Dx sin(1=Dx)� cos(1=Dx)� 0

Dx

¼ lim
Dx!0

f2 sin(1=Dx)� (1=Dx) cos(1=Dx)g

which does not exist.

It follows that the second derivative of f (x) does not exist in 0 � x � 1.

(c) According to Problem 5.4, if f (z) is analytic in a region R, then all higher derivatives exist and are ana-

lytic inR. The above results do not conflict with this, since the function f (z) ¼ z2 sin(1=z) is not analytic

in any region which includes z ¼ 0.

5.28. (a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at z ¼ a
inside C. Prove that

1

2pi

þ
C

F(z) dz ¼ lim
z!a

1

(m� 1)!

dm�1

dzm�1
f(z� a)mF(z)g

(b) How would you modify the result in (a) if more than one pole were inside C?

Solution

(a) If F(z) has a pole of orderm at z ¼ a, then F(z) ¼ f (z)=(z� a)m where f(z) is analytic inside and on C, and

f (a)=0. Then, by Cauchy’s integral formula,

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
C

f (z)

(z� a)m
dz ¼ f (m�1)(a)

(m� 1)!
¼ lim

z!a

1

(m� 1)!

dm�1

dzm�1
f(z� a)mF(z)g

(b) Suppose there are two poles at z ¼ a1 and z ¼ a2 inside C, of orders m1 and m2, respectively. Let G1 and

G2 be circles inside C having radii e1 and e2 and centers at a1 and a2, respectively (see Fig. 5-12). Then

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
G1

F(z) dzþ 1

2pi

þ
G2

F(z) dz (1)
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C

a1

a21

G1

G2

'

2'

Fig. 5-12

If F(z) has a pole of order m1 at z ¼ a1, then

F(z) ¼ f1(z)

(z� a1)
m1

where f1(z) is analytic and f1(a1)=0

If F(z) has a pole of order m2 at z ¼ a2, then

F(z) ¼ f2(z)

(z� a2)
m2

where f2(z) is analytic and f2(a2)=0

Then, by (1) and part (a),

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
G1

f1(z)

(z� a1)
m1

dzþ 1

2pi

þ
G2

f2(z)

(z� a2)
m2

dz

¼ lim
z!a1

1

(m1 � 1)!

dm1�1

dzm1�1
f(z� a1)

m1F(z)g

þ lim
z!a2

1

(m2 � 1)!

dm2�1

dzm2�1
f(z� a2)

m2F(z)g

If the limits on the right are denoted by R1 and R2, we can writeþ
C

F(z) dz ¼ 2pi(R1 þ R2)

where R1 and R2 are called the residues of F(z) at the poles z ¼ a1 and z ¼ a2.

In general, if F(z) has a number of poles inside C with residues R1, R2, . . . , then
Þ
C
F(z) dz ¼ 2pi

times the sum of the residues. This result is called the residue theorem. Applications of this theorem,

together with generalization to singularities other than poles, are treated in Chapter 7.

5.29. Evaluate

þ
C

ez

(z2 þ p2)2
dz where C is the circle jzj ¼ 4.

Solution

The poles of
ez

(z2 þ p2)2
¼ ez

(z� pi)2(zþ pi)2
are at z ¼+pi inside C and are both of order two.

Residue at z ¼ pi is lim
z!pi

1

1!

d

dz
(z� pi)2

ez

(z� pi)2(zþ pi)2

� �
¼ pþ i

4p3
.

Residue at z ¼ �pi is lim
z!�pi

1

1!

d

dz
(zþ pi)2

ez

(z� pi)2(zþ pi)2

� �
¼ p� i

4p3
.

Then

þ
C

ez

(z2 þ p2)2
dz ¼ 2pi (sum of residues) ¼ 2pi

pþ i

4p3
þ p� i

4p3

� �
¼ i

p
.
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SUPPLEMENTARY PROBLEMS

Cauchy’s Integral Formulas

5.30. Evaluate
1

2pi

þ
C

ez

z� 2
dz if C is: (a) the circle jzj ¼ 3, (b) the circle jzj ¼ 1.

5.31. Evaluate

þ
C

sin 3z

zþ p=2
dz if C is the circle jzj ¼ 5.

5.32. Evaluate

þ
C

e3z

z� pi
dz if C is: (a) the circle jz� 1j ¼ 4, (b) the ellipse jz� 2j þ jzþ 2j ¼ 6.

5.33. Evaluate
1

2pi

þ
C

cosp2

z2 � 1
dz around a rectangle with vertices at: (a) 2+ i, �2+ i; (b) �i, 2� i, 2þ i, i.

5.34. Show that
1

2pi

þ
C

ezt

z2 þ 1
dz ¼ sin t if t . 0 and C is the circle jzj ¼ 3.

5.35. Evaluate

þ
C

eiz

z3
dz where C is the circle jzj ¼ 2.

5.36. Suppose C is a simple closed curve enclosing z ¼ a and f(z) is analytic inside and on C. Prove that

f 000(a) ¼ 3!

2pi

þ
C

f (z) dz

(z� a)4
.

5.37. Prove Cauchy’s integral formulas for all positive integral values of n. [Hint: Use mathematical induction.]

5.38. Given C is the circle jzj ¼ 1. Find the value of (a)

þ
C

sin6 z

z� p=6
dz, (b)

þ
C

sin6 z

(z� p=6)3
dz.

5.39. Evaluate
1

2pi

þ
C

ezt

(z2 þ 1)2
dz when t . 0 and C is the circle jzj ¼ 3.

5.40. Prove Cauchy’s integral formulas for the multiply-connected region of Fig. 4-26, page 140.

Morera’s Theorem

5.41. (a) Determine whether G(z) ¼
Ð z
1
dz=z is independent of the path joining 1 and z.

(b) Discuss the relationship of your answer to part (a) with Morera’s theorem.

5.42. Does Morera’s theorem apply in a multiply-connected region? Justify your answer.

5.43. (a) Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed curve. Prove thatÞ
C
P dxþ Qdy ¼ 0.

(b) Suppose for all simple closed curves C in a region R,
Þ
C
P dxþ Qdy ¼ 0. Is it true that P and Q are

conjugate harmonic functions, i.e., is the converse of (a) true? Justify your conclusion.

Cauchy’s Inequality

5.44. (a) Use Cauchy’s inequality to obtain estimates for the derivatives of sin z at z ¼ 0 and (b) determine how

good these estimates are.

5.45. (a) Show that if f (z) ¼ 1=(1� z), then f (n)(z) ¼ n!=(1� z)nþ1.

(b) Use (a) to show that the Cauchy inequality is “best possible”, i.e., the estimate of growth of the nth deriva-

tive cannot be improved for all functions.

CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems 163



5.46. Prove that the equality in Cauchy’s inequality (5.3), page 145, holds in the case n ¼ m if and only if

f (z) ¼ kM(z� a)m=r m, where jkj ¼ 1.

5.47. Discuss Cauchy’s inequality for the function f (z) ¼ e�1=z2 in the neighborhood of z ¼ 0.

Liouville’s Theorem

5.48. The function of a real variable defined by f (x) ¼ sin x is (a) analytic everywhere and (b) bounded, i.e.,

jsin xj � 1 for all x but it is certainly not a constant. Does this contradict Liouville’s theorem? Explain.

5.49. Suppose a . 0 and b . 0 are constants and a non-constant function F(z) is such that F(zþ a) ¼ F(z), and

F(zþ bi) ¼ F(z). Prove that F(z) cannot be analytic in the rectangle 0 � x � a, 0 � y � b.

Fundamental Theorem of Algebra

5.50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular function

f (z) ¼ z4 � z2 � 2zþ 2 has exactly four zeros. (b) Determine the zeros of f(z).

5.51. Determine all the roots of the equations: (a) z3 � 3zþ 4i ¼ 0, (b) z4 þ z2 þ 1 ¼ 0.

Gauss’ Mean Value Theorem

5.52. Evaluate
1

2p

ð2p
0

sin2(p=6þ 2eiu) du:

5.53. Show that the mean value of any harmonic function over a circle is equal to the value of the function at the

center.

5.54. Find the mean value of x2 � y2 þ 2y over the circle jz� 5þ 2ij ¼ 3.

5.55. Prove that
Ð p
0
ln sin u du ¼ �p ln 2. [Hint. Consider f (z) ¼ ln(1þ z).]

Maximum Modulus Theorem

5.56. Find the maximum of j f (z)j in jzj � 1 for the functions f (z) given by: (a) z2 � 3zþ 2, (b) z4 þ z2 þ 1,

(c) cos 3z, (d) (2zþ 1)=(2z� 1).

5.57. (a) Let f (z) be analytic inside and on the simple closed curve C enclosing z ¼ a, prove that

f f (a)gn ¼ 1

2pi

þ
C

f f (z)gn
z� a

dz n ¼ 0, 1, 2, . . .

(b) Use (a) to prove that j f (a)jn � Mn=2pD where D is the minimum distance from a to the curve C andM is

the maximum value of j f (z)j on C.

(c) By taking the nth root of both sides of the inequality in (b) and letting n ! 1, prove the maximum

modulus theorem.

5.58. Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and (b) minimum

values of U(x, y) are attained on C. Are there other restrictions on U(x, y)?

5.59. Given C is the circle jzj ¼ 1. Verify Problem 5.58 for the functions (a) x2 � y2 and (b) x3 � 3xy2.

5.60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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The Argument Theorem

5.61. Let f (z) ¼ z5 � 3iz2 þ 2z� 1þ i. Evaluate

þ
C

f 0(z)

f (z)
dz where C encloses all the zeros of f(z).

5.62. Let f (z) ¼ (z2 þ 1)2

(z2 þ 2zþ 2)3
. Evaluate

1

2pi

þ
C

f 0(z)

f (z)
dz where C is the circle jzj ¼ 4.

5.63. Evaluate

þ
C

f 0(z)

f (z)
dz if C is the circle jzj ¼ p and (a) f (z) ¼ sinpz, (b) f (z) ¼ cospz, (c) f (z) ¼ tanpz.

5.64. Let f (z) ¼ z4 � 2z3 þ z2 � 12zþ 20 and C is the circle jzj ¼ 5. Evaluate

þ
C

zf 0(z)

f (z)
dz.

Rouché’s Theorem

5.65. If a . e, prove that the equation azn ¼ ez has n roots inside jzj ¼ 1.

5.66. Prove that zez ¼ a where a=0 is real has infinitely many roots.

5.67. Prove that tan z ¼ az, a . 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if 0 , a , 1,

(c) all real roots if a � 1.

5.68. Prove that z tan z ¼ a, a . 0 has infinitely many real roots but no imaginary roots.

Poisson’s Integral Formulas for a Circle

5.69. Show that

ð2p
0

R2 � r2

R2 � 2Rr cos(u� f)þ r2
df ¼ 2p

(a) with, (b) without Poisson’s integral formula for a circle.

5.70. Show that:

(a)

ð2p
0

ecosf cos(sinf)

5� 4 cos(u� f)
df ¼ 2p

3
ecosu cos(sin u), (b)

ð2p
0

ecosf sin(sinf)

5� 4 cos(u� f)
df ¼ 2p

3
ecos u sin(sin u):

5.71. (a) Prove that the function

U(r, u) ¼ 2

p
tan�1 2r sin u

1� r2

� �
, 0 , r , 1, 0 � u , 2p

is harmonic inside the circle jzj ¼ 1.

(b) Show that lim
r!1�

U(r, u) ¼ 1 0 , u , p
�1 p , u , 2p:

n

(c) Can you derive the expression for U(r, u) from Poisson’s integral formula for a circle?

5.72. Suppose f(z) is analytic inside and on the circle C defined by jzj ¼ R and suppose z ¼ reiu is any point inside C.

Show that

f 0(reiu) ¼ i

2p

ð2p
0

R(R2 � r2)f (Reif) sin(u� f)

[R2 � 2Rr cos(u� f)þ r2]2
df

5.73. Verify that the functions u and v of equations (5.7) and (5.8), page 146, satisfy Laplace’s equation.
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Poisson’s Integral Formulas for a Half Plane

5.74. Find a function that is harmonic in the upper half plane y . 0 and that on the x axis takes the values �1 if

x , 0 and 1 if x . 0.

5.75. Work Problem 5.74 if the function takes the values �1 if x , �1, 0 if �1 , x , 1, and 1 if x . 1.

5.76. Prove the statement made in Problem 5.22 that the integral over G approaches zero as R ! 1.

5.77. Prove that under suitable restrictions on f(x),

lim
h!0þ

1

p

ð1
�1

h f (x)

(x� j )2 þ h 2
dx ¼ f (j )

and state these restrictions.

5.78. Verify that the functions u and v of equations (5.10) and (5.11), page 146, satisfy Laplace’s equation.

Miscellaneous Problems

5.79. Evaluate
1

2pi

þ
C

z2 dz

z2 þ 4
where C is the square with vertices at +2, +2þ 4i.

5.80. Evaluate

þ
C

cos2 tz

z3
dz where C is the circle jzj ¼ 1 and t . 0.

5.81. (a) Show that

þ
C

dz

zþ 1
¼ 2pi if C is the circle jzj ¼ 2.

(b) Use (a) to show that þ
C

(xþ 1) dxþ y dy

(xþ 1)2 þ y2
¼ 0,

þ
C

(xþ 1) dy� y dx

(xþ 1)2 þ y2
¼ 2p

and verify these results directly.

5.82. Find all functions f(z) that are analytic everywhere in the entire complex plane and that satisfy the conditions

(a) f (2� i) ¼ 4i and (b) j f (z) j , e2 for all z.

5.83. Let f (z) be analytic inside and on a simple closed curve C. Prove that

(a) f 0(a) ¼ 1

2p

ð2p
0

e�iuf (aþ eiu) du (b)
f (n)(a)

n!
¼ 1

2p

ð2p
0

e�niuf (aþ eiu) du

5.84. Prove that 8z4 � 6zþ 5 ¼ 0 has one root in each quadrant.

5.85. Show that (a)
Ð 2p
0

ecos u cos(sin u) du ¼ 0, (b)
Ð 2p
0

ecos u sin(sin u) du ¼ 2p.

5.86. Extend the result of Problem 5.23 so as to obtain formulas for the derivatives of f(z) at any point in R.

5.87. Prove that z3e1�z ¼ 1 has exactly two roots inside the circle jzj ¼ 1.

5.88. Suppose t . 0 and C is any simple closed curve enclosing z ¼ �1. Prove that

1

2pi

þ
C

zezt

(zþ 1)3
dz ¼ t � t2

2

� �
e�t

5.89. Find all functions f(z) that are analytic in jzj , 1 and that satisfy the conditions (a) f (0) ¼ 1 and (b) j f (z)j � 1

for jzj , 1.
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5.90. Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at a1, a2, . . . , am
and poles at b1, b2, . . . , bn of orders (multiplicities) p1, p2, . . . , pm and q1, q2, . . . , qn, respectively. Prove that

1

2pi

þ
C

g(z)
f 0(z)

f (z)
dz ¼

Xm
k¼1

pkg(ak)�
Xn
k¼1

qkg(bk)

5.91. Suppose f (z) ¼ a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an where a0=0, a1, . . . , an are complex constants and C

encloses all the zeros of f (z). Evaluate

(a)
1

2pi

þ
C

z f 0(z)

f (z)
dz (b)

1

2pi

þ
C

z2 f 0(z)

f (z)
dz

and interpret the results.

5.92. Find all functions f (z) that are analytic in the region jzj � 1 and are such that (a) f (0) ¼ 3 and (b) j f (z)j � 3 for

all z such that jzj , 1.

5.93. Prove that z6 þ 192zþ 640 ¼ 0 has one root in the first and fourth quadrants and two roots in the second and

third quadrants.

5.94. Prove that the function xy(x2 � y2) cannot have an absolute maximum or minimum inside the circle jzj ¼ 1.

5.95. (a) If a function is analytic in a regionR, is it bounded inR? (b) In view of your answer to (a), is it necessary to

state that f (z) is bounded in Liouville’s theorem?

5.96. Find all functions f (z) that are analytic everywhere, have a zero of order two at z ¼ 0, satisfy the condition

j f 0(z)j � 6jzj for all z, and are such that f (i) ¼ �2.

5.97. Prove that all the roots of z5 þ z� 16i ¼ 0 lie between the circles jzj ¼ 1 and jzj ¼ 2.

5.98. Let U be harmonic inside and on a simple closed curve C. Prove thatþ
C

@U

@n
ds ¼ 0

where n is a unit normal to C in the z plane and s is the arc length parameter.

5.99. A theorem of Cauchy states that all the roots of the equation zn þ a1z
n�1 þ a2z

n�2 þ � � � þ an ¼ 0, where

a1, a2, . . . , an are real, lie inside the circle jzj ¼ 1þmaxfa1, a2, . . . , ang, i.e., jzj ¼ 1 plus the maximum of

the values a1, a2, . . . , an. Verify this theorem for the special cases:

(a) z3 � z2 þ z� 1 ¼ 0, (b) z4 þ z2 þ 1 ¼ 0, (c) z4 � z2 � 2zþ 2 ¼ 0, (d) z4 þ 3z2 � 6zþ 10 ¼ 0.

5.100. Prove the theorem of Cauchy stated in Problem 5.99.

5.101. Let P(z) be any polynomial. If m is any positive integer and v ¼ e2pi=m, prove that

P(1)þ P(v)þ P(v2)þ � � � þ P(vm�1)

m
¼ P(0)

and give a geometric interpretation.

5.102. Is the result of Problem 5.101 valid for any function f(z)? Justify your answer.

5.103. Prove Jensen’s theorem: Suppose f(z) is analytic inside and on the circle jzj ¼ R except for zeros at

a1, a2, . . . , am of multiplicities p1, p2, . . . , pm and poles at b1, b2, . . . , bn of multiplicities q1, q2, . . . , qn,

respectively, and suppose f(0) is finite and different from zero. Then

1

2p

ð2p
0

ln j f (Reiu)j du ¼ ln j f (0)j þ
Xm
k¼1

pk ln
R

jakj

� �
�
Xn
k¼1

qk ln
R

jbkj

� �

[Hint. Consider
Þ
C
ln zf f 0(z)=f (z)g dz where C is the circle jzj ¼ R.]
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ANSWERS TO SUPPLEMENTARY PROBLEMS

5.30. (a) e2, (b) 0 5.54. 17

5.31. 2pi 5.61. 10pi

5.32. (a) �2pi, (b) 0 5.62. �2

5.33. (a) 0, (b) �1
2

5.63. (a) 14pi, (b) 12pi, (c) 2pi

5.35. �pi 5.64. 4pi

5.38. (a) pi=32, (b) 21pi=16 5.74. 1� (2=p) tan�1(y=x)

5.39. 1
2
(sin t � t cos t) 5.75. 1� 1

p
tan�1 y

xþ 1

� �
� 1

p
tan�1 y

x� 1

� 

5.50. (b) 1, 1, �1+i

5.79. i
5.51. (a) i, 1

2
�i+

ffiffiffiffiffi
15

p
 �
,

5.80. �2pit2
(b) 1

2
�1+

ffiffiffiffi
3i

p
 �
, 1

2
1+

ffiffiffiffi
3i

p
 �
5.91. �a1=a0, (b) (a

2
1 � 2a0a2)=a

2
0

5.52. 1/4
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CHAP T E R 6

Infinite Series
Taylor’s and Laurent’s Series

6.1 Sequences of Functions

The ideas of Chapter 2, pages 48 and 49, for sequences and series of constants are easily extended to
sequences and series of functions.

Let u1(z), u2(z), . . . , un(z), . . . , denoted briefly by fun(z)g, be a sequence of functions of z defined and
single-valued in some region of the z plane. We call U(z) the limit of un(z) as n ! 1, and write
limn!1 un(z) ¼ U(z), if given any positive number e, we can find a number N [depending in general on
both e and z] such that

jun(z)� U(z)j , e for all n > N

In such a case, we say that the sequence converges or is convergent to U(z).
If a sequence converges for all values of z (points) in a regionR, we callR the region of convergence of

the sequence. A sequence that is not convergent at some value (point) z is called divergent at z.
The theorems on limits given on page 49 can be extended to sequences of functions.

6.2 Series of Functions

From the sequence of functions fun(z)g, let us form a new sequence fSn(z)g defined by

S1(z) ¼ u1(z)

S2(z) ¼ u1(z)þ u2(z)

..

. ..
.

Sn(z) ¼ u1(z)þ u2(z)þ � � � þ un(z)

where Sn(z), called the nth partial sum, is the sum of the first n terms of the sequence fun(z)g.
The sequence S1(z), S2(z), . . . or fSn(z)g is symbolized by

u1(z)þ u2(z)þ � � � ¼
X1
n¼1

un(z) (6:1)

called an infinite series. If limn!1 Sn(z) ¼ S(z), the series is called convergent and S(z) is its sum; otherwise,
the series is called divergent. We sometimes write

P1
n¼1 un(z) as

P
un(z) or

P
un for brevity.

169



As we have already seen, a necessary condition that the series (1) converges is limn!1 un(z) ¼ 0, but this
is not sufficient. See, for example, Problem 2.150, and also Problems 6.67(c), 6.67(d), and 6.111(a).

If a series converges for all values of z (points) in a regionR, we callR the region of convergence of the
series.

6.3 Absolute Convergence

A series
P1

n¼1 un(z) is called absolutely convergent if the series of absolute values, i.e.,
P1

n¼1 jun(z)j,
converges.

If
P1

n¼1 un(z) converges but
P1

n¼1 jun(z)j does not converge, we call
P1

n¼1 un(z) conditionally
convergent.

6.4 Uniform Convergence of Sequences and Series

In the definition of limit of a sequence of functions, it was pointed out that the number N depends in
general on e and the particular value of z. It may happen, however, that we can find a number N such
that jun(z)� U(z)j , e for all n . N, where the same number N holds for all z in a region R [i.e., N
depends only on e and not on the particular value of z (point) in the region]. In such a case, we say that
un(z) converges uniformly, or is uniformly convergent, to U(z) for all z in R.

Similarly, if the sequence of partial sums fSn(z)g converges uniformly to S(z) in a region, we say that the
infinite series (6.1) converges uniformly, or is uniformly convergent, to S(z) in the region.

We call Rn(z) ¼ unþ1(z)þ unþ2(z)þ � � � ¼ S(z)� Sn(z) the remainder of the infinite series (6.1)
after n terms. Then, we can equivalently say that the series is uniformly convergent to S(z) in R if,
given any e . 0, we can find a number N such that for all z in R,

jRn(z)j ¼ jS(z)� Sn(z)j , e for all n > N

6.5 Power Series

A series having the form

a0 þ a1(z� a)þ a2(z� a)2 þ � � � ¼
X1
n¼0

an(z� a)n (6:2)

is called a power series in z� a. We shall sometimes shorten (6.2) to
P

an(z� a)n.
Clearly the power series (6.2) converges for z ¼ a, and this may indeed be the only point for which it

converges [see Problem 6.13(b)]. In general, however, the series converges for other points as well. In
such cases, we can show that there exists a positive number R such that (6.2) converges for jz� aj , R
and diverges for jz� aj . R, while for jz� aj ¼ R, it may or may not converge.

Geometrically, if G is a circle of radius R with center at z ¼ a, then the series (6.2) converges at all points
inside G and diverges at all points outside G, while it may or may not converge on the circle G. We
can consider the special cases R ¼ 0 and R ¼ 1, respectively, to be the cases where (6.2) converges
only at z ¼ a or converges for all (finite) values of z. Because of this geometrical interpretation, R is
often called the radius of convergence of (6.2) and the corresponding circle is called the circle of
convergence.
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6.6 Some Important Theorems

For reference purposes, we list here some important theorems involving sequences and series. Many of
these will be familiar from their analogs for real variables.

A. General Theorems

THEOREM 6.1. If a sequence has a limit, the limit is unique [i.e., it is the only one].

THEOREM 6.2. Let un ¼ an þ ibn, n ¼ 1, 2, 3, . . . , where an and bn are real. Then, a necessary and
sufficient condition that fung converge is that fang and fbng converge.

THEOREM 6.3. Let fang be a real sequence with the property that

(i) anþ1 � an or anþ1 � an
(ii) janj , M (a constant)

Then fang converges.
If the first condition in Property (i) holds, the sequence is calledmonotonic increasing;

if the second condition holds, it is called monotonic decreasing. If Property (ii) holds, the
sequence is said to be bounded. Thus, the theorem states that every bounded monotonic
(increasing or decreasing) sequence has a limit.

THEOREM 6.4. A necessary and sufficient condition that fung converges is that given any e . 0, we can
find a number N such that jup � uqj , e for all p . N, q . N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy’s convergence criterion.

THEOREM6.5. A necessary condition that
P

un converge is that limn!1 un ¼ 0. However, the condition
is not sufficient.

THEOREM 6.6. Multiplication of each term of a series by a constant different from zero does not affect
the convergence or divergence. Removal (or addition) of a finite number of terms from
(or to) a series does not affect the convergence or divergence.

THEOREM6.7. A necessary and sufficient condition that
P1

n¼1 (an þ ibn) converges, where an and bn are
real, is that

P1
n¼1 an and

P1
n¼1 bn converge.

B. Theorems on Absolute Convergence

THEOREM 6.8. If
P1

n¼1 junj converges, then
P1

n¼1 un converges. In words, an absolutely convergent
series is convergent.

THEOREM 6.9. The terms of an absolutely convergent series can be rearranged in any order and all such
rearranged series converge to the same sum. Also, the sum, difference, and product of
absolutely convergent series is absolutely convergent.

These are not so for conditionally convergent series (see Problem 6.127).

C. Special Tests for Convergence

THEOREM 6.10. (Comparison tests)
(a) If

P
jvnj converges and junj � jvnj, then

P
un converges absolutely.

(b) If
P

jvnj diverges and junj � jvnj, then
P

junj diverges but
P

un may or may not
converge.
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THEOREM 6.11. (Ratio test) Let limn!1 unþ1=un
�� �� ¼ L. Then

P
un converges (absolutely) if L , 1 and

diverges if L . 1. If L ¼ 1, the test fails.

THEOREM 6.12. (nth Root test) Let limn!1
ffiffiffiffiffiffiffiffi
junjn

p
¼ L. Then

P
un converges (absolutely) if L , 1 and

diverges if L . 1. If L ¼ 1, the test fails.

THEOREM 6.13. (Integral test) If f (x) � 0 for x � a, then
P

f (n) converges or diverges according as

limM!1
ÐM
a
f (x) dx converges or diverges.

THEOREM 6.14. (Raabe’s test) Let limn!1 n 1� unþ1=un
�� ��
 �

¼ L. Then
P

un converges (absolutely) if
L . 1 and diverges or converges conditionally if L , 1. If L ¼ 1, the
test fails.

THEOREM 6.15. (Gauss’ test) Suppose unþ1=un
�� �� ¼ 1� (L=n)þ (cn=n

2) where jcnj , M for all n . N.
Then

P
un converges (absolutely) if L . 1 and diverges or converges

conditionally if L � 1.

THEOREM 6.16. (Alternating series test) If an � 0, anþ1 � an for n ¼ 1, 2, 3, . . . and limn!1 an ¼ 0,
then a1 � a2 þ a3 � � � � ¼

P
(�1)n�1an converges.

D. Theorems on Uniform Convergence

THEOREM 6.17. (Weierstrass M test) jun(z)j � Mn, where Mn is independent of z in a region R andP
Mn converges, then

P
un(z) is uniformly convergent in R.

THEOREM 6.18. The sum of a uniformly convergent series of continuous functions is continuous, i.e., if
un(z) is continuous in R and S(z) ¼

P
un(z) is uniformly convergent in R, then S(z) is

continuous in R.

THEOREM 6.19. Suppose fun(z)g are continuous inR, S(z) ¼
P

un(z) is uniformly convergent inR and
C is a curve in R. Thenð

C

S(z) dz ¼
ð
C

u1(z) dzþ
ð
C

u2(z) dzþ � � �

or ð
C

nX
un(z)

o
dz ¼

Xð
C

un(z) dz

In words, a uniformly convergent series of continuous functions can be integrated
term by term.

THEOREM 6.20. Suppose u0n(z) ¼ (d=dz)un(z) exists in R,
P

u0n(z) converges uniformly in R andP
un(z) converges in R. Then (d=dz)

P
un(z) ¼

P
u0n(z).

THEOREM 6.21. Suppose fun(z)g are analytic and
P

un(z) is uniformly convergent in R. Then
S(z) ¼

P
un(z) is analytic in R.
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E. Theorems on Power Series

THEOREM6.22. A power series converges uniformly and absolutely in any region that lies entirely inside
its circle of convergence.

THEOREM 6.23. (a) A power series can be differentiated term by term in any region that lies entirely
inside its circle of convergence.

(b) A power series can be integrated term by term along any curve C that lies entirely
inside its circle of convergence.

(c) The sum of a power series is continuous in any region that lies entirely inside its
circle of convergence.

These follow from Theorems 6.17–6.19 and 6.21.

THEOREM 6.24. (Abel’s theorem) Let
P

anz
n have radius of convergence R and suppose that z0 is a

point on the circle of convergence such that
P

anz
n
0 converges. Then, limz!z0

P
anz

n ¼P
anz

n
0 where z ! z0 from within the circle of convergence. Extensions to other power

series are easily made.

THEOREM6.25. Suppose
P

anz
n converges to zero for all z such that jzj , R where R . 0. Then an ¼ 0.

Equivalently, if
P

anz
n ¼

P
bnz

n for all z such that jzj , R, then an ¼ bn.

6.7 Taylor’s Theorem

Let f(z) be analytic inside and on a simple closed curve C. Let a and aþ h be two points inside C. Then

f (aþ h) ¼ f (a)þ hf 0(a)þ h2

2!
f 00(a)þ � � � þ hn

n!
f (n)(a)þ � � � (6:3)

or writing z ¼ aþ h, h ¼ z� a,

f (z) ¼ f (a)þ f 0(a)(z� a)þ f 00(a)

2!
(z� a)2 þ � � � þ f (n)(a)

n!
(z� a)n þ � � � (6:4)

This is called Taylor’s theorem and the series (6.3) or (6.4) is called a Taylor series or expansion for
f (aþ h) or f(z).

The region of convergence of the series (6.4) is given by jz� aj , R, where the radius of convergence R
is the distance from a to the nearest singularity of the function f(z). On jz� aj ¼ R, the series may or may
not converge. For jz� aj . R, the series diverges.

If the nearest singularity of f (z) is at infinity, the radius of convergence is infinite, i.e., the series con-
verges for all z.

If a ¼ 0 in (6.3) or (6.4), the resulting series is often called a Maclaurin series.

6.8 Some Special Series

The following list shows some special series together with their regions of convergence. In the case of
multiple-valued functions, the principal branch is used.

1. ez ¼ 1þ zþ z2

2!
þ z2

3!
þ � � � þ zn

n!
þ � � � jzj , 1

2. sin z ¼ z� z3

3!
þ z5

5!
� � � � (�1)n�1 z2n�1

(2n� 1)!
þ � � � jzj , 1
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3. cos z ¼ 1� z2

2!
þ z4

4!
� � � � (�1)n�1 z2n�2

(2n� 2)!
þ � � � jzj , 1

4. ln(1þ z) ¼ z� z2

2
þ z3

3
� � � � (�1)n�1 z

n

n
þ � � � jzj , 1

5. tan�1 z ¼ z� z3

3
þ z5

5
� � � � (�1)n�1 z2n�1

2n� 1
þ � � � jzj , 1

6. (1þ z)p ¼ 1þ pzþ p(p� 1)

2!
z2 þ � � � þ p( p� 1) � � � ( p� nþ 1)

n!
zn þ � � � jzj , 1

From the list above, note that the last is the binomial theorem or formula. If (1þ z)p is multiple-valued,
the result is valid for that branch of the function which has the value 1 when z ¼ 0.

6.9 Laurent’s Theorem

Let C1 and C2 be concentric circles of radii R1 and R2, respect-
ively, and center at a [Fig. 6-1]. Suppose that f(z) is single-
valued and analytic on C1 and C2 and, in the ring-shaped
region R [also called the annulus or annular region] between
C1 and C2, is shown shaded in Fig. 6-1. Let aþ h be any point
in R. Then we have

f (aþ h) ¼ a0 þ a1hþ a2h
2 þ � � � þ a�1

h
þ a�2

h2
þ a�3

h3
þ � � � (6:5)

where

an ¼
1

2pi

þ
C1

f (z)

(z� a)nþ1
dz n ¼ 0, 1, 2, . . .

a�n ¼
1

2pi

þ
C1

(z� a)n�1f (z) dz n ¼ 1, 2, 3, . . .

(6:6)

C1 and C2 being traversed in the positive direction with respect to
their interiors.

In the above integrations, we can replace C1 and C2 by any concentric circle C between C1 and C2 [see
Problem 6.100]. Then, the coefficients (6.6) can be written in a single formula,

an ¼
1

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, +1, +2, . . . (6:7)

With an appropriate change of notation, we can write the above as

f (z) ¼ a0 þ a1(z� a)þ a2(z� a)2 þ � � � þ a�1

z� a
þ a�2

(z� a)2
þ � � � (6:8)

where

an ¼
1

2pi

þ
C

f (z )

(z� a)nþ1
dz n ¼ 0, +1, +2, . . . (6:9)

This is called Laurent’s theorem and (6.5) or (6.8) with coefficients (6.6), (6.7), or (6.9) is called a Laurent
series or expansion.

The part a0 þ a1(z� a)þ a2(z� a)2 þ � � � is called the analytic part of the Laurent series, while the
remainder of the series, which consists of inverse powers of z� a, is called the principal part. If the prin-
cipal part is zero, the Laurent series reduces to a Taylor series.

x

y C1

C2

R2

R1 a + h

a

R

Fig. 6-1
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6.10 Classification of Singularities

It is possible to classify the singularities of a function f(z) by examination of its Laurent series. For this
purpose, we assume that in Fig. 6-1, R2 ¼ 0, so that f (z) is analytic inside and on C1 except at z ¼ a,
which is an isolated singularity [see page 81]. In the following, all singularities are assumed isolated
unless otherwise indicated.

1. Poles. If f (z) has the form (6.8) in which the principal part has only a finite number of terms
given by

a�1

z� a
þ a�2

(z� a)2
þ � � � þ a�n

(z� a)n

where a�n=0, then z ¼ a is called a pole of order n. If n ¼ 1, it is called a simple pole.
If f(z) has a pole at z ¼ a, then limz!a f (z) ¼ 1 [see Problem 6.32].

2. Removable singularities. If a single-valued function f(z) is not defined at z ¼ a but limz!a f (z)
exists, then z ¼ a is called a removable singularity. In a such case, we define f (z) at z ¼ a as
equal to limz!a f (z), and f(z) will then be analytic at a.

EXAMPLE 6.1: If f (z) ¼ sin z=z, then z ¼ 0 is a removable singularity since f(0) is not defined

but limz!0 sin z=z ¼ 1. We define f (0) ¼ limz!0 sin z=z ¼ 1. Note that in this case

sin z

z
¼ 1

z
z� z3

3!
þ z5

5!
� z7

7!
þ � � �

� �
¼ 1� z2

3!
þ z4

5!
� z6

7!
þ � � �

3. Essential singularities. If f(z) is single-valued, then any singularity that is not a pole or removable
singularity is called an essential singularity. If z ¼ a is an essential singularity of f (z), the principal
part of the Laurent expansion has infinitely many terms.

EXAMPLE 6.2: Since e1=z ¼ 1þ 1

z
þ 1

2!z2
þ 1

3!z3
þ � � � , z ¼ 0 is an essential singularity.

The following two related theorems are of interest (see Problems 6.153–6.155):

Casorati–Weierstrass theorem. In any neighborhood of an isolated essential singularity a,
an otherwise analytic function f (z) comes arbitrarily close to any complex number an infinite
number of times. In symbols, given any positive numbers d and e and any complex number A,
there exists a value of z inside the circle jz� aj ¼ d for which j f (z)� Aj , e.
Picard’s theorem. In the neighborhood of an isolated essential singularity a, an otherwise analytic
function f(z) takes on every complex value with perhaps one exception.

4. Branch points. A point z ¼ z0 is called a branch point of a multiple-valued function f(z) if the
branches of f (z) are interchanged when z describes a closed path about z0 [see page 45]. A
branch point is a non-isolated singularity. Since each of the branches of a multiple-valued function
is analytic, all of the theorems for analytic functions, in particular Taylor’s theorem, apply.

EXAMPLE 6.3: The branch of f (z) ¼ z1=2, which has the value 1 for z ¼ 1, has a Taylor series of the

form a0 þ a1(z� 1)þ a2(z� 1)2 þ � � � with radius of convergence R ¼ 1 [the distance from z ¼ 1 to the

nearest singularity, namely the branch point z ¼ 0].

5. Singularities at infinity. By letting z ¼ 1=w in f (z), we obtain the function f (1=w) ¼ F(w). Then
the nature of the singularity for f(z) at z ¼ 1 [the point at infinity] is defined to be the same as that
of F(w) at w ¼ 0.

EXAMPLE 6.4: f (z) ¼ z3 has a pole of order 3 at z ¼ 1, since F(w) ¼ f (1=w) ¼ 1=w3 has a pole of order 3 at

w ¼ 0. Similarly, f (z) ¼ ez has an essential singularity at z ¼ 1, since F(w) ¼ f (1=w) ¼ e1=w has an essential

singularity at w ¼ 0.
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6.11 Entire Functions

A function that is analytic everywhere in the finite plane [i.e., everywhere except at 1] is called an entire
function or integral function. The functions e z, sin z, cos z are entire functions.

An entire function can be represented by a Taylor series that has an infinite radius of convergence.
Conversely, if a power series has an infinite radius of convergence, it represents an entire function.

Note that by Liouville’s theorem [Chapter 5, page 145], a function which is analytic everywhere includ-
ing 1 must be a constant.

6.12 Meromorphic Functions

A function that is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

EXAMPLE 6.5: z=(z� 1)(zþ 3)2, which is analytic everywhere in the finite plane except at the poles z ¼ 1 (simple

pole) and z ¼ �3 (pole of order 2), is a meromorphic function.

6.13 Lagrange’s Expansion

Let z be that root of z ¼ aþ zf(z) which has the value z ¼ awhen z ¼ 0. Then, if f(z) is analytic inside and
on a circle C containing z ¼ a, we have

z ¼ aþ
X1
n¼1

z n

n!

dn�1

dan�1
f[f(a)]ng (6:10)

More generally, if F(z) is analytic inside and on C, then

F(z) ¼ F(a)þ
X1
n¼1

z n

n!

dn�1

dan�1
fF0(a)[f(a)]ng (6:11)

The expansion (6.11) and the special case (6.10) are often referred to as Lagrange’s expansions.

6.14 Analytic Continuation

Suppose that we do not know the precise form of an analytic
function f (z) but only know that inside some circle of conver-
gence C1 with center at a [Fig. 6-2], f (z) is represented by a
Taylor series

a0 þ a1(z� a)þ a2(z� a)2 þ � � � (6:12)

Choosing a point b inside C1, we can find the value of f (z) and
its derivatives at b from (6.13) and thus arrive at a new series

b0 þ b1(z� b)þ b2(z� b)2 þ � � � (6:13)

having circle of convergence C2. If C2 extends beyond C1,
then the values of f (z) and its derivatives can be obtained in
this extended portion and so we have achieved more infor-
mation concerning f(z).

We say, in this case, that f(z) has been extended analytically beyond C1 and call the process analytic
continuation or analytic extension.

The process can, of course, be repeated indefinitely. Thus, choosing point c inside C2, we arrive at a new
series having circle of convergence C3 which may extend beyond C1 and C2, etc.

The collection of all such power series representations, i.e., all possible analytic continuations, is defined
as the analytic function f(z) and each power series is sometimes called an element of f(z).

C3

y

x

b'
c'

c

b

a

CnP

C2

C1

Path P1

Path P2

Fig. 6-2
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In performing analytic continuations, we must avoid singularities. For example, there cannot be any singu-
larity in Fig. 6-2 that is both inside C2 and on the boundary ofC1, otherwise (6.13) would diverge at this point.
In some cases, the singularities on a circle of convergence are so numerous that analytic continuation is
impossible. In these cases the boundary of the circle is called a natural boundary or barrier [see Problem
6.30]. The function represented by a series having a natural boundary is called a lacunary function.

In going from circle C1 to circle Cn [Fig. 6-2], we have chosen the path of centers a, b, c, . . . , p, which we
represent by path P1. Many other paths are also possible, e.g., a, b0, c0, . . . , p represented briefly by path P2.
A question arises as to whether one obtains the same series representation valid inside Cn when one chooses
different paths. The answer is yes, so long as the region bounded by paths P1 and P2 has no singularity.

For a further discussion of analytic continuation, see Chapter 10.

SOLVED PROBLEMS

Sequences and Series of Functions

6.1. Using the definition, prove that limn!1 1þ z

n

� 

¼ 1 for all z.

Solution

Given any number e . 0, we must find N such that j1þ z=n� 1j , e for n . N. Then jz=nj , e, i.e., jzj=n , e
if n . jzj=e ¼ N.

6.2. (a) Prove that the series z(1� z)þ z2(1� z)þ z3(1� z)þ � � � converges for jzj , 1, and
(b) find its sum.

Solution

The sum of the first n terms of the series is

Sn(z) ¼ z(1� z)þ z2(1� z)þ � � � þ zn(1� z)

¼ z� z2 þ z2 � z3 þ � � � þ zn � znþ1 ¼ z� znþ1

Now jSn(z)� zj ¼ j�znþ1j ¼ jzjnþ1 , e for (nþ 1) lnjzj , ln e, i.e., nþ 1 . ln e=ln jzj or

n . (ln e=ln jzj)� 1:
If z ¼ 0, Sn(0) ¼ 0 and jSn(0)� 0j , e for all n.
Hence limn!1 Sn(z) ¼ z, the required sum for all z such that jzj , 1.

Another Method. Since Sn(z) ¼ z� znþ1, we have [by Problem 2.41, in which we showed that limn!1 zn ¼ 0

if j2j , 1]

Required sum ¼ S(z) ¼ lim
n!1 Sn(z) ¼ lim

n!1 (z� znþ1) ¼ z:

Absolute and Uniform Convergence

6.3. (a) Prove that the series in Problem 6.2 converges uniformly to the sum z for jzj � 1
2
.

(b) Does the series converge uniformly for jzj � 1? Explain.

Solution

(a) In Problem 6.2, we have shown that jSn(z)� zj , e for all n . (ln e=lnjzj)� 1, i.e., the series converges to

the sum z for jzj , 1 and thus for jzj � 1
2
.

Now if jzj � 1
2
, the largest value of (ln e=lnjzj)� 1 occurs where jzj ¼ 1

2
and is given by

(ln e=ln(1=2))� 1 ¼ N. It follows that jSn(z)� zj , e for all n . N where N depends only on e and not

on the particular z in jzj � 1
2
. Thus, the series converges uniformly to z for jzj � 1

2
.
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(b) The same argument given in part (a) serves to show that the series converges uniformly to sum z for

jzj � :9 or jzj � :99 by using N ¼ (ln e=ln(:9))� 1 and N ¼ (ln e=ln(:99))� 1, respectively.

However, it is clear that we cannot extend the argument to jzj � 1 since this would require

N ¼ (ln e=ln 1)� 1, which is infinite, i.e., there is no finite value of N that can be used in this case.

Thus, the series does not converge uniformly for jzj � 1.

6.4. (a) Prove that the sequence 1=1þ nz
� �

is uniformly convergent to zero for all z such that jzj � 2.

(b) Can the region of uniform convergence in (a) be extended? Explain.

Solution

(a) We have (1=1þ nz)� 0
�� ��, ewhen 1=j1þ nzj, e or j1þ nzj. 1=e. Now, j1þ nzj � j1j þ jnzj ¼ 1þ njzj

and 1þ njzj � j1þ nzj. 1=e for n. (1=e� 1=jzj). Thus, the sequence converges to zero for jzj. 2.

To determine whether it converges uniformly to zero, note that the largest value of (1=e� 1=jzj)
in jzj � 2 occurs for jzj ¼ 2 and is given by 1

2
f(1=e)� 1g ¼ N. It follows that (1=1þ nz)� 0

�� ��, e for all

n. N where N depends only on e and not on the particular z in jzj � 2. Thus, the sequence is

uniformly convergent to zero in this region.

(b) If d is any positive number, the largest value of ((1=e)� 1)=jzj in jzj � d occurs for jzj ¼ d and is given by

((1=e)� 1)=d. As in part (a), it follows that the sequence converges uniformly to zero for all z such that

jzj � d, i.e., in any region that excludes all points in a neighborhood of z ¼ 0.

Since d can be chosen arbitrarily close to zero, it follows that the region of (a) can be extended

considerably.

6.5. Show that (a) the sum function in Problem 6.2 is discontinuous at z ¼ 1, (b) the limit in Problem 6.4
is discontinuous at z ¼ 0.

Solution

(a) From Problem 6.2, Sn(z) ¼ z� znþ1, S(z) ¼ limn!1 Sn(z). If jzj , 1, S(z) ¼ limn!1 Sn(z) ¼ z. If z ¼ 1,

Sn(z) ¼ Sn(1) ¼ 0 and limn!1 Sn(1) ¼ 0. Hence, S(z) is discontinuous at z ¼ 1.

(b) From Problem 6.4, if we write un(z) ¼ 1=1þ nz andU(z) ¼ limn!1 un(z), we haveU(z) ¼ 0 if z=0 and 1

if z ¼ 0. Thus, U(z) is discontinuous at z ¼ 0.

These are consequences of the fact [see Problem 6.16] that if a series of continuous functions is uniformly

convergent in a region R, then the sum function must be continuous in R. Hence, if the sum function is not

continuous, the series cannot be uniformly convergent. A similar result holds for sequences.

6.6. Prove that the series of Problem 6.2 is absolutely convergent for jzj , 1.

Solution

Let Tn(z) ¼ jz(1� z)j þ jz2(1� z)j þ � � � þ jzn(1� z)j ¼ j1� zjfjzj þ jzj2 þ jzj3 þ � � � þ jzjng

¼ j1� zjjzj 1� jzjn
1� jzj

� �

If jzj , 1, then limn!1 jzjn ¼ 0 and limn!1 Tn(z) exists so that the series converges absolutely.

Note that the series of absolute values converges in this case to j1� zjjzj=1� jzj.

Special Convergence Tests

6.7. Suppose
P

jvnj converges and junj � jvnj, n ¼ 1, 2, 3, . . . . Prove that
P

junj also converges
(i.e., establish the comparison test for convergence).
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Solution

Let Sn ¼ ju1j þ ju2j þ � � � þ junj, Tn ¼ jv1j þ jv2j þ � � � þ jvnj.
Since

P
jvnj converges, limn!1 Tn exists and equals T, say. Also since jvnj � 0, Tn � T .

Then Sn ¼ ju1j þ ju2j þ � � � þ junj � jv1j þ jv2j þ � � � þ jvnj � T or 0 � Sn � T .

Thus, Sn is a bounded monotonic increasing sequence and must have a limit [Theorem 6.3, page 171],

i.e.,
P

junj converges.

6.8. Prove that
1

1p
þ 1

2p
þ 1

3p
þ � � � ¼

X1
n¼1

1

np
converges for any constant p . 1.

Solution

We have
1

1p
¼ 1

1 p�1

1

2p
þ 1

3p
� 1

2p
þ 1

2p
¼ 1

2 p�1

1

4 p
þ 1

5p
þ 1

6p
þ 1

7p
� 1

4 p
þ 1

4 p
þ 1

4 p
þ 1

4 p
¼ 1

4 p�1

etc., where we consider 1, 2, 4, 8, . . . terms of the series. It follows that the sum of any finite number of terms of

the given series is less than the geometric series

1

1 p�1
þ 1

2 p�1
þ 1

4 p�1
þ 1

8 p�1
þ � � � ¼ 1

1� 1=2 p�1

which converges for p . 1. Thus the given series, sometimes called the p series, converges.

By using a method analogous to that used here together with the comparison test for divergence [Theorem

6.10(b), page 171], we can show that
P1

n¼1 1=n
p diverges for p � 1.

6.9. Prove that an absolutely convergent series is convergent.

Solution

Given that
P

junj converges, we must show that
P

un converges. Let

SM ¼ u1 þ u2 þ � � � þ uM and TM ¼ ju1j þ ju2j þ � � � þ juMj

Then

SM þ TM ¼ (u1 þ ju1j)þ (u2 þ ju2j)þ � � � þ (uM þ juMj)
� 2ju1j þ 2ju2j þ � � � þ 2juMj

Since
P

junj converges and un þ junj � 0 for n ¼ 1, 2, 3, . . . , it follows that SM þ TM is a bounded

monotonic increasing sequence and so limM!1 (SM þ TM) exists.

Also since limM!1 TM exists [because, by hypothesis, the series is absolutely convergent],

lim
M!1 SM ¼ lim

M!1 (SM þ TM � TM) ¼ lim
M!1 (SM þ TM)� lim

M!1TM

must also exist and the result is proved.

6.10. Prove that
P1
n¼1

zn

n(nþ 1)
converges (absolutely) for jzj � 1.

Solution

If jzj � 1, then
zn

n(nþ 1)

����
���� ¼ jzjn

n(nþ 1)
� 1

n(nþ 1)
� 1

n2
.

Taking un ¼ zn=n(nþ 1), vn ¼ 1=n2 in the comparison test and recognizing that
P

1=n2 converges by

Problem 6.8 with p ¼ 2, we see that
P

junj converges, i.e.,
P

un converges absolutely.
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6.11. Establish the ratio test for convergence.

Solution

We must show that if limn!1 unþ1=un
�� �� ¼ L , 1, then

P
junj converges or, by Problem 6.9,

P
un is

(absolutely) convergent.

By hypothesis, we can choose an integer N so large that for all n � N, unþ1=un
�� �� � r where r is some

constant such that L , r , 1. Then

juNþ1j � rjuN j

juNþ2j � rjuNþ1j , r2juN j

juNþ3j � rjuNþ2j , r3juN j

etc. By addition,

juNþ1j þ juNþ2j þ � � � � juN j(r þ r2 þ r3 þ � � � )

and so
P

junj converges by the comparison test since 0 , r , 1.

6.12. Find the region of convergence of the series
P1
n¼1

(zþ 2)n�1

(nþ 1)34n
.

Solution

If un ¼
(zþ 2)n�1

(nþ 1)34n
, then unþ1 ¼

(zþ 2)n

(nþ 2)34nþ1
. Hence, excluding

z ¼ �2 for which the given series converges, we have

lim
n!1

unþ1

un

����
���� ¼ lim

n!1
(zþ 2)

4

(nþ 1)3

(nþ 2)3

����
���� ¼ jzþ 2j

4

Then the series converges (absolutely) for jzþ 2j=4 , 1, i.e.,

jzþ 2j , 4. The point z ¼ �2 is included in jzþ 2j , 4.

If jzþ 2j=4 ¼ 1, i.e., jzþ 2j ¼ 4, the ratio test fails. However,

it is seen that in this case

(zþ 2)n�1

(nþ 1)34n

����
���� ¼ 1

4(nþ 1)3
� 1

n3

and since
P

1=n3 converges [p series with p ¼ 3], the given

series converges (absolutely).

It follows that the given series converges (absolutely) for

jzþ 2j � 4. Geometrically, this is the set of all points inside and on the circle of radius 4 with center at

z ¼ �2, called the circle of convergence [shown shaded in Fig. 6-3]. The radius of convergence is equal to 4.

6.13. Find the region of convergence of the series (a)
P1

n¼1

(�1)n�1z2n�1

(2n� 1)!
, (b)

P1
n¼1 n!z

n.

Solution

(a) If un ¼ (�1)n�1z2n�1=(2n� 1)!, then unþ1 ¼ (�1)nz2nþ1=(2nþ 1). Hence, excluding z ¼ 0 for which the

given series converges, we have

lim
n!1

unþ1

un

����
���� ¼ lim

n!1 � z2(2n� 1)!

(2nþ 1)!

����
���� ¼ lim

n!1
(2n� 1)!jzj2

(2nþ 1)(2n)(2n� 1)!

¼ lim
n!1

jzj2
(2nþ 1)(2n)

¼ 0

y

x

4

–2

Fig. 6-3
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for all finite z. Thus the series converges (absolutely) for all z, and we say that the series converges for

jzj , 1. We can equivalently say that the circle of convergence is infinite or that the radius of convergence

is infinite.

(b) If un ¼ n!zn, unþ1 ¼ (nþ 1)!znþ1. Then excluding z ¼ 0 for which the given series converges, we have

lim
n!1

unþ1

un

����
���� ¼ lim

n!1
(nþ 1)!znþ1

n!zn

����
���� ¼ lim

n!1 (nþ 1)jzj ¼ 1

Thus, the series converges only for z ¼ 0.

Theorems on Uniform Convergence

6.14. Prove the Weierstrass M test, i.e., if in a region R, jun(z)j � Mn, n ¼ 1, 2, 3, . . . , where Mn

are positive constants such that
P

Mn converges, then
P

un(z) is uniformly (and absolutely)
convergent in R.

Solution

The remainder of the series
P

un(z) after n terms is Rn(z) ¼ unþ1(z)þ unþ2(z)þ � � � . Now

jRn(z)j ¼ junþ1(z)þ unþ2(z)þ � � � j � junþ1(z)j þ junþ2(z)j þ � � �
� Mnþ1 þMnþ2 þ � � �

ButMnþ1 þMnþ2 þ � � � can be made less than e by choosing n . N, since
P

Mn converges. Since N is clearly

independent of z, we have jRn(z)j , e for n . N, and the series is uniformly convergent. The absolute conver-

gence follows at once from the comparison test.

6.15. Test for uniform convergence in the indicated region:

(a)
P1
n¼1

zn

n
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p , jzj � 1; (b)
P1
n¼1

1

n2 þ z2
, 1 , jzj , 2; (c)

P1
n¼1

cos nz

n3
, jzj � 1.

Solution

(a) If un(z) ¼
zn

n
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p , then jun(z)j ¼
jzjn

n
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1

n3=2
if jzj � 1. Calling Mn ¼ 1=n3=2, we see that

P
Mn

converges (p series with p ¼ 3=2). Hence, by the WeierstrassM test, the given series converges uniformly

(and absolutely) for jzj � 1.

(b) The given series is
1

12 þ z2
þ 1

22 þ z2
þ 1

32 þ z2
þ � � � . The first two terms can be omitted without affecting

the uniform convergence of the series. For n � 3 and 1 , jzj , 2, we have

jn2 þ z2j � jn2j � jz2j � n2 � 4 � 1

2
n2 or

1

n2 þ z2

����
���� � 2

n2

Since
P1

n¼3 2=n
2 converges, it follows from the WeierstrassM test (withMn ¼ 2=n2) that the given series

converges uniformly (and absolutely) for 1 , jzj , 2.

Note that the convergence, and thus uniform convergence, breaks down if jzj ¼ 1 or jzj ¼ 2 [namely at

z ¼ +i and z ¼ +2i]. Hence, the series cannot converge uniformly for 1 � jzj � 2.

(c) If z ¼ xþ iy, we have

cos nz

n3
¼ einz þ e�inz

2n3
¼ einx�ny þ e�inxþny

2n3

¼ e�ny(cos nxþ i sin nx)

2n3
þ eny(cos nx� i sin nx)

2n3

The series

X1
n¼1

eny(cos nx� i sin nx)

2n3
and

X1
n¼1

e�ny(cos nxþ i sin nx)

2n3
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cannot converge for y . 0 and y , 0, respectively [since, in these cases, the nth term does not approach

zero]. Hence, the series does not converge for all z such that jzj � 1, and so cannot possibly be uniformly

convergent in this region.

The series does converge for y ¼ 0, i.e., if z is real. In this case, z ¼ x and the series becomesP1
n¼1 cos nx=n

3. Then, since cos nx=n3
�� �� � 1=n3 and

P1
n¼1 1=n

3 converges, it follows from the Weier-

strass M test (with Mn ¼ 1=n3) that the given series converges uniformly in any interval on the real axis.

6.16. Prove Theorem 6.18, page 172, i.e., if un(z), n ¼ 1, 2, 3, . . . , are continuous inR and
P1

n¼1 un(z) is
uniformly convergent to S(z) in R, then S(z) is continuous in R.

Solution

If Sn(z) ¼ u1(z)þ u2(z)þ � � � þ un(z), and Rn(z) ¼ unþ1(z)þ unþ2(z)þ � � � is the remainder after n terms, it is

clear that

S(z) ¼ Sn(z)þ Rn(z) and S(zþ h) ¼ Sn(zþ h)þ Rn(zþ h)

and so

S(zþ h)� S(z) ¼ Sn(zþ h)� Sn(z)þ Rn(zþ h)� Rn(z) (1)

where z and zþ h are in R.

Since Sn(z) is the sum of a finite number of continuous functions, it must also be continuous. Then, given

e . 0, we can find d so that

jSn(zþ h)� Sn(z)j , e=3 whenever jhj , d (2)

Since the series, by hypothesis, is uniformly convergent, we can choose N so that for all z in R,

jRn(z)j , e=3 and jRn(zþ h)j , e=3 for n > N (3)

Then, from (1), (2), and (3),

jS(zþ h)� S(z)j � jSn(zþ h)� Sn(z)j þ jRn(zþ h)j þ jRn(z)j , e

for jhj , d and all z in R, and so the continuity is established.

6.17. Prove Theorem 6.19, page 172, i.e., suppose fun(z)g, n ¼ 1, 2, 3, . . . , are continuous inR,
S(z) ¼

P1
n¼1 un(z) is uniformly convergent inR and C is a curve inR. Thenð

C

S(z) dz ¼
ð
C

X1
n¼1

un(z)

 !
dz ¼

X1
n¼1

ð
C

un(z) dz

Solution

As in Problem 6.16, we have S(z) ¼ Sn(z)þ Rn(z) and, since these are continuous inR [by Problem 6.16], their

integrals exist, i.e.,ð
C

S(z) dz ¼
ð
C

Sn(z) dzþ
ð
C

Rn(z) dz ¼
ð
C

u1(z) dzþ
ð
C

u2(z) dzþ � � � þ
ð
C

un(z) dzþ
ð
C

Rn(z) dz

By hypothesis, the series is uniformly convergent, so that, given any e . 0, we can find a number N

independent of z in R such that jRn(z)j , e when n . N. Denoting by L the length of C, we have [using

Property (e), page 112]

ð
C

Rn(z) dz

������
������ , eL

Then
Ð
C
S(z) dz�

Ð
C
Sn(z) dz

�� �� can be made as small as we like by choosing n large enough, and the result is

proved.
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Theorems on Power Series

6.18. Suppose a power series
P

anz
n converges for z ¼ z0=0. Prove that it converges:

(a) absolutely for jzj , jz0j, (b) uniformly for jzj � jz1j where jz1j , jz0j.

Solution

(a) Since
P

anz
n
0 converges, limn!1 anz

n
0 ¼ 0 and so we can make janzn0j , 1 by choosing n large enough, i.e.,

janj , 1=jz0jn for n . N. Then

X1
Nþ1

janznj ¼
X1
Nþ1

janjjzjn �
X1
Nþ1

jzjn
jz0jn

(1)

But the last series in (1) converges for jzj , jz0j and so, by the comparison test, the first series converges,

i.e., the given series is absolutely convergent.

(b) LetMn ¼ jz1jn=jz0jn. Then
P

Mn converges, since jz1j , jz0j. As in part (a), janznj , Mn for jzj � jz1j so
that, by the Weierstrass M test,

P
anz

n is uniformly convergent.

It follows that a power series is uniformly convergent in any region that lies entirely inside its circle of

convergence.

6.19. Prove that both the power series
P1

n¼0 anz
n and the corresponding series of derivativesP1

n¼0 nanz
n�1 have the same radius of convergence.

Solution

Let R . 0 be the radius of convergence of
P

anz
n. Let 0 , jz0j , R. Then, as in Problem 6.18, we can choose

N so that janj , 1=jz0jn for n . N.

Thus the terms of the series
P

jnanzn�1j ¼
P

njanjjzjn�1 can for n . N be made less than corresponding

terms of the series
P

n(jzjn�1=jz0jn), which converges, by the ratio test, for jzj , jz0j , R.

Hence,
P

nanz
n�1 converges absolutely for all points such that jzj , jz0j (no matter how close jz0j is to R),

i.e., for jzj , R.

If, however, jzj . R, limn!1 anz
n=0 and thus limn!1 nanz

n�1=0, so that
P

nanz
n�1 does not converge.

Thus, R is the radius of convergence of
P

nanz
n�1. This is also true if R ¼ 0.

Note that the series of derivatives may or may not converge for values of z such that jzj ¼ R.

6.20. Prove that in any region, which lies entirely within its circle of convergence, a power series (a) rep-
resents a continuous function, say f (z), (b) can be integrated term by term to yield the integral of f(z),
(c) can be differentiated term by term to yield the derivative of f(z).

Solution

We consider the power series
P

anz
n, although analogous results hold for

P
an(z� a)n.

(a) This follows from Problem 6.16 and the fact that each term anz
n of the series is continuous.

(b) This follows from Problem 6.17 and the fact that each term anz
n of the series is continuous and thus

integrable.

(c) From Problem 6.19, the derivative of a power series converges within the circle of convergence of the

original power series and therefore is uniformly convergent in any region entirely within the circle of con-

vergence. Thus, the required result follows from Theorem 6.20, page 172.

6.21. Prove that the series
P1

n¼1 z
n=n2 has a finite value at all points inside and on its circle of convergence

but that is not true for the series of derivatives.

Solution

By the ratio test, the series converges for jzj , 1 and diverges for jzj . 1. If jzj ¼ 1, then jzn=n2j ¼ 1=n2 and
the series is convergent (absolutely). Thus, the series converges for jzj � 1 and so has a finite value inside and

on its circle of convergence.
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The series of derivatives is
P1

n¼1 z
n�1=n. By the ratio test, the series converges for jzj , 1. However, the

series does not converge for all z such that jzj ¼ 1, for example, if z ¼ 1, the series diverges.

Taylor’s Theorem

6.22. Prove Taylor’s theorem: If f (z) is analytic inside a circle C with center at a, then for all z inside C,

f (z) ¼ f (a)þ f 0(a)(z� a)þ f 00(a)

2!
(z� a)2 þ f 000(a)

3!
(z� a)3 þ � � �

Solution

Let z be any point inside C. Construct a circle C1 with center at a and enclosing z

(see Fig. 6-4). Then, by Cauchy’s integral formula,

f (z) ¼ 1

2pi

þ
C1

f (w)

w� z
dw (1)

We have

1

w� z
¼ 1

(w� a)� (z� a)
¼ 1

w� a

1

1� (z� a)=(w� a)

� �

¼ 1

w� a
1þ z� a

w� a

� 

þ z� a

w� a

� 
2
þ � � � þ z� a

w� a

� 
n�1
�

þ z� a

w� a

� 
n 1

1� (z� a)=(w� a)

�

or

1

w� z
¼ 1

w� a
þ z� a

(w� a)2
þ (z� a)2

(w� a)3
þ � � � þ (z� a)n�1

(w� a)n
þ z� a

w� a

� 
n 1

w� z
(2)

Multiplying both sides of (2) by f (w) and using (1), we have

f (z) ¼ 1

2pi

þ
C1

f (w)

w� a
dwþ z� a

2pi

þ
C1

f (w)

(w� a)2
dwþ � � � þ (z� a)n�1

2pi

þ
C1

f (w)

(w� a)n
dwþ Un (3)

where

Un ¼
1

2pi

þ
C1

z� a

w� a

� 
n f (w)

w� z
dw

Using Cauchy’s integral formulas

f (n)(a) ¼ n!

2pi

þ
C1

f (w)

(w� a)nþ1
dw n ¼ 0, 1, 2, 3, . . .

(3) becomes

f (z) ¼ f (a)þ f 0(a)(z� a)þ f 00(a)

2!
(z� a)2 þ � � � þ f (n�1)(a)

(n� 1)!
(z� a)n�1 þ Un

If we can now show that limn!1 Un ¼ 0, we will have proved the required result. To do this, we note that since

w is on C1,
z� a

w� a

��� ��� ¼ g , 1

where g is a constant. Also, we have j f (w)j , M where M is a constant, and

jw� zj ¼ j(w� a)� (z� a)j � r1 � jz� aj

C

a
z

C1

Fig. 6-4
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where r1 is the radius of C1. Hence, from Property (e), Page 112, we have

jUnj ¼
1

2p

þ
C1

z� a

w� a

� 
n j(w)

w� z
dw

�������
�������

� 1

2p

g nM

r1 � jz� aj � 2pr1 ¼
g nMr1

r1 � jz� aj
and we see that limn!1 Un ¼ 0, completing the proof.

6.23. Let f (z) ¼ ln(1þ z), where we consider the branch that has the zero value when z ¼ 0. (a) Expand
f (z) in a Taylor series about z ¼ 0. (b) Determine the region of convergence for the series in (a).
(c) Expand ln 1þ z=1� zð Þ in a Taylor series about z ¼ 0.

Solution

(a) f (z) ¼ ln(1þ z), f (0) ¼ 0

f 0(z) ¼ 1

1þ z
¼ (1þ z)�1, f 0(0) ¼ 1

f 00(z) ¼ �(1þ z)�2, f 00(0) ¼ �1

f 000(z) ¼ (�1)(�2)(1þ z)�3, f 000(0) ¼ 2!

..

. ..
.

f (nþ1)(z) ¼ (�1)nn!(1þ z)�(nþ1), f (nþ1)(0) ¼ (�1)nn!

Then

f (z) ¼ ln(1þ z) ¼ f (0)þ f 0(0)zþ f 00(0)

2!
z2 þ f 000(0)

3!
z3 þ � � �

¼ z� z2

2
þ z3

3
� z4

4
þ � � �

Another Method. If jzj , 1,

1

1þ z
¼ 1� zþ z2 � z3 þ � � �

Then integrating from 0 to z yields

ln(1þ z) ¼ z� z2

2
þ z3

3
� z4

4
þ � � �

(b) The nth term is un ¼ (�1)n�1zn=n. Using the ratio test,

lim
n!1

unþ1

un

����
���� ¼ lim

n!1
nz

nþ 1

����
���� ¼ jzj

and the series converges for jzj , 1. The series can be shown to converge for jzj ¼ 1 except for z ¼ �1.

This result also follows from the fact that the series converges in a circle that extends to the nearest

singularity (i.e., z ¼ �1) of f (z).

(c) From the result in (a) we have, on replacing z by �z,

ln(1þ z) ¼ z� z2

2
þ z3

3
� z4

4
þ � � �

ln(1� z) ¼ �z� z2

2
� z3

3
� z4

4
� � � �
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both series convergent for jzj , 1. By subtraction, we have

ln
1þ z

1� z

� �
¼ 2 zþ z3

3
þ z5

5
þ � � �

� �
¼
X1
n¼0

2z2nþ1

2nþ 1

which converges for jzj , 1. We can also show that this series converges for jzj ¼ 1 except for z ¼ +1.

6.24. (a) Expand f (z) ¼ sin z in a Taylor series about z ¼ p=4
(b) Determine the region of convergence of this series.

Solution

(a) f (z) ¼ sin z, f 0(z) ¼ cos z, f 00(z) ¼ � sin z, f 000(z) ¼ � cos z, f IV(z) ¼ sin z, . . .

f (p=4) ¼
ffiffiffi
2

p
=2, f 0(p=4) ¼

ffiffiffi
2

p
=2, f 00(p=4) ¼ �

ffiffiffi
2

p
=2, f 000(p=4) ¼ �

ffiffiffi
2

p
=2, f IV(p=4) ¼

ffiffiffi
2

p
=2, . . .

Then, since a ¼ p=4,

f (z) ¼ f (a)þ f 0(a)(z� a)þ f 00(a)(z� a)2

2!
þ f 000(a)(z� a)3

3!
þ � � �

¼
ffiffiffi
2

p

2
þ

ffiffiffi
2

p

2
(z� p=4)�

ffiffiffi
2

p

2 � 2! (z� p=4)2 �
ffiffiffi
2

p

2 � 3! (z� p=4)3 þ � � �

¼
ffiffiffi
2

p

2
1þ (z� p=4)� (z� p=4)2

2!
� (z� p=4)3

3!
þ � � �

� �

Another Method. Let u ¼ z� p=4 or z ¼ uþ p=4. Then, we have,

sin z ¼ sin(uþ p=4) ¼ sin u cos(p=4)þ cos u sin(p=4)

¼
ffiffiffi
2

p

2
(sin uþ cos u)

¼
ffiffiffi
2

p

2
u� u3

3!
þ u5

5!
� � � �

� �
þ 1� u2

2!
þ u4

4!
� � � �

� �� �

¼
ffiffiffi
2

p

2
1þ u� u2

2!
� u3

3!
þ u4

4!
þ � � �

� �

¼
ffiffiffi
2

p

2
1þ (z� p=4)� (z� p=4)2

2!
� (z� p=4)3

3!
þ � � �

� �

(b) Since the singularity of sin z nearest to p=4 is at infinity, the series converges for all finite values of z, i.e.,

jzj , 1. This can also be established by the ratio test.

Laurent’s Theorem

6.25. Prove Laurent’s theorem: Suppose f (z) is analytic inside and on the boundary of the ring-shaped
region R bounded by two concentric circles C1 and C2 with center at a and respective radii r1
and r2 (r1 . r2) (see Fig. 6-5). Then for all z in R,

f (z) ¼
X1
n¼0

an(z� a)n þ
X1
n¼1

a� n

(z� a)n

where

an ¼
1

2pi

þ
C1

f (w)

(w� a)nþ1
dw n ¼ 0, 1, 2, . . .

a�n ¼
1

2pi

þ
C2

f (w)

(w� a)�nþ1
dw n ¼ 1, 2, 3, . . .
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Solution

By Cauchy’s integral formula [see Problem 5.23, page 159], we have

f (z) ¼ 1

2pi

þ
C1

f (w)

w� z
dw� 1

2pi

þ
C2

f (w)

w� z
dw (1)

Consider the first integral in (1). As in Problem 6.22, equation (2), we have

1

w� z
¼ 1

(w� a)f1� (z� a)=(w� a)g

¼ 1

w� a
þ z� a

(w� a)2
þ � � � þ (z� a)n�1

(w� a)n
þ z� a

w� a

� 
n 1

w� z
(2)

so that

1

2pi

þ
C1

f (w)

w� z
dw ¼ 1

2pi

þ
C1

f (w)

w� a
dwþ z� a

2pi

þ
C1

f (w)

(w� a)2
dw

þ � � � þ (z� a)n�1

2pi

þ
C1

f (w)

(w� a)n
dwþ Un

¼ a0 þ a1(z� a)þ � � � þ an�1(z� a)n�1 þ Un (3)

where

a0 ¼
1

2pi

þ
C1

f (w)

w� a
dw, a1 ¼

1

2pi

þ
C1

f (w)

(w� a)2
dw, . . . , an�1 ¼

1

2pi

þ
C1

f (w)

(w� a)n
dw

and

Un ¼
1

2pi

þ
C1

z� a

w� a

� 
n f (w)

w� z
dw

Let us now consider the second integral in (1). We have on interchanging w and z in (2),

� 1

w� z
¼ 1

(z� a)f1� (w� a)=(z� a)g

¼ 1

z� a
þ w� a

(z� a)2
þ � � � þ (w� a)n�1

(z� a)n
þ w� a

z� a

� �n
1

z� w

so that

� 1

2pi

þ
C2

f (w)

w� z
dw ¼ 1

2pi

þ
C2

f (w)

z� a
dwþ 1

2pi

þ
C2

w� a

(z� a)2
f (w) dw

þ � � � þ 1

2pi

þ
C3

(w� a)n�1

(z� a)n
f (w) dwþ Vn

¼ a�1

z� a
þ a�2

(z� a)2
þ � � � þ a�n

(z� a)n
þ Vn (4)

where

a�1 ¼
1

2pi

þ
C2

f (w) dw, a�2 ¼
1

2pi

þ
C2

(w� a) f (w) dw, . . . , a�n ¼
1

2pi

þ
C2

(w� a)n�1f (w) dw

and

Vn ¼
1

2pi

þ
C2

w� a

z� a

� �n
f (w)

z� w
dw

a
z

C1
C2

r2

r1

R

Fig. 6-5
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From (1), (3), and (4), we have

f (z) ¼ fa0 þ a1(z� a)þ � � � þ an�1(z� a)n�1g

þ a�1

z� a
þ a�2

(z� a)2
þ � � � þ a�n

(z� a)n

� �
þ Un þ Vn

(5)

The required result follows if we can show that (a) limn!1 Un ¼ 0 and (b) limn!1 Vn ¼ 0. The proof of (a)

follows from Problem 6.22. To prove (b), we first note that since w is on C2,

w� a

z� a

����
���� ¼ k , 1

where k is a constant. Also, we have j f (w)j , M where M is a constant and

jz� wj ¼ j(z� a)� (w� a)j � jz� aj � r2

Hence, from Property (e), page 112, we have

jVnj ¼
1

2p

þ
C2

w� a

z� a

� �n
f (w)

z� w
dw

�������
�������

� 1

2p

knM

jz� aj � r2
2pr2 ¼

knMr2

jz� aj � r2

Then, limn!1 Vn ¼ 0 and the proof is complete.

6.26. Find Laurent series about the indicated singularity for each of the following functions:

(a)
e2z

(z� 1)3
; z ¼ 1. (c)

z� sin z

z3
; z ¼ 0. (e)

1

z2(z� 3)2
; z ¼ 3.

(b) (z� 3) sin
1

zþ 2
; z ¼ �2. (d)

z

(zþ 1)(zþ 2)
; z ¼ �2.

Name the singularity in each case and give the region of convergence of each series.

Solution

(a) Let z� 1 ¼ u. Then z ¼ 1þ u and

e2z

(z� 1)3
¼ e2þ2u

u3
¼ e2

u3
� e2u ¼ e2

u3
1þ 2uþ (2u)2

2!
þ (2u)3

3!
þ (2u)4

4!
þ � � �

� �

¼ e2

(z� 1)3
þ 2e2

(z� 1)2
þ 2e2

z� 1
þ 4e2

3
þ 2e2

3
(z� 1)þ � � �

z ¼ 1 is a pole of order 3, or triple pole.

The series converges for all values of z=1.

(b) Let zþ 2 ¼ u or z ¼ u� 2. Then

(z� 3) sin
1

zþ 2
¼ (u� 5) sin

1

u
¼ (u� 5)

1

u
� 1

3! u3
þ 1

5! u5
� � � �

� �

¼ 1� 5

u
� 1

3! u2
þ 5

3! u3
þ 1

5! u4
� � � �

¼ 1� 5

zþ 2
� 1

6(zþ 2)2
þ 5

6(zþ 2)3
þ 1

120(zþ 2)4
� � � �

z ¼ �2 is an essential singularity.

The series converges for all values of z=�2.

(c)
z� sin z

z3
¼ 1

z3
z� z� z3

3!
þ z5

5!
� z7

7!
þ � � �

� �� �

¼ 1

z3
z3

3!
� z5

5!
þ z7

7!
� � � �

� �
¼ 1

3!
� z2

5!
þ z4

7!
� � � �
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z ¼ 0 is a removable singularity.

The series converges for all values of z.

(d) Let zþ 2 ¼ u. Then

z

(zþ 1)(zþ 2)
¼ u� 2

(u� 1)u
¼ 2� u

u
� 1

1� u
¼ 2� u

u
(1þ uþ u2 þ u3 þ � � � )

¼ 2

u
þ 1þ uþ u2 þ � � � ¼ 2

zþ 2
þ 1þ (zþ 2)þ (zþ 2)2 þ � � �

z ¼ �2 is a pole of order 1, or simple pole.

The series converges for all values of z such that 0 , jzþ 2j , 1.

(e) Let z� 3 ¼ u. Then, by the binomial theorem,

1

z2(z� 3)2
¼ 1

u2(3þ u)2
¼ 1

9u2(1þ u=3)2

¼ 1

9u2
1þ (�2)

u

3

� 

þ (�2)(�3)

2!

u

3

� 
2
þ (�2)(�3)(�4)

3!

u

3

� 
3
þ � � �

� �

¼ 1

9u2
� 2

27u
þ 1

27
� 4

243
uþ � � �

¼ 1

9(z� 3)2
� 2

27(z� 3)
þ 1

27
� 4(z� 3)

243
þ � � �

z ¼ 3 is a pole of order 2 or double pole.

The series converges for all values of z such that 0 , jz� 3j , 3.

6.27. Expand f (z) ¼ 1

(zþ 1)(zþ 3)
in a Laurent series valid for:

(a) 1 , jzj , 3, (b) jzj . 3, (c) 0 , jzþ 1j , 2, (d) jzj , 1.

Solution

(a) Resolving into partial fractions,

1

(zþ 1)(zþ 3)
¼ 1

2

1

zþ 1

� �
� 1

2

1

zþ 3

� �

If jzj . 1,

1

2(zþ 1)
¼ 1

2z(1þ 1=z)
¼ 1

2z
1� 1

z
þ 1

z2
� 1

z3
þ � � �

� �
¼ 1

2z
� 1

2z2
þ 1

2z3
� 1

2z4
þ � � �

If jzj , 3,

1

2(zþ 3)
¼ 1

6(1þ z=3)
¼ 1

6
1� z

3
þ z2

9
� z3

27
þ � � �

� �
¼ 1

6
� z

18
þ z2

54
� z3

162
þ � � �

Then, the required Laurent expansion valid for both jzj . 1 and jzj , 3, i.e., 1 , jzj , 3, is

� � � � 1

2z4
þ 1

2z3
� 1

2z2
þ 1

2z
� 1

6
þ z

18
� z2

54
þ z3

162
� � � �

(b) If jzj . 1, we have as in part (a),
1

2(zþ 1)
¼ 1

2z
� 1

2z2
þ 1

2z3
� 1

2z4
þ � � �

If jzj . 3,

1

2(zþ 3)
¼ 1

2z(1þ 3=z)
¼ 1

2z
1� 3

z
þ 9

z2
� 27

z3
þ � � �

� �
¼ 1

2z
� 3

2z2
þ 9

2z3
� 27

2z4
þ � � �
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Then the required Laurent expansion valid for both jzj . 1 and jzj . 3, i.e., jzj . 3, is by subtraction

1

z2
� 4

z3
þ 13

z4
� 40

z5
þ � � �

(c) Let zþ 1 ¼ u. Then

1

(zþ 1)(zþ 3)
¼ 1

u(uþ 2)
¼ 1

2u(1þ u=2)
¼ 1

2u
1� u

2
þ u2

4
� u3

8
þ � � �

� �

¼ 1

2(zþ 1)
� 1

4
þ 1

8
(zþ 1)� 1

16
(zþ 1)2 þ � � �

valid for juj , 2, u=0 or 0 , jzþ 1j , 2.

(d) If jzj , 1,

1

2(zþ 1)
¼ 1

2(1þ z)
¼ 1

2
(1� zþ z2 � z3 þ � � � ) ¼ 1

2
� 1

2
zþ 1

2
z2 � 1

2
z3 þ � � �

If jzj , 3, we have by part (a),

1

2(zþ 3)
¼ 1

6
� z

18
þ z2

54
� z3

162
þ � � �

Then the required Laurent expansion, valid for both jzj , 1 and jzj , 3, i.e., jzj , 1, is by subtraction

1

3
� 4

9
zþ 13

27
z2 � 40

81
z3 þ � � �

This is a Taylor series.

Lagrange’s Expansion

6.28. Prove Lagrange’s expansion (6.11) on page 176.

Solution

Let us assume that C is taken so that there is only one simple zero of z ¼ aþ zf(z) inside C. Then, from

Problem 5.90, page 167, with g(z) ¼ z and f (z) ¼ z� a� zf(z), we have

z ¼ 1

2pi

þ
C

w
1� zf0(w)

w� a� zf(w)

� �
dw

¼ 1

2pi

þ
C

w

w� a
f1� zf0(w)g 1

1� zf(w)=ðw� aÞ

� �
dw

¼ 1

2pi

þ
C

w

w� a
f1� zf0(w)g

X1
n¼0

znfn(w)=(w� a)n

( )
dw

¼ 1

2pi

þ
C

w

w� a
dwþ

X1
n¼1

zn

2pi

þ
C

wfn(w)

(w� a)nþ1
� wfn�1(w)f0(w)

(w� a)n

� �
dw

¼ a�
X1
n¼1

z n

2pi

þ
C

w

n

d

dw

fn(w)

(w� a)n

� �
dw ¼ aþ

X1
n¼1

z n

2pin

þ
C

fn(w)

(w� a)n
dw

¼ aþ
X1
n¼1

z n

n!

dn�1

dan�1
[fn(a)]

Analytic Continuation

6.29. Show that the series (a)
P1
n¼0

zn

2nþ1
and (b)

P1
n¼0

(z� i)n

(2� i)nþ1
are analytic continuations of each other.
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Solution

(a) By the ratio test, the series converges for jzj , 2 (shaded in Fig. 6-6). In this circle, the series, which is a

geometric series with first term 1
2
and ratio z=2 can be summed and represents the function

1=2

1� z=2
¼ 1

2� z

(b) By the ratio test, the series converges for

(z� i)=(2� i)
�� �� , 1, i.e., jz� ij ,

ffiffiffi
5

p
(see Fig. 6-6). In

this circle, the series, which is a geometric series with

first term 1=(2� i) and ratio (z� i)=(2� i), can be

summed and represents the function

1=(2� i)

1� (z� i)=(2� i)
¼ 1

2� z

Since the power series represent, the same function in

the regions common to the interiors of the circles jzj ¼ 2

and jz� ij ¼
ffiffiffi
5

p
, it follows that they are analytic continu-

ations of each other.

6.30. Prove that the series 1þ zþ z2 þ z4 þ z8 þ � � � ¼ 1þ
P1

n¼0 z
2n cannot be continued analytically

beyond jzj ¼ 1.

Solution

Let F(z) ¼ 1þ zþ z2 þ z4 þ z8 þ � � � . Then,

F(z) ¼ zþ F(z2); F(z) ¼ zþ z2 þ F(z4); F(z) ¼ zþ z2 þ z4 þ F(z8)þ � � � :

From these, it is clear that the values of z given by z ¼ 1, z2 ¼ 1, z4 ¼ 1, z8 ¼ 1, . . . are all singularities of
F(z). These singularities all lie on the circle jzj ¼ 1. Given any small arc of this circle, there will be infinitely

many such singularities. These represent an impassable barrier and analytic continuation beyond jzj ¼ 1 is

therefore impossible. The circle jzj ¼ 1 constitutes a natural boundary.

Miscellaneous Problems

6.31. Let f fk(z)g, k ¼ 1, 2, 3, . . . be a sequence of functions analytic in a region R. Suppose that

F(z) ¼
X1
k¼1

fk(z)

is uniformly convergent in R. Prove that F(z) is analytic in R.

Solution

Let Sn(z) ¼
Pn

k¼1 fk(z). By definition of uniform convergence, given any e . 0, we can find a positive integer

N depending on e and not on z such that for all z in R,

jF(z)� Sn(z)j , e for all n > N (1)

Now suppose that C is any simple closed curve lying entirely in R and denote its length by L. Then, by

Problem 6.16, since fk(z), k ¼ 1, 2, 3, . . . are continuous, F(z) is also continuous so that
Þ
C
F(z) dz exists.

Also, using (1), we see that for n . N,

þ
C

F(z) dz�
Xn
k¼1

þ
C

fk(z) dz

������
������ ¼

þ
C

fF(z)� Sn(z)g dz

������
������

2

|z – i| = ÷5

|z| = 2

y

x
i

÷5

Fig. 6-6
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Because e can be made as small as we please, we can see thatþ
C

F(z) dz ¼
X1
k¼1

þ
C

fk(z) dz

But, by Cauchy’s theorem,
Þ
C
fk(z) dz ¼ 0. Henceþ

C

F(z) dz ¼ 0

and so by Morera’s theorem (page 145, Chapter 5), F(z) must be analytic.

6.32. Prove that an analytic function cannot be bounded in the neighborhood of an isolated singularity.

Solution

Let f(z) be analytic inside and on a circle C of radius r, except at the isolated singularity z ¼ a taken to be the

center of C. Then, by Laurent’s theorem, f (z) has a Laurent expansion

f (z) ¼
X1
k¼�1

ak(z� a)k (1)

where the coefficients ak are given by equation (6.7), page 174. In particular,

a�n ¼
1

2pi

þ
C

f (z)

(z� a)�nþ1
dz n ¼ 1, 2, 3, . . . (2)

Now, if j f (z)j , M for a constant M, i.e., if f(z) is bounded, then from (2),

ja�nj ¼
1

2p

þ
C

(z� a)n�1f (z) dz

������
������ �

1

2p
rn�1 �M � 2pr ¼ Mrn

Hence, since r can be made arbitrarily small, we have a�n ¼ 0, n ¼ 1, 2, 3, . . . , i.e., a�1 ¼ a�2 ¼ a�3 ¼
� � � ¼ 0, and the Laurent series reduces to a Taylor series about z ¼ a. This shows that f (z) is analytic at

z ¼ a so that z ¼ a is not a singularity, contrary to hypothesis. This contradiction shows that f (z) cannot be

bounded in the neighborhood of an isolated singularity.

6.33. Prove that if z=0, then

e1=2a(z�1=z) ¼
X1
n¼�1

Jn(a)z
n

where

Jn(a) ¼
1

2p

ð2p
0

cos(nu� a sin u) du n ¼ 0, 1, 2, . . .

Solution

The point z ¼ 0 is the only finite singularity of the function e1=2a(z�1=z) and it follows that the function must

have a Laurent series expansion of the form

e1=2a(z�1=z) ¼
X1
n¼�1

Jn(a)z
n (1)

which holds for jzj . 0. By equation (6.7), page 174, the coefficients Jn(a) are given by

Jn(a) ¼
1

2pi

þ
C

e1=2a(z�1=z)

znþ1
dz (2)

where C is any simple closed curve having z ¼ 0 inside.
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Let us, in particular, choose C to be a circle of radius 1 having center at the origin; that is, the equation of C

is jzj ¼ 1 or z ¼ eiu. Then (2) becomes

Jn(a) ¼
1

2pi

ð2p
0

e1=2a(e
iu�e�iu)

ei(nþ1)u
ieiu du ¼ 1

2p

ð2p
0

eia sin u�inu du

¼ 1

2p

ð2p
0

cos(a sin u� nu) duþ i

2p

ð2p
0

sin(a sin u� nu) du ¼ 1

2p

ð2p
0

cos(nu� a sin u) du

using the fact that I ¼
Ð 2p
0

sin(a sin u� nu) du ¼ 0. This last result follows since, on letting u ¼ 2p� f,
we find

I ¼
ð2p
0

sin(�a sinf� 2pnþ nf) df ¼ �
ð2p
0

sin(a sinf� nf) df ¼ �I

so that I ¼ �I and I ¼ 0. The required result is thus established.

The function Jn(a) is called a Bessel function of the first kind of order n.

For further discussion of Bessel functions, see Chapter 10.

6.34. The Legendre polynomials Pn(t), n ¼ 0, 1, 2, 3, . . . are defined by Rodrigues’ formula

Pn(t) ¼
1

2nn!

dn

dtn
(t2 � 1)n

(a) Prove that if C is any simple closed curve enclosing the point z ¼ t, then

Pn(t) ¼
1

2pi
� 1
2n

þ
C

(z2 � 1)n

(z� t)nþ1
dz

This is called Schlaefli’s representation for Pn(t), or Schlaefli’s formula.

(b) Prove that

Pn(t) ¼
1

2p

ð2p
0

(t þ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
cos u)n du

Solution

(a) By Cauchy’s integral formulas, if C encloses point t,

f (n)(t) ¼ dn

dtn
f (t) ¼ n!

2pi

þ
C

f (z)

(z� t)nþ1
dz

Then, taking f (t) ¼ (t2 � 1)n so that f (z) ¼ (z2 � 1)n, we have

the required result

Pn(t) ¼
1

2nn!

dn

dtn
(t2 � 1)n

¼ 1

2n
� 1

2pi

þ
C

(z2 � 1)n

(z� t)nþ1
dz

θ

x

y

C

t
√|t2  – 

1|

Fig. 6-7
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(b) Choose C as a circle with center at t and radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt2 � 1j

p
as shown in Fig. 6-7. Then, an equation for C is

jz� tj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt2 � 1j

p
or z ¼ t þ

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
eiu, 0 � u , 2p. Using this in part (a), we have

Pn(t) ¼
1

2n
� 1

2pi

ð2p
0

f(t þ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
eiu)2 � 1gn

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
ieiu

(
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
eiu)nþ1

du

¼ 1

2n
� 1

2p

ð2p
0

f(t2 � 1)þ 2t
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
eiu þ (t2 � 1)e2iugne�inu

(t2 � 1)n=2
du

¼ 1

2n
� 1

2p

ð2p
0

f(t2 � 1)e�iu þ 2t
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
þ (t2 � 1)eiugn

(t2 � 1)n=2
du

¼ 1

2n
� 1

2p

ð2p
0

f2t
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
þ 2(t2 � 1) cos ugn

(t2 � 1)n=2
du

¼ 1

2p

ð2p
0

(t þ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
cos u)n du

For further discussion of Legendre polynomials, see Chapter 10.

SUPPLEMENTARY PROBLEMS

Sequences and Series of Functions

6.35. Using the definition, prove: (a) lim
n!1

3n� 2z

nþ z
¼ 3, (b) lim

n!1
nz

n2 þ z2
¼ 0.

6.36. Let limn!1 un(z) ¼ U(z) and limn!1 vn(z) ¼ V(z). Prove that (a) limn!1fun(z)+ vn(z)g ¼ U(z)+ V(z),

(b) limn!1 fun(z)vn(z)g ¼ U(z)V(z), (c) limn!1 un(z)=vn(z) ¼ U(z)=V(z) if V(z)=0.

6.37. (a) Prove that the series
1

2
þ z

22
þ z2

23
þ � � � ¼

X1
n¼1

zn�1

2n
converges for jzj , 2 and (b) find its sum.

6.38. (a) Determine the set of values of z for which the series
P1

n¼0 (�1)n(zn þ znþ1) converges and (b) find its sum.

6.39. (a) For what values of z does the series
P1

n¼1 1=(z
2 þ 1)n converge and (b) what is its sum?

6.40. Suppose limn!1 jun(z)j ¼ 0. Prove that limn!1 un(z) ¼ 0. Is the converse true? Justify your answer.

6.41. Prove that for all finite z, limn!1 zn=n! ¼ 0.

6.42. Let fang, n ¼ 1, 2, 3, . . . be a sequence of positive numbers having zero as a limit. Suppose that jun(z)j � an for

n ¼ 1, 2, 3, . . . . Prove that limn!1 un(z) ¼ 0.

6.43. Prove that the convergence or divergence of a series is not affected by adding (or removing) a finite number of

terms.

6.44. Let Sn ¼ zþ 2z2 þ 3z3 þ � � � þ nzn, Tn ¼ zþ z2 þ z3 þ � � � þ zn. (a) Show that Sn ¼ (Tn � nznþ1)=(1� z). (b) Use

(a) to find the sum of the series
P1

n¼1 nz
n and determine the set of values for which the series converges.

6.45. Find the sum of the series
P1

n¼0 (nþ 1)=2n.
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Absolute and Uniform Convergence

6.46. (a) Prove that un(z) ¼ 3zþ 4z2=n, n ¼ 1, 2, 3, . . . , converges uniformly to 3z for all z inside or on the circle jzj ¼ 1.

(b) Can the circle of part (a) be enlarged? Explain.

6.47. (a) Determine whether the sequence un(z) ¼ nz=(n2 þ z2) [Problem 6.35(b)] converges uniformly to zero for all z

inside jzj ¼ 3. (b) Does the result of (a) hold for all finite values of z?

6.48. Prove that the series 1þ azþ a2z2 þ � � � converges uniformly to 1=(1� az) inside or on the circle jzj ¼ R where

R , 1=jaj.

6.49. Investigate the (a) absolute and (b) uniform convergence of the series

z

3
þ z(3� z)

32
þ z(3� z)2

33
þ z(3� z)3

34
þ � � �

6.50. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.38.

6.51. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.39.

6.52. Let fang be a sequence of positive constants having limit zero; and suppose that for all z in a region

R, jun(z)j � an, n ¼ 1, 2, 3, . . . . Prove that limn!1 un(z) ¼ 0 uniformly in R.

6.53. (a) Prove that the sequence un(z) ¼ nze�nz2 converges to zero for all finite z such that Refz2g . 0, and represent this

region geometrically. (b) Discuss the uniform convergence of the sequence in (a).

6.54. Suppose
P1

n¼0 an and
P1

n¼0 bn converge absolutely. Prove that
P1

n¼0 cn, where cn ¼ a0bn þ a1bn�1 þ � � � þ anb0,

converges absolutely.

6.55. Suppose each of two series is absolutely and uniformly convergent in R. Prove that their product is absolutely and

uniformly convergent in R.

Special Convergence Tests

6.56. Test for convergence:

(a)
X1
n¼1

1

2n þ 1
, (b)

X1
n¼1

n

3n � 1
, (c)

X1
n¼1

nþ 3

3n2 � nþ 2
, (d)

X1
n¼1

(�1)n

4nþ 3
, (e)

X1
n¼1

2n� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 þ nþ 2

p .

6.57. Investigate the convergence of:

(a)
X1
n¼1

1

nþ jzj , (b)
X1
n¼1

(�1)n

nþ jzj , (c)
X1
n¼1

1

n2 þ jzj , (d)
X1
n¼1

1

n2 þ z
.

6.58. Investigate the convergence of
X1
n¼0

nenpi=4

en � 1
.

6.59. Find the region of convergence of:

(a)
X1
n¼0

(zþ i)n

(nþ 1)(nþ 2)
, (b)

X1
n¼1

1

n2 � 3n
zþ 1

z� 1

� �n

, (c)
X1
n¼1

(�1)nzn

n!
:

6.60. Investigate the region of absolute convergence of
X1
n¼1

n(�1)n(z� i)n

4n(n2 þ 1)5=2
.

6.61. Find the region of convergence of
X1
n¼0

e2pinz

(nþ 1)3=2
.

6.62. Prove that the series
P1

n¼1 (
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
�

ffiffiffi
n

p
) diverges although the nth term approaches zero.

6.63. Let N be a positive integer and suppose that for all n . N, junj . 1=(n ln n). Prove that
P1

n¼1 un diverges.

6.64. Establish the validity of the (a) nth root test [Theorem 6.12], (b) integral test [Theorem 6.13], on page 141.
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6.65. Find the interval of convergence of 1þ 2zþ z2 þ 2z3 þ z4 þ 2z5 þ � � � .

6.66. Prove Raabe’s test (Theorem 6.14) on page 172.

6.67. Test for convergence: (a)
1

2 ln2 2
þ 1

3 ln2 3
þ 1

4 ln2 4
þ � � � , (b)

1

5
þ 1 � 4
5 � 8þ

1 � 4 � 7
5 � 8 � 11þ � � � ,

(c)
2

5
þ 2 � 7
5 � 10þ

2 � 7 � 12
5 � 10 � 15þ � � � , (d)

ln 2

2
þ ln 3

3
þ ln 4

4
þ � � � .

Theorems on Uniform Convergence and Power Series

6.68. Determine the regions in which each of the following series is uniformly convergent:

(a)
X1
n¼1

zn

3n þ 1
, (b)

X1
n¼1

(z� i)2n

n2
, (c)

X1
n¼1

1

(nþ 1)zn
, (d)

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

n2 þ jzj2
.

6.69. Prove Theorem 6.20, page 172.

6.70. State and prove theorems for sequences analogous to Theorems 6.18, 6.19, and 6.20, page 172, for series.

6.71. (a) By differentiating both sides of the identity

1

1� z
¼ 1þ zþ z2 þ z3 þ � � � jzj , 1

find the sum of the series
P1

n¼1 nz
n for jzj , 1. Justify all steps.

(b) Find the sum of the series
P1

n¼1 n
2zn for jzj , 1.

6.72. Let z be real and such that 0 � z � 1, and let un(z) ¼ nze�nz3 .

(a) Find lim
n!1

ð1
0

un(z) dz, (b) Find

ð1
0

lim
n!1 un(z)
n o

dz

(c) Explain why the answers to (a) and (b) are not equal [see Problem 6.53].

6.73. Prove Abel’s theorem [Theorem 6.24, page 173].

6.74. (a) Prove that 1=(1þ z2) ¼ 1� z2 þ z4 � z6 þ � � � for jzj , 1.

(b) If we choose that branch of f (z) ¼ tan�1 z such that f (0) ¼ 0, use (a) to prove that

tan�1 z ¼
ðz
0

dz

1þ z2
¼ z� z3

3
þ z5

5
� z7

7
þ � � �

(c) Prove that
p

4
¼ 1� 1

3
þ 1

5
� 1

7
þ � � � .

6.75. Prove Theorem 6.25, page 173.

6.76. (a) Determine Y(z) ¼
P1

n¼0 anz
n such that for all z in jzj � 1, Y 0(z) ¼ Y(z), Y(0) ¼ 1. State all theorems used and

verify that the result obtained is a solution.

(b) Is the result obtained in (a) valid outside of jzj � 1? Justify your answer.

(c) Show that Y(z) ¼ ez satisfies the differential equation and conditions in (a).

(d) Can we identify the series in (a) with ez? Explain.

6.77. (a) Use series methods on the differential equation Y 00(z)þ Y(z) ¼ 0, Y(0) ¼ 0, Y 0(0) ¼ 1 to obtain the series

expansion

sin z ¼ z� z3

3!
þ z5

5!
� z7

7!
þ � � �

(b) How could you obtain a corresponding series for cos z?
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Taylor’s Theorem

6.78. Expand each of the following functions in a Taylor series about the indicated point and determine the region of

convergence in each case.

(a) e�z; z ¼ 0 (c) 1=(1þ z); z ¼ 1 (e) ze2z; z ¼ �1

(b) cos z; z ¼ p=2 (d) z3 � 3z2 þ 4z� 2; z ¼ 2

6.79. Suppose each of the following functions were expanded into a Taylor series about the indicated points. What would

be the region of convergence? Do not perform the expansion.

(a) sin z=(z2 þ 4); z ¼ 0, (c) (zþ 3)=(z� 1)(z� 4); z ¼ 2, (e) ez=z(z� 1); z ¼ 4i, (g) secpz; z ¼ 1

(b) z=(ez þ 1); z ¼ 0, (d) e�z2 sinh(zþ 2); z ¼ 0, (f) z coth 2z; z ¼ 0,

6.80. Verify the expansions 1, 2, 3 for ez, sin z, and cos z on page 173.

6.81. Show that sin z2 ¼ z2 � z6

3!
þ z10

5!
� z14

7!
þ � � � , jzj , 1.

6.82. Prove that tan�1 z ¼ z� z3

3
þ z5

5
� z7

7
þ � � � , jzj , 1.

6.83. Show that: (a) tan z ¼ zþ z3

3
þ 2z5

15
þ � � � , jzj , p=2,

(b) sec z ¼ 1þ z2

2
þ 5z4

24
þ � � � , jzj , p=2, (c) csc z ¼ 1

z
þ z

6
þ 7z3

360
þ � � � , 0 , jzj , p

6.84. By replacing z by iz in the expansion of Problem 6.82, obtain the result in Problem 6.23(c) on page 185.

6.85. How would you obtain series for (a) tanh z, (b) sech z, (c) csch z from the series in Problem 6.83?

6.86. Prove the uniqueness of the Taylor series expansion of f (z) about z ¼ a.

[Hint. Assume f (z) ¼
P1

n¼0 cn(z� a)n ¼
P1

n¼0 dn(z� a)n and show that cn ¼ dn, n ¼ 0, 1, 2, 3, . . . .]

6.87. Prove the binomial Theorem 6.6 on page 174.

6.88. Suppose we choose that branch of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z3

p
having the value 1 for z ¼ 0. Show that

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z3

p ¼ 1� 1

2
z3 þ 1 � 3

2 � 4 z
6 � 1 � 3 � 5

2 � 4 � 6 z
9 þ � � � jzj , 1

6.89. (a) Choosing that branch of sin�1 z having the value zero for z ¼ 0, show that

sin�1 z ¼ zþ 1

2

z3

3
þ 1 � 3
2 � 4

z5

5
þ 1 � 3 � 5
2 � 4 � 6

z7

7
þ � � � jzj , 1

(b) Prove that the result in (a) is valid for z ¼ i.

6.90. (a) Expand f (z) ¼ ln(3� iz) in powers of z� 2i, choosing that branch of the logarithm for which f (0) ¼ ln 3, and

(b) determine the region of convergence.

Laurent’s Theorem

6.91. Expand f (z) ¼ 1=(z� 3) in a Laurent series valid for (a) jzj , 3, (b) jzj . 3.

6.92. Expand f (z) ¼ z

(z� 1)(2� z)
in a Laurent series valid for:

(a) jzj , 1, (b) 1 , jzj , 2, (c) jzj . 2, (d) jz� 1j . 1, (e) 0 , jz� 2j , 1.
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6.93. Expand f (z) ¼ 1=z(z� 2) in a Laurent series valid for (a) 0 , jzj , 2, (b) jzj . 2.

6.94. Find an expansion of f (z) ¼ z=(z2 þ 1) valid for jz� 3j . 2.

6.95. Expand f (z) ¼ 1=(z� 2)2 in a Laurent series valid for (a) jzj , 2, (b) jzj . 2:

6.96. Expand each of the following functions in a Laurent series about z ¼ 0, naming the type of singularity in each case.

(a) (1� cos z)=z, (b) ez=z3, (c) z�1 cosh z�1, (d) z2e�z4

6.97. Suppose tan z is expanded into a Laurent series about z ¼ p=2. Show that: (a) the principal part is �1=(z� p=2),

(b) the series converges for 0 , jz� p=2j , p=2, (c) z ¼ p=2 is a simple pole.

6.98. Determine and classify all the singularities of the functions:

(a) 1=(2 sin z� 1)2, (b) z=(e1=z � 1), (c) cos(z2 þ z�2), (d) tan�1(z2 þ 2zþ 2), (e) z=(ez � 1).

6.99. (a) Expand f (z) ¼ ez=(z�2) in a Laurent series about z ¼ 2 and (b) determine the region of convergence of this series.

(c) Classify the singularities of f (z).

6.100. Establish the result (6.7), page 174, for the coefficients in a Laurent series.

6.101. Prove that the only singularities of a rational function are poles.

6.102. Prove the converse of Problem 6.101, i.e., if the only singularities of a function are poles, the function must be

rational.

Lagrange’s Expansion

6.103. Show that the root of the equation z ¼ 1þ zzp, which is equal to 1 when z ¼ 0, is given by

z ¼ 1þ zþ 2p

2!
z2 þ (3p)(3p� 1)

3!
z3 þ (4p)(4p� 1)(4p� 2)

4!
z 4 þ � � �

6.104. Calculate the root in Problem 6.103 if p ¼ 1=2 and z ¼ 1, (a) by series and (b) exactly. Compare the two answers.

6.105. By considering the equation z ¼ aþ 1
2
z(z2 � 1), show that

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2azþ z2

p ¼ 1þ
X1
n¼1

zn

2nn!

dn

dan
(a2 � 1)n

6.106. Show how Lagrange’s expansion can be used to solve Kepler’s problem of determining the root of z ¼ aþ z sin z

for which z ¼ a when z ¼ 0.

6.107. Prove the Lagrange expansion (6.11) on page 176.

Analytic Continuation

6.108. (a) Prove that

F2(z) ¼
1

1þ i

X1
n¼0

zþ i

1þ i

� �n

is an analytic continuation of F1(z) ¼
P1

n¼0 z
n, showing graphically the regions of convergence of the series.

(b) Determine the function represented by all analytic continuations of F1(z).

6.109. Let F1(z) ¼
X1
n¼0

znþ1

3n
.

(a) Find an analytic continuation of F1(z), which converges for z ¼ 3� 4i.

(b) Determine the value of the analytic continuation in (a) for z ¼ 3� 4i.

6.110. Prove that the series z1! þ z2! þ z3! þ � � � has the natural boundary jzj ¼ 1.
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Miscellaneous Problems

6.111. (a) Prove that
P1

n¼1 1=n
p diverges if the constant p � 1.

(b) Prove that if p is complex, the series in (a) converges if Refpg . 1.

(c) Investigate the convergence or divergence of the series in (a) if Refpg � 1.

6.112. Test for convergence or divergence:

(a)
X1
n¼1

ffiffiffi
n

p

nþ i
(c)

X1
n¼1

n sin�1(1=n3) (e)
X1
n¼1

coth�1 n

(b)
X1
n¼1

nþ sin2 n

ien þ (2� i)n
(d)

X1
n¼2

(i)n

n ln n
(f )

X1
n¼1

ne�n2

6.113. Euler presented the following argument to show that
P1

�1 zn ¼ 0:

z

1� z
¼ zþ z2 þ z3 þ � � � ¼

X1
1

zn,
z

z� 1
¼ 1

1� 1=z
¼ 1þ 1

z
þ 1

z2
þ � � � ¼

X�1

0

zn

Then adding,
P1

�1 zn ¼ 0. Explain the fallacy.

6.114. Show that for jz� 1j , 1, z ln z ¼ (z� 1)þ (z� 1)2

1 � 2 � (z� 1)3

2 � 3 þ (z� 1)4

3 � 4 � � � � .

6.115. Expand sin3 z in a Maclaurin series.

6.116. Given the series z2 þ z2

1þ z2
þ z2

(1þ z2)2
þ z2

(1þ z2)3
þ � � � .

(a) Show that the sum of the first n terms is Sn(z) ¼ 1þ z2 � 1=(1þ z2)n�1.

(b) Show that the sum of the series is 1þ z2 for z=0, and 0 for z ¼ 0; and hence that z ¼ 0 is a point of

discontinuity.

(c) Show that the series is not uniformly convergent in the region jzj � d where d . 0.

6.117. If F(z) ¼ 3z� 3

(2z� 1)(z� 2)
, find a Laurent series of F(z) about z ¼ 1 convergent for 1

2
, jz� 1j , 1.

6.118. Let G(z) ¼ (tan�1 z)=z4. (a) Expand G(z) in a Laurent series. (b) Determine the region of convergence of the series

in (a). (c) Evaluate
Þ
C
G(z) dz where C is a square with vertices at 2+ 2i, �2+ 2i.

6.119. Consider each of the functions ze1=z
2

, (sin2 z)=z, 1=z(4� z) which have singularities at z ¼ 0:

(a) give a Laurent expansion about z ¼ 0 and determine the region of convergence;

(b) state in each case whether z ¼ 0 is a removable singularity, essential singularity or a pole;

(c) evaluate the integral of the function about the circle jzj ¼ 2.

6.120. (a) Investigate the convergence of
X1
n¼1

1

n1þ1=n
. (b) Does your answer to (a) contradict Problem 6.8.

6.121. (a) Show that the following series, where z ¼ xþ iy, converges absolutely in the region bounded by

sin2 xþ sinh2 y ¼ 1:

sin z

12 þ 1
þ sin2 z

22 þ 1
þ sin3 z

32 þ 1
þ � � �

(b) Graph the region of (a).

6.122. If jzj . 0, prove that cosh(zþ 1=z) ¼ c0 þ c1(zþ 1=z)þ c2(z
2 þ 1=z2)þ � � � where

cn ¼
1

2p

ð2p
0

cos nf cosh(2 cosf) df
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6.123. If f (z) has simple zeros at 1� i and 1þ i, double poles at �1þ i and�1� i, but no other finite singularities, prove

that the function must be given by

f (z) ¼ k
z2 � 2zþ 2

(z2 þ 2zþ 2)2

where k is an arbitrary constant.

6.124. Prove that for all z, ez sin z ¼
X1
n¼1

2n=2 sin(np=4)

n!
zn.

6.125. Show that ln 2 ¼ 1� 1
2
þ 1

3
� 1

4
þ � � �, justifying all steps. [Hint. Use Problem 6.23.]

6.126. Investigate the uniform convergence of the series
X1
n¼1

z

[1þ (n� 1)z][1þ nz]
.h

Hint. Resolve the nth term into partial fractions and show that the nth partial sum is Sn(z) ¼ 1� (1=1þ nz):
i

6.127. Given 1� 1
2
þ 1

3
� 1

4
þ � � � converges to S. Prove that the rearranged series

1þ 1

3
� 1

2
þ 1

5
þ 1

7
� 1

4
þ 1

9
þ 1

11
� 1

6
þ � � � ¼ 3

2
S:

Explain.

[Hint. Take 1
2
of the first series and write it as 0 þ 1

2
þ 0� 1

4
þ 0 þ 1

6
þ � � � ; then add term by term to the first

series. Note that S ¼ ln 2, as shown in Problem 6.125.]

6.128. Prove that the hypergeometric series

1þ a � b
1 � c zþ

a(aþ 1)b(bþ 1)

1 � 2 � c(cþ 1)
z2 þ a(aþ 1)(aþ 2)b(bþ 1)(bþ 2)

1 � 2 � 3 � c(cþ 1)(cþ 2)
z3 þ � � �

(a) converges absolutely if jzj , 1,

(b) diverges for jzj . 1,

(c) converges absolutely for z ¼ 1 if Refaþ b� cg , 0,

(d) satisfies the differential equation z(1� z)Y 00 þ fc� (aþ bþ 1)zgY 0 � abY ¼ 0.

6.129. Prove that for jzj , 1,

(sin�1z)2 ¼ z2 þ 2

3
� z

4

2
þ 2 � 4
3 � 5 �

z6

3
þ 2 � 4 � 6
3 � 5 � 7 �

z8

4
þ � � �

6.130. Prove that
P1

n¼1 1=n
1þi diverges.

6.131. Show that
1

1 � 2�
1

2 � 3þ
1

3 � 4�
1

4 � 5þ � � � ¼ 2 ln 2� 1:

6.132. Locate and name all the singularities of
z6 þ 1

(z� 1)3(3zþ 2)2
sin

z2

z� 3

� �
.

6.133. By using only properties of infinite series, prove that

(a) 1þ aþ a2

2!
þ a3

3!
þ � � �

� �
1þ bþ b2

2!
þ b3

3!
þ � � �

� �
¼ 1þ (aþ b)þ (aþ b)2

2!
þ � � �

� �

(b) 1� a2

2!
þ a4

4!
� a6

6!
þ � � �

� �2

þ a� a3

3!
þ a5

5!
� a7

7!
þ � � �

� �2

¼ 1

6.134. Suppose f (z) ¼
P1

n¼0 anz
n converges for jzj , R and 0 � r , R. Prove that

1

2p

ð2p
0

j f (reiu)j2 du ¼
X1
n¼0

janj2r2n
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6.135. Use Problem 6.134 to prove Cauchy’s inequality (page 145), namely

j f (n)(0)j � M � n!
rn

n ¼ 0, 1, 2, . . .

6.136. Suppose a function has six zeros of order 4, and four poles of orders 3, 4, 7, and 8, but no other singularities in the

finite plane. Prove that it has a pole of order 2 at z ¼ 1.

6.137. State whether each of the following functions are entire, meromorphic or neither:

(a) z2e�z, (c) (1� cos z)=z, (e) z sin(1=z), (g) sin
ffiffi
z

p
=
ffiffi
z

p

(b) cot 2z, (d) cosh z2, (f ) zþ 1=z, (h)
ffiffiffiffiffiffiffiffiffi
sin z

p

6.138. Let �p , u , p. Prove that ln(2 cos u=2) ¼ cos u� 1

2
cos 2uþ 1

3
cos 3u� 1

4
cos 4uþ � � �

6.139. (a) Expand 1= ln(1þ z) in a Laurent series about z ¼ 0 and (b) determine the region of convergence.

6.140. Let S(z) ¼ a0 þ a1zþ a2z
2 þ � � � . Giving restrictions if any, prove that

S(z)

1� z
¼ a0 þ (a0 þ a1)zþ (a0 þ a1 þ a2)z

2 þ � � �

6.141. Show that the following series (a) is not absolutely convergent but (b) is uniformly convergent for all values of z.

1

1þ jzj �
1

2þ jzj þ
1

3þ jzj �
1

4þ jzj þ � � �

6.142. Prove that
P1

n¼1 z
n=n converges at all points of jzj � 1 except z ¼ 1.

6.143. Prove that the solution of z ¼ aþ zez, which has the value a when z ¼ 0, is given by

z ¼ aþ
X1
n¼1

nn�1enaz n

n!

if jzj , je�(aþ1)j.

6.144. Find the sum of the series 1þ cos uþ cos 2u

2!
þ cos 3u

3!
þ � � � .

6.145. Let F(z) be analytic in the finite plane and suppose that F(z) has period 2p, i.e., F(zþ 2p) ¼ F(z). Prove that

F(z) ¼
X1
n¼�1

ane
inz where an ¼

1

2p

ð2p
0

F(z)e�inz dz

The series is called the Fourier series for F(z).

6.146. Prove that the following series is equal to p=4 if 0 , u , p, and to �p=4 if �p , u , 0:

sin uþ 1

3
sin 3uþ 1

5
sin 5uþ � � �

6.147. Prove that jzj ¼ 1 is a natural boundary for the series
P1

n¼0 2
�nz3

n

.

6.148. Suppose f (z) is analytic and not identically zero in the region 0 , jz� z0j , R, and suppose limz!z0 f (z) ¼ 0.

Prove that there exists a positive integer n such that f (z) ¼ (z� z0)
ng(z) where g(z) is analytic at z0 and different

from zero.

6.149. Suppose f(z) is analytic in a deleted neighborhood of z0 and limz!z0 j f (z)j ¼ 1. Prove that z ¼ z0 is a pole of f(z).

6.150. Explain why Problem 6.149 does not hold for f (x) ¼ e1=x
2

where x is real.
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6.151. (a) Show that the function f (z) ¼ e1=z can assume any value except zero.

(b) Discuss the relationship of the result of (a) to the Casorati–Weierstrass theorem and Picard’s theorem.

6.152. (a) Determine whether the function g(z) ¼ z2 � 3zþ 2 can assume any complex value.

(b) Is there any relationship of the result in (a) to the theorems of Casorati–Weierstrass and Picard? Explain.

6.153. Prove the Casorati–Weierstrass theorem stated on page 175. [Hint. Use the fact that if z ¼ a is an essential

singularity of f(z), then it is also an essential singularity of 1=f f (z)� Ag.]

6.154. (a) Prove that along any ray through z ¼ 0, jzþ ezj ! 1.

(b) Does the result in (a) contradict the Casorati–Weierstrass theorem?

6.155. (a) Prove that an entire function f(z) can assume any value whatsoever, with perhaps one exception.

(b) Illustrate the result of (a) by considering f (z) ¼ ez and stating the exception in this case.

(c) What is the relationship of the result to the Casorati–Weierstrass and Picard theorems?

6.156. Prove that every entire function has a singularity at infinity. What type of singularity must this be? Justify your

answer.

6.157. Prove that: (a)
ln(1þ z)

1þ z
¼ z� 1þ 1

2

� �
z2 þ 1þ 1

2
þ 1

3

� �
z3 � � � � , jzj , 1

(b) fln(1þ z)g2 ¼ z2 � 1þ 1

2

� �
2z3

3
þ 1þ 1

2
þ 1

3

� �
2z4

4
� � � � , jzj , 1

6.158. Find the sum of the following series if jaj , 1:

(a)
P1

n¼1 na
n sin nu, (b)

P1
n¼1 n

2an sin nu

6.159. Show that esin z ¼ 1þ zþ z2

2
� z4

8
� z5

15
þ � � � , jzj , 1.

6.160. (a) Show that
X1

n¼1
zn=n2 converges for jzj � 1.

(b) Show that the function F(z), defined as the collection of all possible analytic continuations of the series in (a),

has a singular point at z ¼ 1.

(c) Reconcile the results of (a) and (b).

6.161. Let
P1

n¼1 anz
n converge inside a circle of convergence of radius R. There is a theorem which states that the function

F(z) defined by the collection of all possible continuations of this series, has at least one singular point on the circle

of convergence. (a) Illustrate the theorem by several examples. (b) Can you prove the theorem?

6.162. Show that

u(r, u) ¼ R2 � r2

2p

ð2p
0

U(f) df

R2 � 2rR cos(u� f)þ r2
¼ a0

2
þ
X1
n¼1

r

R

� 
n
fan cos nuþ bn sin nug

where

an ¼
1

p

ð2p
0

U(f) cos nf df, bn ¼
1

p

ð2p
0

U(f) sin nf df

6.163. Let

z

ez � 1
¼ 1þ B1zþ

B2z
2

2!
þ B3z

3

3!
þ � � �
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(a) Show that the numbers Bn, called the Bernoulli numbers, satisfy the recursion formula (Bþ 1)n ¼ Bn where Bk is

formally replaced by Bk after expanding. (b) Using (a) or otherwise, determine B1, . . . ,B6.

6.164. (a) Prove that
z

ez � 1
¼ z

2
coth

z

2
� 1

� 

.

(b) Use Problem 6.163 and part (a) to show that B2kþ1 ¼ 0 if k ¼ 1, 2, 3, . . . .

6.165. Derive the series expansions:

(a) coth z ¼ 1

z
þ z

3
� z3

45
þ � � � þ B2n(2z)

2n

(2n)!z
þ � � � , jzj , p

(b) cot z ¼ 1

z
� z

3
� z3

45
þ � � � (�1)n

B2n(2z)
2n

(2n)!z
þ � � � , jzj , p

(c) tan z ¼ zþ z3

3
þ 2z5

15
þ � � � (�1)n�1 2(2

2n � 1)B2n(2z)
2n�1

(2n)!
, jzj , p=2

(d) csc z ¼ 1

z
þ z

6
þ 7z3

360
þ � � � (�1)n�1 2(2

2n�1 � 1)B2nz
2n�1

(2n)!
þ � � � , jzj , p

[Hint. For (a), use Problem 6.164; for (b) replace z by iz in (a); for (c) use tan z ¼ cot z� 2 cot 2z; for (d) use

csc z ¼ cot zþ tan z=2.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.37. (a) Sn(z) ¼ f1� (z=2)ng=(2� z) and limn!1 Sn(z) exists if jzj , 2, (b) S(z) ¼ 1=(2� z)

6.38. (a) jzj , 1, (b) 1 6.39. (a) All z such that jz2 þ 1j . 1, (b) 1=z2

6.44. (b) z=(1� z)2, jzj , 1 6.45. 4

6.49. (a) Converges absolutely if jz� 3j , 3 or z ¼ 0. (b) Converges uniformly for jz� 3j � R where 0 , R , 3;

does not converge uniformly in any neighborhood that includes z ¼ 0.

6.50. (a) Converges absolutely if jzj , 1. (b) Converges uniformly if jzj � R where R , 1.

6.51. (a) Converges absolutely if jz2 þ 1j . 1. (b) Converges uniformly if jz2 þ 1j � R where R . 1.

6.53. (b) Not uniformly convergent in any region that includes z ¼ 0.

6.56. (a) conv., (b) conv., (c) div., (d) conv., (e) div.

6.57. (a) Diverges for all finite z. (b) Converges for all z. (c) Converges for all z.

(d) Converges for all z except z ¼ �n2, n ¼ 1, 2, 3, . . . .

6.58. Conv. 6.61. Converges if Im z � 0.

6.59. (a) jzþ ij � 1, (b) j(zþ 1)=(z� 1)j � 3, (c) jzj , 1 6.65. jzj , 1.

6.60. Conv. Abs. for jz� ij � 4. 6.67. (a) conv., (b) conv., (c) div., (d) div.

6.68. (a) jzj � R where R , 3, (b) jz� ij � 1, (c) jzj � R where R . 1, (d) all z.

6.71. (a) z=(1� z)2 [compare Problem 6.44], (b) z(1þ z)=(1� z)3

6.72. (a) 1=2, (b) 0 6.76. (a) Y(z) ¼ 1þ zþ z2

2!
þ z3

3!
þ . . .

6.79. (a) jzj , 2, (b) jzj , p, (c) jz� 2j , 1, (d) jzj , 1, (e) jz� 4ij , 4, (f) jzj , p=2, (g) jz� 1j , 1=2

6.90. (a) ln 5� i(z� 2i)

5
þ (z� 2i)2

2 � 52 þ i(z� 2i)3

3 � 53 � (z� 2i)4

4 � 54 � � � � (b) jz� 2ij , 5

6.91. (a) � 1

3
� 1

9
z� 1

27
z2 � 1

81
z3 � � � � (b) z�1 þ 3z�2 þ 9z�3 þ 27z�4 þ � � �
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6.92. (a) � 1

2
z� 3

4
z2 � 7

8
z3 � 15

16
z4 � � � � (b) � � � þ 1

z2
þ 1

z
þ 1þ 1

2
zþ 1

4
z2 þ 1

8
z3 þ � � �

(c) � 1

2
� 3

z2
� 7

z3
� 15

z4
� � � � (d) �(z� 1)�1 � 2(z� 1)�2 � 2(z� 1)�3 � � � �

(e) 1� 2(z� 2)�1 � (z� 2)þ (z� 2)2 � (z� 2)3 þ (z� 2)4 � � � �

6.96. (a)
z

2!
� z3

4!
þ z5

6!
� � � �; removable singularity (d) z2 � z6 þ z10

2!
� z14

3!
þ � � �; ordinary point

(b)
1

z3
þ 1

z
þ z

2!
þ z3

3!
þ z5

4!
þ z7

5!
þ � � �; pole of order 3 (e) z3=2 þ z5=2

3!
þ z7=2

5!
þ z9=2

7!
þ � � �; branch point

(c)
1

z
� 1

2!z3
þ 1

4!z5
� � � �; essential singularity

6.98. (a) p=6þ 2mp, (2mþ 1)p� p=6, m ¼ 0, +1, +2, . . .; poles of order 2

(b) i=2mp, m ¼ +1, +2, . . .; simple poles, z ¼ 0; essential singularity, z ¼ 1; pole of order 2

(c) z ¼ 0, 1; essential singularities

(d) z ¼ �1+ i; branch points

(e) z ¼ 2mpi, m ¼ +1, +2, . . .; simple poles, z ¼ 0; removable singularity, z ¼ 1; essential singularity

6.99. (a) e 1þ 2(z� 2)�1 þ 22(z� 2)�2

2!
þ 23(z� 2)�3

3!
þ � � �

� �
(b) jz� 2j . 0

(c) z ¼ 2; essential singularity, z ¼ 1; removable singularity

6.104. 2.62 to two decimal accuracy. 6.109. (b) �3� (9=4)i

6.108. (b) 1=(1� z) 6.112. (a) div., (b) conv., (c) conv., (d) conv., (e) div., (f) conv.

6.115.
X1
n¼1

(3� 32n�1)z2n�1

4(2n� 1)!

6.117. � � � � 1

8
(z� 1)�4 þ 1

4
(z� 1)�3 � 1

2
(z� 1)�2 þ (z� 1)�1 � 1� (z� 1)� (z� 1)2 � � � �

6.118. (a)
1

z3
� 1

3z
þ z

5
� z3

7
þ � � � (b) jzj . 0 (c) �1=3

6.119. (a) zþ z�1 þ z�3

2!
þ z�5

3!
þ � � �; jzj . 0, 2z� 2z3

3
þ 4z5

45
� � � �; jzj � 0,

z�1

4
þ 1

16
þ z

64
þ z2

256
þ � � �; 0 , jzj , 4

(b) essential singularity, removable singularity, pole, (c) 2pi, 0,pi=2

6.120. (a) diverges.

6.126. Not uniformly convergent in any region that includes z ¼ 0; uniformly convergent in a region jzj � dwhere d is any

positive number.

6.137. (a) entire, (b) meromorphic, (c) entire, (d) entire, (e) neither, (f) meromorphic, (g) entire, (h) neither

6.139. (a)
1

z
þ z

2
� z

12
þ z2

24
þ 89z3

720
þ � � � (b) 0 , jzj , 1 6.144. ecosu cos(sinu)

6.163. (b) B1 ¼ � 1

2
, B2 ¼

1

6
, B3 ¼ 0, B4 ¼ � 1

30
, B5 ¼ 0, B6 ¼

1

42
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CHAP T E R 7

The Residue Theorem
Evaluation of Integrals

and Series

7.1 Residues

Let f(z) be single-valued and analytic inside and on a circle C except at the point z ¼ a chosen as the center
of C. Then, as we have seen in Chapter 6, f(z) has a Laurent series about z ¼ a given by

f (z) ¼
X1
n¼�1

an(z� a)n

¼ a0 þ a1(z� a)þ a2(z� a)2 þ � � � þ a�1

z� a
þ a�2

(z� a)2
þ � � �

(7:1)

where

an ¼
1

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, +1, +2, . . . (7:2)

In the special case n ¼ �1, we have from (7.2)þ
C

f (z) dz ¼ 2pia�1 (7:3)

Formally, we can obtain (7.3) from (7.1) by integrating term by term and using the results (Problems 4.21
and 4.22) þ

C

dz

(z� a)p
¼ 2pi p ¼ 1

0 p ¼ integer=1

�
(7:4)

Because of the fact that (7.3) involves only the coefficient a�1 in (7.1), we call a�1 the residue of f(z) at
z ¼ a.

7.2 Calculation of Residues

To obtain the residue of a function f(z) at z ¼ a, it may appear from (7.1) that the Laurent expansion of f(z)
about z ¼ a must be obtained. However, in the case where z ¼ a is a pole of order k, there is a simple
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formula for a�1 given by

a�1 ¼ lim
z!a

1

(k � 1)!

dk�1

dzk�1
f(z� a)kf (z)g (7:5)

If k ¼ 1 (simple pole), then the result is especially simple and is given by

a�1 ¼ lim
z!a

(z� a) f (z) (7:6)

which is a special case of (7.5) with k ¼ 1 if we define 0! ¼ 1.

EXAMPLE 7.1: If f (z) ¼ z=(z� 1)(zþ 1)2, then z ¼ 1 and z ¼ �1 are poles of orders one and two, respectively.

We have, using (7.6) and (7.5) with k ¼ 2,

Residue at z ¼ 1 is lim
z!1

(z� 1)
z

(z� 1)(zþ 1)2

� �
¼ 1

4

Residue at z ¼ �1 is lim
z!�1

1

1!

d

dz
(zþ 1)2

z

(z� 1)(zþ 1)2

� �� �
¼ � 1

4

If z ¼ a is an essential singularity, the residue can sometimes be found by using known series
expansions.

EXAMPLE 7.2: Let f (z) ¼ e�1=z. Then, z ¼ 0 is an essential singularity and from the known expansion for eu

with u ¼ �1=z, we find

e�1=z ¼ 1� 1

z
þ 1

2!z2
� 1

3!z3
þ � � �

from which we see that the residue at z ¼ 0 is the coefficient of 1/z and equals �1.

7.3 The Residue Theorem

Let f (z) be single-valued and analytic inside and on a simple closed curve C except at the singularities
a, b, c, . . . inside C, which have residues given by a�1, b�1, c�1, . . . [see Fig. 7-1]. Then, the residue
theorem states that þ

C

f (z) dz ¼ 2pi(a�1 þ b�1 þ c�1 þ � � � ) (7:7)

i.e., the integral of f(z) around C is 2pi times the sum of the residues of f (z) at the singularities enclosed by
C. Note that (7.7) is a generalization of (7.3). Cauchy’s theorem and integral formulas are special cases of
this theorem (see Problem 7.75).

C

x

y

c

b
a

Fig. 7-1
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7.4 Evaluation of Definite Integrals

The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable
function f(z) and a suitable closed path or contour C, the choice of which may require great ingenuity. The
following types are most common in practice.

1.
Ð1
�1 F(x) dx, where F(x) is a rational function.

Consider
Þ
C
F(z) dz along a contour C consisting of the line along the x axis from �R to þR and

the semicircle G above the x axis having this line as diameter [Fig. 7-2]. Then, let R ! 1. If F(x) is
an even function, this can be used to evaluate

Ð1
0
F(x) dx. See Problems 7.7–7.10.

–R R
x

y

R

G

x

y
C

1

Fig. 7-2 Fig. 7-3

2.
Ð 2p
0

G(sin u, cos u) du, where G(sin u, cos u) is a rational function of sin u and cos u.

Let z ¼ eiu. Then sin u ¼ (z� z�1)=2i, cos u ¼ ðzþ z�1Þ=2 and dz ¼ ieiu du or du ¼ dz=iz. The
given integral is equivalent to

Þ
C
F(z) dz where C is the unit circle with center at the origin

[Fig. 7-3]. See Problems 7.11–7.14.

3.

ð1
�1

F(x)
cosmx

sinmx

� �
dx, where F(x) is a rational function.

Here, we consider
Þ
C
F(z)eimz dz where C is the same contour as that in Type 1. See Problems

7.15–7.17 and 7.37.
4. Miscellaneous integrals involving particular contours. See Problems 7.18–7.23.

7.5 Special Theorems Used in Evaluating Integrals

In evaluating integrals such as those of Types 1 and 3 above, it is often necessary to show that
Ð
G F(z) dz andÐ

G e
imzF(z) dz approach zero as R ! 1. The following theorems are fundamental.

THEOREM 7.1. If jF(z)j � M=Rk for z ¼ Reiu, where k . 1 and M are constants, then if G is the

semicircle of Fig. 7-2,

lim
R!1

ð
G

F(z) dz ¼ 0

See Problem 7.7.
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THEOREM 7.2. If jF(z)j � M=Rk for z ¼ Reiu, where k . 0 and M are constants, then if G is the

semicircle of Fig. 7-2,

lim
R!1

ð
G

eimzF(z) dz ¼ 0

See Problem 7.15.

7.6 The Cauchy Principal Value of Integrals

If F(x) is continuous in a � x � b except at a point x0 such that a , x0 , b, then if e1 and e2 are positive,
we define

ðb
a

F(x) dx ¼ lim
e1!0
e2!0

ðx0�e1

a

F(x) dxþ
ðb

x0þe2

F(x) dx

8<
:

9=
;

In some cases, the above limit does not exist for e1=e2 but does exist if we take e1 ¼ e2 ¼ e. In such a case,
we call

ðb
a

F(x) dx ¼ lim
e!0

ðx0�e

a

F(x) dxþ
ðb

x0þe

F(x) dx

8<
:

9=
;

the Cauchy principal value of the integral on the left.

EXAMPLE 7.3:

ð1
�1

dx

x3
¼ lim

e1!0
e2!0

ð�e1

�1

dx

x3
þ
ð1
e2

dx

x3

8<
:

9=
; ¼ lim

e1!0
e2!0

1

2e22
� 1

2e21

� �

does not exist. However, the Cauchy principal value with e1 ¼ e2 ¼ e does exist and equals zero.

7.7 Differentiation Under the Integral Sign. Leibnitz’s Rule

A useful method for evaluating integrals employs Leibnitz’s rule for differentiation under the integral sign.
This rule states that

d

da

ðb
a

F(x, a) dx ¼
ðb
a

@F

@a
dx

The rule is valid if a and b are constants, a is a real parameter such that a1 � a � a2 where a1 and a2 are
constants, and F(x, a) is continuous and has a continuous partial derivative with respect to a for
a � x � b, a1 � a � a2. It can be extended to cases where the limits a and b are infinite or dependent on a.
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7.8 Summation of Series

The residue theorem can often be used to sum various types of series. The following results are valid under
very mild restrictions on f(z) that are generally satisfied whenever the series converge. See Problems 7.24,
7.32 and 7.38.

1.
X1
�1

f (n) ¼ �fsum of residues of p cotpz f (z) at all the poles of f (z)g

2.
X1
�1

(�1)nf (n) ¼ �fsum of residues of p cscpz f (z) at all the poles of f (z)g

3.
X1
�1

f
2nþ 1

2

� �
¼ fsum of residues of p tanpz f (z) at all the poles of f (z)g

4.
X1
�1

(�1)nf
2nþ 1

2

� �
¼ fsum of residues of p secpz f (z) at all the poles of f (z)g

7.9 Mittag–Leffler’s Expansion Theorem

1. Suppose that the only singularities of f(z) in the finite z plane are the simple poles a1, a2, a3, . . .
arranged in order of increasing absolute value.

2. Let the residues of f(z) at a1, a2, a3, . . . be b1, b2, b3, . . . .
3. Let CN be circles of radius RN that do not pass through any poles and on which j f (z)j , M, where

M is independent of N and RN ! 1 as N ! 1.

Then Mittag–Leffler’s expansion theorem states that

f (z) ¼ f (0)þ
X1
n¼1

bn
1

z� an
þ 1

an

� �

7.10 Some Special Expansions

1. csc z ¼ 1

z
� 2z

1

z2 � p2
� 1

z2 � 4p2
þ 1

z2 � 9p2
� � � �

� �

2. sec z ¼ p
1

(p=2)2 � z2
� 3

(3p=2)2 � z2
þ 5

(5p=2)2 � z2
� � � �

� �

3. tan z ¼ 2z
1

(p=2)2 � z2
þ 1

(3p=2)2 � z2
þ 1

(5p=2)2 � z2
þ � � �

� �

4. cot z ¼ 1

z
þ 2z

1

z2 � p2
þ 1

z2 � 4p2
þ 1

z2 � 9p2
þ � � �

� �

5. csch z ¼ 1

z
� 2z

1

z2 þ p2
� 1

z2 þ 4p2
þ 1

z2 þ 9p2
� � � �

� �

6. sech z ¼ p
1

(p=2)2 þ z2
� 3

(3p=2)2 þ z2
þ 5

(5p=2)2 þ z2
� � � �

� �

7. tanh z ¼ 2z
1

z2 þ (p=2)2
þ 1

z2 þ (3p=2)2
þ 1

z2 þ (5p=2)2
þ � � �

� �

8. coth z ¼ 1

z
þ 2z

1

z2 þ p2
þ 1

z2 þ 4p2
þ 1

z2 þ 9p2
þ � � �

� �
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SOLVED PROBLEMS

Residues and the Residue Theorem

7.1. Let f (z) be analytic inside and on a simple closed curve C except at point a inside C.

(a) Prove that

f (z) ¼
X1
n¼�1

an(z� a)n where an ¼
1

2pi

þ
C

f (z)

(z� a)nþ1
dz, n ¼ 0, +1, +2, . . .

i.e., f(z) can be expanded into a converging Laurent series about z ¼ a.

(b) Prove that þ
C

f (z) dz ¼ 2pia�1

Solution

(a) This follows from Problem 6.25 of Chapter 6.

(b) If we let n ¼ �1 in the result of (a), we find

a�1 ¼
1

2pi

þ
C

f (z) dz, i:e:,

þ
C

f (z) dz ¼ 2pia�1

We call a�1 the residue of f(z) at z ¼ a.

7.2. Prove the residue theorem. If f (z) is analytic
inside and on a simple closed curve C except at
a finite number of points a, b, c, . . . inside C at
which the residues are a�1, b�1, c�1, . . . ,
respectively, thenþ

C

f (z) dz ¼ 2pi(a�1 þ b�1 þ c�1 þ � � � )

i.e., 2pi times the sum of the residues at all
singularities enclosed by C.

Solution

With centers at a, b, c, . . . , respectively, construct

circles C1, C2, C3, . . . that lie entirely inside C as

shown in Fig. 7-4. This can be done since a, b, c, . . .
are interior points. By Theorem 4.5, page 118, we have

þ
C

f (z) dz ¼
þ
C1

f (z) dzþ
þ
C2

f (z) dzþ
þ
C3

f (z) dzþ � � � (1)

But, by Problem 7.1,þ
C1

f (z) dz ¼ 2pia�1,

þ
C2

f (z) dz ¼ 2pib�1,

þ
C3

f (z) dz ¼ 2pic�1, . . . (2)

Then, from (1) and (2), we have, as required,þ
C

f (z) dz ¼ 2pi(a�1 þ b�1 þ c�1 þ � � � ) ¼ 2p i (sum of residues)

C1

a

b

cC3

C2

C

Fig. 7-4
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The proof given here establishes the residue theorem for simply-connected regions containing a finite

number of singularities of f (z). It can be extended to regions with infinitely many isolated singularities and

to multiply-connected regions (see Problems 7.96 and 7.97).

7.3. Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m inside C.
Prove that the residue of f(z) at a is given by

a�1 ¼ lim
z!a

1

(m� 1)!

dm�1

dzm�1
f(z� a)mf (z)g

Solution

Method 1. Suppose f (z) has a pole a of order m. Then the Laurent series of f (z) is

f (z) ¼ a�m

(z� a)m
þ a�mþ1

(z� a)m�1
þ � � � þ a�1

z� a
þ a0 þ a1(z� a)þ a2(z� a)2 þ � � � (1)

Then multiplying both sides by (z� a)m, we have

(z� a)mf (z) ¼ a�m þ a�mþ1(z� a)þ � � � þ a�1(z� a)m�1 þ a0(z� a)m þ � � � (2)

This represents the Taylor series about z ¼ a of the analytic function on the left. Differentiating both sides

m� 1 times with respect to z, we have

dm�1

dzm�1
f(z� a)mf (z)g ¼ (m� 1)!a�1 þ m(m� 1) � � � 2a0(z� a)þ � � �

Thus, on letting z ! a,

lim
z!a

dm�1

dzm�1
f(z� a)mf (z)g ¼ (m� 1) ! a�1

from which the required result follows.

Method 2. The required result also follows directly from Taylor’s theorem on noting that the coefficient of

(z� a)m�1 in the expansion (2) is

a�1 ¼
1

(m� 1)!

dm�1

dzm�1
f(z� a)mf (z)g

����
z¼a

Method 3. See Problem 5.28, page 161.

7.4. Find the residues of (a) f (z) ¼ z2 � 2z

(zþ 1)2(z2 þ 4)
and (b) f (z) ¼ ez csc2 z at all its poles in the finite

plane.

Solution

(a) f(z) has a double pole at z ¼ �1 and simple poles at z ¼+2i.

Method 1. Residue at z ¼ �1 is

lim
z!�1

1

1!

d

dz
(zþ 1)2 � z2 � 2z

(zþ 1)2(z2 þ 4)

� �
¼ lim

z!�1

(z2 þ 4)(2z� 2)� (z2 � 2z)(2z)

(z2 þ 4)2
¼ � 14

25

Residue at z ¼ 2i is

lim
z!2i

(z� 2i) � z2 � 2z

(zþ 1)2(z� 2i)(zþ 2i)

� �
¼ �4� 4i

(2iþ 1)2(4i)
¼ 7þ i

25
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Residue at z ¼ �2i is

lim
z!�2i

(zþ 2i) � z2 � 2z

(zþ 1)2(z� 2i)(zþ 2i)

� �
¼ �4þ 4i

(�2iþ 1)2(�4i)
¼ 7� i

25

Method 2. Residue at z ¼ 2i is

lim
z!2i

(z� 2i)(z2 � 2z)

(zþ 1)2(z2 þ 4)

� �
¼ lim

z!2i

z2 � 2z

(zþ 1)2

� �
lim
z!2i

z� 2i

z2 þ 4

� �

¼ �4� 4i

(2iþ 1)2
� lim
z!2i

1

2z
¼ �4� 4i

(2iþ 1)2
� 1
4i

¼ 7þ i

25

using L’Hospital’s rule. In a similar manner, or by replacing i by�i in the result, we can obtain the residue

at z ¼ �2i.

(b) f (z) ¼ ez csc2 z ¼ ez=sin2 z has double poles at z ¼ 0, +p, +2p, . . . , i.e., z ¼ mp where m ¼ 0,

+1, +2, . . . .

Method 1. Residue at z ¼ mp is

lim
z!mp

1

1!

d

dz
(z� mp)2

ez

sin2 z

� �
¼ lim

z!mp

ez[(z� mp)2 sin zþ 2(z� mp) sin z� 2(z� mp)2 cos z]

sin3 z

Letting z� mp ¼ u or z ¼ uþ mp, this limit can be written

lim
u!0

euþmp u2 sin uþ 2u sin u� 2u2 cos u

sin3 u

� �
¼ emp lim

u!0

u2 sin uþ 2u sin u� 2u2 cos u

sin3 u

� �

The limit in braces can be obtained using L’Hospital’s rule. However, it is easier to first note that

lim
u!0

u3

sin3 u
¼ lim

u!0

u

sin u

� 
3
¼ 1

and thus write the limit as

emp lim
u!0

u2 sin uþ 2u sin u� 2u2 cos u

u3
� u3

sin3 u

� �
¼ emp lim

u!0

u2 sin uþ 2u sin u� 2u2 cos u

u3
¼ emp

using L’Hospital’s rule several times. In evaluating this limit, we can instead use the series expansions

sin u ¼ u� u3=3!þ � � � , cos u ¼ 1� u2=2!þ � � �.

Method 2 (using Laurent’s series).

In this method, we expand f (z) ¼ ez csc2 z in a Laurent series about z ¼ mp and obtain the coefficient of

1=(z� mp) as the required residue. To make the calculation easier, let z ¼ uþ mp. Then, the function to

be expanded in a Laurent series about u ¼ 0 is empþu csc2(mpþ u) ¼ empeu csc2 u. Using the Maclaurin

expansions for eu and sin u, we find using long division

empeu csc2 u ¼
emp 1þ uþ u2

2!
þ u3

3!
þ � � �

� �

u� u3

3!
þ u5

5!
� � � �

� �2
¼

emp 1þ uþ u2

2
þ � � �

� �

u2 1� u2

6
þ u4

120
� � � �

� �2

¼
emp 1þ uþ u2

2!
þ � � �

� �

u2 1� u2

3
þ 2u4

45
þ � � �

� � ¼ emp
1

u2
þ 1

u
þ 5

6
þ u

3
þ � � �

� �

and so the residue is emp.
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7.5. Find the residue of F(z) ¼ cot z coth z

z3
at z ¼ 0.

Solution

We have, as in Method 2 of Problem 7.4(b),

F(z) ¼ cos z cosh z

z3 sin z sinh z
¼

1� z2

2!
þ z4

4!
� � � �

� �
1þ z2

2!
þ z4

4!
þ � � �

� �

z3 z� z3

3!
þ z5

5!
� � � �

� �
zþ z3

3!
þ z5

5!
þ � � �

� �

¼
1� z4

6
þ � � �

� �

z5 1� z4

90
þ � � �

� � ¼ 1

z5
1� 7z4

45
þ � � �

� �

and so the residue (coefficient of 1=z) is �7=45.

Another Method. The result can also be obtained by finding

lim
z!0

1

4!

d4

dz4
z5

cos z cosh z

z3 sin z sinh z

� �

but this method is much more laborious than that given above.

7.6. Evaluate
1

2pi

þ
C

ezt

z2(z2 þ 2zþ 2)
dz around the circle C with equation jzj ¼ 3.

Solution

The integrand ezt= z2(z2 þ 2zþ 2)
� �

has a double pole at z ¼ 0 and two simple poles at z ¼ �1+ i [roots of

z2 þ 2zþ 2 ¼ 0]. All these poles are inside C.

Residue at z ¼ 0 is

lim
z!0

1

1!

d

dz
z2

ezt

z2(z2 þ 2zþ 2)

� �
¼ lim

z!0

(z2 þ 2zþ 2)(tezt)� (ezt)(2zþ 2)

(z2 þ 2zþ 2)2
¼ t � 1

2

Residue at z ¼ �1þ i is

lim
z!�1þi

[z� (�1þ i)]
ezt

z2(z2 þ 2zþ 2)

� �
¼ lim

z!�1þi

ezt

z2

� �
lim

z!�1þi

zþ 1� i

z2 þ 2zþ 2

� �

¼ e(�1þi)t

(�1þ i)2
� 1
2i

¼ e(�1þi)t

4

Residue at z ¼ �1� i is

lim
z!�1�i

[z� (�1� i)]
ezt

z2(z2 þ 2zþ 2)

� �
¼ e(�1�i)t

4

Then, by the residue theorem

þ
C

ezt

z2(z2 þ 2zþ 2)
dz ¼ 2pi (sum of residues) ¼ 2pi

t � 1

2
þ e(�1þi)t

4
þ e(�1�i)t

4

� �

¼ 2pi
t � 1

2
þ 1

2
e�t cos t

� �
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that is,

1

2pi

þ
C

ezt

z2(z2 þ 2zþ 2)
dz ¼ t � 1

2
þ 1

2
e�t cos t

Definite Integrals of the Type
Ð11111
�11111 F(x) dx

7.7. Let jF(z)j � M=Rk for z ¼ Reiu where k . 1 and M are
constants. Prove that limR!1

Ð
G F(z) dz ¼ 0 where G is

the semi-circular arc of radius R shown in Fig. 7-5.

Solution

By Property (e), page 112, we have

ð
G

F(z) dz

������
������ �

M

Rk
� pR ¼ pM

Rk�1

since the length of arc L ¼ pR. Then

lim
R!1

ð
G

F(z) dz

������
������ ¼ 0 and so lim

R!1

ð
G

F(z) dz ¼ 0

7.8. Show that for z ¼ Reiu, j f (z)j � M=Rk, k > 1 if f (z) ¼ 1=(z6 þ 1).

Solution

Suppose z ¼ Reiu. Then

j f (z)j ¼ 1

R6e6iu þ 1

����
���� � 1

jR6e6iuj � 1
¼ 1

R6 � 1
� 2

R6

where R is large enough (say R . 2, for example), so that M ¼ 2, k ¼ 6.

Note that we have made use of the inequality jz1 þ z2j � jz1j � jz2j with z1 ¼ R6e6iu and z2 ¼ 1.

7.9. Evaluate

ð1
0

dx

x6 þ 1
.

Solution

Consider
Þ
C
dz=(z6 þ 1), where C is the closed contour of Fig. 7-5 consisting of the line from �R to R and the

semicircle G, traversed in the positive (counterclockwise) sense.

Since z6 þ 1 ¼ 0 when z ¼ epi=6, e3pi=6, e5pi=6, e7pi=6, e9pi=6, e11pi=6, these are simple poles of 1=(z6 þ 1).

Only the poles epi=6, e3pi=6, and e5pi=6 lie within C. Then, using L’Hospital’s rule,

Residue at epi=6 ¼ lim
z!epi=6

(z� epi=6)
1

z6 þ 1

� �
¼ lim

z!epi=6

1

6z5
¼ 1

6
e�5pi=6

Residue at e3pi=6 ¼ lim
z!e3pi=6

(z� e3pi=6)
1

z6 þ 1

� �
¼ lim

z!e3pi=6

1

6z5
¼ 1

6
e�5pi=2

Residue at e5pi=6 ¼ lim
z!e5pi=6

(z� e5pi=6)
1

z6 þ 1

� �
¼ lim

z!e5pi=6

1

6z5
¼ 1

6
e�25pi=6

–R R
x

y

G

Fig. 7-5
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Thus

þ
C

dz

z6 þ 1
¼ 2pi

1

6
e�5pi=6 þ 1

6
e�5pi=2 þ 1

6
e�25pi=6

� �
¼ 2p

3

that is,

ðR
�R

dx

x6 þ 1
þ
ð
G

dz

z6 þ 1
¼ 2p

3
(1)

Taking the limit of both sides of (1) as R ! 1 and using Problems 7.7 and 7.8, we have

lim
R!1

ðR
�R

dx

x6 þ 1
¼
ð1
�1

dx

x6 þ 1
¼ 2p

3
(2)

Since

ð1
�1

dx

x6 þ 1
¼ 2

ð1
0

dx

x6 þ 1

the required integral has the value p=3.

7.10. Show that

ð1
�1

x2dx

(x2 þ 1)2(x2 þ 2xþ 2)
¼ 7p

50
.

Solution

The poles of z2=(z2 þ 1)2(z2 þ 2zþ 2) enclosed by the contour C of Fig. 7-5 are z ¼ i of order 2 and z ¼ �1þ i

of order 1.

Residue at z ¼ i is

lim
z!i

d

dz
(z� i)2

z2

(zþ i)2(z� i)2(z2 þ 2zþ 2)

� �
¼ 9i� 12

100

Residue at z ¼ �1þ i is

lim
z!�1þi

(zþ 1� i)
z2

(z2 þ 1)2(zþ 1� i)(zþ 1þ i)
¼ 3� 4i

25

Then þ
C

z2 dz

(z2 þ 1)2(z2 þ 2zþ 2)
¼ 2pi

9i� 12

100
þ 3� 4i

25

� �
¼ 7p

50

or

ðR
�R

x2 dx

(x2 þ 1)2(x2 þ 2xþ 2)
þ
ð
G

z2 dz

(z2 þ 1)2(z2 þ 2zþ 2)
¼ 7p

50

Taking the limit as R ! 1 and noting that the second integral approaches zero by Problem 7.7, we obtain

the required result.
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Definite Integrals of the Type
Ð 2p
0

G(sin u, cos u) du

7.11. Evaluate

ð2p
0

du

3� 2 cos uþ sin u
.

Solution

Let z ¼ eiu. Then sin u ¼ (eiu � e�iu)=2i ¼ (z� z�1)=2i, cos u ¼ (eiu þ e�iu)=2 ¼ (zþ z�1)=2, dz ¼ iz du
so that

ð2p
0

du

3� 2 cos uþ sin u
¼
þ
C

dz=iz

3� 2(zþ z�1)=2þ (z� z�1)=2i
¼
þ
C

2 dz

(1� 2i)z2 þ 6iz� 1� 2i

where C is the circle of unit radius with center at the origin (Fig. 7-6).

The poles of 2= (1� 2i)z2 þ 6iz� 1� 2i
� �

are the simple poles

z ¼ �6i+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(6i)2 � 4(1� 2i)(�1� 2i)

p
2(1� 2i)

¼ �6i+ 4i

2(1� 2i)
¼ 2� i, (2� i)=5

Only (2� i)=5 lies inside C.

Residue at

(2� i)=5 ¼ lim
z!(2�i)=5

fz� (2� i)=5g 2

(1� 2i)z2 þ 6iz� 1� 2i

� �

¼ lim
z!(2�i)=5

2

2(1� 2i)zþ 6i
¼ 1

2i

by L’Hospital’s rule.

Thenþ
C

2 dz

(1� 2i)z2 þ 6iz� 1� 2i
¼ 2pi

1

2i

� �
¼ p,

the required value.

7.12. Given a . jbj, show that

ð2p
0

du

aþ b sin u
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p .

Solution

Let z ¼ eiu. Then, sin u ¼ (eiu � e�iu)=2i ¼ (z� z�1)=2i, dz ¼ ieiu du ¼ iz du so that

ð2p
0

du

aþ b sin u
¼
þ
C

dz=iz

aþ b(z� z�1)=2i
¼
þ
C

2 dz

bz2 þ 2aiz� b

where C is the circle of unit radius with center at the origin, as shown in Fig. 7-6.

The poles of 2=(bz2 þ 2aiz� b) are obtained by solving bz2 þ 2aiz� b ¼ 0 and are given by

z ¼ �2ai+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4a2 þ 4b2

p

2b
¼ �ai+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
i

b

¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b

( )
i,

�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b

( )
i

x

y
C

1

Fig. 7-6

216 CHAPTER 7 The Residue Theorem Evaluation



Only �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� 

=b

n o
i lies inside C, since

�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b
i

�����
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
� a

b
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

þ a

�����
����� ¼ b

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
þ a)

����
���� , 1

when a . jbj:
Residue at

z1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b
i ¼ lim

z!z1
(z� z1)

2

bz2 þ 2aiz� b

¼ lim
z!z1

2

2bzþ 2ai
¼ 1

bz1 þ ai
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

i

by L’Hospital’s rule.

Then þ
C

2 dz

bz2 þ 2aiz� b
¼ 2pi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
i

� �
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

the required value.

7.13. Show that

ð2p
0

cos 3u

5� 4 cos u
du ¼ p

12
.

Solution

Let z ¼ eiu. Then cos u ¼ (zþ z�1)=2, cos 3u ¼ (e3iu þ e�3iu)=2 ¼ (z3 þ z�3)=2, dz ¼ iz du so that

ð2p
0

cos 3u

5� 4 cos u
du ¼

þ
C

(z3 þ z�3)=2

5� 4(zþ z�1)=2

dz

iz
¼ � 1

2i

þ
C

z6 þ 1

z3(2z� 1)(z� 2)
dz

where C is the contour of Fig. 7-6.

The integrand has a pole of order 3 at z ¼ 0 and a simple pole z ¼ 1
2
inside C.

Residue at z ¼ 0 is

lim
z!0

1

2!

d2

dz2
z3 � z6 þ 1

z3(2z� 1)(z� 2)

� �
¼ 21

8

Residue at z ¼ 1
2
is

lim
z!1=2

z� 1

2

� �
� z6 þ 1

z3(2z� 1)(z� 2)

� �
¼ � 65

24

Then

� 1

2i

þ
C

z6 þ 1

z3(2z� 1)(z� 2)
dz ¼ � 1

2i
(2pi)

21

8
� 65

24

� �
¼ p

12
as required:

7.14. Show that

ð2p
0

du

(5� 3 sin u)2
¼ 5p

32
.

Solution

Letting z ¼ eiu, we have sin u ¼ (z� z�1)=2i, dz ¼ ieiu du ¼ iz du and so

ð2p
0

du

(5� 3 sin u)2
¼
þ
C

dz=iz

f5� 3(z� z�1)=2ig2
¼ � 4

i

þ
C

z dz

(3z2 � 10iz� 3)2

where C is the contour of Fig. 7-6.
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The integrand has poles of order 2 at z ¼ 10i+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�100þ 36

p
 �
=6 ¼ (10i+ 8i)=6 ¼ 3i, i=3. Only the

pole i/3 lies inside C.

Residue at

z ¼ i=3 ¼ lim
z!i=3

d

dz
(z� i=3)2 � z

(3z2 � 10iz� 3)2

� �

¼ lim
z!i=3

d

dz
(z� i=3)2 � z

(3z� i)2(z� 3i)2

� �
¼ � 5

256

Then

� 4

i

þ
C

z dz

(3z2 � 10iz� 3)2
¼ � 4

i
2pið Þ �5

256

� �
¼ 5p

32

Another Method. From Problem 7.12, we have for a . jbj,

ð2p
0

du

aþ b sin u
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

Then, by differentiating both sides with respect to a (considering b as constant) using Leibnitz’s rule,

we have

d

da

ð2p
0

du

aþ b sin u
¼
ð2p
0

@

@a

1

aþ b sin u

� �
du ¼ �

ð2p
0

du

(aþ b sin u)2

¼ d

da

2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
� �

¼ �2pa

(a2 � b2)3=2

that is,

ð2p
0

du

(aþ b sin u)2
¼ 2pa

(a2 � b2)3=2

Letting a ¼ 5 and b ¼ �3, we have

ð2p
0

du

(5� 3 sin u)2
¼ 2p(5)

(52 � 32)3=2
¼ 5p

32

Definite Integrals of the Type
ð11111
�11111

F(x)
cos mx
sin mx

� �
dx

7.15. Let jF(z)j � M=Rk for z ¼ Reiu where k . 0 and M are constants. Prove that

lim
R!1

ð
G

eimzF(z) dz ¼ 0

where G is the semicircular arc of Fig. 7-5 and m is a positive constant.
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Solution

Let z ¼ Reiu. Then
Ð
G e

imzF(z) dz ¼
Ð p
0
eimRe

iu
F(Reiu)iReiu du. Then

ðp
0

eimRe
iu

F(Reiu)iReiu du

������
������ �

ðp
0

jeimReiuF(Reiu)iReiuj du

¼
ðp
0

jeimR cos u�mR sin uF(Reiu)iReiuj du

¼
ðp
0

e�mR sin ujF(Reiu)jRdu

� M

Rk�1

ðp
0

e�mR sin u du ¼ 2M

Rk�1

ðp=2
0

e�mR sin u du

Now sin u � 2u=p for 0 � u � p=2, as can be seen geometrically from Fig. 7-7 or analytically from

Problem 7.99.

Then, the last integral is less than or equal to

2M

Rk�1

ðp=2
0

e�2mRu=pdu ¼ pM

mRk
1� e�mR

 �

As R ! 1, this approaches zero, since m and k are

positive, and the required result is proved.

7.16. Show that

ð1
0

cosmx

x2 þ 1
dx ¼ p

2
e�m, m . 0.

Solution

Consider
Þ
C
{eimz=(z2 þ 1)} dz where C is the contour of Fig. 7-5. The integrand has simple poles at z ¼ +i,

but only z ¼ i lies inside C.

Residue at z ¼ i is

lim
z!i

(z� i)
eimz

(z� i)(zþ i)

� �
¼ e�m

2i

Then

þ
C

eimz

z2 þ 1
dz ¼ 2pi

e�m

2i

� �
¼ pe�m

or

ðR
�R

eimz

x2 þ 1
dxþ

ð
G

eimz

z2 þ 1
dz ¼ pe�m

2θ/π

π/2 π

θ

sin θ
sin θ

Fig. 7-7
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that is,

ðR
�R

cosmx

x2 þ 1
dxþ i

ðR
�R

sinmx

x2 þ 1
dxþ

ð
G

eimz

z2 þ 1
dz ¼ pe�m

and so

2

ðR
0

cosmx

x2 þ 1
dxþ

ð
G

eimz

z2 þ 1
dz ¼ pe�m

Taking the limit as R ! 1 and using Problem 7.15 to show that the integral around G approaches zero, we

obtain the required result.

7.17. Evaluate

ð1
�1

x sinpx

x2 þ 2xþ 5
dx.

Solution

Consider
Þ
C

zeipz=(z2 þ 2zþ 5)
� �

dz where C is the contour of Fig. 7-5. The integrand has simple poles at

z ¼ �1+ 2i, but only z ¼ �1þ 2i lies inside C.

Residue at z ¼ �1þ 2i is

lim
z!�1þ2i

(zþ 1� 2i) � zeipz

z2 þ 2zþ 5

� �
¼ (�1þ 2i)

e�ip�2p

4i

Then þ
C

zeipz

z2 þ 2zþ 5
dz ¼ 2pi(�1þ 2i)

e�ip�2p

4i

� �
¼ p

2
(1� 2i)e�2p

or

ðR
�R

xeipx

x2 þ 2xþ 5
dxþ

ð
G

zeipz

z2 þ 2zþ 5
dz ¼ p

2
(1� 2i)e�2p

that is,

ðR
�R

x cospx

x2 þ 2xþ 5
dxþ i

ðR
�R

x sinpx

x2 þ 2xþ 5
dxþ

ð
G

zeipz

z2 þ 2zþ 5
dz ¼ p

2
(1� 2i)e�2p

Taking the limit as R ! 1 and using Problem 7.15 to show that the integral around G approaches zero, this

becomes

ð1
�1

x cospx

x2 þ 2xþ 5
dxþ i

ð1
�1

x sinpx

x2 þ 2xþ 5
dx ¼ p

2
e�2p � ipe�2p

Equating real and imaginary parts,

ð1
�1

x cospx

x2 þ 2xþ 5
dx ¼ p

2
e�2p,

ð1
�1

x sinpx

x2 þ 2xþ 5
dx ¼ �pe�2p

Thus, we have obtained the value of another integral in addition to the required one.
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Miscellaneous Definite Integrals

7.18. Show that

ð1
0

sin x

x
dx ¼ p

2
.

Solution

The method of Problem 7.16 leads us to consider the integral of eiz=z around the contour of Fig. 7-5. However,
since z ¼ 0 lies on this path of integration and since we cannot integrate through a singularity, we modify that

contour by indenting the path at z ¼ 0, as shown in Fig. 7-8, which we call contour C0 or ABDEFGHJA.
Since z ¼ 0 is outside C0, we have þ

C0

eiz

z
dz ¼ 0

or

ð�e

�R

eix

x
dxþ

ð
HJA

eiz

z
dzþ

ðR
e

eix

x
dxþ

ð
BDEFG

eiz

z
dz ¼ 0

Replacing x by �x in the first integral and combining with the third integral, we find

ðR
e

eix � e�ix

x
dxþ

ð
HJA

eiz

z
dzþ

ð
BDEFG

eiz

z
dz ¼ 0

or

2i

ðR
e

sin x

x
dx ¼ �

ð
HJA

eiz

z
dz�

ð
BDEFG

eiz

z
dz

Let e ! 0 and R ! 1. By Problem 7.15, the second integral on the right approaches zero. Letting z ¼ eeiu

in the first integral on the right, we see that it approaches

� lim
e!0

ð0
p

eiee
iu

eeiu
ieeiudu ¼ � lim

e!0

ð0
p

ieiee
iu

du ¼ pi

since the limit can be taken under the integral sign.

Then we have

lim
R!1
e!0

2i

ðR
e

sin x

x
dx ¼ pi or

ð1
0

sin x

x
dx ¼ p

2

–R – R

BAHG

F

R

E

J

y

'

''

D

x π/4

B

R A

CR

O

y

x

Fig. 7-8 Fig. 7-9
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7.19. Prove that ð1
0

sin x2 dx ¼
ð1
0

cos x2 dx ¼ 1

2

ffiffiffiffi
p

2

r

Solution

Let C be the contour indicated in Fig. 7-9, where AB is the arc of a circle with center at O and radius R. By

Cauchy’s theorem, þ
C

eiz
2

dz ¼ 0

or ð
OA

eiz
2

dzþ
ð
AB

eiz
2

dzþ
ð
BO

eiz
2

dz ¼ 0 (1)

Now onOA, z ¼ x (from x ¼ 0 to x ¼ R); on AB, z ¼ Reiu (from u ¼ 0 to u ¼ p=4); on BO, z ¼ repi=4 (from

r ¼ R to r ¼ 0). Hence from (1),

ðR
0

eix
2

dxþ
ðp=4
0

eiR
2e2iu iReiu duþ

ð0
R

eir
2epi=2epi=4 dr ¼ 0 (2)

that is,

ðR
0

(cos x2 þ i sin x2) dx ¼ epi=4
ðR
0

e�r2dr �
ðp=4
0

eiR
2 cos 2u�R2 sin 2uiReiu du (3)

We consider the limit of (3) as R ! 1. The first integral on the right becomes [see Problem 10.14]

epi=4
ð1
0

e�r2dr ¼
ffiffiffiffi
p

p

2
epi=4 ¼ 1

2

ffiffiffiffi
p

2

r
þ i

2

ffiffiffiffi
p

2

r
(4)

The absolute value of the second integral on the right of (3) is

ðp=4
0

eiR
2 cos 2u�R2 sin 2uiReiudu

������
������ �

ðp=4
0

e�R2 sin 2uRdu ¼ R

2

ðp=2
0

e�R2 sinf df

� R

2

ðp=2
0

e�2R2f=p df ¼ p

4R
(1� e�R2

)

where we have used the transformation 2u ¼ f and the inequality sinf � 2f=p, 0 � f � p=2 (see Problem

7.15). This shows that as R ! 1, the second integral on the right of (3) approaches zero. Then (3) becomes

ð1
0

(cos x2 þ i sin x2) dx ¼ 1

2

ffiffiffiffi
p

2

r
þ i

2

ffiffiffiffi
p

2

r

and so, equating real and imaginary parts, we have as required,

ð1
0

cos x2 dx ¼
ð1
0

sin x2 dx ¼ 1

2

ffiffiffiffi
p

2

r
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7.20. Show that

ð1
0

xp�1

1þ x
dx ¼ p

sin pp
, 0 , p , 1.

Solution

Consider
Þ
C
(zp�1=1þ z) dz. Since z ¼ 0 is a branch point, choose C as the contour of Fig. 7-10 where the

positive real axis is the branch line and where AB and GH are actually coincident with the x axis but are

shown separated for visual purposes.

The integrand has the simple pole z ¼ �1 inside C.

Residue at z ¼ �1 ¼ epi is

lim
z!�1

(zþ 1)
z p�1

1þ z
¼ (epi) p�1 ¼ e(p�1)pi

Then þ
C

zp�1

1þ z
dz ¼ 2pie(p�i)pi

or, omitting the integrand, ð
AB

þ
ð

BDEFG

þ
ð
GH

þ
ð

HJA

¼ 2pie(p�1)pi

We thus have

ðR
e

x p�1

1þ x
dxþ

ð2p
0

(Reiu) p�1iReiu du

1þ Reiu
þ
ðe
R

(xe2pi) p�1

1þ xe2pi
dxþ

ð0
2p

(eeiu) p�1ieeiu du

1þ eeiu
¼ 2pie(p�1)pi

where we have used z ¼ xe2pi for the integral along GH, since the argument of z is increased by 2p in going

around the circle BDEFG.

Taking the limit as e ! 0 and R ! 1 and nothing that the second and fourth integrals approach zero,

we find ð1
0

xp�1

1þ x
dxþ

ð0
1

e2pi(p�1)x p�1

1þ x
dx ¼ 2pe(p�1)pi

or

(1� e2pi(p�1))

ð1
0

x p�1

1þ x
dx ¼ 2pie(p�1)pi

so that

ð1
0

x p�1

1þ x
dx ¼ 2pie(p�1)pi

1� e2pi(p�1)
¼ 2pi

e ppi � e�ppi
¼ p

sin pp

A

G

F

B

D

E

H
J

x

y

R

–1

'

R + p i–R + p i

–

3p i
2

y

x

p i
2

p i
2

–R R

Fig. 7-10 Fig. 7-11
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7.21. Prove that

ð1
0

cosh ax

cosh x
dx ¼ p

2 cos(pa=2)
where jaj , 1.

Solution

Consider
Þ
C
(eaz=cosh z) dz where C is a rectangle having vertices at �R, R, Rþ pi, �Rþ pi (see Fig. 7-11).

The poles of eaz= cosh z are simple and occur where cosh z ¼ 0, i.e., z ¼ nþ 1
2


 �
pi, n ¼ 0, +1, +2, . . . .

The only pole enclosed by C is pi=2.
Residue of eaz=cosh z at z ¼ pi=2 is

lim
z!pi=2

(z� pi=2)
eaz

cosh z
¼ eapi=2

sinh(pi=2)
¼ eapi=2

i sin(p=2)
¼ �ieapi=2

Then, by the residue theorem,

þ
C

eaz

cosh z
dz ¼ 2pi(�ieapi=2) ¼ 2peapi=2

This can be written

ðR
�R

eax

cosh x
dxþ

ðp
0

ea(Rþiy)

cosh(Rþ iy)
i dyþ

ð�R

R

ea(xþpi)

cosh(xþ pi)
dx

þ
ð0
p

ea(�Rþiy)

cosh(�Rþ iy)
i dy ¼ 2peapi=2 (1)

As R ! 1, the second and fourth integrals on the left approach zero. To show this, let us consider the

second integral. Since

j cosh(Rþ iy)j ¼ eRþiy þ e�R�iy

2

����
���� � 1

2
fjeRþiyj � je�R�iyjg ¼ 1

2
(eR � e�R) � 1

4
eR

we have

ðp
0

ea(Rþiy)

cosh(Rþ iy)
i dy

������
������ �

ðp
0

eaR

eR=4
dy ¼ 4pe(a�1)R

and the result follows on noting that the right side approaches zero as R ! 1 since jaj , 1. In a similar

manner, we can show that the fourth integral on the left of (1) approaches zero as R ! 1. Hence, (1) becomes

lim
R!1

ðR
�R

eax

cosh x
dxþ eapi

ðR
�R

eax

cosh x
dx

8<
:

9=
; ¼ 2peapi=2

since cosh(xþ pi) ¼ � cosh x. Thus

lim
R!1

ðR
�R

eax

cosh x
dx ¼

ð1
�1

eax

cosh x
dx ¼ 2peapi=2

1þ eapi
¼ 2p

eapi=2 þ e�api=2
¼ p

cos(pa=2)
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Now

ð0
�1

eax

cosh x
dxþ

ð1
0

eax

cosh x
dx ¼ p

cos(pa=2)

Then, replacing x by �x in the first integral, we have

ð1
0

e�ax

cosh x
dxþ

ð1
0

eax

cosh x
dx ¼ 2

ð1
0

cosh ax

cosh x
dx ¼ p

cos(pa=2)

from which the required result follows.

7.22. Prove that

ð1
0

ln(x2 þ 1)

x2 þ 1
dx ¼ p ln 2.

Solution

Consider
Þ
C

ln(zþ i)=z2 þ 1
� �

dz around the contour C consisting of the real axis from �R to R and the

semicircle G of radius R (see Fig. 7-12).

The only pole of ln(zþ i)=(z2 þ 1) inside C is the simple pole z ¼ i, and the residue is

lim
z!i

(z� i)
ln(zþ i)

(z� i)(zþ i)
¼ ln(2i)

2i

Hence, by the residue theorem,

þ
C

ln(zþ i)

z2 þ 1
dz ¼ 2pi

ln(2i)

2i

� �
¼ p ln(2i) ¼ p ln 2þ 1

2
p2i (1)

on writing ln(2i) ¼ ln 2þ ln i ¼ ln 2þ ln epi=2 ¼ ln 2þ pi=2 using principal values of the logarithm. The

result can be written

ðR
�R

ln(xþ i)

x2 þ 1
dxþ

ð
G

ln(zþ i)

z2 þ 1
dz ¼ p ln 2þ 1

2
p2i

or

ð0
�R

ln(xþ i)

x2 þ 1
dxþ

ðR
0

ln(xþ i)

x2 þ 1
dxþ

ð
G

ln(zþ i)

z2 þ 1
dz ¼ p ln 2þ 1

2
p2i

Replacing x by �x in the first integral, this can be written

ðR
0

ln(i� x)

x2 þ 1
dxþ

ðR
0

ln(iþ x)

x2 þ 1
dxþ

ð
G

ln(zþ i)

z2 þ 1
dz ¼ p ln 2þ 1

2
p2i

or, since ln(i� x)þ ln(iþ x) ¼ ln(i2 � x2) ¼ ln(x2 þ 1)þ pi,

ðR
0

ln(x2 þ 1)

x2 þ 1
dxþ

ðR
0

pi

x2 þ 1
dxþ

ð
G

ln(zþ i)

z2 þ 1
dz ¼ p ln 2þ 1

2
p2i (2)
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As R ! 1, we can show that the integral around G approaches zero (see Problem 7.101). Hence, on taking real

parts, we find as required,

lim
R!1

ðR
0

ln(x2 þ 1)

x2 þ 1
dx ¼

ð1
0

ln(x2 þ 1)

x2 þ 1
dx ¼ p ln 2

7.23. Prove that

ðp=2
0

ln sin x dx ¼
ðp=2
0

ln cos x dx ¼ � 1

2
p ln 2:

Solution

Letting x ¼ tan u in the result of Problem 7.22, we find

ðp=2
0

ln(tan2 uþ 1)

tan2 uþ 1
sec2 u du ¼ �2

ðp=2
0

ln cos u du ¼ p ln 2

from which

ðp=2
0

ln cos u du ¼ � 1

2
p ln 2 (1)

which establishes part of the required result. Letting u ¼ p=2� f in (1), we find

ðp=2
0

ln sinf df ¼ � 1

2
p ln 2

–R R

i
x

y

C G

(1+i)1
2(N+  )(–1+i)1

2(N+  )

(1–i)1
2(N+  )(–1–i)1

2(N+  )

N–N –N N+1–1 –1–2 1 2

y

x

CN

Fig. 7-12 Fig. 7-13

Summation of Series

7.24. Let CN be a square with vertices at

N þ 1

2

� �
(1þ i), N þ 1

2

� �
(�1þ i), N þ 1

2

� �
(�1� i), N þ 1

2

� �
(1� i)

as shown in Fig. 7-13. Prove that on CN , jcotpzj , A where A is a constant.

226 CHAPTER 7 The Residue Theorem Evaluation



Solution

We consider the parts of CN which lie in the regions y . 1
2
, � 1

2
� y � 1

2
and y , �1

2
.

Case 1: y . 1
2
. In this case, if z ¼ xþ iy,

jcotpzj ¼ epiz þ e�piz

epiz � e�piz

����
���� ¼ epix�py þ e�pixþpy

epix�py � e�pixþpy

����
����

� jepix�pyj þ je�pixþpyj
je�pixþpyj � jepix�pyj ¼

e�py þ epy

epy � e�py
¼ 1þ e�2py

1� e�2py
� 1þ e�p

1� e�p
¼ A1

Case 2: y , �1
2
. Here, as in Case 1,

jcotpzj � jepix�pyj þ je�pixþpyj
jepix�pyj � je�pixþpyj ¼

e�py þ epy

e�py � epy
¼ 1þ e2py

1� e2py
� 1þ e�p

1� e�p
¼ A1

Case 3: �1
2
� y � 1

2
. Consider z ¼ N þ 1

2
þ iy. Then

jcotpzj ¼ jcotp(N þ 1
2
þ iy)j ¼ jcot(p=2þ piy)j ¼ jtanhp yj � tanh(p=2) ¼ A2

If z ¼ �N � 1
2
þ iy, we have similarly

jcotpzj ¼ jcotp (�N � 1
2
þ iy)j ¼ jtanhp yj � tanh(p=2) ¼ A2

Thus, if we choose A as a number greater than the larger of A1 and A2, we have jcotpzj , A on CN where A

is independent of N. It is of interest to note that we actually have jcotpzj � A1 ¼ coth(p=2) since A2 , A1.

7.25. Let f (z) be such that along the path CN of Fig. 7-13, j f (z)j � M=jzjk where k . 1 and M are con-
stants independent of N. Prove that

X1
�1

f (n) ¼ �fsum of residues of p cotpzf (z) at the poles of f (z)g

Solution

Case 1: f (z) has a finite number of poles.

In this case, we can choose N so large that the path CN of Fig. 7-13 encloses all poles of f(z). The poles of

cotpz are simple and occur at z ¼ 0, +1, +2, . . . .
Residue of p cotpz f (z) at z ¼ n, n ¼ 0, +1, +2, . . . , is

lim
z!n

(z� n)p cotpz f (z) ¼ lim
z!n

p
z� n

sinpz

� �
cospz f (z) ¼ f (n)

using L’Hospital’s rule. We have assumed here that f (z) has no poles at z ¼ n, since otherwise the given series

diverges.

By the residue theorem,

þ
CN

p cotpz f (z) dz ¼
XN
n¼�N

f (n)þ S (1)

where S is the sum of the residues of p cotpz f (z) at the poles of f(z). By Problem 7.24 and our assumption on

f(z), we have

�����
þ
CN

p cotpz f (z) dz

����� � pAM

Nk
(8N þ 4)
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since the length of path CN is 8N þ 4. Then, taking the limit as N ! 1, we see that

lim
N!1

þ
CN

p cotpz f (z) dz ¼ 0 (2)

Thus, from (1) we have as required,

X1
�1

f (n) ¼ �S (3)

Case 2: f (z) has infinitely many poles.

If f(z) has an infinite number of poles, we can obtain the required result by an appropriate limiting pro-

cedure. See Problem 7.103.

7.26. Prove that
P1

n¼�1
1

n2 þ a2
¼ p

a
cothpa where a . 0.

Solution

Let f (z) ¼ 1=(z2 þ a2), which has simple poles at z ¼ +ai.

Residue of p cotpz=(z2 þ a2) at z ¼ ai is

lim
z!ai

(z� ai)
p cotpz

(z� ai)(zþ ai)
¼ p cotpai

2ai
¼ � p

2a
cothpa

Similarly, the residue at z ¼ �ai is (�p=2a) cothpa, and the sum of the residues is�(p=a) cothpa. Then, by
Problem 7.25,

X1
n¼�1

1

n2 þ a2
¼ �(sum of residues) ¼ p

a
cothpa

7.27. Prove that
P1
n¼1

1

n2 þ a2
¼ p

2a
cothpa� 1

2a2
where a . 0.

Solution

The result of Problem 7.26 can be written in the form

X�1

n¼�1

1

n2 þ a2
þ 1

a2
þ
X1
n¼1

1

n2 þ a2
¼ p

a
cothpa

or

2
X1
n¼1

1

n2 þ a2
þ 1

a2
¼ p

a
cothpa

which gives the required result.
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7.28. Prove that
1

12
þ 1

22
þ 1

32
þ � � � ¼ p2

6
.

Solution

We have

F(z) ¼ p cotpz

z2
¼ p cospz

z2 sinpz
¼

1� p2z2

2!
þ p4z4

4!
� � � �

� �

z3 1� p2z2

3!
þ p4z4

5!
� � � �

� �

¼ 1

z3
1� p2z2

2!
þ � � �

� �
1þ p2z2

3!
þ � � �

� �
¼ 1

z3
1� p2z2

3
þ � � �

� �

so that the residue at z ¼ 0 is �p2=3.

Then, as in Problems 7.26 and 7.27,

þ
CN

p cotpz

z2
dz ¼

X�1

n¼�N

1

n2
þ
XN
n¼1

1

n2
� p2

3
¼ 2

XN
n¼1

1

n2
� p2

3

Taking the limit as N ! 1, we have, since the left side approaches zero,

2
X1
n¼1

1

n2
� p2

3
¼ 0 or

X1
n¼1

1

n2
¼ p2

6

Another Method. Take the limit as a ! 0 in the result of Problem 7.27. Then, using L’Hospital’s rule,

lim
a!0

X1
n¼1

1

n2 þ a2
¼
X1
n¼1

1

n2
¼ lim

a!0

pa cothpa� 1

2a2
¼ p2

6

7.29. Suppose f(z) satisfies the same conditions given in Problem 7.25. Prove that

X1
�1

(�1)nf (n) ¼ �fsum of residues of p cscpz f (z) at the poles of f (z)g

Solution

We proceed in a manner similar to that in Problem 7.25. The poles of cscpz are simple and occur at

z ¼ 0, +1, +2, . . . .
Residue of p cscpz f (z) at z ¼ n, n ¼ 0, +1, +2, . . . , is

lim
z!n

(z� n)p cscpz f (z) ¼ lim
z!n

p
z� n

sinpz

� �
f (z) ¼ (�1)nf (n)

By the residue theorem,

þ
CN

p cscpz f (z) dz ¼
XN
n¼�N

(�1)nf (n)þ S (1)

where S is the sum of the residues of p cscpz f (z) at the poles of f (z).
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Letting N ! 1, the integral on the left of (1) approaches zero (Problem 7.106) so that, as required, (1)

becomes

X1
�1

(�1)nf (n) ¼ �S (2)

7.30. Prove that
X1
n¼�1

(�1)n

(nþ a)2
¼ p2 cospa

sin2pa
where a is real and different from 0, +1, +2, . . . .

Solution

Let f (z) ¼ 1=(zþ a)2 which has a double pole at z ¼ �a.

Residue of p cscpz=(zþ a)2 at z ¼ �a is

lim
z!�a

d

dz
(zþ a)2 � p cscpz

(zþ a)2

� �
¼ �p2 cscpa cotpa

Then, by Problem 7.29,

X1
n¼�1

(�1)n

(nþ a)2
¼ �(sum of residues) ¼ p2 cscpa cotpa ¼ p2 cospa

sin2pa

7.31. Suppose a=0, +1, +2, . . . . Prove that

a2 þ 1

(a2 � 1)2
� a2 þ 4

(a2 � 4)2
þ a2 þ 9

(a2 � 9)2
� � � � ¼ 1

2a2
� p2 cospa

2 sin2pa

Solution

The result of Problem 7.30 can be written in the form

1

a2
� 1

(aþ 1)2
þ 1

(a� 1)2

� �
þ 1

(aþ 2)2
þ 1

(a� 2)2

� �
þ � � � ¼ p2 cospa

sin2pa

or

1

a2
� 2(a2 þ 1)

(a2 � 1)2
þ 2(a2 þ 4)

(a2 � 4)2
� 2(a2 þ 9)

(a2 � 9)2
þ � � � ¼ p2 cospa

sin2pa

from which the required result follows. Note that the grouping of terms in the infinite series is permissible since

the series is absolutely convergent.

7.32. Prove that
1

13
� 1

33
þ 1

53
� 1

73
þ � � � ¼ p3

32
.

Solution

We have

F(z) ¼ p secpz

z3
¼ p

z3 cospz
¼ p

z3(1� p2z2=2!þ � � � )

¼ p

z3
1þ p2z2

2
þ � � �

� �
¼ p

z3
þ p3

2z
þ � � �

so that the residue at z ¼ 0 is p3=2.
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The residue of F(z) at z ¼ nþ 1
2
, n ¼ 0, +1, +2, . . . [which are the simple poles of secpz], is

lim
z!nþ1=2

z� nþ 1
2


 �� � p

z3 cospz
¼ p

nþ 1
2


 �3 lim
z!nþ1=2

z� nþ 1
2


 �
cospz

¼ �(�1)n

nþ 1
2


 �3
If CN is a square with vertices at N(1þ i), N(1� i), N(�1þ i), N(�1� i), thenþ

CN

p secpz

z3
dz ¼ �

XN
n¼�N

(�1)n

nþ 1
2


 �3 þ p3

2
¼ �8

XN
n¼�N

(�1)n

(2nþ 1)3
þ p3

2

and since the integral on the left approaches zero as N ! 1, we have

X1
�1

(�1)n

(2nþ 1)3
¼ 2

1

13
� 1

33
þ 1

53
� � � �

� �
¼ p3

16

from which the required result follows.

Mittag–Leffler’s Expansion Theorem

7.33. Prove Mittag–Leffler’s expansion theorem (see page 209).

Solution

Let f(z) have poles at z ¼ an, n ¼ 1, 2, . . . , and suppose that z ¼ z is not a pole of f (z). Then, the function

f (z)=z� z has poles at z ¼ an, n ¼ 1, 2, 3, . . . and z.
Residue of f (z)=z� z at z ¼ an, n ¼ 1, 2, 3, . . . , is

lim
z!an

(z� an)
f (z)

z� z
¼ bn

an � z

Residue of f (z)=z� z at z ¼ z is

lim
z!z

(z� z)
f (z)

z� z
¼ f (z )

Then, by the residue theorem,

1

2pi

þ
CN

f (z)

z� z
dz ¼ f (z)þ

X
n

bn

an � z
(1)

where the last summation is taken over all poles

inside circle CN of radius RN (Fig. 7-14).

Suppose that f(z) is analytic at z ¼ 0. Then,

putting z ¼ 0 in (1), we have

1

2pi

þ
CN

f (z)

z
dz ¼ f (0)þ

X
n

bn

an
(2)

Subtraction of (2) from (1) yields

f (z)� f (0)þ
X
n

bn
1

an � z
� 1

an

� �
¼ 1

2pi

þ
CN

f (z)
1

z� z
� 1

z

� �
dz

¼ z

2pi

þ
CN

f (z)

z(z� z)
dz (3)

CN

y

x
RNa1

a4

a3

a2 z

Fig. 7-14
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Now since jz� zj � jzj � jzj ¼ RN � jzj for z on CN , we have, if j f (z)j � M,

þ
CN

f (z)

z(z� z)
dz

�������
������� �

M � 2pRN

RN(RN � jzj)

As N ! 1 and therefore RN ! 1, it follows that the integral on the left approaches zero, i.e.,

lim
N!1

þ
CN

f (z)

z(z� z)
dz ¼ 0

Hence from (3), letting N ! 1, we have as required

f (z) ¼ f (0)þ
X
n

bn
1

z� an
þ 1

an

� �

the result on page 209 being obtained on replacing z by z.

7.34. Prove that cot z ¼ 1

z
þ
X
n

1

z� np
þ 1

np

� �
where the summation extends over n ¼ +1, +2, . . . .

Solution

Consider the function

f (z) ¼ cot z� 1

z
¼ z cos z� sin z

z sin z

Then f (z) has simple poles at z ¼ np, n ¼ +1, +2, +3, . . . , and the residue at these poles is

lim
z!np

(z� np)
z cos z� sin z

z sin z

� �
¼ lim

z!np

z� np

sin z

� �
lim
z!np

z cos z� sin z

z

� �
¼ 1

At z ¼ 0, f(z) has a removable singularity since

lim
z!0

cot z� 1

z

� �
¼ lim

z!0

z cos z� sin z

z sin z

� �
¼ 0

by L’Hospital’s rule. Hence, we can define f (0) ¼ 0.

By Problem 7.110, it follows that f (z) is bounded on circles CN having center at the origin and radius

RN ¼ (N þ 1
2
)p. Hence, by Problem 7.33,

cot z� 1

z
¼
X
n

1

z� np
þ 1

np

� �

from which the required result follows.
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7.35. Prove that cot z ¼ 1

z
þ 2z

1

z2 � p2
þ 1

z2 � 4p2
þ � � �

� �
.

Solution

We can write the result of Problem 7.34 in the form

cot z ¼ 1

z
þ lim

N!1
X�1

n¼�N

1

z� np
þ 1

np

� �
þ
XN
n¼1

1

z� np
þ 1

np

� �( )

¼ 1

z
þ lim

N!1
1

zþ p
þ 1

z� p

� �
þ 1

zþ 2p
þ 1

z� 2p

� �
þ � � � þ 1

zþ Np
þ 1

z� Np

� �� �

¼ 1

z
þ lim

N!1
2z

z2 � p2
þ 2z

z2 � 4p2
þ � � � þ 2z

z2 � N2p2

� �

¼ 1

z
þ 2z

1

z2 � p2
þ 1

z2 � 4p2
þ � � �

� �

Miscellaneous Problems

7.36. Evaluate
1

2pi

ðaþi1

a�i1

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dz where a and t are any positive constants.

Solution

The integrand has a branch point at z ¼ �1. We shall take as a branch line that part of the real axis to the left of

z ¼ �1. Since we cannot cross this branch line, let us consider

þ
C

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dz

where C is the contour ABDEFGHJKA shown in Fig. 7-15. In this figure, EF andHJ actually lie on the real axis

but have been shown separated for visual purposes. Also, FGH is a circle of radius e while BDE and JKA

represent arcs of a circle of radius R.

Since ezt=
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
is analytic inside and on C, we have by Cauchy’s theorem

þ
C

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dz ¼ 0 (1)

Omitting the integrand, this can be written

ð
AB

þ
ð

BDE

þ
ð
EF

þ
ð

FGH

þ
ð
HJ

þ
ð

JKA

¼ 0 (2)

Now, on BDE and JKA, z ¼ Reiu where u goes from u0 to p and p to 2p� u0, respectively.

On EF, zþ 1 ¼ uepi,
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
¼ ffiffiffi

u
p

epi=2 ¼ i
ffiffiffi
u

p
; whereas on HJ, zþ 1 ¼ ue�pi,

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
¼ ffiffiffi

u
p

e�pi=2 ¼
�i

ffiffiffi
u

p
. In both cases, z ¼ �u� 1, dz ¼ �du, where u varies from R� 1 to e along EF and e to R� 1

along HJ.
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On FGH, zþ 1 ¼ ee if where f goes from �p to p. Thus, (2) can be written

ðaþiT

a�iT

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dzþ
ðp
u0

eRe
iutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reiu þ 1
p iReiuduþ

ðe
R�1

e�(uþ1)t(�du)

i
ffiffiffi
u

p

þ
ð�p

p

e(ee
if�1)tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eeif þ 1
p ieeif dfþ

ðR�1

e

e�(uþ1)t(�du)

�i
ffiffiffi
u

p

þ
ð2p�u0

p

eRe
iutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reiu þ 1
p iReiudu ¼ 0 (3)

Let us now take the limit as R ! 1 (and T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p
! 1) and e ! 0. We can show (see Problem 7.111)

that the second, fourth, and sixth integrals approach zero. Hence, we have

ðaþi1

a�i1

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dz ¼ lim
e!0
R!1

2i

ðR�1

e

e�(nþ1)tffiffiffi
u

p du ¼ 2i

ð1
0

e�(uþ1)tffiffiffi
u

p du

or letting u ¼ v2,

1

2pi

ðaþi1

a�i1

eztffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p dz ¼ 1

p

ð1
0

e�(uþ1)tffiffiffi
u

p du ¼ 2e�t

p

ð1
0

e�v2t dv ¼ e�tffiffiffiffiffi
pt

p

a + iT

a – iT

x

y

B

A

C

D

E

R

R

–R J

K

H
G

F

a–1 f
θ0
θ0

'

–R – R

C

y

x

G2

i

' '

G1

Fig. 7-15 Fig. 7-16

7.37. Prove that

ð1
0

(ln u)2

u2 þ 1
du ¼ p3

8
.

Solution

Let C be the closed curve of Fig. 7-16 where G1 and G2 are semicircles of radii e and R, respectively, and center
at the origin. Consider þ

C

(ln z)2

z2 þ 1
dz
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Since the integrand has a simple pole z ¼ i inside C and since the residue at this pole is

lim
z!i

(z� i)
(ln z)2

(z� i)(zþ i)
¼ (ln i)2

2i
¼ (pi=2)2

2i
¼ �p2

8i

we have by the residue theorem þ
C

(ln z)2

z2 þ 1
dz ¼ 2pi

�p2

8i

� �
¼ �p3

4
(1)

Now

þ
C

(ln z)2

z2 þ 1
dz ¼

ð�e

�R

(ln z)2

z2 þ 1
dzþ

ð
G1

(ln z)2

z2 þ 1
dzþ

ðR
e

(ln z)2

z2 þ 1
dzþ

ð
G2

(ln z)2

z2 þ 1
dz (2)

Let z ¼ �u in the first integral on the right so that ln z ¼ ln(�u) ¼ ln uþ ln(�1) ¼ ln uþ pi and dz ¼ �du.

Also, let z ¼ u (so that dz ¼ du and ln z ¼ ln u) in the third integral on the right. Then, using (1), we have

ðR
e

(ln uþ pi)2

u2 þ 1
duþ

ð
G1

(ln z)2

z2 þ 1
dzþ

ðR
e

(ln u)2

u2 þ 1
duþ

ð
G2

(ln z)2

z2 þ 1
dz ¼ �p3

4

Now, let e ! 0 and R ! 1. Since the integrals around G1 and G2 approach zero, we have

ð1
0

(ln uþ pi)2

u2 þ 1
duþ

ð1
0

(ln u)2

u2 þ 1
du ¼ �p3

4

or

2

ð1
0

(ln u)2

u2 þ 1
duþ 2pi

ð1
0

ln u

u2 þ 1
du� p2

ð1
0

du

u2 þ 1
¼ �p3

4

Using the fact that

ð1
0

du

u2 þ 1
¼ tan�1 u

����
1

0

¼ p

2
,

2

ð1
0

(ln u)2

u2 þ 1
duþ 2pi

ð1
0

ln u

u2 þ 1
du ¼ p3

4

Equating real and imaginary parts, we find

ð1
0

(ln u)2

u2 þ 1
du ¼ p3

8
,

ð1
0

ln u

u2 þ 1
du ¼ 0

the second integral being a by-product of the evaluation.
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7.38. Prove that

cothp

13
þ coth 2p

23
þ coth 3p

33
þ � � � ¼ 7p3

180

Solution

Consider þ
CN

p cotpz cothpz

z3
dz

taken around the square CN shown in Fig. 7-17.

The poles of the integrand are located at: z ¼ 0

(pole of order 5); z ¼ +1, +2, . . . (simple

poles); z ¼ +i, +2i, . . . (simple poles).

By Problem 7.5 (replacing z by pz), we see that:

Residue at z ¼ 0 is
�7p3

45
.

Residue at z ¼ n (n ¼ +1, +2, . . . ) is

lim
z!n

(z� n)

sinpz
� p cospz cothpz

z3

� �
¼ coth np

n3

Residue at z ¼ ni (n ¼ +1, +2, . . . ) is

lim
z!ni

(z� ni)

sinhpz
� p cotpz coshpz

z3

� �
¼ coth np

n3

Hence, by the residue theorem, þ
CN

p cotpz cothpz

z3
dz ¼ �7p3

45
þ 4

XN
n¼1

coth np

n3

Taking the limit as N ! 1, we find as in Problem 7.25 that the integral on the left approaches zero and the

required result follows.

SUPPLEMENTARY PROBLEMS

Residues and the Residue Theorem

7.39. For each of the following functions, determine the poles and the residues at the poles:

(a)
2zþ 1

z2 � z� 2
, (b)

zþ 1

z� 1

� �2

, (c)
sin z

z2
, (d) sech z, (e) cot z.

7.40. Prove that

þ
C

cosh z

z3
dz ¼ pi if C is the square with vertices at +2+ 2i.

7.41. Show that the residue of (csc z csch z)=z3 at z ¼ 0 is �1=60.

7.42. Evaluate

þ
C

ez dz

cosh z
around the circle C defined by jzj ¼ 5.

7.43. Find the zeros and poles of f (z) ¼ z2 þ 4

z3 þ 2z2 þ 2z
and determine the residues at the poles.

7.44. Evaluate

þ
C

e�1=z sin(1=z) dz where C is the circle jzj ¼ 1.

(–1+i)(N + 1)2 (1+i)(N + 1)2

(–1–i)(N + 1)2 (1–i)(N + 1)2

N–N –N N+1–1 –1–2 10 2

y

x

(N+1)i

–(N+1)i

Ni

–Ni

2i

–2i

i

–i

Fig. 7-17
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7.45. Let C be a square bounded by x ¼ +2, y ¼ +2. Evaluate

þ
C

sinh 3z

(z� pi=4)3
dz.

7.46. Evaluate

þ
C

2z2 þ 5

(zþ 2)3(z2 þ 4)z2
dz where C is (a) jz� 2ij ¼ 6, (b) the square with vertices at 1þ i, 2þ i,

2þ 2i, 1þ 2i.

7.47. Evaluate

þ
C

2þ 3 sinpz

z(z� 1)2
dz where C is a square having vertices at 3þ 3i, 3� 3i, �3þ 3i, �3� 3i.

7.48. Evaluate
1

2pi

þ
C

ezt

z(z2 þ 1)
dz, t . 0 around the square with vertices at 2þ 2i, �2þ 2i, �2� 2i, 2� 2i.

Definite Integrals

7.49. Prove that

ð1
0

dx

x4 þ 1
¼ p

2
ffiffiffi
2

p . 7.52. Evaluate

ð2p
0

cos 3u

5þ 4 cos u
du.

7.50. Evaluate

ð1
0

dx

(x2 þ 1)(x2 þ 4)2
. 7.53. Prove that

ð2p
0

cos2 3u

5� 4 cos 2u
du ¼ 3p

8
.

7.51. Evaluate

ð2p
0

sin 3u

5� 3 cos u
du. 7.54. Prove that if m . 0,

ð1
0

cosmx

(x2 þ 1)2
dx ¼ pe�m(1þ m)

4
.

7.55. (a) Find the residue of
eiz

(z2 þ 1)5
at z ¼ i. (b) Evaluate

ð1
0

cos x

(x2 þ 1)5
dx.

7.56. Given a2 . b2 þ c2. Prove that

ð2p
0

du

aþ b cos uþ c sin u
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p .

7.57. Prove that

ð2p
0

cos 3u

(5� 3 cos u)4
du ¼ 135p

16,384
. 7.59. Evaluate

ð1
�1

dx

(x2 þ 4xþ 5)2
.

7.58. Evaluate

ð1
0

dx

x4 þ x2 þ 1
. 7.60. Prove that

ð1
0

sin2 x

x2
dx ¼ p

2
.

7.61. Discuss the validity of the following solution to Problem 7.19. Let u ¼ (1þ i)x=
ffiffiffi
2

p
in the result

Ð1
0
e�u2du ¼

1
2

ffiffiffiffi
p

p
to obtain

Ð1
0
e�ix2dx ¼ 1

2
(1� i)

ffiffiffiffiffiffiffiffi
p=2

p
from which

Ð1
0
cos x2 dx ¼

Ð1
0
sin x2 dx ¼ 1

2

ffiffiffiffiffiffiffiffi
p=2

p
on equating real

and imaginary parts.

7.62. Show that

ð1
0

cos 2px

x4 þ x2 þ 1
dx ¼ �p

2
ffiffiffi
3

p e�p=
ffiffi
3

p
.

Summation of Series

7.63. Prove that
P1
n¼1

1

(n2 þ 1)2
¼ p

4
cothpþ p2

4
csch2p� 1

2
.

7.64. Prove that (a)
X1
n¼1

1

n4
¼ p4

90
, (b)

X1
n¼1

1

n6
¼ p6

945
.

7.65. Prove that
X1
n¼1

(�1)n�1n sin nu

n2 þ a2
¼ p

2

sinhau

sinhap
, �p , u , p.

7.66. Prove that
1

12
� 1

22
þ 1

32
� 1

42
þ � � � ¼ p2

12
.
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7.67. Prove that
X1
n¼�1

1

n4 þ 4a4
¼ p

4a3
sinh 2paþ sin 2pa

cosh 2pa� cos 2pa

� �
.

7.68. Prove that
X1
n¼�1

X1
m¼�1

1

(m2 þ a2)(n2 þ b2)
¼ p2

ab
cothpa cothpb.

Mittag–Leffler’s Expansion Theorem

7.69. Prove that csc z ¼ 1

z
� 2z

1

z2 � p2
� 1

z2 � 4p2
þ 1

z2 � 9p2
� � � �

� �
.

7.70. Prove that sech z ¼ p
1

(p=2)2 þ z2
� 3

(3p=2)2 þ z2
þ 5

(5p=2)2 þ z2
� � � �

� �
.

7.71. (a) Prove that tan z ¼ 2z
1

(p=2)2 � z2
þ 1

(3p=2)2 � z2
þ 1

(5p=2)2 � z2
þ � � �

� �
.

(b) Use the result in (a) to show that
1

12
þ 1

32
þ 1

52
þ 1

72
þ � � � ¼ p2

8
.

7.72. Prove the expansions (a) 2, (b) 4, (c) 5, (d) 7, (e) 8 on page 209.

7.73. Prove that
X1
k¼1

1

z2 þ 4k2p2
¼ 1

2z

1

2
� 1

z
þ 1

ez � 1

� �
. 7.74. Prove that

1

14
þ 1

34
þ 1

54
þ 1

74
þ � � � ¼ p4

96
.

Miscellaneous Problems

7.75. Prove that Cauchy’s theorem and integral formulas can be obtained as special cases of the residue theorem.

7.76. Prove that the sum of the residues of the function
2z5 � 4z2 þ 5

3z6 � 8zþ 10
at all the poles is 2/3.

7.77. Let n be a positive integer. Prove that
Ð 2p
0

ecos u cos(nu� sin u) du ¼ 2p=n!.

7.78. Evaluate
Þ
C
z3e1=z dz around the circle C with equation jz� 1j ¼ 4.

7.79. Prove that under suitably stated conditions on the function:

(a)
Ð 2p
0

f (eiu) du ¼ 2pf (0), (b)
Ð 2p
0

f (eiu) cos u du ¼ �p f 0(0).

7.80. Show that: (a)
Ð 2p
0

cos(cos u) cosh(sin u) du ¼ 2p (b)
Ð 2p
0

ecos u cos(sin u) cos u du ¼ p.

7.81. Prove that

ð1
0

sin ax

e2px � 1
dx ¼ 1

4
coth

a

2
� 1

2a
.

[Hint. Integrate eaiz=(e2pz � 1) around a rectangle with vertices at 0, R, Rþ i, i and let R ! 1.]

7.82. Prove that

ð1
0

sin ax

ex þ 1
dx ¼ 1

2a
� p

2 sinhpa
.

7.83. Given a, p, and t are positive constants. Prove that

ðaþi1

a�i1

ezt

z2 þ p2
dz ¼ sin pt

p
.

7.84. Prove that

ð1
0

ln x

x2 þ a2
dx ¼ p ln a

2a
.
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7.85. Suppose �p , a , p. Prove that

ð1
�1

eilx
sinh ax

sinhpx
dx ¼ sin a

cos aþ cosh l
.

7.86. Prove that

ð1
0

dx

(4x2 þ p2) cosh x
¼ ln 2

2p
.

7.87. Prove that (a)

ð1
0

ln x

x4 þ 1
dx ¼ �p2

ffiffiffi
2

p

16
, (b)

ð1
0

(ln x)2

x4 þ 1
dx ¼ 3p3

ffiffiffi
2

p

64
.

�
Hint. Consider

þ
C

(ln z)2

z4 þ 1
dz around a semicircle properly indented at z ¼ 0.

	

7.88. Evaluate

ð1
0

ln x

(x2 þ 1)2
dx.

7.89. Prove that if jaj , 1 and b . 0,

ð1
0

sinh ax

sinh x
cos bx dx ¼ p

2

sin ap

cos apþ cosh bp

� �
.

7.90. Prove that if �1 , p , 1,

ð1
0

cos px

cosh x
dx ¼ p

2 cosh(pp=2)
.

7.91. Prove that

ð1
0

ln(1þ x)

1þ x2
dx ¼ p ln 2

2
.

7.92. Suppose a . 0 and �p=2 , b , p=2. Prove that

(a)

ð1
0

e�ax2 cosb cos(ax2 sinb) dx ¼ 1
2

ffiffiffiffiffiffiffiffiffi
p=a

p
cos(b=2).

(b)

ð1
0

e�ax2 cosb sin(ax2 sinb) dx ¼ 1
2

ffiffiffiffiffiffiffiffiffi
p=a

p
sin(b=2).

7.93. Prove that csc2 z ¼
X1
n¼�1

1

(z� np)2
.

7.94. Suppose a and p are real and such that 0 , jpj , 1 and 0 , jaj , z. Prove that

ð1
0

x�p dx

x2 þ 2x cosaþ 1
¼ p

sin pp

� �
sin pa

sina

� �

7.95. Prove

ð1
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x3

3
p ¼ 2pffiffiffi

3
p . [Consider contour of Fig. 7-18.]

7.96. Prove the residue theorem for multiply-connected regions.

7.97. Find sufficient conditions under which the residue theorem

(Problem 7.2) is valid if C encloses infinitely many iso-

lated singularities.

7.98. Let C be a circle with equation jzj ¼ 4. Determine the value

of the integral þ
C

z2 csc
1

z
dz

if it exists.

x

y

C

1

Fig. 7-18
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7.99. Give an analytical proof that sin u � 2u=p for 0 � u � p=2.

[Hint. Consider the derivative of (sin u)=u, showing that it is a decreasing function.]

7.100. Prove that

ð1
0

x

sinhpx
dx ¼ 1

4
.

7.101. Verify that the integral around G in equation (2) of Problem 7.22 goes to zero as R ! 1.

7.102. (a) Suppose r is real. Prove that

ðp
0

ln(1� 2r cos uþ r2) du ¼ 0 if jrj � 1

p ln r2 if jrj � 1

�
.

(b) Use the result in (a) to evaluate

ðp=2
0

ln sin u du (see Problem 7.23).

7.103. Complete the proof of Case 2 in Problem 7.25.

7.104. Let 0 , p , 1. Prove that

ð1
0

x�p

x� 1
dx ¼ p cot pp in the Cauchy principal value sense.

7.105. Show that
X1

n¼�1
1

n4 þ n2 þ 1
¼ p

ffiffiffi
3

p

3
tanh

p
ffiffiffi
3

p

2

� �
:

7.106. Verify that as N ! 1, the integral on the left of (1) in Problem 7.29 goes to zero.

7.107. Prove that
1

15
� 1

35
þ 1

55
� 1

75
þ � � � ¼ 5p5

1536
.

7.108. Prove the results given on page 209 for (a)
X1
�1

f
2nþ 1

2

� �
and (b)

X1
�1

(�1)nf
2nþ 1

2

� �
.

7.109. Given �p � u � p. Prove that
X1
n¼1

(�1)n sin nu

n3
¼ u(p� u)(pþ u)

12
.

7.110. Prove that the function cot z� 1=z of Problem 7.34 is bounded on the circles CN .

7.111. Show that the second, fourth, and sixth integrals in equation (3) of Problem 7.36 approach zero as e ! 0 and

R ! 1.

7.112. Prove that
1

cosh(p=2)
� 1

3 cosh(3p=2)
þ 1

5 cosh(5p=2)
� � � � ¼ p

8
.

7.113. Prove that
1

2pi

ðaþi1

a�i1

eztffiffi
z

p dz ¼ 1ffiffiffiffiffi
pt

p where a and t are any positive constants.

7.114. Prove that
X1
n¼1

coth np

n7
¼ 19p7

56,700
.

7.115. Prove that

ð1
0

dx

(x2 þ 1) coshpx
¼ 4� p

2
.

7.116. Prove that
1

13 sinhp
� 1

23 sinh 2p
þ 1

33 sinh 3p
� � � � ¼ p3

360
.

7.117. Prove that if a and t are any positive constants,

1

2pi

ðaþi1

a�i1
ezt cot�1 z dz ¼ sin t

t
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ANSWERS TO SUPPLEMENTARY PROBLEMS

7.39. (a) z ¼ �1, 2; 1=3, 5=3, (b) z ¼ 1; 4, (c) z ¼ 0; 1

(d) z ¼ 1
2
(2k þ 1)pi; (�1)kþ1i where k ¼ 0, +1, +2, . . . , (e) z ¼ kpi; 0 where k ¼ 0, +1, +2, . . .

7.42. 8pi

7.43. Zeros: z ¼ +2i, Res: at z ¼ 0 is 2, Res: at za ¼ �1þ i is � 1
2
(1� 3i), Res: at z ¼ �1� i is � 1

2
(1þ 3i)

7.44. 2pi

7.45. �9p
ffiffiffi
2

p
=2

7.47. �6pi

7.48. 1� cos t

7.50. 5p=288

7.51. 0

7.58. p
ffiffiffi
3

p
=6

7.59. p=2

7.78. 1/24

7.88. �p=4
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CHAP T E R 8

Conformal Mapping

8.1 Transformations or Mappings

The set of equations

u ¼ u(x, y)

v ¼ v(x, y)
(8:1)

defines, in general, a transformation or mapping, which establishes a correspondence between points in the
uv and xy planes. The equations (8.1) are called transformation equations. If to each point of the uv plane,
there corresponds one and only one point of the xy plane, and conversely, we speak of a one-to-one trans-
formation or mapping. In such a case, a set of points in the xy plane (such as a curve or region) is mapped
into a set of points in the uv plane (curve or region) and conversely. The corresponding sets of points in the
two planes are often called images of each other.

8.2 Jacobian of a Transformation

Under the transformation (8.1), a region R of the xy plane is, in general, mapped into a region R0 of the uv
plane. Then, if DAxy and DAuv denote, respectively, the areas of these regions, we can show that if u and v are
continuously differentiable,

lim
DAuv

DAxy

¼ @(u, v)

@(x, y)

����
���� (8:2)

where lim denotes the limit as DAxy (or DAuv) approaches zero and where the determinant

@(u, v)

@(x, y)
¼

@u

@x

@u

@y
@v

@x

@v

@y

��������

�������� ¼
@u

@x

@v

@y
� @u

@y

@v

@x
(8:3)

is called the Jacobian of the transformation (8.1).
If we solve (1) for x and y in terms of u and v, we obtain the transformation x ¼ x(u, v), y ¼ y(u, v), often

called the inverse transformation corresponding to (8.1). If x and y are single-valued and continuously dif-
ferentiable, the Jacobian of this transformation is @(x, y)=@(u, v) and can be shown equal to the reciprocal of
@(u, v)=@(x, y) (see Problem 8.7). Thus, if one Jacobian is different from zero in a region, so also is the other.

Conversely, we can show that if u and v are continuously differentiable in a regionR and if the Jacobian
@(u, v)=@(x, y) does not vanish in R, then the transformation (8.1) is one-to-one.
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8.3 Complex Mapping Functions

A case of special interest occurs when u and v are real and imaginary parts of an analytic function of a
complex variable z ¼ xþ iy, i.e., w ¼ uþ iv ¼ f (z) ¼ f (xþ iy). In such a case, the Jacobian of the trans-
formation is given by

@(u, v)

@(x, y)
¼ j f 0(z)j2 (8:4)

(see Problem 8.5). It follows that the transformation is one-to-one in regions where f 0(z) = 0. Points where
f 0(z) ¼ 0 are called critical points.

8.4 Conformal Mapping

Suppose that under transformation (8.1), point (x0, y0) of the xy plane is mapped into point (u0, v0) of the uv
plane (Figs. 8-1 and 8-2) while curves C1 and C2 [intersecting at (x0, y0)] are mapped, respectively, into
curves C0

1 and C0
2 [intersecting at (u0, v0)]. Then, if the transformation is such that the angle at (x0, y0)

between C1 and C2 is equal to the angle at (u0, v0) between C0
1 and C0

2 both in magnitude and sense, the
transformation or mapping is said to be conformal at (x0, y0). A mapping that preserves the magnitudes
of angles but not necessarily the sense is called isogonal.

y

(x0, y0)

C2

C1

x

(u0, u0)

C'2

C'1

u

u

Fig. 8-1 Fig. 8-2

The following theorem is fundamental.

THEOREM. 8.1: If f(z) is analytic and f 0(z)=0 in a region R, then the mapping w ¼ f (z) is conformal at
all points of R.

For conformal mappings or transformations, small figures in the neighborhood of a point z0 in the z plane
map into similar small figures in the w plane and are magnified (or reduced) by an amount given approxi-
mately by j f 0(z0)j2, called the area magnification factor or simply magnification factor. Short distances in
the z plane in the neighborhood of z0 are magnified (or reduced) in the w plane by an amount given approxi-
mately by j f 0(z0)j, called the linear magnification factor. Large figures in the z plane usually map into
figures in the w plane that are far from similar.

8.5 Riemann’s Mapping Theorem

Let C (Fig. 8-3) be a simple closed curve in the z plane forming the boundary of a simply connected region
R. Let C0 (Fig. 8-4) be a circle of radius one and center at the origin [the unit circle] forming the boundary
of region R0 in the w plane. The region R0 is sometimes called the unit disk. Then Riemann’s mapping
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theorem states that there exists a function w ¼ f (z), analytic in R, which maps each point of R into a
corresponding point of R0 and each point of C into a corresponding point of C0, the correspondence
being one-to-one and onto, i.e., every point of R0 is the image of exactly one point of R.

z plane

C

w plane

1

C'

'

Fig. 8-3 Fig. 8-4

This function f(z) contains three arbitrary real constants that can be determined by making the center of
C0 correspond to some given point inR, while some point on C0 corresponds to a given point on C. It should
be noted that while Riemann’s mapping theorem demonstrates the existence of a mapping function, it does
not actually produce this function.

It is possible to extend Riemann’s mapping theorem to the case where a region bounded by two simple
closed curves, one inside the other, is mapped onto a region bounded by two concentric circles. Also, any
simply connected region that is not the whole x-y plane can be mapped conformally onto the unit disk. For
example, the upper half plane can be mapped conformally onto the unit disk (see Section 8.11).

8.6 Fixed or Invariant Points of a Transformation

Suppose that we superimpose the w plane on the z plane so that the coordinate axes coincide and there is
essentially only one plane. Then we can think of the transformation w ¼ f (z) as taking certain points of the
plane into other points. Points for which z ¼ f (z) are called the fixed or invariant points of the
transformation.

EXAMPLE 8.1: The fixed or invariant points of the transformation w ¼ z2 are solutions of z2 ¼ z, i.e., z ¼ 0, 1.

8.7 Some General Transformations

In the following, a, b are given complex constants while a, u0 are real constants.

1. Translation. w ¼ zþ b
By this transformation, figures in the z plane are displaced or translated in the direction of

vector b.

2. Rotation. w ¼ eiu0z
By this transformation, figures in the z plane are rotated through an angle u0. If u0 . 0, the

rotation is counterclockwise while, if u0 , 0, the rotation is clockwise.
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3. Stretching. w ¼ az
By this transformation, figures in the z plane are stretched (or contracted) in the direction z if

a . 1 (or 0 , a , 1). We consider contraction as a special case of stretching.
4. Inversion. w ¼ 1=z

8.8 Successive Transformations

If w ¼ f1(z) maps regionRz of the z plane into regionRw of the w plane while z ¼ f2(z) maps regionRz of
the z plane into region Rz, then w ¼ f1[f2(z)] maps Rz into Rw. The functions f1 and f2 define successive
transformations from one plane to another, which are equivalent to a single transformation. These ideas
are easily generalized.

8.9 The Linear Transformation

The transformation

w ¼ azþ b (8:5)

where a and b are given complex constants, is called a linear transformation. Letting a ¼ aeiu0 , we see that
a general linear transformation is a combination of the transformations of translation, rotation, and
stretching.

8.10 The Bilinear or Fractional Transformation

The transformation

w ¼ azþ b

gzþ d
, ad� bg=0 (8:6)

is called a bilinear or fractional transformation. This transformation can be considered as a combination of
the transformations of translation, rotation, stretching, and inversion.

The transformation (8.6) has the property that circles in the z plane are mapped into circles in the w plane,
where by circles we include circles of infinite radius that are straight lines. See Problems 8.14 and 8.15.

The transformation maps any three distinct points of the z plane into three distinct points of the w plane,
one of which may be at infinity.

If z1, z2, z3, z4 are distinct, then the quantity

(z4 � z1)(z2 � z3)

(z2 � z1)(z4 � z3)
(8:7)

is called the cross ratio of z1, z2, z3, z4. This ratio is invariant under the bilinear transformation, and this
property can be used in obtaining specific bilinear transformations mapping three points into three other
points.
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8.11 Mapping of a Half Plane onto a Circle

Let z0 be any point P in the upper half of the z plane denoted by R in Fig. 8-5. Then, the transformation

w ¼ eiu0
z� z0

z� �z0

� �
(8:8)

maps this upper half plane in a one-to-one manner onto the interiorR0 of the unit circle jwj ¼ 1. Each point
of the x axis is mapped to the boundary of the circle. The constant u0 can be determined by making one
particular point of the x axis correspond to a given point on the circle.

In the above figures, we have used the convention that unprimed points such as A, B, C, etc., in the z plane
correspond to primed points A0, B0, C0, etc., in the w plane. Also, in the case where points are at infinity, we
indicate this by an arrow such as at A and F in Fig. 8-5, which correspond, respectively, to A0 and F0 (the
same point) in Fig. 8-6. As point zmoves on the boundary ofR [i.e., the real axis] from�1 (point A) toþ1
(point F), w moves counterclockwise along the unit circle from A0 back to A0.

z plane
y

R

A B C D E F

P • z0

x

w plane

u
1

u
B'

C' R'

P'

E'

D'

A'
F'

q0

Fig. 8-5 Fig. 8-6

8.12 The Schwarz–Christoffel Transformation

Consider a polygon [Fig. 8-7] in the w plane having vertices at w1, w2, . . . ,wn with corresponding interior
angles a1, a2, . . . ,an, respectively. Let the points w1, w2, . . . ,wn be the images, respectively, of the points
x1, x2, . . . , xn on the real axis of the z plane [Fig. 8-8].

u w plane

w4

w1

w2

w3

u

R'
a1

a2

a5

a4

a3

z planey

x
x1 x2 x3 x4

R

x5

Fig. 8-7 Fig. 8-8
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A transformation that maps the upper half R of the z plane onto the interior R0 of the polygon of the w
plane and the real axis onto the boundary of the polygon is given by

dw

dz
¼ A(z� x1)

a1=p�1(z� x2)
a2=p�1 � � � (z� xn)

an=p�1 (8:9)

or

w ¼ A

ð
(z� x1)

a1=p�1(z� x2)
a2=p�1 � � � (z� xn)

an=p�1dzþ B (8:10)

where A and B are complex constants.
The following facts should be noted:

1. Any three of the points x1, x2, . . . , xn can be chosen at will.
2. The constants A and B determine the size, orientation, and position of the polygon.
3. It is convenient to choose one point, say xn, at infinity in which case the last factor of (8.9) and

(8.10) involving xn is not present.
4. Infinite open polygons can be considered as limiting cases of closed polygons.

8.13 Transformations of Boundaries in Parametric Form

Suppose that in the z plane a curve C [Fig. 8-9], which may or may not be closed, has parametric equations
given by

x ¼ F(t), y ¼ G(t) (8:11)

where we assume that F and G are continuously differentiable. Then, the transformation

z ¼ F(w)þ iG(w) (8:12)

maps the real axis C0 [Fig. 8-10] of the w plane onto C.

y

C

x

z plane w planeu

C' u

Fig. 8-9 Fig. 8-10

8.14 Some Special Mappings

For reference purposes, we list here some special mappings that are useful in practice. For convenience, that
we have listed separately the mapping functions that map the given region R of the w or z plane onto the
upper half of the z or w plane or the unit circle in the z or w plane, depending on which mapping function is
simpler. As we have already seen, there exists a transformation [equation (8.8)] that maps the upper half
plane onto the unit circle.
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A. Mappings onto/on the Upper Half Plane

A-1 Infinite sector of angle p=m w ¼ zm, m � 1=2

y

B

Dp/m

C 1

E

A

x

z plane

A' B' C' D' E' u

u
w plane

1

Fig. 8-11 Fig. 8-12

A-2 Infinite strip of width a w ¼ epz=a

z plane
y

B

E

C

D

A

F

a

x

w plane

A' B'

–1 1

C' D' E' F' u

u

Fig. 8-13 Fig. 8-14

A-3 Semi-infinite strip of width a w ¼ sin
pz

a

(a)

z plane

A E

y

a

B

–a/2 a/2

C D x

u

A' B' C' D' E' u

w plane

–1 1

Fig. 8-15 Fig. 8-16
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(b) w ¼ cos
pz

a

z plane

y

A D

B C
a

a

x

w plane

u

A' B' C' D' u

–1 1

Fig. 8-17 Fig. 8-18

(c) w ¼ cosh
pz

a

z plane
y

x

B A

a

C D

w plane

A' B' C' D' u

u

–1 1

Fig. 8-19 Fig. 8-20

A-4 Half plane with semicircle removed w ¼ a

2
zþ 1

z

� �
z plane

y

C

A B

–1 1

1

D E x

w plane
u

uA' B' C' D' E'

a–a

Fig. 8-21 Fig. 8-22
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A-5 Semicircle w ¼ 1þ z

1� z

� �2

z plane
y

C D A

B

–1 1

1

x

w plane

A' B'

–1 1

C' D' A' u

u

Fig. 8-23 Fig. 8-24

A-6 Sector of a circle w ¼ 1þ zm

1� zm

� �2

, m � 1

2

z plane
y

D

C

B

A
1

p/m x

w plane

A' B'

–1 1

C' D' A u

u

Fig. 8-25 Fig. 8-26

A-7 Lens-shaped region of angle p=m
[ABC and CDA are circular arcs.]

w ¼ e2mi cot
�1 p zþ 1

z� 1

� �m

, m � 2

z plane
y

B

D

C
p

A x
1–1

p/m

w plane

A' B'

–1 1

C' D' A'
u

u

Fig. 8-27 Fig. 8-28
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A-8 Half plane with circle removed w ¼ coth(p=z)

z plane
y

x
A B F G

D

1

EC

w plane
u

u
A'

–1 1

B' C' D' E' F' G'

Fig. 8-29 Fig. 8-30

A-9 Exterior of parabola y2 ¼ 4p(p� x) w ¼ i(
ffiffi
z

p � ffiffiffi
p

p
)

z plane

A y

B

p

4p

C
x

D

E

w plane
u

u
√p–√p

E'D'C'B'A'

Fig. 8-31 Fig. 8-32

A-10 Interior of the parabola y2 ¼ 4p(p� x) w ¼ epi
ffiffiffiffiffi
x=p

p

z plane

C
y

B

p

4p

D

E
x

A

w plane
u

u
–1 1

E'D'C'B'A'

Fig. 8-33 Fig. 8-34
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A-11 Plane with two semi-infinite parallel cuts w ¼ �piþ 2 ln z� z2

w plane
u

B'A'
p

p

C'

E' D'

u

1

1

z plane
y

x
–1 1

EDCBA

Fig. 8-35 Fig. 8-36

A-12 Channel with right angle bend w ¼ 2

p
ftanh�1 p

ffiffi
z

p
� p tan�1 ffiffi

z
p

g

w plane

u
E'

B'

C' D'

A'

B'

p

D'

u

1

z plane
y

x
–1 –1/p2

EDCBA

Fig. 8-37 Fig. 8-38

A-13 Interior of triangle w ¼
ðz
0

ta=p�1(1� t)b=p�1dt

w plane

B'A'

C'

u

α
u

β

z plane
y

x
1

CBC A

Fig. 8-39 Fig. 8-40
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A-14 Interior of rectangle w ¼
ðz
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p , 0 , k , 1

B' A' G' F'

E'D'C'

w plane
u

u

z plane
y

x
1

GED

–1

C

1/k

F

–1/k

BA

Fig. 8-41 Fig. 8-42

B. Mappings on/onto the Unit Circle

B-1 Exterior of unit circle w ¼ 1

z

A'

D'

B'

C'

w plane

1

u

u
A

1

B

D

C

z plane
y

x

Fig. 8-43 Fig. 8-44

B-2 Exterior of ellipse w ¼ 1

2
(ze�a þ z�1ea)

A'

D'

B'

C'

w plane

u

u
cosh a

sinh a

A

B

D

C

z plane
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Fig. 8-45 Fig. 8-46
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B-3 Exterior of parabola y2 ¼ 4p(p� x) w ¼ 2

ffiffiffi
p

z

r
� 1

z plane
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y
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p

4p
C

x

D

E

1
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Fig. 8-47 Fig. 8-48

B-4 Interior of parabola y2 ¼ 4p(p� x) w ¼ tan2
p

4

ffiffiffi
z
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r
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1
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Fig. 8-49 Fig. 8-50

C. Miscellaneous Mappings

C-1 Semi-infinite strip of width a onto quarter plane w ¼ sin
pz

2a

z plane

y

D

CB

A

a

a
x

w plane

u

C'

C' D'

1

B'

A'

u

Fig. 8-51 Fig. 8-52
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C-2 Interior of circle onto cardioid w ¼ z2

ρ = 2a2(1 + cos f)
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4a2
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D'

B'

w plane
u

u
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C

2aa
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Fig. 8-53 Fig. 8-54

C-3 Annulus onto rectangle w ¼ ln z
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Fig. 8-55 Fig. 8-56

C-4 Semi-infinite strip onto infinite strip w ¼ ln coth
z
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C π
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C-5 Infinite strip onto plane with two semi-infinite cuts w ¼ zþ ez

w plane

u

B'

A'

π

π
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E' D'

u

1

1

π

π
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C
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SOLVED PROBLEMS

Transformations

8.1. Let the rectangular region R [Fig. 8-61] in the z plane be bounded by x ¼ 0, y ¼ 0, x ¼ 2, y ¼ 1.
Determine the region R0 of the w plane into which R is mapped under the transformations:

(a) w ¼ zþ (1� 2i), (b) w ¼
ffiffiffi
2

p
epi=4z, (c) w ¼

ffiffiffi
2

p
epi=4zþ (1� 2i).

Solution

(a) Given w ¼ zþ (1� 2i). Then uþ iv ¼ xþ iyþ 1� 2i ¼ (xþ 1)þ i(y� 2) and u ¼ xþ 1, v ¼ y� 2.

Line x ¼ 0 is mapped into u ¼ 1; y ¼ 0 into v ¼ �2; x ¼ 2 into u ¼ 3; y ¼ 1 into v ¼ �1 [Fig. 8-62].

Similarly, we can show that each point ofR is mapped into one and only one point ofR0 and conversely.

y

R
x

y = 1

y = 0

z plane

x = 2x = 0

u

R

u

u = –1

u = –2

w plane

u = 3u = 1

Fig. 8-61 Fig. 8-62

The transformation or mapping accomplishes a translation of the rectangle. In general, w ¼ zþ b

accomplishes a translation of any region.
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(b) Given w ¼
ffiffiffi
2

p
epi=4z. Then uþ iv ¼ (1þ i)(xþ iy) ¼ x� yþ i(xþ y) and u ¼ x� y, v ¼ xþ y.

Line x ¼ 0 is mapped into u ¼ �y, v ¼ y or u ¼ �v; y ¼ 0 into u ¼ x, v ¼ x or u ¼ v; x ¼ 2 into

u ¼ 2� y, v ¼ 2þ y or uþ v ¼ 4; y ¼ 1 into u ¼ x� 1, v ¼ xþ 1 or v� u ¼ 2 [Fig. 8-64].

y

R
x

y = 1

y = 0

z plane

x = 2x = 0

u

R'

u

u = –u

u – u = 2

u =
 u

u + u = 4

w plane

Fig. 8-63 Fig. 8-64

The mapping accomplishes a rotation of R (through angle p=4 or 458) and a stretching of lengths

(of magnitude
ffiffiffi
2

p
). In general, the transformation w ¼ az accomplishes a rotation and stretching of a

region.

(c) Given w ¼
ffiffiffi
2

p
epi=4zþ (1� 2i). Then uþ iv ¼ (1þ i)(xþ iy)þ 1� 2i and u ¼ x� yþ 1,

v ¼ xþ y� 2.

The lines x ¼ 0, y ¼ 0, x ¼ 2, y ¼ 1 are mapped, respectively, into uþ v ¼ �1, u� v ¼ 3,

uþ v ¼ 3, u� v ¼ 1 [Fig. 8-66].

y

R
x

y = 1

y = 0

z plane

x = 2x = 0

u

R'

u

u –
 u =

 3

u – u = 1

u + u = –1

u + u = 3

w plane

Fig. 8-65 Fig. 8-66

The mapping accomplishes a rotation and stretching as in (b) and a subsequent translation. In general,

the transformation w ¼ azþ b accomplishes a rotation, stretching, and translation. This can be con-

sidered as two successive mappings w ¼ az1 (rotation and stretching) and z1 ¼ zþ b=a (translation).

8.2. Determine the region of thew plane into which each of the following is mapped by the transformation
w ¼ z2. (a) First quadrant of the z plane. (b) Region bounded by x ¼ 1, y ¼ 1, and xþ y ¼ 1.

Solution

(a) Let z ¼ reiu, w ¼ reif. Then if w ¼ z2, reif ¼ r2e2iu and r ¼ r2, f ¼ 2u. Thus points in the z plane at

(r, u) are rotated through angle 2u. Since all points in the first quadrant [Fig. 8-67] of the z plane

occupy the region 0 � u � p=2, they map into 0 � f � p or the upper half of the w plane [Fig. 8-68].

z plane

x

y

w plane

u

u

Fig. 8-67 Fig. 8-68
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(b) Since w ¼ z2 is equivalent to uþ iv ¼ (xþ iy)2 ¼ x2 � y2 þ 2ixy, we see that u ¼ x2 � y2, v ¼ 2xy. Then

line x ¼ 1 maps into u ¼ 1� y2, v ¼ 2y or u ¼ 1� v2=4; line y ¼ 1 into u ¼ x2 � 1, v ¼ 2x or

u ¼ v2=4� 1; line xþ y ¼ 1 or y ¼ 1� x into u ¼ x2 � (1� x)2 ¼ 2x� 1, v ¼ 2x(1� x) ¼ 2x� 2x2 or

v ¼ 1
2
(1� u2) on eliminating x.

The regions appear shaded in Figs. 8-69 and 8-70 where points A, B, C map into A0, B0, C0. Note that the
angles of triangle ABC are equal, respectively, to the angles of curvilinear triangle A0B0C0. This is a conse-
quence of the fact that the mapping is conformal.

x = 1
x + y = 1

±/4

±/4

±/2

x

y

A C

B

y = 1

z plane w plane

u

u =
(1 – u 2)

B'

C'

A'

u

p /2

p /4p /4
u = 1 – —u

2

4
u =  — – 1u 2

4

2
1

Fig. 8-69 Fig. 8-70

Conformal Transformations

8.3. Consider the transformation w ¼ f (z) where f(z) is analytic at z0 and f
0(z0)=0. Prove that under this

transformation, the tangent at z0 to any curve C in the z plane passing through z0 [Fig. 8-71] is
rotated through the angle a ¼ arg f 0(z0) [Fig. 8-8].

q0

z0

z0 + z

x

y

C

z plane

q0 +a
w0

w0 +w

u

u

C'

w plane

Fig. 8-71 Fig. 8-72

Solution

As a point moves from z0 to z0 þ Dz along C, the image point moves along C0 in the w plane from w0 to

w0 þ Dw. If the parameter used to describe the curve is t, then corresponding to the path z ¼ z(t) [or

x ¼ x(t), y ¼ y(t)] in the z plane, we have the path w ¼ w(t) [or u ¼ u(t), v ¼ v(t)] in the w plane.

The derivatives dz/dt and dw/dt represent tangent vectors to corresponding points on C and C0.
Now

dw

dt
¼ dw

dz
� dz
dt

¼ f 0(z)
dz

dt

and, in particular at z0 and w0,

dw

dt

����
w¼w0

¼ f 0(z0)
dz

dt

����
z¼z0

(1)
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provided f (z) is analytic at z ¼ z0. Writing

dw

dt

����
w¼w0

¼ r0e
if0 , f 0(z) ¼ Reia,

dz

dt

����
z¼z0

¼ r0e
iu0

we have from (1)

r0e
if0 ¼ Rr0e

i(u0þa) (2)

so that, as required,

f0 ¼ u0 þ a ¼ u0 þ arg f 0(z0) (3)

Note that if f 0(z0) ¼ 0, then a is indeterminate. Points where f 0(z) ¼ 0 are called critical points.

8.4. Prove that the angle between two curves C1 and C2 passing through the point z0 in the z plane [see
Figs. 8-1 and 8-2, page 243] is preserved [in magnitude and sense] under the transformation
w ¼ f (z), i.e., the mapping is conformal, if f (z) is analytic at z0 and f 0(z0)=0.

Solution

By Problem 8.3, each curve is rotated through the angle arg f 0(z0). Hence, the angle between the curves must be

preserved, both in magnitude and sense, in the mapping.

Jacobian of a Transformation

8.5. Let w ¼ f (z) ¼ uþ iv be analytic in a region R. Prove that

@(u, v)

@(x, y)
¼ j f 0(z)j2

Solution

If f (z) is analytic in R, then the Cauchy–Riemann equations

@u

@x
¼ @v

@y
,

@v

@x
¼ � @u

@y
are satisfied in R. Hence

@(u, v)

@(x, y)
¼

@u

@x

@u

@y
@v

@x

@v

@y

��������

�������� ¼
@u

@x

@u

@y

� @u

@y

@u

@x

��������

�������� ¼
@u

@x

� �2

þ @u

@y

� �2

¼ @u

@x
þ i

@u

@y

����
����2¼ j f 0(z)j2

using Problem 3.5.

8.6. Find the Jacobian of the transformation in (a) Problem 8.1(c), (b) Problem 8.2, and interpret
geometrically.

Solution

(a) Given w ¼ f (z) ¼
ffiffiffi
2

p
epi=4zþ (1� 2i). Then, by Problem 8.5, the Jacobian is

@(u, v)

@(x, y)
¼ j f 0(z)j2 ¼ j

ffiffiffi
2

p
epi=4j2 ¼ 2

Geometrically, this shows that any region in the z plane [in particular, rectangular region R of

Fig. 8-65, page 257] is mapped into a region of twice the area. The factor j f 0(z)j2 ¼ 2 is called the

magnification factor.
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Another Method. The transformation is equivalent to u ¼ x� y, v ¼ xþ y and so

@(u, v)

@(x, y)
¼

@u

@x

@u

@y
@v

@x

@v

@y

��������

�������� ¼
1 �1

1 1

����
���� ¼ 2

(b) Given w ¼ f (z) ¼ z2. Then

@(u, v)

@(x, y)
¼ j f 0(z)j2 ¼ j2zj2 ¼ j2xþ 2iyj2 ¼ 4(x2 þ y2)

Geometrically, a small region in the z plane having area A and at approximate distance r from the

origin would be mapped into a region of the w plane having area 4r2A. Thus regions far from the

origin would be mapped into regions of greater area than similar regions near the origin.

Note that, at the critical point z ¼ 0, the Jacobian is zero. At this point, the transformation is not

conformal.

8.7. Prove that
@(u, v)

@(x, y)
� @(x, y)
@(u, v)

¼ 1.

Solution

Corresponding to the transformation

u ¼ u(x, y), v ¼ v(x, y) (1)

with Jacobian @(u, v)=@(x, y), we have the inverse transformation

x ¼ x(u, v), y ¼ y(u, v) (2)

with Jacobian @(x, y)=@(u, v). From (1),

du ¼ @u

@x
dxþ @u

@y
dy, dv ¼ @v

@x
dxþ @v

@y
dy

From (2),

dx ¼ @x

@u
duþ @x

@v
dv, dy ¼ @y

@u
duþ @y

@v
dv

Hence,

du ¼ @u

@x

@x

@u
duþ @x

@v
dv

� �
þ @u

@y

@y

@u
duþ @y

@v
dv

� �
¼ @u

@x

@x

@u
þ @u

@y

@y

@u

� �
duþ @u

@x

@x

@v
þ @u

@y

@y

@v

� �
dv

from which

@u

@x

@x

@u
þ @u

@y

@y

@u
¼ 1,

@u

@x

@x

@v
þ @u

@y

@y

@v
¼ 0 (3)

Similarly, we find

@v

@x

@x

@v
þ @v

@y

@y

@v
¼ 1,

@v

@x

@x

@u
þ @v

@y

@y

@u
¼ 0 (4)
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Using (3) and (4) and the rule for products of determinants (see Problem 8.94), we have

@(u, v)

@(x, y)
� @(x, y)
@(u, v)

¼

@u

@x

@u

@y
@v

@x

@v

@y

��������

�������� �
@x

@u

@x

@v
@y

@u

@y

@v

�������
�������

¼

@u

@x

@x

@u
þ @u

@y

@y

@u

@u

@x

@x

@v
þ @u

@y

@y

@v
@v

@x

@x

@u
þ @v

@y

@y

@u

@v

@x

@x

@v
þ @v

@y

@y

@v

��������

�������� ¼
1 0

0 1

����
���� ¼ 1

8.8. Discuss Problem 8.7 if u and v are real and imaginary parts of an analytic function f (z).

Solution

In this case @(u, v)=@(x, y) ¼ j f 0(z)j2 by Problem 8.5. If the inverse to w ¼ f (z) is z ¼ g(w) assumed single-

valued and analytic, then @(x, y)=@(u, v) ¼ jg0(w)j2. The result of Problem 8.7 is a consequence of the fact that

j f 0(z)j2jg0(w)j2 ¼ dw

dz

����
����2 � dz

dw

����
����2¼ 1

since dw=dz ¼ 1=(dz=dw).

Bilinear or Fractional Transformations

8.9. Find a bilinear transformation that maps points z1, z2, z3 of the z plane into points w1, w2, w3 of the
w plane, respectively.

Solution

If wk corresponds to zk, k ¼ 1, 2, 3, we have

w� wk ¼
azþ b

gzþ d
� azk þ b

gzk þ d
¼ (ad� bg)(z� zk)

(gzþ d)(gzk þ d)

Then

w� w1 ¼
(ad� bg)(z� z1)

(gzþ d)(gz1 þ d)
, w� w3 ¼

(ad� bg)(z� z3)

(gzþ d)(gz3 þ d)
(1)

Replacing w by w2, and z by z2,

w2 � w1 ¼
(ad� bg)(z2 � z1)

(gz2 þ d)(gz1 þ d)
, w2 � w3 ¼

(ad� bg)(z2 � z3)

(gz2 þ d)(gz3 þ d)
(2)

By division of (1) and (2), assuming ad� bg= 0,

(w� w1)(w2 � w3)

(w� w3)(w2 � w1)
¼ (z� z1)(z2 � z3)

(z� z3)(z2 � z1)
(3)

Solving for w in terms of z gives the required transformation. The right hand side of (3) is called the cross ratio

of z1, z2, z3, and z.
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8.10. Find a bilinear transformation that maps points z ¼ 0, �i, �1 into w ¼ i, 1, 0, respectively.

Solution

Method 1. Since w ¼ (azþ b)=(gzþ d), we have

i ¼ a(0)þ b

g(0)þ d
(1)

1 ¼ a(�i)þ b

g(�i)þ d
(2)

0 ¼ a(�1)þ b

g(�1)þ d
(3)

From (3), b ¼ a. From (1), d ¼ b=i ¼ �ia. From (2), g ¼ ia. Then

w ¼ azþ a

iaz� ia
¼ 1

i

zþ 1

z� 1

� �
¼ �i

zþ 1

z� 1

� �

Method 2. Use Problem 8.9. Then

(w� i)(1� 0)

(w� 0)(1� i)
¼ (z� 0)(�iþ 1)

(zþ 1)(�i� 0)

Solving,

w ¼ �i
zþ 1

z� 1

� �

8.11. Let z0 be in the upper half of the z plane. Show that the
bilinear transformation w ¼ eiu0f(z� z0)=(z� �z0)g maps
the upper half of the z plane into the interior of the unit
circle in the w plane, i.e., jwj � 1.

Solution

We have

jwj ¼ eiu0
z� z0

z� �z0

� �����
���� ¼ z� z0

z� �z0

����
����

From Fig. 8-73, if z is in the upper half plane,

jz� z0j � jz� �z0j, the equality holding if and only if z is on

the x axis. Hence, jwj � 1, as required.

The transformation can also be derived directly (see Problem

8.61).

y

x

z

~z0

z0

|z – z0|

|z
 –

 z 0
|~

Fig. 8-73
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8.12. Find a bilinear transformation that maps the upper half of the z plane into the unit circle in the w
plane in such a way that z ¼ i is mapped into w ¼ 0 while the point at infinity is mapped into
w ¼ �1.

Solution

We have w ¼ 0 corresponding to z ¼ i, and w ¼ �1 corresponding to z ¼ 1. Then, from w ¼ eiu0f(z� z0)=
(z� �z0)g, we have 0 ¼ eiu0f(i� z0)=(i� �z0)g so that z0 ¼ i. Corresponding to z ¼ 1, we have

w ¼ eiu0 ¼ �1. Hence, the required transformation is

w ¼ (�1)
z� i

zþ i

� �
¼ i� z

iþ z

The situation is described graphically in Figs. 8-74 and 8-75.

y

iP

A B C D E
x

z plane

1

u

u
C'

w plane

A' P'

B'

D'

E'

Fig. 8-74 Fig. 8-75

8.13. Find the fixed or invariant points of the transformation w ¼ (2z� 5)=(zþ 4).

Solution

The fixed points are solutions to z ¼ (2z� 5)=(zþ 4) or z2 þ 2zþ 5 ¼ 0, i.e., z ¼ �1+2i.

8.14. Prove that the bilinear transformation can be considered as a combination of the transformations of
translation, rotation, stretching, and inversion.

Solution

By division,

w ¼ azþ b

gzþ d
¼ a

g
þ bg� ad

g(gzþ d)
¼ lþ m

zþ n

where l ¼ a=g, m ¼ (bg� ad)=g2 and n ¼ d=g are constants. The transformation is equivalent to z ¼ zþ n,
t ¼ 1=z, and w ¼ lþ mt, which are combinations of the transformations of translation, rotation, stretching,

and inversion.

8.15. Prove that the bilinear transformation transforms circles of the z plane into circles of the w plane
where, by circles, we include circles of infinite radius, which are straight lines.

Solution

The general equation of a circle in the z plane is, by Problem 1.44, Az�zþ Bzþ �B�zþ C ¼ 0 where A . 0,C . 0

and B is complex. If A ¼ 0, the circle reduces to a straight line.
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Under the transformation of inversion, w ¼ 1=z or z ¼ 1=w, we have that this equation becomes

Cw �wþ �Bwþ B �wþ A ¼ 0, a circle in the w plane.

Under the transformation of rotation and stretching, w ¼ az or z ¼ w=a, this equation becomes

Aw �wþ (B�a)wþ ( �Ba) �wþ Ca�a ¼ 0, also a circle.

Similarly, we can show either analytically or geometrically that under the transformation of translation,

circles are transformed into circles.

Since, by Problem 8.14, a bilinear transformation can be considered as a combination of translation,

rotation, stretching, and inversion, the required result follows.

Special Mapping Functions

8.16. Verify the entries (a) A-2, page 248, (b) A-4, page 249, (c) B-1, page 253.

Solution

(a) Refer to Figs. 8-13 and 8-14, page 248.

If z ¼ xþ iy, then

w ¼ uþ iv ¼ epz=a ¼ ep(xþiy)=a ¼ epx=a(cospy=aþ i sinpy=a)

or u ¼ epx=a cospy=a, v ¼ epx=a sinpy=a.
The line y ¼ 0 [the real axis in the z plane; DEF in Fig. 8-13] maps into u ¼ epx=a, v ¼ 0 [the positive

real axis in the w plane; D0E0F0 in Fig. 8-14]. The origin E [z ¼ 0] maps into E0 [w ¼ 1] while

D [x ¼ �1, y ¼ 0] and F [x ¼ þ1, y ¼ 0] map into D0 [w ¼ 0] and F0 [w ¼ 1], respectively.

The line y ¼ a [ABC in Fig. 8-13] maps into u ¼ �epx=a, v ¼ 0 [the negative real axis in the w plane;

A0B0C0 in Fig. 8-14]. The points A [x ¼ þ1, y ¼ a] and C [x ¼ �1, y ¼ a] map into A0 [w ¼ �1] and

C0 [w ¼ 0], respectively.

Any point for which 0 , y , a,�1 , x , 1maps uniquely into one point in the uv plane for which

v . 0.

(b) Refer to Figs. 8-21 and 8-22, page 249.

If z ¼ reiu, then

w ¼ uþ iv ¼ a

2
zþ 1

z

� �
¼ a

2
reiu þ 1

r
e�iu

� �
¼ a

2
r þ 1

r

� �
cos uþ ia

2
r � 1

r

� �
sin u

and

u ¼ a

2
r þ 1

r

� �
cos u, v ¼ a

2
r � 1

r

� �
sin u

Semicircle BCD [r ¼ 1, 0 � u � p] maps into line segment B0C0D0 [u ¼ a cos u, v ¼ 0, 0 � u � p,
i.e., �a � u � a].

The lineDE [u ¼ 0, r . 1] maps into lineD0E0 ½u ¼ (a=2)fr þ (1=r)g, v ¼ 0�; line AB [u ¼ p, r . 1]

maps into line A0B0 ½u ¼ �(a=2)fr þ (1=r)g, v ¼ 0�:
Any point of the z plane for which r � 1 and 0 , u , p maps uniquely into one point of the uv plane

for which v � 0.

(c) Refer to Figs. 8-43 and 8-44, page 253.

If z ¼ reiu and w ¼ reif, then w ¼ 1=z becomes reif ¼ 1=reiu ¼ (1=r)e�iu from which r ¼ 1=r,
f ¼ �u.

The circle ABCD [r ¼ 1] in the z plane maps into the circle A0B0C0D0 [r ¼ 1] of the w plane. Note that

if ABCD is described counterclockwise, A0B0C0D0 is described clockwise.

Any point interior to the circle ABCD [r , 1] is mapped uniquely into a point exterior to the circle

A0B0C0D0 [r . 1].
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The Schwarz–Christoffel Transformation

8.17. Establish the validity of the Schwarz–Christoffel transformation.

Solution

We must show that the mapping function obtained from

dw

dz
¼ A(z� x1)

a1=p�1(z� x2)
a2=p�1 � � � (z� xn)

an=p�1 (1)

maps the real axis of the z plane onto a given polygon of the w plane [Figs. 8-76 and 8-77].

To show this, observe that from (1) we have

arg dw ¼ arg dzþ argAþ a1

p
� 1

� 

arg(z� x1)þ

a2

p
� 1

� 

arg(z� x2)þ � � �

þ an

p
� 1

� 

arg(z� xn)

(2)

As zmoves along the real axis from the left toward x1, let us assume thatwmoves along a side of the polygon

toward w1. When z crosses from the left of x1 to the right of x1, u1 ¼ arg(z� x1) changes from p to 0 while all

other terms in (2) stay constant. Hence arg dw decreases by (a1=p� 1) arg(z� x1) ¼ (a1=p� 1)p ¼ a1 � p
or, what is the same thing, increases by p� a1 [an increase being in the counterclockwise direction].

w plane

± – a1
± – a2

a2

a1

a3

w2

w3

w1

u

u

z plane

x

y

z

x1 x2

q2q1

x3 x4

Fig. 8-76 Fig. 8-77

It follows from this that the direction through w1 turns through the angle p� a1, and thus w now moves

along the side w1w2 of the polygon.

When z moves through x2, u1 ¼ arg(z� x1) and u2 ¼ arg(z� x2) change from p to 0 while all other terms

stay constant. Hence, another turn through angle p� a2 in the w plane is made. By continuing the process, we

see that as z traverses the x axis, w traverses the polygon, and conversely.

We can actually prove that the upper half plane is mapped onto the interior of the polygon (if it is closed)

by (1) [see Problem 8.26].

8.18. Prove that for closed polygons, the sum of the exponents (a1=p)� 1, (a2=p)� 1, . . . , (an=p)� 1

in the Schwarz–Christoffel transformation (8.9) or (8.10), page 247, is equal to �2.

Solution

The sum of the exterior angles of any closed polygon is 2p. Then

(p� a1)þ (p� a2)þ � � � þ (p� an) ¼ 2p

and dividing by �p, we obtain as required,

a1

p
� 1

� 

þ a2

p
� 1

� 

þ � � � þ an

p
� 1

� 

¼ �2
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8.19. Suppose in the Schwarz–Christoffel transformation (8.9) or (8.10), page 247, one point, say xn, is
chosen at infinity. Show that the last factor is not present.

Solution

In (8.9), page 247, let A ¼ K=(�xn)
an=p�1 where K is a constant. Then, the right side of (9) can be written

K(z� x1)
a1=p�1(z� x2)

a2=p�1 � � � (z� xn�1)
an�1=p�1 xn � z

xn

� �an=p�1

As xn ! 1, this last factor approaches 1; this is equivalent to removal of the factor.

8.20. Determine a function that maps the upper half of the z plane onto each of the indicated regions in the
w plane.

Solution

(a)

w plane

u

u
S'

T'P'

Q'

–b b

z plane

y

x
S TP Q

–1 1

Fig. 8-78 Fig. 8-79

Let points P, Q, S, and T [Fig. 8-79] map, respectively, into P0, Q0, S0, and T 0 [Fig. 8-78]. We can consider

P0Q0S0T 0 as a limiting case of a polygon (a triangle) with two vertices at Q0 and S0 and the third vertex P0 or
T 0 at infinity.

By the Schwarz–Christoffel transformation, since the angles at Q0 and S0 are equal to p=2, we have

dw

dz
¼ A(zþ 1)[(p=2)=p]�1(z� 1)[(p=2)=p]�1 ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 1
p ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

Integrating,

w ¼ K

ð
dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p þ B ¼ K sin�1 zþ B

When z ¼ 1, w ¼ b. Hence

b ¼ K sin�1(1)þ B ¼ Kp=2þ B (1)

When z ¼ �1, w ¼ �b. Hence,

�b ¼ K sin�1(�1)þ B ¼ �Kp=2þ B (2)

Solving (1) and (2) simultaneously, we find B ¼ 0, K ¼ 2b=p. Then

w ¼ 2b

p
sin�1 z

The result is equivalent to entry A-3(a) on page 248 if we interchange w and z, and let b ¼ a=2.
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(b)

w plane

S'

bi

P' O'

Q'

z plane

SP O Q

1

Fig. 8-80 Fig. 8-81

Let points P, O, Q [z ¼ 1] and Smap into P0, O0, Q0 [w ¼ bi] and S0, respectively. Note that P, S, P0, S0 are
at infinity (as indicated by the arrows) while O and O0 are the origins [z ¼ 0] and [w ¼ 0] of the z and w planes.

Since the interior angles at O0 and Q0 are p=2 and 3p=2, respectively, we have by the Schwarz–Christoffel

transformation,

dw

dz
¼ A(z� 0)[(p=2)=p]�1(z� 1)[(3p=2)=p]�1 ¼ A

ffiffiffiffiffiffiffiffiffiffiffi
z� 1

z

r
¼ K

ffiffiffiffiffiffiffiffiffiffiffi
1� z

z

r

Then

w ¼ K

ð ffiffiffiffiffiffiffiffiffiffiffi
1� z

z

r
dz

To integrate this, let z ¼ sin2 u and obtain

w ¼ 2K

ð
cos2 u du ¼ K

ð
(1þ cos 2u) du ¼ K uþ 1

2
sin 2u

� �
þ B

¼ K(uþ sin u cos u)þ B ¼ K sin�1 ffiffi
z

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(1� z)

p� 

þ B

When z ¼ 0, w ¼ 0 so that B ¼ 0. When z ¼ 1, w ¼ bi so that bi ¼ Kp=2 or K ¼ 2bi=p. Then the required
transformation is

w ¼ 2bi

p
sin�1 ffiffi

z
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(1� z)

p� 


8.21. Find a transformation that maps the unit circle in the z plane onto a polygon in the w plane.

Solution

The x axis in the z plane can be mapped onto a polygon of the w plane by the Schwarz–Christoffel transform-

ation

w ¼ A

ð
(z� x1)

a1=p�1(z� x2)
a2=p�1 � � � (z� xn)

an=p�1dzþ B (1)

and the upper half of the z plane maps onto the interior of the polygon.

A transformation that maps the upper half of the z plane onto the unit circle in the z plane is

z ¼ i� z

iþ z
(2)

on replacing w by z and taking u ¼ p, z0 ¼ i in equation (8.8), page 246. Hence, z ¼ if(1� z)=(1þ z)g maps

the unit circle in the z plane onto the upper half of the z plane.
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If we let x1, x2, . . . , xn map into z1, z2, . . . , zn, respectively, on the unit circle, then we have for

k ¼ 1, 2, . . . , n.

z� xk ¼ i
1� z

1þ z

� �
� i

1� zk
1þ zk

� �
¼ �2i(z� zk)

(1þ z)(1þ zk)

Also, dz ¼ �2i dz=(1þ z)2. Substituting into (1) and simplifying using the fact that the sum of the exponents

(a1=p)� 1, (a2=p)� 1, . . . , (an=p)� 1 is �2, we find the required transformation

w ¼ A0
ð
(z� z1)

a1=p�1(z� z2)
a2=p�1 � � � (z� zn)

an=p�1 dzþ B

where A0 is a new arbitrary constant.

Transformations of Boundaries in Parametric Form

8.22. Let C be a curve in the z plane with parametric equations x ¼ F(t), y ¼ G(t). Show that the trans-
formation

z ¼ F(w)þ iG(w)

maps the real axis of the w plane onto C.

Solution

Suppose z ¼ xþ iy, w ¼ uþ iv. Then the transformation can be written

xþ iy ¼ F(uþ iv)þ iG(uþ iv)

Then v ¼ 0 [the real axis of the w plane] corresponds to xþ iy ¼ F(u)þ iG(u), i.e., x ¼ F(u), y ¼ G(u), which

represents the curve C.

8.23. Find a transformation that maps the real axis in the w plane onto the ellipse (x2=a2)þ (y2=b2) ¼ 1 in
the z plane.

Solution

A set of parametric equations for the ellipse is given by x ¼ a cos t, y ¼ b sin t where a . 0, b . 0. Then, by

Problem 8.22, the required transformation is z ¼ a coswþ ib sinw.

Miscellaneous Problems

8.24. Find a function that maps the upper half of the z plane onto the interior of a triangle in the w plane
[Fig. 8-82].

Solution

Consider the upper half of the z plane shaded in Fig 8-83. Let P [z ¼ 0] and Q [z ¼ 1] of the x axis map into

P0 [w ¼ 0] and Q 0 [w ¼ 1] of the triangle, while the third point R [z ¼ 1] maps into R0.

w plane

u

u

R'

P' Q'

10

a b

z plane

P

y

x
RR Q

10

Fig. 8-82 Fig. 8-83
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By the Schwarz–Christoffel transformation,

dw

dz
¼ Aza=p�1(z� 1)b=p�1 ¼ Kza=p�1(1� z)b=p�1

Then, by integration,

w ¼ K

ðz
0

za=p�1(1� z)b=p�1 dzþ B

Since w ¼ 0 when z ¼ 0, we have B ¼ 0. Also, since w ¼ 1 when z ¼ 1, we have

1 ¼ K

ð1
0

za=p�1(1� z)b=p�1 dz ¼ G(a=p)G(b=p)

G
aþ b

p

� �

using properties of the beta and gamma functions [see Chapter 10]. Hence

K ¼
G

aþ b

p

� �
G(a=p)G(b=p)

and the required transformation is

w ¼
G

aþ b

p

� �
G(a=p)G(b=p)

ðz
0

za=p�1(1� z )b=p�1 dz

Note that this agrees with entry A-13 on page 252, since the length of side A0B0 in Fig. 8-39 is

ð1
0

za=p�1(1� z)b=p�1 dz ¼ G(a=p)G(b=p)

G
aþ b

p

� �

8.25. (a) Find a function which maps the upper half of the z plane of Fig. 8-85 onto the shaded region in
the w plane of Fig. 8-84.

(b) Discuss the case where b ! 0.

w plane

a aP'
u

u

T' U'

ai

Q'

–b b

S'

z plane

P
x

y

TS UQ

–1 0 1

Fig. 8-84 Fig. 8-85

Solution

(a) The interior angles at Q and T are each p� a, while the angle at S in 2p� (p� 2a) ¼ pþ 2a. Then, by
the Schwarz–Christoffel transformation, we have

dw

dz
¼ A(zþ 1)(p�a)=p�1z(pþ2a)=p�1(z� 1)(p�a)=p�1 ¼ Az2a=p

(z2 � 1)a=p
¼ Kz2a=p

(1� z2)a=p
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Hence, by integration

w ¼ K

ðz
0

z2a=p

(1� z2)a=p
dzþ B

When z ¼ 0, w ¼ ai; then B ¼ ai and

w ¼ K

ðz
0

z2a=p

(1� z2)a=p
dzþ ai (1)

The value of K can be expressed in terms of the gamma function using the fact that w ¼ b when z ¼ 1

[Problem 8.102]. We find

K ¼ (b� ai)
ffiffiffiffi
p

p

G
a

p
þ 1

2

� �
G 1� a

p

� 
 (2)

(b) As b ! 0, a ! p=2 and the result in (a) reduces to

w ¼ ai� ai

ðz
0

z dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼ ai
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

In this case, Fig. 8-84 reduces to Fig. 8-86. The result

for this case can be found directly from the

Schwarz–Christoffel transformation by considering

P0Q0S0T 0U0 as a polygon with interior angles at Q0,
S0, and T 0 equal to p=2, 2p, and p=2, respectively.

8.26. Prove that the Schwarz–Christoffel transformation of Problem 8.17 maps the upper half plane onto
the interior of the polygon.

Solution

It suffices to prove that the transformation maps the unit circle onto the interior of the polygon, since we already

know [Problem 8.11] that the upper half plane can be mapped onto the unit circle.

Suppose that the function mapping the unit circle C in the z plane onto polygon P in the w plane is given by

w ¼ f (z) where f(z) is analytic inside C.

We must now show that to each point a inside P, there corresponds one and only one point, say z0, such that

f (z0) ¼ a.

Now, by Cauchy’s integral formula, since a is inside P,

1

2pi

þ
P

dw

w� a
¼ 1

Then, since w� a ¼ f (z)� a,

1

2pi

þ
C

f 0(z)

f (z)� a
dz ¼ 1

But f (z)� a is analytic inside C. Hence, from Problem 5.17, we have shown that there is only one zero (say z0)

of f (z)� a inside C, i.e., f (z0) ¼ a, as required.

w plane
u

u

S'ai

Q' T' U'P'

Fig. 8-86
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8.27. Let C be a circle in the z plane having its center on the real axis, and suppose further that it passes
through z ¼ 1 and has z ¼ �1 as an interior point. [See Fig. 8-87.] Determine the image of C in the
w plane under the transformation w ¼ f (z) ¼ 1

2
(zþ 1=z).

Solution

We have dw=dz ¼ 1
2
(1� 1=z2). Since dw=dz ¼ 0 at z ¼ 1, it follows that z ¼ 1 is a critical point. From the

Taylor series of f (z) ¼ 1
2
(zþ 1=z) about z ¼ 1, we have

w� 1 ¼ 1
2
[(z� 1)2 � (z� 1)3 þ (z� 1)4 � � � � ]

By Problem 8.100, we see that angles with vertices at z ¼ 1 are doubled under the transformation. In particular,

since the angle at z ¼ 1 exterior to C is p, the angle at w ¼ 1 exterior to the image C0 is 2p. Hence, C0 has a
sharp tail at w ¼ 1 (see Fig. 8-88). Other points of C0 can be found directly.

z plane
y

x

C

PQ

1–1

w plane

Q'

C'

u

u
P'

–1 1

Fig. 8-87 Fig. 8-88

It is of interest to note that in this case, C encloses the circle jzj ¼ 1, which under the transformation is

mapped into the slit from w ¼ �1 to w ¼ 1. Thus, as C approaches jzj ¼ 1, C0 approaches the straight line

joining w ¼ �1 to w ¼ 1.

8.28. Suppose the circle C of Problem 8.27 is moved so that its center is in the upper half plane but that it
still passes through z ¼ 1 and encloses z ¼ �1. Determine the image of C under the transformation
w ¼ 1

2
(zþ 1=z).

Solution

As in Problem 8.27, since z ¼ 1 is a critical point, we will obtain the sharp tail at w ¼ 1 [Fig. 8-90]. If C does

not entirely enclose the circle jzj ¼ 1 [as shown in Fig. 8-89], the image C0 will not entirely enclose the image

of jzj ¼ 1 [which is the slit from w ¼ �1 to w ¼ 1]. Instead, C0 will only enclose that portion of the slit which
corresponds to the part of jzj ¼ 1 inside C. The appearance of C0 is therefore as shown in Fig. 8-90. By chan-

ging C appropriately, other shapes similar to C0 can be obtained.

z plane
y

x

C

PQ

1–1

w plane

Q'

C'

u

uP'
–1 1

Fig. 8-89 Fig. 8-90

The fact that C0 resembles the cross-section of the wing of an airplane, sometimes called an airfoil, is

important in aerodynamic theory (see Chapter 9) and was first used by Joukowski. For this reason, shapes

such as C0 are called Joukowski airfoils or profiles and w ¼ 1
2
(zþ 1=z) is called a Joukowski transformation.

CHAPTER 8 Conformal Mapping 271



SUPPLEMENTARY PROBLEMS

Transformations

8.29. Given triangle T in the z plane with vertices at i, 1� i, 1þ i, determine the triangle T 0 into which T is mapped

under the transformations (a) w ¼ 3zþ 4� 2i, (b) w ¼ izþ 2� i, (c) w ¼ 5epi=3z� 2þ 4i. What is the

relationship between T and T 0 in each case?

8.30. Sketch the region of the w plane into which the interior of triangle T of Problem 8.29 is mapped under the trans-

formations (a) w ¼ z2, (b) w ¼ iz2 þ (2� i)z, (c) w ¼ zþ 1=z.

8.31. (a) Show that by means of the transformation w ¼ 1=z, the circle C given by jz� 3j ¼ 5 is mapped into the

circle jwþ 3=16j ¼ 5=16. (b) Into what region is the interior of C mapped?

8.32. (a) Prove that under the transformation w ¼ (z� i)=(iz� 1), the region Imfzg � 0 is mapped into the region

jwj � 1. (b) Into what region is Imfzg � 0 mapped under the transformation?

8.33. (a) Show that the transformation w ¼ 1
2
(ze�a þ z�1ea) where a is real, maps the interior of the circle jzj ¼ 1

onto the exterior of an ellipse [see entry B-2 on page 253].

(b) Find the lengths of the major and minor axes of the ellipse in (a) and construct the ellipse.

8.34. Determine the equation of the curve in the w plane into which the straight line xþ y ¼ 1 is mapped under the

transformations (a) w ¼ z2, (b) w ¼ 1=z.

8.35. Show that w ¼ f(1þ z)=(1� z)g2=3 maps the unit circle onto a wedge-shaped region and illustrate graphically.

8.36. (a) Show that the transformation w ¼ 2z� 3i�zþ 5� 4i is equivalent to u ¼ 2xþ 3yþ 5, v ¼ 2y� 3x� 4.

(b) Determine the triangle in the uv plane into which triangle T of Problem 8.29 is mapped under the transform-

ation in (a). Are the triangles similar?

8.37. Express the transformations (a) u ¼ 4x2 � 8y, v ¼ 8x� 4y2 and (b) u ¼ x3 � 3xy2, v ¼ 3x2y� y3 in the

form w ¼ F(z, �z).

Conformal Transformations

8.38. The straight lines y ¼ 2x, xþ y ¼ 6 in the xy plane are mapped onto the w plane by means of the transformation

w ¼ z2. (a) Show graphically the images of the straight lines in the w plane.

(b) Show analytically that the angle of intersection of the straight lines is the same as the angle of intersection of

their images and explain why this is so.

8.39. Work Problem 8.38 if the transformation is (a) w ¼ 1=z, (b) w ¼ f(z� 1)=(zþ 1)g.

8.40. The interior of the square S with vertices at 1, 2, 1þ i, 2þ i is mapped into a region S0 by means of the trans-

formations (a) w ¼ 2zþ 5� 3i, (b) w ¼ z2, (c) w ¼ sinpz. In each case, sketch the regions and verify

directly that the interior angles of S0 are right angles.

8.41. (a) Sketch the images of the circle (x� 3)2 þ y2 ¼ 2 and the line 2xþ 3y ¼ 7 under the transformation

w ¼ 1=z. (b) Determine whether the images of the circle and line of (a) intersect at the same angles as the

circle and line. Explain.

8.42. Work Problem 8.41 for the case of the circle (x� 3)2 þ y2 ¼ 5 and the line 2xþ 3y ¼ 14.

8.43. (a) Work Problem 8.38 if the transformation is w ¼ 3z� 2i�z.

(b) Is your answer to part (b) the same? Explain.

8.44. Prove that a necessary and sufficient condition for the transformation w ¼ F(z, �z) to be conformal in a regionR
is that @F=@�z ¼ 0 and @F=@z=0 in R and explain the significance of this.
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Jacobians

8.45. (a) For each part of Problem 8.29, determine the ratio of the areas T and T 0.

(b) Compare your findings in part (a) with the magnification factor jdw=dzj2 and explain the significance.

8.46. Find the Jacobian of the transformations (a) w ¼ 2z2 � izþ 3� i, (b) u ¼ x2 � xyþ y2, v ¼ x2 þ xyþ y2.

8.47. Prove that a polygon in the z plane is mapped into a similar polygon in the w plane by means of the transform-

ation w ¼ F(z) if and only if F0(z) is a constant different from zero.

8.48. The analytic function F(z) maps the interior R of a circle C defined by jzj ¼ 1 into a region R0 bounded by a

simple closed curve C0. Prove that (a) the length of C0 is
Þ
C
jF0(z)jjdzj, (b) the area of R0 is

ÐÐ
RjF0(z)j2 dx dy.

8.49. Prove the result (8.2) on page 242.

8.50. Find the ratio of areas of the triangles in Problem 8.36(b) and compare with the magnification factor as obtained

from the Jacobian.

8.51. Let u ¼ u(x, y), v ¼ v(x, y), and x ¼ x(j, h), y ¼ y(j, h). (a) Prove that
@(u, v)

@(j, h)
¼ @(u, v)

@(x, y)
� @(x, y)
@(j, h)

.

(b) Interpret the result of (a) geometrically. (c) Generalize the result in (a).

8.52. Show that if w ¼ uþ iv ¼ F(z), z ¼ xþ iy ¼ G(z ) and z ¼ jþ ih, the result in Problem 8.51(a) is

equivalent to the relation

dw

dz

����
���� ¼ dw

dz

����
���� dzdz
����
����

Bilinear or Fractional Transformations

8.53. Find a bilinear transformation that maps the points i, �i, 1 of the z plane into 0, 1, 1 of the w plane,

respectively.

8.54. (a) Find a bilinear transformation that maps the vertices 1þ i, �i, 2� i of a triangle T of the z plane into the

points 0, 1, i of the w plane.

(b) Sketch the region into which the interior of triangle T is mapped under the transformation obtained in (a).

8.55. Prove that the folowing is also a bilinear transformation:

(a) two successive bilinear transformations, (b) any number of successive bilinear transformations.

8.56. Suppose a=b are the two fixed points of a bilinear transformation. Show that it can be written in the form

w� a

w� b
¼ K

z� a

z� b

� �

where K is a constant.

8.57. Suppose a ¼ b in Problem 8.56. Show that the transformation can be written in the form

1

w� a
¼ 1

z� a
þ k

where k is a constant

8.58. Prove that the most general bilinear transformation that maps jzj ¼ 1 onto jwj ¼ 1 is

w ¼ eiu
z� p

�pz� 1

� �

where p is a constant.

CHAPTER 8 Conformal Mapping 273



8.59. Show that the transformation of Problem 8.58 maps jzj , 1 onto (a) jwj , 1 if jpj , 1 and

(b) jwj . 1 if jpj . 1.

8.60. Discuss Problem 8.58 if jpj ¼ 1.

8.61. Work Problem 8.11 directly.

8.62. (a) Suppose z1, z2, z3, z4 are any four different points of a circle. Prove that the cross ratio is real.

(b) Is the converse of part (a) true?

The Schwarz–Christoffel Transformation

8.63. Use the Schwarz–Christoffel transformation to determine a function that maps each of the indicated regions in

the z plane onto the upper half of the w plane.

(a)

z plane

y

x
CB

A

O 1

�/3

w plane

u

u
C'B'O'A'

1

Fig. 8-91 Fig. 8-92

(b)

z plane

B

C

D

A

x

y

E

2

w plane

u

u
E'D'C'B'A'

1–1

Fig. 8-93 Fig. 8-94

(c)

z plane

B

C

C

D

A

x

y

E

±

w plane
u

u
E'D'C'B'A'

1–1

Fig. 8-95 Fig. 8-96
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(d)

z plane

B

A

O

C
x

y

1

5±
/4

w plane
u

u
C'B'O'A'

1

Fig. 8-97 Fig. 8-98

8.64. Verify entry A-14 on page 253 by using the Schwarz–Christoffel transformation.

8.65. Find a function that maps the infinite shaded region of Fig. 8-99 onto the upper half of the z plane

[Fig. 8-100] so that P, Q, R map into P0, Q0, R0, respectively [where P, R, P0, R0 are at infinity as indicated

by the arrows].

w plane

u

u

RQ

P

–p + pi

y

x
R'Q'P'

z plane

Fig. 8-99 Fig. 8-100

8.66. Verify entry A-12 on page 252 by using the Schwarz–Christoffel transformation.

8.67. Find a function that maps each of the indicated shaded regions in the w plane onto the upper half of the

z plane.

(a)

w plane

R

S

QP
u

u

b

a
y

x
S'Q' R'P'

z plane

1

Fig. 8-101 Fig. 8-102
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(b)

w plane

R

S TQP
u

u

a

y

xS' T'R'Q'P'

z plane

1

Fig. 8-103 Fig. 8-104

8.68. (a) Verify entry A-11 of the table on page 252 by using the Schwarz–Christoffel transformation.

(b) Use the result of (a) together with entry A-2 on page 248 to arrive at the entry C-5 on page 256.

Transformations of Boundaries in Parametric Form

8.69. (a) Find a transformation that maps the parabola y2 ¼ 4p(p� x) into a straight line.

(b) Discuss the relationship of your answer to entry A-9 on page 251.

8.70. Find a transformation that maps the hyperbola x ¼ a cosh t, y ¼ a sinh t into a straight line.

8.71. Find a transformation that maps the cycloid x ¼ a(t � sin t), y ¼ a(1� cos t) into a straight line.

8.72. (a) Find a transformation that maps the hypocycloid x2=3 þ y2=3 ¼ a2=3 into a straight line.

(b) Into what region is the interior of the hypocycloid mapped under the transformation? Justify your answer.

[Hint. Parametric equations for the hypocycloid are x ¼ a cos3 t, y ¼ a sin3 t, 0 � t , 2p.]

8.73. Two sets of parametric equations for the parabola y ¼ x2 are (a) x ¼ t, y ¼ t2 and (b) x ¼ +et, y ¼ e2t. Use

these parametric equations to arrive at two possible transformations mapping the parabola into a straight line

and determine whether there is any advantage in using one rather than the other.

Miscellaneous Problems

8.74. (a) Show that the transformation w ¼ 1=z maps the circle jz� aj ¼ a, where a . 0, into a straight line. Illus-

trate graphically, showing the region into which the interior of the circle is mapped, as well as various points of

the circle.

(b) Show how the result in (a) can be used to derive the transformation for the upper half plane into the unit

circle.

8.75. Prove that the function w ¼ (z2=a2)� 1 maps one loop of the lemniscate r2 ¼ 2a2 cos 2u onto the unit circle.

8.76. Prove that the function w ¼ z2 maps the circle jz� aj ¼ a, a . 0, onto the cardioid r ¼ 2a2(1þ cosf) [see

entry C-2 on page 252].

8.77. Show that the Joukowsky transformation w ¼ zþ k2=z can be written as

w� 2k

wþ 2k
¼ z� k

zþ k

� �2
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8.78. (a) Let w ¼ F(z) be a bilinear transformation. Show that the most general linear transformation for which

FfF(z)g ¼ z is given by the following where k2 ¼ 1:

w� p

w� q
¼ k

z� p

z� q

(b) What is the result in (a) if FfF[F(z)]g ¼ z?

(c) Generalize the results in (a) and (b).

8.79. (a) Determine a transformation that rotates the ellipse x2 þ xyþ y2 ¼ 5 so that the major and minor axes are

parallel to the coordinate axes. (b) What are the lengths of the major and minor axes?

8.80. Find a bilinear transformation that maps the circle jz� 1j ¼ 2 onto the line xþ y ¼ 1.

8.81. Verify the transformations (a) A-6, (b) A-7, (c) A-8, on pages 250 and 251.

8.82. Consider the stereographic projection of the complex plane onto a unit sphere tangent to it [see page X]. Let an

XYZ rectangular coordinate system be constructed so that the Z axis coincides with NS while the X and Y axes

coincide with the x and y axes of Fig. 1-6, page X. Prove that the point (X, Y, Z) of the sphere corresponding to

(x, y) on the plane is such that

X ¼ x

x2 þ y2 þ 1
, Y ¼ y

x2 þ y2 þ 1
, Z ¼ x2 þ y2

x2 þ y2 þ 1

8.83. Prove that a mapping by means of stereographic projection is conformal.

8.84. (a) Prove that by means of a stereographic projection, arc lengths of the sphere are magnified in the ratio

(x2 þ y2 þ 1) : 1.

(b) Discuss what happens to regions in the vicinity of the north pole. What effect does this produce on naviga-

tional charts?

8.85. Let u ¼ u(x, y), v ¼ v(x, y) be a transformation of points of the xy plane onto points of the uv plane.

(a) Show that in order that the transformation preserve angles, it is necessary and sufficient that

@u

@x

� �2

þ @v

@x

� �2

¼ @u

@y

� �2

þ @v

@y

� �2

,
@u

@x

@u

@y
þ @v

@x

@v

@y
¼ 0

(b) Deduce from (a) that we must have either

(i)
@u

@x
¼ @v

@y
,
@u

@y
¼ � @v

@x
or (ii)

@u

@x
¼ � @v

@y
,
@u

@y
¼ @v

@x

Thus, conclude that uþ iv must be an analytic function of xþ iy.

8.86. Find the area of the ellipse ax2 þ bxyþ cy2 ¼ 1 where a . 0, c . 0, and b2 , 4ac.

8.87. A transformation w ¼ f (z) of points in a plane is called involutory if z ¼ f (w). In this case, a single repetition of

the transformation restores each point to its original position. Find conditions on a, b, g, d in order that the

bilinear transformation w ¼ (azþ b)=(gzþ d) be involutory.

8.88. Show that the transformations (a) w ¼ (zþ 1)=(z� 1), (b) w ¼ ln coth(z=2) are involutory.
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8.89. Find a bilinear transformation that maps jzj � 1 onto jw� 1j � 1 so that the points 1, �i correspond to 2, 0,

respectively.

8.90. Discuss the significance of the vanishing of the Jacobian for a bilinear transformation.

8.91. Prove that the bilinear transformation w ¼ (azþ b)=(gzþ d) has one fixed point if and only if

(dþ a)2 ¼ 4(ad� bg) = 0.

8.92. (a) Show that the transformation w ¼ (azþ �g)=(gzþ �a) where jaj2 � jgj2 ¼ 1 transforms the unit circle and

its interior into itself.

(b) Show that if jgj2 � jaj2 ¼ 1, the interior is mapped into the exterior.

8.93. Suppose under the transformation w ¼ F(z, �z) any intersecting curves C1 and C2 in the z plane map, respect-

ively, into corresponding intersecting curves C0
1 and C0

2 in the w plane. Prove that if the transformation is con-

formal, then (a) F(z, �z) is a function of z alone, say f(z), and (b) f (z) is analytic.

8.94. (a) Prove the multiplication rule for determinants [see Problem 8.7]:

a1 b1
c1 d1

����
���� a2 b2
c2 d2

����
���� ¼ a1a2 þ b1c2 a1b2 þ b1d2

c1a2 þ c1c2 c1b2 þ d1d2

����
����

(b) Show how to generalize the result in (a) to third order and higher order determinants.

8.95. Find a function that maps onto each other the shaded regions of Figs. 8-105 and 8-106, where QS has length b.

w plane
u

u
UT

S

QP
a

z plane
y

xU'S' T'Q'P'

0 1–1

Fig. 8-105 Fig. 8-106

8.96. (a) Show that the function w ¼
Ð z
0
dt=(1� t6)1=3 maps a regular hexagon into the unit circle.

(b) What is the length of a side of the hexagon in (a)?

8.97. Show that the transformation w ¼ (Az2 þ Bzþ C)=(Dz2 þ Ezþ F) can be considered as a combination of two

bilinear transformations separated by a transformation of the type t ¼ z2.

8.98. Find a function that maps a regular polygon of n sides into the unit circle.

8.99. Verify the entries: (a) A-9, page 251; (b) A-10, page 251; (c) B-3, page 254; (d) B-4, page 254;

(e) C-3, page 255; ( f ) C-4, page 255.

8.100. Suppose the mapping function w ¼ f (z) has the Taylor series expansion

w ¼ f (z) ¼ f (a)þ f 0(a)(z� a)þ � � � þ f (n)(a)

n!
(z� a)n þ � � �

Suppose f (k)(a) ¼ 0 for k ¼ 0, 1, . . . , n� 1 while f (n)(a)=0. Show that the angles in the z plane with vertices at

z ¼ a are multiplied by n in the w plane.

8.101. Determine a function that maps the infinite strip �p=4 � x � p=4 onto the interior of the unit circle jwj � 1 so

that z ¼ 0 corresponds to w ¼ 0.
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8.102. Verify the value of K obtained in equation (2) of Problem 8.25.

8.103. Find a function that maps the upper half plane onto the interior of a triangle with vertices at w ¼ 0, 1, i

corresponding to z ¼ 0, 1, 1, respectively.

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.33. (b) 2 cosha and 2 sinha, respectively 8.70. z ¼ a(coshwþ sinhw)

8.34. (a) u2 þ 2v ¼ 1, (b) u2 þ 2uvþ 2v2 ¼ uþ v 8.71. z ¼ a(wþ i� ie�iw)

8.37. (a) w ¼ (1þ i)(z2 þ �z2)þ (2� 2i)z�zþ 8iz, 8.72. (a) z ¼ a(cos3 wþ i sin3 w)

(b) w ¼ z3

8.46. (a) j4z� ij2, (b) 4(x2 þ y2) 8.78. (b) Same as (a) with k3 ¼ 1

8.53. w ¼ (1� i)(z� i)=2(z� 1) 8.86. 2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac� b2

p

8.54. (a) w ¼ (2z� 2� 2i)=f(i� 1)z� 3� 5ig 8.87. d ¼ �a

8.62. Yes 8.96. (b) (1=6)
ffiffiffi
23

p
G(1=3)

8.63. (a) w ¼ z3, (b) w ¼ cosh(p z=2), (c) w ¼ ez, 8.101. w ¼ tan z

(d) w ¼ z4=5

8.65. z ¼ (wþ p� pi)2=3 8.103. w ¼ G(3=4)ffiffiffiffi
p

p
G(1=4)

ðx
0

t�1=2(1� t)�3=4 dt

8.69. (a) One possibility is z ¼ p� pw2 þ 2piw ¼ p(1þ iw)2 obtained by using the parametric equations

x ¼ p(1� t2), y ¼ 2pt
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CHAP T E R 9

Physical Applications of
Conformal Mapping

9.1 Boundary Value Problems

Many problems of science and engineering when formulated mathematically lead to partial differential
equations and associated conditions called boundary conditions. The problem of determining solutions
to partial differential equations, which satisfy the boundary conditions, is called a boundary-value problem.

It is of fundamental importance, from a mathematical as well as physical viewpoint, that one should not
only be able to find such solutions (i.e., that solutions exist), but that for any given problem there should be
only one solution (i.e., the solution is unique).

9.2 Harmonic and Conjugate Functions

A function satisfying Laplace’s equation

r2F ¼ @2F

@x2
þ @2F

@y2
¼ 0 (9:1)

in a regionR is called harmonic inR. As we have already seen, if f (z) ¼ u(x, y)þ iv(x, y) is analytic inR,
then u and v are harmonic in R.

EXAMPLE 9.1: Let f (z) ¼ 4z2 � 3iz ¼ 4(xþ iy)2 � 3i(xþ iy) ¼ 4x2 � 4y2 þ 3yþ i(8xy� 3x). Then

u ¼ 4x2� 4y2 þ 3y, v ¼ 8xy� 3x. Since u and v satisfy Laplace’s equation, they are harmonic.

The functions u and v are called conjugate functions; and given one, the other can be determined within
an arbitrary additive constant [see Chapter 3].

9.3 Dirichlet and Neumann Problems

LetR [Fig. 9-1] be a simply-connected region bounded by a simple closed curve C. Two types of boundary-
value problems are of great importance.

(1) Dirichlet’s problem seeks the determination of a function F that satisfies Laplace’s equation
(9.1) [i.e., is harmonic] in R and takes prescribed values on the boundary C.
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(2) Neumann’s problem seeks the determination of a function F that satisfies Laplace’s equation
(9.1) in R and whose normal derivative @F=@n takes prescribed values on the boundary C.

y

x

C

Fig. 9-1

The region R may be unbounded. For example, R can be the upper half plane with the x axis as the
boundary C.

It can be shown that solutions to both the Dirichlet and Neumann problems exist and are unique [the
Neumann problem within an arbitrary additive constant] under very mild restrictions on the boundary con-
ditions [see Problems 9.29 and 9.80].

It is of interest that a Neumann problem can be stated in terms of an appropriately stated Dirichlet
problem (see Problem 9.79). Hence, if we can solve the Dirichlet problem, we can (at least theoretically)
solve a corresponding Neumann problem.

9.4 The Dirichlet Problem for the Unit Circle. Poisson’s Formula

Let C be the unit circle jzj ¼ 1 and R be its interior. A function that satisfies Laplace’s equation [i.e.,
is harmonic] at each point (r, u) in R and takes on the prescribed value F(u) on C [i.e., F(1, u) ¼ F(u)],
is given by

F(r, u) ¼ 1

2p

ð2p
0

(1� r2)F(f) df

1� 2r cos(u� f)þ r2
(9:2)

This is called Poisson’s formula for a circle [see Chapter 5, page 146].

9.5 The Dirichlet Problem for the Half Plane

A function that is harmonic in the half plane y . 0 [Imfzg . 0] and that takes on the prescribed value G(x)
on the x axis [i.e., F(x, 0) ¼ G(x), �1 , x , 1], is given by

F(x, y) ¼ 1

p

ð1
�1

yG(h) dh

y2 þ (x� h)2
(9:3)

This is sometimes called Poisson’s formula for the half plane [see Chapter 5, page 146].
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9.6 Solutions to Dirichlet and Neumann Problems by Conformal Mapping

The Dirichlet and Neumann problems can be solved for any simply-connected region R, which can be
mapped conformally by an analytic function onto the interior of a unit circle or half plane. [By Riemann’s
mapping theorem, this can always be accomplished, at least in theory.] The basic ideas involved are as
follows.

(a) Use the mapping function to transform the boundary-value problem for the regionR into a cor-
responding one for the unit circle or half plane.

(b) Solve the problem for the unit circle or half plane.
(c) Use the solution in (b) to solve the given problem by employing the inverse mapping function.

Important theorems used in this connection are as follows.

THEOREM 9.1. Let w ¼ f (z) be analytic and one-to-one in a region R of the z plane. Then there exists a
unique inverse z ¼ g(w) in R, and f 0(z)=0 in R [thus insuring that the mapping is
conformal at each point of R].

THEOREM 9.2. Let F(x, y) be harmonic in R and suppose that R is mapped one-to-one onto R0 of the
w plane by the mapping function w ¼ f (z), where f (z) is analytic. Then f 0(z)=0,
x ¼ x(u, v), y ¼ y(u, v), and F(x, y) ¼ F[x(u, v), y(u, v)] ; C(u, v) is harmonic in
R0. In other words, a harmonic function is transformed into a harmonic function under
a transformation w ¼ f (z), which is analytic [see Problem 9.4].

THEOREM9.3. SupposeF ¼ a [a constant] on the boundary or part of the boundary C of a region in the z
plane. ThenC ¼ a on its image C0 in the w plane. Similarly, if the normal derivative ofF
is zero, i.e., @F=@n ¼ 0 on C, then the normal derivative of C is zero on C0.

Applications to Fluid Flow

9.7 Basic Assumptions

The solution of many important problems in fluid flow, also referred to as fluid dynamics, hydrodynamics or
aerodynamics, is often achieved by complex variable methods under the following assumptions.

(1) The fluid flow is two dimensional, i.e., the basic flow pattern and characteristics of the fluid
motion in any plane are essentially the same as in any parallel plane. This permits us to
confine our attention to just a single plane that we take to be the z plane. Figures constructed
in this plane are interpreted as cross-sections of corresponding infinite cylinders perpendicular
to the plane. For example, in Fig. 9-7, page 286, the circle represents an infinite cylindrical
obstacle around which the fluid flows. Naturally, an infinite cylinder is nothing more than a
mathematical model of a physical cylinder which is so long that end effects can be reasonably
neglected.

(2) The flow is stationary or steady, i.e., the velocity of the fluid at any point depends only on the
position (x, y) and not on time.

(3) The velocity components are derivable from a potential, i.e., suppose Vx and Vy denote the
components of velocity of the fluid at (x, y) in the positive x and y directions, respectively.
Then there exists a function F, called the velocity potential, such that

Vx ¼
@F

@x
, Vy ¼

@F

@y
(9:4)
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An equivalent assumption is that if C is any simple closed curve in the z plane and Vt is the
tangential component of velocity on C, thenþ

C

Vt ds ¼
þ
C

Vx dxþ Vy dy ¼ 0 (9:5)

See Problem 9.48.
Either of the integrals in (9.5) is called the circulation of the fluid along C. When the circulation

is zero, the flow is called irrotational or circulation free.
(4) The fluid is incompressible, i.e., the density, or mass per unit volume of the fluid, is constant. If

Vn is the normal component of velocity on C, this leads to the conclusion (see Problem 9.48) thatþ
C

Vn ds ¼
þ
C

Vx dy� Vy dx ¼ 0 (9:6)

or

@Vx

@x
þ @Vy

@y
¼ 0 (9:7)

which expresses the condition that the quantity of fluid contained inside C is a constant, i.e., the
quantity entering C is equal to the quantity leaving C. For this reason, equation (9.6), or the equiv-
alent (9.7), is called the equation of continuity.

(5) The fluid is non-viscous, i.e., has no viscosity or internal friction. A moving viscous fluid tends to
adhere to the surface of an obstacle placed in its path. If there is no viscosity, the pressure forces
on the surface are perpendicular to the surface. A fluid which is non-viscous and incompressible,
is often called an ideal fluid. It must of course be realized that such a fluid is only a mathematical
model of a real fluid in which such effects can be safely assumed negligible.

9.8 The Complex Potential

From (9.4) and (9.7), it is seen that the velocity potential F is harmonic, i.e., satisfies Laplace’s equation

@2F

@x2
þ @2F

@y2
¼ 0 (9:8)

It follows that there must exist a conjugate harmonic function, say C(x, y), such that

V(z) ¼ F(x, y)þ iC(x, y) (9:9)

is analytic. By differentiation, we have, using (9.4),

dV

dz
¼ V0(z) ¼ @F

@x
þ i

@C

@x
¼ @F

@x
� i

@F

@y
¼ Vx � iVy (9:10)

Thus, the velocity [sometimes called the complex velocity] is given by

V ¼ Vx þ iVy ¼ dV=dz ¼ V0(z) (9:11)

and has magnitude

V ¼ jVj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ V2

y

q
¼ jV0(z)j ¼ jV0(z)j (9:12)

Points at which the velocity is zero, i.e., V0(z) ¼ 0, are called stagnation points.
The function V(z), of fundamental importance in characterizing a flow, is called the complex potential.
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9.9 Equipotential Lines and Streamlines

The one parameter families of curves

F(x, y) ¼ a, C(x, y) ¼ b (9:13)

where a and b are constants, are orthogonal families called, respectively, the equipotential lines and
streamlines of the flow [although the more appropriate terms equipotential curves and stream curves are
sometimes used]. In steady motion, streamlines represent the actual paths of fluid particles in the flow
pattern.

The function C is called the stream function while, as already seen, the function F is called the velocity
potential function or simply the velocity potential.

9.10 Sources and Sinks

In the above development of theory, we assumed that there were no points in the z plane [i.e., lines in the
fluid] at which fluid appears or disappears. Such points are called sources and sinks, respectively [also
called line sources and line sinks]. At such points, which are singular points, the equation of continuity
(9.7), and hence (9.8), fail to hold. In particular, the circulation integral in (9.5) may not be zero around
closed curves C that include such points.

No difficulty arises in using the above theory, however, provided we introduce the proper singularities
into the complex potential V(z) and note that equations such as (9.7) and (9.8) then hold in any region that
excludes these singular points.

9.11 Some Special Flows

Theoretically, any complex potential V(z) can be associated with, or interpreted as, a particular two-
dimensional fluid flow. The following are some simple cases arising in practice. [Note that a constant
can be added to all complex potentials without affecting the flow pattern.]

(1) Uniform Flow. The complex potential corresponding to the flow of a fluid at constant speed V0 in
a direction making an angle d with the positive x direction is (Fig. 9-2)

V(z) ¼ V0 e
�idz (9:14)

x
δ

y V0

x

y

a

Fig. 9-2 Fig. 9-3
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(2) Source at z ¼ a. If fluid is emerging at a constant rate from a line source at z ¼ a (Fig. 9-3), the
complex potential is

V(z) ¼ k ln(z� a) (9:15)

where k . 0 is called the strength of the source. The streamlines are shown heavy while the equi-
potential lines are dashed.

(3) Sink at z ¼ a. In this case, the fluid is disappearing at z ¼ a (Fig. 9-4) and the complex potential is
obtained from that of the source by replacing k by �k, giving

V(z) ¼ �k ln(z� a) (9:16)

x

y

a

x

y

a

Fig. 9-4 Fig. 9-5

(4) Flow with Circulation. The flow corresponding to the complex potential

V(z) ¼ �ik ln(z� a) (9:17)

is as indicated in Fig. 9-5. The magnitude of the velocity of fluid at any point is in this case inver-
sely proportional to the distance from a.

The point z ¼ a is called a vortex and k is called its strength. The circulation [see equation
(9.5)] about any simple closed curve C enclosing z ¼ a is equal in magnitude to 2pk. Note
that, by changing k to �k in (9.17), the complex potential corresponding to a “clockwise”
vortex is obtained.

(5) Superposition of Flows. By addition of complex potentials, more complicated flow patterns can
be described. An important example is obtained by considering the flow due to a source at z ¼ �a
and a sink of equal strength at z ¼ a. Then, the complex potential is

V(z) ¼ k ln(zþ a)� k ln(z� a) ¼ k ln
zþ a

z� a

� �
(9:18)

By letting a ! 0 and k ! 1 in such a way that 2ka ¼ m is finite, we obtain the complex potential

V(z) ¼ m

z
(9:19)

This is the complex potential due to a doublet or dipole, i.e., the combination of a source and sink
of equal strengths separated by a very small distance. The quantity m is called the dipole moment.
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9.12 Flow Around Obstacles

An important problem in fluid flow is that of determining the flow pattern of a fluid initially moving with
uniform velocity V0 in which an obstacle has been placed.

V0

u

u

w plane
y

z plane

C
x C ′

η
z plane

x

Fig. 9-6 Fig. 9-7 Fig. 9-8

A general principle involved in this type of problem is to design a complex potential having the form

V(z) ¼ V0zþ G(z) (9:20)

(if the flow is in the z plane) where G(z) is such that limjzj!1 G0(z) ¼ 0, which means physically that far

from the obstacle the velocity has constant magnitude (in this case V0). Furthermore, the complex potential
must be chosen so that one of the streamlines represents the boundary of the obstacle.

A knowledge of conformal mapping functions is often useful in obtaining complex potentials. For
example, the complex potential corresponding to the uniform flow in the w plane of Fig. 9-6 is given by
V0w. By use of the mapping function w ¼ zþ a2=z [see entry A-4, page 249], the upper half w plane of
Fig. 9-6 corresponds to the upper half z plane exterior to circle C, and the complex potential for the flow
of Fig. 9-7 is given by

V(z) ¼ V0 zþ a2

z

� �
(9:21)

Similarly, if z ¼ F(z ) maps C0 and its exterior onto C and its exterior [see Fig. 9-8], then the complex poten-
tial for the flow of Fig. 9-8 is obtained by replacing z by F(z ) in (9.21). The complex potential can also be
obtained on going directly from the w to the z plane by means of a suitable mapping function.

Using the above and introducing other physical phenomena such as circulation, we can describe the flow
pattern about variously shaped airfoils and thus describe the motion of an airplane in flight.

9.13 Bernoulli’s Theorem

If P denotes the pressure in a fluid and V is the speed of the fluid, then Bernoulli’s theorem states that

Pþ 1

2
sV2 ¼ K (9:22)

where s is the fluid density and K is a constant along any streamline.

9.14 Theorems of Blasius

(1) Let X and Y be the net forces, in the positive x and y directions, respectively, due to fluid pressure
on the surface of an obstacle bounded by a simple closed curve C. Then, if V is the complex
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potential for the flow,

X � iY ¼ 1

2
is

þ
C

dV

dz

� �2

dz (9:23)

(2) Suppose M is the moment about the origin of the pressure forces on the obstacle. Then

M ¼ Re � 1

2
s

þ
C

z
dV

dz

� �2

dz

8<
:

9=
; (9:24)

where “Re” denotes as usual “real part of”.

Applications to Electrostatics

9.15 Coulomb’s Law

Let r be the distance between two point electric charges, q1 and q2. Then, the force between them is given in
magnitude by Coulomb’s law, which states that

F ¼ q1q2

kr2
(9:25)

and is one of repulsion or attraction according as the charges are like (both positive or both negative) or
unlike (one positive and the other negative). The constant k in (9.25), which is called the dielectric constant,
depends on the medium; in a vacuum k ¼ 1, in other cases k . 1. In the following, we assume k ¼ 1 unless
otherwise specified.

9.16 Electric Field Intensity. Electrostatic Potential

Suppose we are given a charge distribution, which may be continuous, discrete, or a combination. This
charge distribution sets up an electric field. If a unit positive charge (small enough so as not to affect the
field appreciably) is placed at any point A not already occupied by charge, the force acting on this
charge is called the electric field intensity at A and is denoted by E. This force is derivable from a potential
F, which is sometimes called the electrostatic potential. In symbols,

E ¼ �gradF ¼ �rF (9:26)

If the charge distribution is two dimensional, which is our main concern here, then

E ¼ Ex þ iEy ¼ � @F

@x
� i

@F

@y
where Ex ¼ � @F

@x
, Ey ¼ � @F

@y
(9:27)

In such a case, if Et denotes the component of the electric field intensity tangential to any simple closed
curve C in the z plane, þ

C

Et ds ¼
þ
C

Ex dxþ Ey dy ¼ 0 (9:28)
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9.17 Gauss’ Theorem

Let us confine ourselves to charge distributions, which can be considered two dimensional. If C is any
simple closed curve in the z plane having a net charge q in its interior (actually an infinite cylinder enclosing
a net charge q) and En is the normal component of the electric field intensity, thenGauss’ theorem states thatþ

C

En ds ¼ 4pq (9:29)

If C does not enclose any net charge, this reduces toþ
C

En ds ¼
þ
C

Ex dy� Ey dx ¼ 0 (9:30)

It follows that in any region not occupied by charge,

@Ex

@x
þ @Ey

@y
¼ 0 (9:31)

From (9.27) and (9.31), we have

@2F

@x2
þ @2F

@y2
¼ 0 (9:32)

i.e., F is harmonic at all points not occupied by charge.

9.18 The Complex Electrostatic Potential

From the above, it is evident that there must exist a harmonic function C conjugate to F such that

V(z) ¼ F(x, y)þ iC(x, y) (9:33)

is analytic in any region not occupied by charge. We callV(z) the complex electrostatic potential or, simply
complex potential. In terms of this, (9.27) becomes

E ¼ � @F

@x
� i

@F

@y
¼ � @F

@x
þ i

@C

@y
¼ � dV

dz
¼ �V0(z) (9:34)

and the magnitude of E is given by E ¼ jEj ¼ j�V0(z)j ¼ jV0(z)j.
The curves (cylindrical surfaces in three dimensions)

F(x, y) ¼ a, C(x, y) ¼ b (9:35)

are called equipotential lines and flux lines, respectively.

9.19 Line Charges

The analogy of the above with fluid flow is quite apparent. The electric field in electrostatic problems
corresponds to the velocity field in fluid flow problems, the only difference being a change of sign in the
corresponding complex potentials.

The idea of sources and sinks of fluid flow have corresponding analogs for electrostatics. Thus the
complex (electrostatic) potential due to a line charge q per unit length at z0 (in a vacuum) is given by

V(z) ¼ �2q ln(z� z0) (9:36)
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and represents a source or sink according as q , 0 or q . 0. Similarly, we talk about doublets or dipoles,
etc. If the medium is not a vacuum, we replace q in (9.36) by q=k.

9.20 Conductors

If a solid is perfectly conducting, i.e., is a perfect conductor, all charge is located on its surface. Thus, if we
consider the surface represented by the simple closed curve C in the z plane, the charges are in equilibrium
on C and hence C is an equipotential line.

An important problem is the calculation of potential due to a set of charged cylinders. This can be accom-
plished by use of conformal mapping.

9.21 Capacitance

Two conductors having charges of equal magnitude q but of opposite sign, have a difference of potential,
say V. The quantity C defined by

q ¼ CV (9:37)

depends only on the geometry of the conductors and is called the capacitance. The conductors themselves
form what is called a condenser or capacitor.

Applications toHeat Flow

9.22 Heat Flux

Consider a solid having a temperature distribution that may be varying. We are often interested in the quan-
tity of heat conducted per unit area per unit time across a surface located in the solid. This quantity, some-
times called the heat flux across the surface, is given by

Q ¼ �K gradF (9:38)

where F is the temperature and K, assumed to be a constant, is called the thermal conductivity and depends
on the material of which the solid is made.

9.23 The Complex Temperature

Suppose we restrict ourselves to problems of a two-dimensional type. Then

Q ¼ �K
@F

@x
þ i

@F

@y

� �
¼ Qx þ iQy where Qx ¼ �K

@F

@x
, Qy ¼ �K

@F

@y
(9:39)

Let C be any simple closed curve in the z plane (representing the cross section of a cylinder). IfQt andQn

are the tangential and normal components of the heat flux and if steady state conditions prevail so that there
is no net accumulation of heat inside C, then we haveþ

C

Qn ds ¼
þ
C

Qx dy� Qy dx ¼ 0,

þ
C

Qt ds ¼
þ
C

Qx dxþ Qy dy ¼ 0 (9:40)
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assuming no sources or sinks inside C. The first equation of (9.40) yields

@Qx

@x
þ @Qy

@y
¼ 0 (9:41)

which becomes on using (9.39),

@2F

@x2
þ @2F

@y2
¼ 0

that is, F is harmonic. Introducing the harmonic conjugate function C, we see that

V(z) ¼ F(x, y)þ iC(x, y) (9:42)

is analytic. The families of curves

F(x, y) ¼ a, C(x, y) ¼ b (9:43)

are called isothermal lines and flux lines, respectively, while V(z) is called the complex temperature.
The analogies with fluid flow and electrostatics are evident and procedures used in these fields can be

similarly employed in solving various temperature problems.

SOLVED PROBLEMS

Harmonic Functions

9.1. Show that the following functions are harmonic in any finite region R of the z plane:

(a) x2 � y2 þ 2y (b) sin x cosh y

Solution

(a) Suppose F ¼ x2 � y2 þ 2y. We have @2F=@x2 ¼ 2, @2F=@y2 ¼ �2. Then (@2F=@x2)þ (@2F=@y2) ¼ 0

and F is harmonic in R.

(b) Suppose F ¼ sin x cosh y. We have @2F=@x2 ¼ �sin x cosh y, @2F=@y2 ¼ sin x cosh y. Then,

(@2F=@x2)þ (@2F=@y2) ¼ 0 and F is harmonic in R.

9.2. Show that the functions of Problem 9.1 are harmonic in the w plane under the transformation z ¼ w3.

Solution

Suppose z ¼ w3. Then xþ iy ¼ (uþ iv)3 ¼ u3 � 3uv2 þ i(3u2v� v3) and x ¼ u3 � 3uv2, y ¼ 3u2v� v3.

(a) F ¼ x2 � y2 þ 2y ¼ (u3 � 3uv2)2 � (3u2v� v3)2 þ 2(3u2v� v3)

¼ u6 � 15u4v2 þ 15u2v4 � v6 þ 6u2v� 2v3

Then @2F=@u2 ¼ 30u4 � 180u2v2 þ 30v4 þ 12v, @2F=@v2 ¼ �30u4 þ 180u2v2 � 30v4 � 12v and

(@2F=@u2) þ (@2F=@v2) ¼ 0 as required.

(b) We must show that F ¼ sin(u3�3uv2) cosh(3u2v� v3) satisfies (@2F=@u2)þ (@2F=@v2) ¼ 0. This can

readily be established by straightforward but tedious differentiation.

This problem illustrates a general result proved in Problem 9.4.

9.3. Prove that
@2F

@x2
þ @2F

@y2
¼ j f 0(z)j2 @2F

@u2
þ @2F

@v2

� �
where w ¼ f (z) is analytic and one-to-one.
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Solution

The functionF(x, y) is transformed into a functionF[x(u, v), y(u, v)] by the transformation. By differentiation,

we have

@F

@x
¼ @F

@u

@u

@x
þ @F

@v

@v

@x
,

@F

@y
¼ @F

@u

@u

@y
þ @F

@v

@v

@y

@2F

@x2
¼ @F

@u

@2u

@x2
þ @u

@x

@

@x

@F

@u

� �
þ @F

@v

@2v

@x2
þ @v

@x

@

@x

@F

@v

� �

¼ @F

@u

@2u

@x2
þ @u

@x

@

@u

@F

@u

� �
@u

@x
þ @

@v

@F

@u

� �
@v

@x

� 	
þ @F

@v

@2v

@x2
þ @v

@x

@

@u

@F

@v

� �
@u

@x
þ @

@v

@F

@v

� �
@v

@x

� 	

¼ @F

@u

@2u

@x2
þ @u

@x

@2F

@u2
@u

@x
þ @2F

@v@u

@v

@x

� 	
þ @F

@v

@2v

@x2
þ @v

@x

@2F

@u@v

@u

@x
þ @2F

@v2
@v

@x

� 	

Similarly,

@2F

@y2
¼ @F

@u

@2u

@y2
þ @u

@y

@2F

@u2
@u

@y
þ @2F

@v@u

@v

@y

� 	
þ @F

@v

@2v

@y2
þ @v

@y

@2F

@u@v

@u

@y
þ @2F

@v2
@v

@y

� 	

Adding,

@2F

@x2
þ @2F

@y2
¼ @F

@u

@2u

@x2
þ @2u

@y2

� �
þ @F

@v

@2v

@x2
þ @2v

@y2

� �
þ @2F

@u2
@u

@x

� �2

þ @u

@y

� �2
" #

þ 2
@2F

@u@v

@u

@x

@v

@x
þ @u

@y

@v

@y

� 	
þ @2F

@v2
@v

@x

� �2

þ @v

@y

� �2
" # (1)

Since u and v are harmonic, (@2u=@x2)þ (@2u=@y2) ¼ 0, (@2v=@x2)þ (@2v=@y2) ¼ 0. Also, by the Cauchy–

Riemann equations, @u=@x ¼ @v=@y, @v=@x ¼ �@u=@y. Then

@u

@x

� �2
þ @u

@y

� �2

¼ @v

@x

� �2

þ @v

@y

� �2

¼ @u

@x

� �2

þ @v

@x

� �2

¼ @u

@x
þ i

@v

@x

����
����2¼ j f 0(z)j2

@u

@x

@v

@x
þ @u

@y

@v

@y
¼ 0

Hence (1) becomes

@2F

@x2
þ @2F

@y2
¼ j f 0(z)j2 @2F

@u2
þ @2F

@v2

� �

9.4. Prove that a harmonic function F(x, y) remains harmonic under the transformation w ¼ f (z) where
f (z) is analytic and one-to-one.

Solution

This follows at once from Problem 9.3, since (@2F=@x2)þ (@2F=@y2) ¼ 0 and f 0(z)=0 because f (z) is one-

to-one, so (@2F=@u2)þ (@2F=@v2) ¼ 0.

9.5. Let a be real. Show that the real and imaginary parts of w ¼ ln(z� a) are harmonic functions in any
region R not containing z ¼ a.
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Solution

Method 1. IfR does not contain a, then w ¼ ln(z� a) is analytic inR. Hence, the real and imaginary parts are

harmonic in R.

Method 2. Let z� a ¼ reiu. Then, if principal values are used for u, w ¼ uþ iv ¼ ln(z� a) ¼ ln r þ iu so that
u ¼ ln r, v ¼ u.

In the polar coordinates (r, u), Laplace’s equation is

@2F

@r2
þ 1

r

@F

@r
þ 1

r2
@2F

@u2
¼ 0

and, by direct substitution, we find that u ¼ ln r and v ¼ u are solutions ifR does not contain r ¼ 0, i.e., z ¼ a.

Method 3. If z� a ¼ reiu, then x� a ¼ r cos u, y ¼ r sin u and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a)2 þ y2

p
, u ¼ tan�1fy=(x� a)g.

Then w ¼ uþ iv ¼ 1
2
lnf(x� a)2 þ y2g þ i tan�1fy=(x� a)g and u ¼ 1

2
lnf(x� a)2 þ y2g, v ¼ tan�1fy=(x� a)g.

Substituting these into Laplace’s equation (@2F=@x2)þ (@2F=@y2) ¼ 0, we find after straightforward differen-

tiation that u and v are solutions if z=a.

Dirichlet and Neumann Problems

9.6. Find a function harmonic in the upper half of the z plane, Imfzg . 0, which takes the prescribed

values on the x axis given by G(x) ¼ 1 x . 0

0 x , 0
:

�

Solution

We must solve for F(x, y) the boundary-value problem

@2F

@x2
þ @2F

@y2
¼ 0, y . 0; lim

y!0þ
F(x, y) ¼ G(x) ¼ 1 x . 0

0 x , 0

�

This is a Dirichlet problem for the upper half plane [see Fig. 9-9].

The function Auþ B, where A and B are real constants, is harmonic since it is the imaginary part of

A ln zþ B.

To determine A and B, note that the boundary conditions are F ¼ 1 for x . 0, i.e., u ¼ 0 and F ¼ 0 for

x , 0, i.e., u ¼ p. Thus

1 ¼ A(0)þ B (1)

0 ¼ A(p)þ B (2)

from which A ¼ �1=p, B ¼ 1.

Then the required solution is

F ¼ Auþ B ¼ 1� u

p
¼ 1� 1

p
tan�1 y

x

� 

Another Method. Using Poisson’s formula for the half plane

F(x, y) ¼ 1

p

ð1
�1

yG(h) dh

y2 þ (x� h)2
¼ 1

p

ð0
�1

y[0] dh

y2 þ (x� h)2
þ 1

p

ð1
0

y[1] dh

y2 þ (x� h)2

¼ 1

p
tan�1 h� x

y

� �����1
0

¼ 1

2
þ 1

p
tan�1 x

y

� �
¼ 1� 1

p
tan�1 y

x

� 
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Φ = 0 Φ = 1 

r

x
θ

y
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x

θ2θ1

Fig. 9-9 Fig. 9-10

9.7. Solve the boundary-value problem

Solution

@2F

@x2
þ @2F

@y2
¼ 0, y . 0; lim

y!0þ
F(x, y) ¼ G(x) ¼

T0 x , �1

T1 �1 , x , 1

T2 x > 1

8><
>:

where T0, T1, T2 are constants.

This is a Dirichlet problem for the upper half plane [see Fig. 9-10].

The function Au1 þ Bu2 þ C where A, B, and C are real constants, is harmonic since it is the imaginary part

of A ln(zþ 1)þ B ln(z� 1)þ C.

To determine A, B, C, note that the boundary conditions are: (a) F ¼ T2 for x . 1, i.e., u1 ¼ u2 ¼ 0;

(b) F ¼ T1 for �1 , x , 1, i.e., u1 ¼ 0, u2 ¼ p; (c) F ¼ T0 for x , �1, i.e., u1 ¼ p, u2 ¼ p. Thus

(1) T2 ¼ A(0)þ B(0)þ C, (2) T1 ¼ A(0)þ B(p)þ C, (3) T0 ¼ A(p)þ B(p)þ C

from which C ¼ T2, B ¼ (T1 � T2)=p, A ¼ (T0 � T1)=p.
Then the required solution is

F ¼ Au1 þ Bu2 þ C ¼ T0 � T1

p
tan�1 y

xþ 1

� �
þ T1 � T2

p
tan�1 y

x� 1

� 

þ T2

Another Method. Using Poisson’s formula for the half plane

F(x, y) ¼ 1

p

ð1
�1

yG(h) dh

y2 þ (x� h)2

¼ 1

p

ð�1

�1

yT0 dh

y2 þ (x� h)2
þ 1

p

ð1
�1

yT1 dh

y2 þ (x� h)2
þ 1

p

ð1
1

yT2 dh

y2 þ (x� h)2

¼ T0

p
tan�1 h� x

y

� ������1

�1
þ T1

p
tan�1 h� x

y

� �����1
�1

þ T2

p
tan�1 h� x

y

� �����1
1

¼ T0 � T1

p
tan�1 y

xþ 1

� �
þ T1 � T2

p
tan�1 y

x� 1

� 

þ T2
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9.8. Find a function harmonic inside the unit circle jzj ¼ 1 and taking the prescribed values given by

F(u) ¼ 1 0 , u , p
0 p , u , 2p

�
on its circumference.

Solution

This is a Dirichlet problem for the unit circle [Fig. 9-11] in which we seek a function satisfying Laplace’s

equation inside jzj ¼ 1 and taking the values 0 on arc ABC and 1 on arc CDE.

y
z plane

B

D

CA
E

Φ = 0

Φ = 1

x

w plane

A′ B′ C′ D′ E′

u

Φ = 0 Φ = 1
u

Fig. 9-11 Fig. 9-12

Method 1. Using conformal mapping.

We map the interior of the circle jzj ¼ 1 onto the upper half of the w plane [Fig. 9-12] by using the mapping

function z ¼ (i� w)=(iþ w) or w ¼ if 1� z)=(1þ zð Þg [see Problem 8.12, page 263, and interchange z and w].

Under this transformation, arcs ABC and CDE are mapped onto the negative and positive real axis A0B0C0

and C0D0E0, respectively, of the w plane. Then, by Problem 9.81, the boundary conditions F ¼ 0 on arc ABC

and F ¼ 1 on arc CDE become, respectively, F ¼ 0 on A0B0C0 and F ¼ 1 on C0D0E0.
Thus, we have reduced the problem to finding a function F harmonic in the upper half w plane and taking

the values 0 for u , 0 and 1 for u . 0. But this problem has already been solved in Problem 9.6 and the sol-

ution (replacing x by u and y by v) is given by

F ¼ 1� 1

p
tan�1

�
v

u

�
(1)

Now from w ¼ if 1� z)=(1þ zð Þg, we find

u ¼ 2y

(1þ x)2 þ y2
, v ¼ 1� (x2 þ y2)

(1þ x)2 þ y2
:

Then, substituting these in (1), we find the required solution

F ¼ 1� 1

p
tan�1 2y

1� [x2 þ y2]

� �
(2)

or, in polar coordinates (r, u), where x ¼ r cos u, y ¼ r sin u,

F ¼ 1� 1

p
tan�1 2r sin u

1� r2

� �
(3)

Method 2. Using Poisson’s formula,

F(r, u) ¼ 1

2p

ð2p
0

F(f) df

1� 2r cos(u� f)þ r2

¼ 1

2p

ðp
0

df

1� 2r cos(u� f)þ r2
¼ 1� 1

p
tan�1 2r sin u

1� r2

� �

by direct integration [see Problem 5.69(b), page 165].
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Applications to Fluid Flow

9.9. (a) Find the complex potential for a fluid moving with constant speed V0 in a direction making an
angle d with the positive x axis [see Fig. 9-13].

z plane
y

x

V0 V0 sin d

V0 cos d

d

Fig. 9-13

(b) Determine the velocity potential and stream function.

(c) Determine the equations for the streamlines and equipotential lines.

Solution

(a) The x and y components of velocity are Vx ¼ V0 cos d, and Vy ¼ V0 sin d.

The complex velocity is

V ¼ Vx þ iVy ¼ V0 cos dþ iV0 sin d ¼ V0 e
id

The complex potential V(z) is given by

dV

dz
¼ V ¼ V0 e

�id

Then integrating,

V(z) ¼ V0 e
�idz

omitting the constant of integration.

(b) The velocity potentialF and stream functionC are the real and imaginary parts of the complex potential.

Thus

V(z) ¼ Fþ iC ¼ V0e
�idz ¼ V0(x cos dþ y sin d)þ iV0( y cos d� x sin d)

and

F ¼ V0(x cos dþ y sin d), C ¼ V0( y cos d� x sin d)

Another Method.

@F

@x
¼ Vx ¼ V0 cos d (1)

@F

@y
¼ Vy ¼ V0 sin d (2)

Solving forF in (1),F ¼ (V0 cos d)xþ G(y). Substituting in (2),G0( y) ¼ V0 sin d andG( y) ¼ (V0 sin d)y,

omitting the constant of integration. Then

F ¼ (V0 cos d)xþ (V0 sin d)y
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From the Cauchy–Riemann equations,

@C

@y
¼ @F

@x
¼ Vx ¼ V0 cos d (3)

@C

@x
¼ � @F

@y
¼ �Vy ¼ �V0 sin d (4)

Solving for C in (3), C ¼ (V0 cos d)yþ H(x). Substituting in (4), H0(x) ¼ �V0 sin d and

H(x) ¼ �(V0 sin d)x, omitting the constant of integration. Then

C ¼ (V0 cos d)y� (V0 sin d)x

(c) The streamlines are given by C ¼ V0( y cos d� x sin d) ¼ b for different values of b. Physically, under

steady-state conditions, a streamline represents the path actually taken by a fluid particle; in this case,

a straight line path.

The equipotential lines are given by F ¼ V0(x cos dþ y sin d) ¼ a for different values of a. Geometri-

cally, they are lines perpendicular to the streamlines; all points on an equipotential line are at equal potential.

9.10. The complex potential of a fluid flow is given byV(z) ¼ V0 zþ (a2=z)
� �

where V0 and a are positive
constants. (a) Obtain equations for the streamlines and equipotential lines, represent them graphi-
cally, and interpret physically. (b) Show that we can interpret the flow as that around a circular
obstacle of radius a. (c) Find the velocity at any point and determine its value far from the obstacle.
(d) Find the stagnation points.

Solution

(a) Let z ¼ reiu. Then

V(z) ¼ Fþ iC ¼ V0 reiu þ a2

r
e�iu

� �
¼ V0 r þ a2

r

� �
cos uþ iV0 r � a2

r

� �
sin u

from which

F ¼ V0 r þ a2

r

� �
cos u, C ¼ V0 r � a2

r

� �
sin u

The streamlines are given by C ¼ constant ¼ b, that is,

V0 r � a2

r

� �
sin u ¼ b

These are indicated by the heavy curves of Fig. 9-14 and show the actual paths taken by fluid particles.

Note that C ¼ 0 corresponds to r ¼ a and u ¼ 0 or p.

The equipotential lines are given by F ¼ constant ¼ a, i.e.,

V0 r þ a2

r

� �
cos u ¼ a

These are indicated by the dashed curves of Fig. 9-14 and are orthogonal to the family of streamlines.

D

E
F

y

xA

B

O

V0 V0

Ψ = 0 Ψ = 0

Φ = 
a 3

Φ = 
a 2

Φ = 
a 1

Ψ = b1

Ψ = b2

Ψ = b3

q
a

Fig. 9-14
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(b) The circle r ¼ a represents a streamline; and since there cannot be any flow across a streamline, it can be

considered as a circular obstacle of radius a placed in the path of the fluid.

(c) We have

V0(z) ¼ V0 1� a2

z2

� �
¼ V0 1� a2

r2
e�2iu

� �
¼ V0 1� a2

r2
cos 2u

� �
þ i

V0a
2

r2
sin 2u

Then, the complex velocity is

V ¼ V0(z) ¼ V0 1� a2

r2
cos 2u

� �
� i

V0a
2

r2
sin 2u (1)

and its magnitude is

V ¼ jVj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 1� a2

r2
cos 2u

� �� �2

þ V0a2

r2
sin 2u

� �2
s

¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2 cos 2u

r2
þ a4

r4

r
(2)

Far from the obstacle, we see from (1) that V ¼ V0 approximately, i.e., the fluid is traveling in the

direction of the positive x axis with constant speed V0.

(d) The stagnation points (i.e., points at which the velocity is zero), are given by V0(z) ¼ 0, i:e:,

V0 1� (a2=z2)
� �

¼ 0 or z ¼ a and z ¼ �a. The stagnation points are therefore at A and D in Fig. 9-14.

9.11. Show that under the transformation w ¼ zþ (a2=z), the fluid flow in the z plane considered in

Problem 9.10 is mapped into a uniform flow with constant velocity V0 in the w plane.

Solution

The complex potential for the flow in the w plane is given by

V0 zþ a2

z

� �
¼ V0w

which represents uniform flow with constant velocity V0 in the w plane [compare entry A-4 on page 249].

In general, the transformation w ¼ V(z) maps the fluid flow in the z plane with complex potentialV(z) into a

uniform flow in the w plane. This is very useful in determining complex potentials of complicated fluid patterns

through a knowledge of mapping functions.

9.12. Fluid emanates at a constant rate from an infinite line source perpendicular to the z plane at z ¼ 0
[Fig. 9-15]. (a) Show that the speed of the fluid at a distance r from the source is V ¼ k=r where k is a
constant. (b) Show that the complex potential is V(z) ¼ k ln z. (c) What modification should be
made in (b) if the line source is at z ¼ a? (d) What modification is made in (b) if the source is
replaced by a sink in which fluid is disappearing at a constant rate?

Solution

(a) Consider a portion of the line source of unit length [Fig. 9-16]. If Vr is the radial velocity of the fluid at

distance r from the source and s is the density of the fluid (assumed incompressible so that s is constant),

then:

Mass of fluid per unit time emanating from line source of unit length

¼ mass of fluid crossing surface of cylinder of radius r and height 1

¼ (surface area)(radial velocity)(fluid density)

¼ (2pr � 1)(Vr)(s) ¼ 2prVrs
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If this is to be a constant k, then

Vr ¼
k

2psr
¼ k

r

where k ¼ k=2ps is called the strength of the source.

x

y Vr

W

s

Fig. 9-15 Fig. 9-16

(b) Since Vr ¼ @F=@r ¼ k=r, we have on integrating and omitting the constant of integration,F ¼ k ln r. But

this is the real part of V(z) ¼ k ln z, which is therefore the required complex potential.

(c) If the line source is at z ¼ a instead of z ¼ 0, replace z by z� a to obtain the complex potential

V(z) ¼ k ln(z� a).

(d) If the source is replaced by a sink, the complex potential isV(z) ¼ �k ln z, the minus sign arising from the

fact that the velocity is directed toward z ¼ 0.

Similarly, V(z) ¼ �k ln(z� a) is the complex potential for a sink at z ¼ a.

9.13. (a) Find the complex potential due to a source at z ¼ �a and a sink at z ¼ a of equal strengths k.
(b) Determine the equipotential lines and streamlines and represent graphically.
(c) Find the speed of the fluid at any point.

Solution

(a) Complex potential due to source at z ¼ �a of strength k is k ln(zþ a).

Complex potential due to sink at z ¼ a of strength k is �k ln(z� a).

Then, by superposition:

Complex potential due to source at z ¼ �a and sink at z ¼ a of strengths k is

V(z) ¼ k ln(zþ a)� k ln(z� a) ¼ k ln
zþ a

z� a

� �
(b) Let zþ a ¼ r1e

iu1 , z� a ¼ r2e
iu2 . Then

V(z) ¼ Fþ iC ¼ k ln
r1e

iu1

r2eiu2

� �
¼ k ln

r1

r2

� �
þ ik(u1 � u2)

so that F ¼ k ln(r1=r2), C ¼ k(u1 � u2). The equipotential lines and streamlines are thus given by

F ¼ k ln(r1=r2) ¼ a, C ¼ k(u1 � u2) ¼ b

Using r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ a)2 þ y2

p
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a)2 þ y2

p
, u1 ¼ tan�1 y=(xþ a)

� �
, u2 ¼ tan�1 y=(x� a)

� �
, the

equipotential lines are given by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ a)2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a)2 þ y2

p ¼ ea=k
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This can be written in the form

[x� a coth(a=k)]2 þ y2 ¼ a2 csch2(a=k)

which for different values of a are circles having centers at a coth(a=k) and radii equal to ajcsch(a=k)j.
These circles are shown by the dashed curves of Fig. 9-17.

The streamlines are given by

tan�1 y

xþ a

� �
� tan�1 y

x� a

� 

¼ b=k

or, taking the tangent of both sides and simplifying,

x2 þ [ yþ a cot(b=k)]2 ¼ a2 csc2(b=k)

which for different values of b are circles having centers at �a cot(b=k) and radii ajcsc(b=k)j. These
circles, which pass through (�a, 0) and (a, 0), are shown heavy in Fig. 9-17.

(c) Speed ¼ jV0(z)j ¼ k

zþ a
� k

z� a

����
���� ¼ 2ka

jz2 � a2j

¼ 2ka

ja2 � r2e2iuj ¼
2kaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 � 2a2r2 cos 2uþ r4
p

y

x
a–a

y

x

Fig. 9-17 Fig. 9-18

9.14. Discuss the motion of a fluid having complex potential V(z) ¼ ik ln z where k . 0.

Solution

If z ¼ reiu, then V(z) ¼ Fþ iC ¼ ik(ln r þ iu) ¼ ik ln r � ku or F ¼ �ku, C ¼ k ln r.

The streamlines are given by

C ¼ constant or r ¼ constant

which are circles having a common center at z ¼ 0 [shown heavy in Fig. 9-18].

The equipotential lines, given by u ¼ constant, are shown dashed in Fig. 9-18. Since

V0(z) ¼ ik

z
¼ ik

r
e�iu ¼ k sin u

r
þ ik cos u

r

the complex velocity is given by

V ¼ V0(z) ¼ k sin u

r
� ik cos u

r
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and shows that the direction of fluid flow is clockwise as indicated in the figure. The speed is given by

V ¼ jVj ¼ k=r.

Thus, the complex potential describes the flow of a fluid, which is rotating around z ¼ 0. The flow is some-

times referred to as a vortex flow and z ¼ 0 is called a vortex.

9.15. Show that the circulation about the vortex in Problem 9.14 is given by g ¼ 2pk.

Solution

If curve C encloses z ¼ 0, the circulation integral is given by

g ¼
þ
C

Vt ds ¼
þ
C

Vx dxþ Vy dy ¼
þ
C

� @F

@x
dx� @F

@y
dy ¼

þ
C

�dF ¼
ð2p
0

k du ¼ 2pk

In terms of the circulation, the complex potential can be written V(z) ¼ (ig=2p) ln z.

9.16. Discuss the motion of a fluid having complex potential

V(z) ¼ V0 zþ a2

z

� �
þ ig

2p
ln z

Solution

This complex potential has the effect of superimposing a circulation on the flow of Problem 9.10. If z ¼ reiu,

V(z) ¼ Fþ iC ¼ V0 r þ a2

r

� �
cos u� gu

2p
þ i V0 r � a2

r

� �
sin uþ g

2p
ln r

� �

Then, the equipotential lines and streamlines are given by

V0 r þ a2

r

� �
cos u� gu

2p
¼ a, V0 r � a2

r

� �
sin uþ g

2p
ln r ¼ b

There are, in general, two stagnation points occurring where V0(z) ¼ 0, that is,

V0 1� a2

z2

� �
þ ig

2pz
¼ 0 or z ¼ �ig

4pV0

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � g2

16p2V2
0

s

In case g ¼ 4paV0, there is only one stagnation point.

Since r ¼ a is a streamline corresponding to b ¼ (g=2p) ln a, the flow can be considered as one about a

circular obstacle as in Problem 9.10. Far from this obstacle, the fluid has velocity V0 since limjzj!1 V0(z) ¼ V0.

The flow pattern changes, depending on the magnitude of g. In Figs. 9-19 and 9-20, we have shown two of

the many possible ones. Fig. 9-19 corresponds to g , 4paV0; the stagnation points are situated at A and B.

Fig. 9-20 corresponds to g . 4paV0 and there is only one stagnation point in the fluid at C.

y

a

A B x

C

y

a
x

Fig. 9-19 Fig. 9-20
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Theorems of Blasius

9.17. Let V(z) be the complex potential describing the flow about a cylindrical obstacle of unit length
whose boundary in the z plane is a simple closed curve C. Prove that the net fluid force on the
obstacle is given by

F ¼ X � iY ¼ 1

2
is

þ
C

dV

dz

� �2

dz

where X and Y are the components of force in the positive x and y directions, respectively, and s is
the fluid density.

Solution

The force acting on the element of area ds in Fig. 9-21 is normal to ds and given in magnitude by P ds where P

is the pressure. On resolving this force into components parallel to the x and y axes, we see that it is given by

dF ¼ dX þ i dY ¼ �Pds sin uþ iP ds cos u

¼ iP ds(cos uþ i sin u) ¼ iP dseiu ¼ iP dz

using the fact that

dz ¼ dxþ i dy ¼ ds cos uþ i ds sin u ¼ dseiu

y

C

P ds sin θ

P
 d

s 
co

s
θ

P ds

ds

x

θ
θ

Fig. 9-21

SinceC represents a streamline, we have by Bernoulli’s theorem, Pþ 1
2
sV2 ¼ K or P ¼ K � 1

2
sV2, where V

is the fluid speed on the streamline. Also, by Problem 9.49, we have dV=dz ¼ Ve�iu.

Then, integrating over C, we find

F ¼ X þ iY ¼
þ
C

iP dz ¼ i

þ
C

K � 1

2
sV2

� �
dz ¼ � 1

2
is

þ
C

V2 dz

¼ � 1

2
is

þ
C

V2eiu ds ¼ � 1

2
is

þ
C

(V2e2iu)(e�iu ds)

or

F ¼ X � iY ¼ 1

2
is

þ
C

(V2e�2iu)(eiu ds) ¼ 1

2
is

þ
C

dV

dz

� �2

dz
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9.18. Let M denote the total moment about the origin of the pressure forces on the obstacle in
Problem 9.17. Prove that

M ¼ Re � 1

2
s

þ
C

z
dV

dz

� �2

dz

8<
:

9=
;

Solution

We consider counterclockwise moments as positive. The moment about the origin of the force acting on

element ds of Fig. 9-21 is

dM ¼ (Pds sin u)yþ (Pds cos u)x ¼ P(y dyþ x dx)

since ds sin u ¼ dy and ds cos u ¼ dx. Then, on using Bernoulli’s equation, the total moment is

M ¼
þ
C

P( y dyþ x dx) ¼
þ
C

K � 1

2
sV2

� �
( y dyþ x dx)

¼ K

þ
C

( y dyþ x dx)� 1

2
s

þ
C

V2( y dyþ x dx)� 1

2
s

þ
C

V2(x cos uþ y sin u) ds

¼ 0

where we have used the fact that
Þ
C
(y dyþ x dx) ¼ 0 since y dyþ x dx is an exact differential. Hence

M ¼ � 1

2
s

þ
C

V2(x cos uþ y sin u) ds ¼ Re � 1

2
s

þ
C

V2(xþ iy)(cos u� i sin u) ds

8<
:

9=
;

¼ Re � 1

2
s

þ
C

V2ze�iu ds

8<
:

9=
; ¼ Re � 1

2
s

þ
C

z(V2e�2iu)(eiu ds)

8<
:

9=
;

¼ Re � 1

2
s

þ
C

z
dV

dz

� �2

dz

8<
:

9=
;

Sometimes, we write this result in the form

M þ iN ¼ � 1

2
s

þ
C

z
dV

dz

� �2

dz

where N has no simple physical significance.

9.19. Find the net force acting on the cylindrical obstacle of Problem 9.16.

Solution

The complex potential for the flow in Problem 9.16 is

V ¼ V0 zþ a2

z

� �
þ ig

2p
ln z
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where V0 is the speed of the fluid at distances far from the obstacle and g is the circulation. By Problem 9.17,

the net force acting on the cylindrical obstacle is given by F, where

F ¼ X � iY ¼ 1

2
is

þ
C

dV

dz

� �2

dz ¼ 1

2
is

þ
C

V0 1� a2

z2

� �
þ ig

2pz

� �2
dz

¼ 1

2
is

þ
C

V2
0 1� a2

z2

� �2

þ 2iV0g

2pz
1� a2

z2

� �
� g2

4p2z2

( )
dz ¼ �sV0g

Then X ¼ 0, Y ¼ sV0g and it follows that there is a net force in the positive y direction of magnitude sV0g. In
the case where the cylinder is horizontal and the flow takes place in a vertical plane, this force is called the lift

on the cylinder.

Applications to Electrostatics

9.20. (a) Find the complex potential due to a line of charge q per unit length perpendicular to the z plane
at z ¼ 0.

(b) What modification should be made in (a) if the line is at z ¼ a?

(c) Discuss the similarity with the complex potential for a line source or sink in fluid flow.

Solution

(a) The electric field due to a line charge q per unit length is radial and the normal component of the electric

vector is constant and equal to Er while the tangential component is zero (see Fig. 9-22). If C is any cylin-

der of radius r with axis at z ¼ 0, then by Gauss’ theorem,

þ
C

En ds ¼ Er

þ
C

ds ¼ Er � 2pr ¼ 4pq

and

Er ¼
2q

r

Since Er ¼ �(@F=@r), we haveF ¼ �2q ln r, omitting the constant of integration. This is the real part of

V(z) ¼ �2q ln z, which is the required complex potential.

(b) If the line of charge is at z ¼ a, the complex potential is V(z) ¼ �2q ln(z� a).

(c) The complex potential has the same form as that for a line source of fluid if k ¼ �2q [see Problem 9.12].

If q is a positive charge, this corresponds to a line sink.

C En = Er

x

(x, y)

V0–V0

y

θ

Fig. 9-22 Fig. 9-23
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9.21. (a) Find the potential at any point of the region shown in Fig. 9-23 if the potentials on the x axis are
given by V0 for x . 0 and �V0 for x , 0.

(b) Determine the equipotential and flux lines.

Solution

(a) We must find a function, harmonic in the plane, which takes on the values V0 for x . 0 (i.e., u ¼ 0) and

�V0 for x , 0 (i.e., u ¼ p). As in Problem 9.6, if A and B are real constants Auþ B is harmonic. Then

A(0)þ B ¼ V0, A(p)þ B ¼ �V0 from which A ¼ �2V0=p, B ¼ V0 so that the required potential is

V0 1� 2

p
u

� �
¼ V0 1� 2

p
tan�1 y

x

� �

in the upper half plane y . 0. The potential in the lower half plane is obtained by symmetry.

(b) The equipotential lines are given by

V0 1� 2

p
tan�1 y

x

� �
¼ a

that is, y ¼ mx where m is a constant. These are straight lines passing through the origin.

The flux lines are the orthogonal trajectories of the lines y ¼ mx and are given by x2 þ y2 ¼ b. They are

circles with center at the origin.

Another Method. A function conjugate to V0 1� 2

p
tan�1 y

x

� �
is � 2V0

p
ln r. Then the flux lines are given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ constant, which are circles with center at the origin.

9.22. (a) Find the potential due to a line charge q per unit length at z ¼ z0 and a line charge �q per unit
length at z ¼ �z0.

(b) Show that the potential due to an infinite plane [ABC in Fig. 9-25] kept at zero potential
(ground potential) and a line charge q per unit length parallel to this plane can be found
from the result in (a).

Solution

(a) The complex potential due to the two line charges [Fig. 9-24] is

V(z) ¼ �2q ln(z� z0)þ 2q ln(z� �z0) ¼ 2q ln
z� �z0

z� z0

� �

Then the required potential is the real part of this, i.e.,

F ¼ 2q Re ln
z� �z0

z� z0

� �� �
(1)

(b) To prove this, we must show that the potential (1) reduces toF ¼ 0 on the x axis, i.e., ABC in Fig. 9-25 is

at potential zero. This follows at once from the fact that on the x axis, z ¼ x so that

V ¼ 2q ln
x� �z0

x� z0

� �
and V ¼ 2q ln

x� z0

x� �z0

� �
¼ �V

that is, F ¼ RefVg ¼ 0 on the x axis.
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Thus, we can replace the charge �q at �z0 [Fig. 9-24] by a plane ABC at potential zero [Fig. 9-25] and

conversely.

x

z0

y

q

z̄0
–q

x

z0

y

A B C

q

Potential = 0

Fig. 9-24 Fig. 9-25

9.23. Two infinite parallel planes, separated by a distance a, are grounded (i.e., are at potential zero). A
line charge q per unit length is located between the planes at a distance b from one plane. Determine
the potential at any point between the planes.

Solution

Let ABC and DEF in Fig. 9-26 represent the two planes perpendicular to the z plane, and suppose the line

charge passes through the imaginary axis at the point z ¼ bi.

x

y

D

C B A

E

q

b
a

F

Potential = 0

z plane

Potential = 0

u

eπbi/a

u

D'C'B'A' E' F'

q

Potential = 0

w plane

Fig. 9-26 Fig. 9-27

From entry A-2 on page 248, we see that the transformation w ¼ epz=a maps the shaded region of Fig. 9-26

onto the upper half w plane of Fig. 9-27. The line charge q at z ¼ bi in Fig. 9-26 is mapped into the line charge

q at w ¼ epbi=a. The boundary ABCDEF of Fig. 9-26 (at potential zero) is mapped into the x axis A0B0C0D0E0F0

(at potential zero) where C0 and D0 are coincident at w ¼ 0.

By Problem 9.22, the potential at any point of the shaded region in Fig. 9-27 is

F ¼ 2qRe
w� e�pbi=a

w� epbi=a

� �

Then, the potential at any point of the shaded region in Fig. 9-26 is

F ¼ 2qRe
epz=a � e�pbi=a

epz=a � epbi=a

� �

Applications to Heat Flow

9.24. A semi-infinite slab (shaded in Fig. 9-28) has its boundaries maintained at the indicated tempera-
tures where T is constant. Find the steady-state temperature.
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Solution

The shaded region of the z plane is mapped into the upper half of the w plane [Fig. 9-29] by the mapping func-

tion w ¼ sin(pz=a) which is equivalent to u ¼ sin(px=a) cosh(py=a), v ¼ cos(px=a) sinh(py=a) [see

entry A-3(a) on page 248].

x

y

Φ = T

Φ = 0

Φ = 2T

a/2–a/2

z plane

u

u

Φ = T Φ = 0 Φ = 2T1–1

w plane

q1
q2

r2

r1

Fig. 9-28 Fig. 9-29

Wemust now solve the equivalent problem in the w plane. We use the method of Problem 9.7 to find that the

solution in the w plane is

F ¼ T

p
tan�1 v

uþ 1

� �
� 2T

p
tan�1 v

u� 1

� 

þ 2T

and the required solution to the problem in the z plane is therefore

F ¼ T

p
tan�1 cos(px=a) sinh(p y=a)

sin(px=a) cosh(py=a)þ 1

� �
� 2T

p
tan�1 cos(px=a) sinh(py=a)

sin(px=a) cosh(py=a)� 1

� �
þ 2T

9.25. Find the steady-state temperature at any point of the region shown shaded in Fig. 9-30 if the
temperatures are maintained as indicated.

60°C

0°C0°C

1

AC

B

z plane

2–20°C 60°C 0°C

w plane

(u, u)

q1
q2

Fig. 9-30 Fig. 9-31

Solution

The shaded region of the z plane is mapped onto the upper half of the w plane [shaded in Fig. 9-31] by means of

the mapping function w ¼ zþ (1=z) [entry A-4 on page 249], which is equivalent to

uþ iv ¼ xþ iyþ 1

xþ iy
¼ xþ x

x2 þ y2
þ i y� y

x2 þ y2

� �
, i:e:, u ¼ xþ x

x2 þ y2
, v ¼ y� y

x2 þ y2

The solution to the problem in the w plane is, using the method of Problem 9.7,

60

p
tan�1

�
v

u� 2

�
� 60

p
tan�1 v

uþ 2

� �
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Then, substituting the values of u and v, the solution to the required problem in the z plane is

60

p
tan�1 y(x2 þ y2 � 1)

(x2 þ y2 þ 1)x� 2(x2 þ y2)

� �
� 60

p
tan�1 y(x2 þ y2 � 1)

(x2 þ y2 þ 1)xþ 2(x2 þ y2)

� �

or, in polar coordinates,

60

p
tan�1 (r2 � 1) sin u

(r2 þ 1) cos u� 2r

� �
� 60

p
tan�1 (r2 � 1) sin u

(r2 þ 1) cos uþ 2r

� �

Miscellaneous Problems

9.26. A region is bounded by two infinitely long concentric cylindrical conductors of radii r1 and r2 (r2 . r1),
which are charged to potentials F1 and F2, respectively [see Fig. 9-32]. Find the (a) potential and
(b) electric field vector everywhere in the region.

Solution

(a) Consider the function V ¼ A ln zþ B where A and B are real constants. If z ¼ reiu, then

V ¼ Fþ iC ¼ A ln r þ Aiuþ B, or F ¼ A ln r þ B, C ¼ Au

Now F satisfies Laplace’s equation, i.e., is harmonic, everywhere in the region r1 , r , r2 and reduces

to F ¼ F1 and F ¼ F2 on r ¼ r1 and r ¼ r2 provided A and B are chosen so that

F1 ¼ A ln r1 þ B, F2 ¼ A ln r2 þ B

that is,

A ¼ F2 �F1

ln(r2=r1)
, B ¼ F1 ln r2 �F2 ln r1

ln(r2=r1)

Then, the required potential is

F ¼ (F2 �F1)

ln(r2=r1)
ln r þF1 ln r2 �F2 ln r1

ln(r2=r1)

Φ1

Φ2

r1

r2

Fig. 9-32 Fig. 9-33

(b) Electric field vector

e ¼ �gradF ¼ � @F

@r
¼ F1 �F2

ln(r2=r1)
� 1
r

Note that the lines of force, or flux lines, are orthogonal to the equipotential lines, and some of these are

indicated by the dashed lines of Fig. 9-33.
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9.27. Find the capacitance of the condenser formed by the two cylindrical conductors in Problem 9.26.

Solution

If G is any simple closed curve containing the inner cylinder and q is the charge on this cylinder, then by Gauss’

theorem and the results of Problem 9.26, we have

þ
G

En ds ¼
ð2p

u¼0

F1 �F2

ln(r2=r1)
� 1
r

� �
r du ¼ 2p (F1 �F2)

ln(r2=r1)
¼ 4pq

Then

q ¼ F1 �F2

2 ln(r2=r1)

and so

Capacitance C ¼ charge

difference in potential
¼ q

F1 �F2

¼ 1

2 ln(r2=r1)

which depends only on the geometry of the condensers, as it should.

The above result holds if there is a vacuum between the conductors. If there is a medium of dielectric con-

stant k between the conductors, we must replace q by q=k and in this case the capacitance is 1=[2k ln(r2=r1)].

9.28. Two circular cylindrical conductors of equal radius R and centers at distance D from each other
[Fig. 9-34] are charged to potentials V0 and �V0, respectively. (a) Determine the charge per unit
length needed to accomplish this. (b) Find an expression for the capacitance.

Solution

(a) We use the results of Problem 9.13, since we can

replace any of the equipotential curves (surfaces)

by circular conductors at the specified potentials.

Placing a ¼ �V0 and a ¼ V0 and noting that

k ¼ 2q, we find that the centers of the circles are

at x ¼ �a coth(V0=2q) and x ¼ a coth(V0=2q) so

that

D ¼ 2a coth
V0

2q

� �
(1)

The radius R of the circles is

R ¼ a csch
V0

2q

� �
(2)

Division of (1) by (2) yields 2 cosh(V0=2q) ¼ D=R so that the required charge is

q ¼ V0

2 cosh�1(D=2R)

(b) Capacitance C ¼ charge

difference in potential
¼ q

2V0

¼ 1

4 cosh�1(D=2R)

V0

x
R

–V0
R

D

y

Fig. 9-34
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The result holds for a vacuum. If there is amediumof dielectric constantk, wemust divide the result byk.

Note that the capacitance depends as usual only on the geometry. The result is fundamental in the theory

of transmission line cables.

9.29. Prove the uniqueness of the solution to Dirichlet’s problem.

Solution

Dirichlet’s problem is the problem of determining a function F that satisfies (@2F=@x2)þ (@2F=@y2) ¼ 0 in a

simply-connected regionR and that takes on a prescribed valueF ¼ f (x, y) on the boundary C ofR. To prove

the uniqueness, we must show that, if such a solution exists, it is the only one. To do this, suppose that there are

two different solutions, say F1 and F2. Then

@2F1

@x2
þ @2F1

@y2
¼ 0 in R and F1 ¼ f (x, y) on C (1)

@2F2

@x2
þ @2F2

@y2
¼ 0 in R and F2 ¼ f (x, y) on C (2)

Subtracting and letting G ¼ F1 �F2, we have

@2G

@x2
þ @2G

@y2
¼ 0 in R and G ¼ 0 on C (3)

To show that F1 ¼ F2 identically, we must show that G ¼ 0 identically in R.

Let F ¼ G in Problem 4.31, page 137, to obtain

þ
C

G
@G

@x
dx� @G

@y
dy

� �
¼ �

ðð
R

G
@2G

@x2
þ @2G

@y2

� �
þ @G

@x

� �2

þ @G

@y

� �2
" #

dx dy (4)

Suppose that G is not identically equal to a constant in R. From the fact that G ¼ 0 on C, and

(@2G=@x2)þ (@2G=@y2) ¼ 0 identically in R, (4) becomes

ðð
R

@G

@x

� �2

þ @G

@y

� �2
" #

dx dy ¼ 0

But this contradicts the assumption that G is not identically equal to a constant in R, since in such a case

ðð
R

@G

@x

� �2

þ @G

@y

� �2
" #

dx dy . 0

It follows thatGmust be constant inR, and by continuity we must haveG ¼ 0. ThusF1 ¼ F2 and there is only

one solution.

9.30. An infinite wedge-shaped region ABDE of angle p=4 [shaded in Fig. 9-35] has one of its sides (AB)
maintained at constant temperature T1. The other side BDE has part BD [of unit length] insulated
while the remaining part DE is maintained at constant temperature T2. Find the temperature every-
where in the region.
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T2

x
Dπ/4

1Insulated

A

T 1

EB

y
z plane

T2

T1

ξ
D'

1Insulated

E'B'

A'

η
ζ plane

Fig. 9-35 Fig. 9-36

T1 T2

1Insulated
u

A''

B''

E''

D''

u
w plane

T1

T1 T2

T2

1

uB'' D''

u
w plane

Fig. 9-37 Fig. 9-38

Solution

By the transformation z ¼ z2, the shaded region of the z plane [Fig. 9-35] is mapped into the region shaded in

Fig. 9-36 with the indicated boundary conditions [see entry A-1 on page 248].

By the transformation z ¼ sin(pw=2), the shaded region of the z plane [Fig. 9-36] is mapped into the region

shaded in Fig. 9-37 with the indicated boundary conditions [see entry C-1 on page 254].

Now the temperature problem represented by Fig. 9-37 with B00D00 insulated is equivalent to the

temperature problem represented by Fig. 9-38 since, by symmetry, no heat transfer can take place across

B00D00. But this is the problem of determining the temperature between two parallel planes kept at constant

temperatures T1 and T2, respectively. In this case, the temperature variation is linear and so must be given

by T1 þ (T2 � T1)u.

From z ¼ z2 and z ¼ sin(pw=2), we have on eliminating z, w ¼ (2=p) sin�1 z2 or u ¼ (2=p) Refsin�1 z2g.
Then, the required temperature is

T1 þ
2(T2 � T1)

p
Refsin�1 z2g

In polar coordinates (r, u), this can be written as [see Problem 9.95],

T1 þ
2(T2 � T1)

p
sin�1 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 2r2 cos 2uþ 1

p
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � 2r2 cos 2uþ 1

p� �
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SUPPLEMENTARY PROBLEMS

Harmonic Functions

9.31. Show that the functions (a) 2xyþ y3 � 3x2y, (b) e�x sin y are harmonic.

9.32. Show that the functions of Problem 9.31 remain harmonic under the transformations (a) z ¼ w2, (b) z ¼ sinw.

9.33. Suppose F(x, y) is harmonic. Prove that F(xþ a, yþ b), where a and b are any constants, is also harmonic.

9.34. Suppose F1, F2, . . . , Fn are harmonic in a region R and c1, c2, . . . , cn are any constants. Prove that

c1F1 þ c2F2 þ � � � þ cnFn is harmonic in R.

9.35. Prove that all the harmonic functions that depend only on the distance r from a fixed point must have the form

A ln r þ B where A and B are any constants.

9.36. Suppose F(z) is analytic and different from zero in a regionR. Prove that the real and imaginary parts of ln F(z)

are harmonic in R.

Dirichlet and Neumann Problems

9.37. Find a function harmonic in the upper half z plane Imfzg . 0 that takes the prescribed values on the x axis given

by G(x) ¼ 1 x . 0

�1 x , 0
:

�

9.38. Work Problem 9.37 if G(x) ¼
1 x , �1

0 �1 , x , 1

�1 x . 1

:

8<
:

9.39. Find a function harmonic inside the circle jzj ¼ 1 and taking the values F(u) ¼ T 0 , u , p
�T p , u , 2p

�
on its

circumference.

9.40. Work Problem 9.39 if F(u) ¼
T 0 , u , p=2
0 p=2 , u , 3p=2

�T 3p=2 , u , 2p
:

8<
:

9.41. Work Problem 9.39 if F(u) ¼ sin u 0 , u , p
0 p , u , 2p

n
:

9.42. Find a function harmonic inside the circle jzj ¼ 2 and taking the values F(u) ¼ 10 0 , u , p
0 p , u , 2p

:

�

9.43. Show by direct substitution that the answers obtained in (a) Problem 9.6, (b) Problem 9.7, (c) Problem 9.8

are actually solutions to the corresponding boundary-value problems.

9.44. Find a function F(x, y) harmonic in the first quadrant x . 0, y . 0, which takes on the values V(x, 0) ¼ �1,

V(0, y) ¼ 2.

9.45. Find a function F(x, y) that is harmonic in the first quadrant x . 0, y . 0 and that satisfies the boundary con-

ditions F(x, 0) ¼ e�x, @F=@xjx¼0 ¼ 0.

Applications to Fluid Flow

9.46. Sketch the streamlines and equipotential lines for fluid motion in which the complex potential is given by

(a) z2 þ 2z, (b) z4, (c) e�z, (d) cos z.

9.47. Discuss the fluid flow corresponding to the complex potential V(z) ¼ V0(zþ 1=z2).

9.48. Verify the statements made before equations (9.5) and (9.6) on page 283.

9.49. Derive the relation dV=dz ¼ Ve�iu, where V and u are defined as in Problem 9.17.
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9.50. Referring to Problem 9.10, (a) show that the speed of the fluid at any point E [Fig. 9-14] is given by 2V0jsin uj
and (b) determine at what points on the cylinder the speed is greatest.

9.51. (a) Suppose P is the pressure at point E of the obstacle in Fig. 9-14 of Problem 9.10 and suppose P1 is the

pressure far from the obstacle. Show that

P� P1 ¼ 1

2
sV2

0 (1� 4 sin2 u)

(b) Show that a vacuum is created at points B and F if the speed of the fluid is equal to or greater than

V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P1=3s

p
. This is often called cavitation.

9.52. Derive equation (9.19), page 285, by a limiting procedure applied to equation (9.18).

9.53. Discuss the fluid flow due to three sources of equal strength k located at z ¼ �a, 0, a.

9.54. Discuss the fluid flow due to two sources at z ¼ +a and a sink at z ¼ 0 if the strengths all have

equal magnitude.

9.55. Prove that under the transformation w ¼ F(z) where F(z) is analytic, a source (or sink) in the z plane at z ¼ z0 is

mapped into a source (or sink) of equal strength in the w plane at w ¼ w0 ¼ F(z0).

9.56. Show that the total moment on the cylindrical obstacle of Problem 9.10 is zero and explain physically.

9.57. Suppose C(x, y) is the stream function. Prove that the mass rate of flow of fluid across an arc C joining points

(x1, y1) and (x2, y2) is sfC(x2, y2)�C(x1, y1)g.

9.58. (a) Show that the complex potential due to a source of strength k . 0 in a fluid moving with speed V0 is

V ¼ V0zþ k ln z and (b) discuss the motion.

9.59. A source and sink of equal strengths m are located at z ¼ +1 between the parallel lines y ¼ +1. Show that the

complex potential for the fluid motion is

V ¼ m ln
ep(zþ1) � 1

ep(z�1) � 1

� �

9.60. Given a source of fluid at z ¼ z0 and a wall x ¼ 0. Prove that the resulting flow is equivalent to removing the

wall and introducing another source of equal strength at z ¼ �z0.

9.61. Fluid flows between the two branches of the hyperbola ax2 � by2 ¼ 1, a . 0, b . 0. Prove that the complex

potential for the flow is given by K cosh�1 az where K is a positive constant and a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab=(aþ b)

p
.

Applications to Electrostatics

9.62. Two semi-infinite plane conductors, as indicated in Fig. 9-39, are charged to constant potentials F1 and F2,

respectively. Find the (a) potential F and (b) electric field E everywhere in the shaded region between them.

y

x

A

B C

Potential Φ 1

Potential Φ2

a

y

–V0

V0

x

Fig. 9-39 Fig. 9-40
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9.63. Find the (a) potential and (b) electric field everywhere in the shaded region of Fig. 9-40 if the potentials on the

positive x and y axes are constant and equal to V0 and �V0, respectively.

9.64. An infinite region has in it three wires located at z ¼ �1, 0, 1 and maintained at constant potentials

�V0, 2V0, �V0, respectively. Find the (a) potential and (b) electric field everywhere.

9.65. Prove that the capacity of a capacitor is invariant under a conformal transformation.

9.66. The semi-infinite plane conductors AB and BC, which inter-

sect at angle a, are grounded [Fig. 9-41]. A line charge q per

unit length is located at point z1 in the shaded region at equal

distances a from AB and BC. Find the potential.

9.67. Work Problem 9.66 if q is at a distance a from AB and b

from BC.

9.68. Work Problem 9.23 if there are two line charges, q per unit

length and �q per unit length, located at z ¼ bi and z ¼ ci,

respectively, where 0 , b , a, 0 , c , a and b=c.

9.69. An infinitely long circular cylinder has half of its surface

charged to constant potential V0 while the other half is

grounded, the two halves being insulated from each other.

Find the potential everywhere.

Applications to Heat Flow

9.70. (a) Find the steady-state temperature at any point of the region shown shaded in Fig. 9-42.

(b) Determine the isothermal and flux lines.

9.71. Find the steady-state temperature at the point (2, 1) of the region shown shaded in Fig. 9-43.

30
°C

60°C

π/4

A

CB

100°C

50°C (4, 0)

In
su

la
te

d

y

x

y

B

D

A C
x

1

Fig. 9-42 Fig. 9-43 Fig. 9-44

9.72. The convex portions ABC and ADC of a unit cylinder [Fig. 9-44] are maintained at temperatures 408C and

808C, respectively. (a) Find the steady-state temperature at any point inside. (b) Determine the isothermal and

flux lines.

y

B C

z1

A

a

a
α

q

x

Fig. 9-41
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9.73. Find the steady-state temperature at the point (5, 2) in the shaded region of Fig. 9-45 if the temperatures are

maintained as shown.

DC

80°C

(0, 1)

40°C

B

A

y

100°C
x

y

B

D

A C x

1

Fig. 9-45 Fig. 9-46

9.74. An infinite conducting plate has in it a circular hole ABCD of unit radius [Fig. 9-46]. Temperatures of 208C and

808C are applied to arcs ABC and ADC and maintained indefinitely. Find the steady-state temperature at any

point of the plate.

Miscellaneous Problems

9.75. Suppose F(x, y) is harmonic. Prove that F(x=r 2, y=r 2) where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is also harmonic.

9.76. Suppose U and V are continuously differentiable. Prove that

(a)
@U

@n
¼ @U

@x

dx

ds
þ @U

@y

dy

ds
(b)

@V

@s
¼ � @V

@x

dy

ds
þ @V

@y

dx

ds

where n and s denote the outward drawn normal and arc length parameter, respectively, to a simple closed

curve C.

9.77. Let U and V be conjugate harmonic functions. Prove that (a) @U=@n ¼ @V=@s, (b) @U=@s ¼ �(@V=@n).

9.78. Prove that the function 1� r2=(1� 2r cos uþ r2) is harmonic in every region that does not include the point

r ¼ 1, u ¼ 0.

9.79. Let it be required to solve the Neumann problem, i.e., to find a function V harmonic in a regionR such that on

the boundary C ofR, @V=@n ¼ G(s) where s is the arc length parameter. Let H(s) ¼
Ð R
a
G(s) ds where a is any

point of C, and suppose that
Þ
C
G(s) ds ¼ 0. Show that to find V, we must find the conjugate harmonic function

U that satisfies the condition U ¼ �H(s) on C. This is an equivalent Dirichlet problem. [Hint. Use Problem

9.77.]

9.80. Prove that, apart from an arbitrary additive constant, the solution to the Neumann problem is unique.

9.81. Prove Theorem 9.3, page 282.

9.82. How must Theorem 9.3, page 282, be modified if the boundary condition F ¼ a on C is replaced by

F ¼ f (x, y) on C?

9.83. How must Theorem 9.3, page 282, be modified if the boundary condition @F=@n ¼ 0 on C is replaced by

@F=@n ¼ g(x, y) on C?

9.84. Suppose a fluidmotion is due to some distribution of sources, sinks, and doublets and supposeC is some curve such

that no flow takes place across it. Then the distribution of sources, sinks, and doublets to one side ofC is called the

image of the distribution of sources, sinks, and doublets on the other side of C. Prove that the image of a source

inside a circle C is a source of equal strength at the inverse point together with a sink of equal strength at the
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center ofC. [PointP is called the inverse of pointQwith respect to a circleCwith center atO ifOPQ is a straight line

and OP �OQ ¼ a2 where a is the radius of C.]

9.85. A source of strength k . 0 is located at point z0 in a fluid that is contained in the first quadrant where the x and y

axes are considered as rigid barriers. Prove that the speed of the fluid at any point is given by

kj(z� z0)
�1 þ (z� �z0)

�1 þ (zþ z0)
�1 þ (zþ �z0)

�1j

9.86. Two infinitely long cylindrical conductors having cross-sections that are confocal ellipses with foci at (�c, 0)

and (c, 0) [see Fig. 9-47] are charged to constant potentialsF1 andF2, respectively. Show that the capacitance

per unit length is equal to

2p

cosh�1(R2=c)� cosh�1(R1=c)

[Hint. Use the transformation z ¼ c coshw.]

9.87. In Problem 9.86, suppose thatF1 andF2 represent constant temperatures applied to the elliptic cylinders. Find

the steady-state temperature at any point in the conducting region between the cylinders.

x

y
Φ2

Φ1

(c, 0)

2R2

2R1

(–c, 0)

V0

a
V0

Fig. 9-47 Fig. 9-48

9.88. A circular cylinder obstacle of radius a rests at the bottom of a channel of fluid, which at distances far from the

obstacle flows with velocity V0 [see Fig. 9-48].

(a) Prove that the complex potential is given by

V(z) ¼ paV0 coth(pa=z)

(b) Show that the speed at the top of the cylinder is 1
4
p 2V0 and compare with that for a circular obstacle in the

middle of a fluid.

(c) Show that the difference in pressure between top and bottom points of the cylinder is sp4V2
0=32.

9.89. (a) Show that the complex potential for fluid flow past the elliptic cylinder of Fig. 9-49 is given by

V(z) ¼ V0 zþ (aþ b)2

4z

� �

where z ¼ 1
2
(zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � c2

p
) and c2 ¼ a2 � b2.
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(b) Prove that the fluid speed at the top and bottom of the cylinder is V0(1þ b=a). Discuss the case a ¼ b.

[Hint. Express the complex potential in terms of elliptic coordinates (j, h) where

z ¼ xþ iy ¼ c cosh(jþ ih) ¼ c cosh z:]

V0 V0

b a

Fig. 9-49

9.90. Suppose the flow in Problem 9.89 is in a direction making an angle d with the positive x axis. Show that the

complex potential is given by the result in (a) with z ¼ 1
2
(zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � c2

p
)eid.

9.91. In the theory of elasticity, the equation

r4F ¼ r2(r2F) ¼ @4F

@x4
þ 2

@4F

@x2@y2
þ @4F

@y4
¼ 0

called the biharmonic equation, is of fundamental importance. Solutions to this equation are called biharmonic.

Prove that if F(z) and G(z) are analytic in a region R, then the real part of �zF(z)þ G(z) is biharmonic in R.

9.92. Show that biharmonic functions (see Problem 9.91) do not, in general, remain biharmonic under a conformal

transformation.

9.93. (a) Show that V(z) ¼ K ln sinh(pz=a), k . 0, a . 0 represents the complex potential due to a row of fluid

sources at z ¼ 0, +ai, +2ai, . . . .

(b) Show that, apart from additive constants, the potential and stream functions are given by

F ¼ K lnfcosh(2px=a)� cos(2py=a)g, C ¼ K tan�1 tan(py=a)

tanh(px=a)

� �

(c) Graph some of the streamlines for the flow.

9.94. Prove that the complex potential of Problem 9.93 is the same as that due to a source located halfway between

the parallel lines y ¼ +3a=2.

9.95. Verify the statement made at the end of Problem 9.30 [compare Problem 2.137].

9.96. A condenser is formed from an elliptic cylinder, with major and minor axes of lengths 2a and 2b, respectively,

together with a flat plateAB of length 2h [see Fig. 9-50]. Show that the capacitance is equal to 2p= cosh�1(a=h)
� �

.

A B 2b

2a

2h
V0 D

A

B

Fig. 9-50 Fig. 9-51

316 CHAPTER 9 Physical Applications of Conformal Mapping



9.97. A fluid flows with uniform velocity V0 through a semi-infinite channel of width D and emerges through

the opening AB [Fig. 9-51]. (a) Find the complex potential for the flow. (b) Determine the streamlines and equi-

potential lines and obtain graphs of some of these. [Hint. Use entry C-5 on page 256.]

9.98. Give a potential theory interpretation to Problem 9.30.

9.99. (a) Show that in a vacuum, the capacitance of the parallel cylindrical conductors in Fig. 9-52 is

1

2 cosh�1 D2 � R2
1 � R2

2

2R1R2

 !

(b) Examine the case R1 ¼ R2 ¼ R and compare with Problem 9.28.

9.100. Show that in a vacuum, the capacitance of the two parallel cylindrical conductors in Fig. 9-53 is

1

2 cosh�1 R2
1 þ R2

2 � D2

2R1R2

 !

R2R1

D

R2
R1

D

DB

A

C

0

0

(r,
θ)
θ

V0

–V0

y

Fig. 9-52 Fig. 9-53 Fig. 9-54

9.101. Find the potential at any point of the unit cylinder of Fig. 9-54 if AB, BC, CD, and DA are kept at potentials

V0, 0, �V0, and 0, respectively.

9.102. The shaded region of Fig. 9-55 represents an infinite conducting half plane in which lines AD, DE, and DB are

maintained at temperatures 0, T and 2T, respectively, where T is a constant. (a) Find the temperature every-

where. (b) Give an interpretation involving potential theory.

α

A

D

B

E

Fig. 9-55

9.103. Work the preceding problem if (a) DE is insulated, (b) AB is insulated.

9.104. In Fig. 9-55, suppose that DE represents an obstacle perpendicular to the base of an infinite channel in which a

fluid is flowing from left to right so that, far from the obstacle, the speed of the fluid is V0. Find (a) the speed and

(b) the pressure at any point of the fluid.

CHAPTER 9 Physical Applications of Conformal Mapping 317



9.105. Find the steady-state temperature at the point (3, 2) in the shaded region of Fig. 9-56.

9.106. An infinite wedge-shaped region ABCD of angle p=4 [shaded in Fig. 9-57] has one of its sides (CD) maintained

at 508C; the other side ABC has the part AB at temperature 258C while part BC, of unit length, is insulated. Find

the steady-state temperature at any point.

4 50°C

80°C20°C
x

y

π/4
In

su
lat

ed

x
DC

B

A

y

Fig. 9-56 Fig. 9-57

ANSWERS TO SUPPLEMENTARY PROBLEMS

9.37. 1� (2=p) tan�1( y=x) 9.63. (a) V0 1� 2

p
tan�1 2xy

x2 � y2

� �� �

9.38. 1� 1

p
tan�1 y

x� 1

� 

� 1

p
tan�1 y

xþ 1

� �
9.64. (a) V0 lnfz(z2 � 1)g

9.39. T 1� 2

p
tan�1 2r sin u

1� r2

� �� �
9.66. Im �2qi ln

zp=a � z
p=a
1

zp=a � �zp=a1

 !( )

9.42. 10 1� 1

p
tan�1 4r sin u

4� r2

� �� �
9.70. (a) 60� (120=p) tan�1(y=x)

9.44.
3

p
tan�1 2xy

x2 � y2

� �
� 1 9.73. 45.98C

9.62. (a) F ¼ F2 þ
F1 �F2

a

� �
u, (b) 1 ¼ (F2 �F1)=ar 9.101.

V0

p
tan�1 2r sin u

1� r2
þ tan�1 2r cos u

1� r2

� �
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CHAPTER 10

Special Topics

10.1 Analytic Continuation

Let F1(z) be a function of z which is analytic in a regionR1 [Fig. 10-1]. Suppose that we can find a function
F2(z) which is analytic in a region R2 and which is such that F1(z) ¼ F2(z) in the region common
to R1 and R2. Then we say that F2(z) is an analytic continuation of F1(z). This means that there is
a function F(z) analytic in the combined regions R1 and R2 such that F(z) ¼ F1(z) in R1 and
F(z) ¼ F2(z) in R2. Actually, it suffices for R1 and R2 to have only a small arc in common, such as
LMN in Fig. 10-2.

x

y

1 2

x

y

L

N

M1 2

Fig. 10-1 Fig. 10-2

By analytic continuation to regionsR3, R4, etc., we can extend the original region of definition to other
parts of the complex plane. The functions F1(z), F2(z), F3(z), . . . , defined inR1, R2, R3, . . . , respectively,
are sometimes called function elements or simply elements. It is sometimes impossible to extend a function
analytically beyond the boundary of a region. We then call the boundary a natural boundary.

Suppose a function F1(z) defined in R1 is continued analytically to region Rn along two different paths
[Fig. 10-3]. Then the two analytic continuations will be identical if there is no singularity between the paths.
This is the uniqueness theorem for analytic continuation.

If we do get different results, we can show that there is a singularity (specifically a branch point) between
the paths. It is in this manner that we arrive at the various branches of multiple-valued functions. In this
connection, the concept of Riemann surfaces [Chapter 2] proves valuable.

We have already seen how functions represented by power series may be continued analytically
(Chapter 6). In this chapter, we consider how functions with other representations (such as integrals) may
be continued analytically.
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Fig. 10-3 Fig. 10-4

10.2 Schwarz’s Reflection Principle

Suppose that F1(z) is analytic in the region R1 [Fig. 10-4] and that F1(z) assumes real values on the part
LMN of the real axis.

Then Schwarz’s reflection principle states that the analytic continuation of F1(z) into region R2

(considered as a mirror image or reflection of R1 with LMN as the mirror) is given by

F2(z) ¼ F1(�z) (10:1)

The result can be extended to cases where LMN is a curve instead of a straight line segment.

10.3 Infinite Products

Let Pn ¼ (1þ w1)(1þ w2) � � � (1þ wn) be denoted by
Qn

k¼1 (1þ wk) where we suppose that for all k,
wk=�1. If there exists a value P=0 such that limn!1 Pn ¼ P, we say that the infinite product
(1þ w1)(1þ w2) � � � ;

Q1
k¼1 (1þ wk), or simply

Q
(1þ wk), converges to P; otherwise it diverges. The

quantities wk may be constants or functions of z.
If only a finite number of the quantities wk ¼ �1 while the rest of the infinite product omitting these

factors converges, the infinite product is said to converge to zero.

10.4 Absolute, Conditional and Uniform Convergence of Infinite Products

Suppose the infinite product
Q

(1þ jwkj) converges. We then say that
Q

(1þ wk) is absolutely convergent.
Suppose

Q
(1þ wk) converges but

Q
(1þ jwkj) diverges. We then say that

Q
(1þ wk) is conditionally

convergent.
An important theorem, analogous to one for infinite series, states that an absolutely convergent infinite

product is convergent, i.e., if
Q

(1þ jwkj) converges, then
Q

(1þ wk) converges (see Problem 10.65).
The concept of uniform convergence of infinite products is easily defined by analogy with infinite series

or sequences in general. Thus, if
Qn

k¼1 f1þ wk(z)g ¼ Pn(z) and
Q1

k¼1 f1þ wk(z)g ¼ P(z), we say that Pn(z)

converges uniformly to P(z) in a regionR if, given any e . 0, we can find a number N, depending only on e
and not on the particular value of z in R, such that jPn(z)� P(z)j , e for all n . N.

As in the case of infinite series, certain things can be done with absolutely or uniformly convergent
infinite products that cannot necessarily be done for infinite products in general. Thus, for example, we
can rearrange factors in an absolutely convergent infinite product without changing the value.
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10.5 Some Important Theorems on Infinite Products

1. A necessary condition that
Q

(1þ wk) converge is that limn!1 wn ¼ 0. However, the condition is
not sufficient, i.e., even if limn!1 wn ¼ 0, the infinite product may diverge.

2. If
P

jwkj converges [i.e., if
P

wk converges absolutely], then
Q

(1þ jwkj), and thus
Q

(1þ wk),
converges [i.e.,

Q
(1þ wk) converges absolutely]. The converse theorem also holds.

3. If an infinite product is absolutely convergent, its factors can be altered without affecting the value
of the product.

4. Suppose in a region R, jwk(z)j , Mk, k ¼ 1, 2, 3, . . . , where Mk are constants such that
P

Mk

converges. Then
Q

f1þ wk(z)g is uniformly (and absolutely) convergent. This is the analog of
the Weierstrass M test for series.

5. Suppose wk(z), k ¼ 1, 2, 3, . . . , are analytic in a regionR and
P

wk(z) is uniformly convergent in
R. Then

Q
f1þ wk(z)g converges to an analytic function in R.

10.6 Weierstrass’ Theorem for Infinite Products

Let f (z) be analytic for all z [i.e., f(z) is an entire function] and suppose that it has simple zeros
at a1, a2, a3, . . . where 0 , ja1j , ja2j , ja3j , � � � and limn!1 janj ¼ 1. Then, f(z) can be expressed
as an infinite product of the form

f (z) ¼ f (0)e f 0(0)z=f (0)
Y1
k¼1

1� z

ak

� �
ez=ak

� �
(10:2)

A generalization of this states that if f(z) has zeros at ak=0, k ¼ 1, 2, 3, . . . , of respective multiplicities

or orders mk, and if for some integer N,
P1

k¼1 1=a
N
k is absolutely convergent, then

f (z) ¼ f (0)eGT (z)
Y1
k¼1

1� z

ak

� �
exp

z

ak
þ 1

2

z2

a2k
þ � � � þ 1

N � 1

zN�1

aN�1
k

� 	� �mk

: (10:3)

where G(z) is an entire function. The result is also true if some of the ak’s are poles, in which case their
multiplicities are negative.

The results (10.2) and (10.3) are sometimes called Weierstrass’ factor theorems.

10.7 Some Special Infinite Products

1. sin z ¼ z 1� z2

p2

� �
1� z2

(2p)2

� �
� � � ¼ z

Y1
k¼1

1� z2

k2p2

� �

2. cos z ¼ 1� z2

(p=2)2

� �
1� z2

(3p=2)2

� �
� � � ¼

Y1
k¼1

1� 4z2

(2k � 1)2p2

� �

3. sinh z ¼ z 1þ z2

p2

� �
1þ z2

(2p)2

� �
� � � ¼

Y1
k¼1

1þ z2

k2p2

� �

4. cosh z ¼ 1þ z2

(p=2)2

� �
1þ z2

(3p=2)2

� �
� � � ¼

Y1
k¼1

1þ 4z2

(2k � 1)2p2

� �

10.8 The Gamma Function

For Refzg . 0, we define the gamma function by

G(z) ¼
ð1
0

tz�1e�t dt (10:4)
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Then (see Problem 10.11), we have the recursion formula

G(zþ 1) ¼ zG(z) (10:5)

where G(1) ¼ 1:
Let z be a positive integer n. We see from (10.5) that

G(nþ 1) ¼ n(n� 1) � � � (1) ¼ n! (10:6)

so that the gamma function is a generalization of the factorial. For this reason, the gamma function is also
called the factorial function and is written as z! rather than G(zþ 1), in which case we define 0! ¼ 1.

From (10.5), we also see that if z is real and positive, then G(z) can be determined by knowing the values
of G(z) for 0 , z , 1. If z ¼ 1

2
, we have [Problem 10.14]

G
1

2

� �
¼

ffiffiffiffi
p

p
(10:7)

For Refzg � 0, the definition (10.4) breaks down since the integral diverges. By analytic continuation,
however, we can define G(z) in the left hand plane. Essentially, this amounts to use of (10.5) [see
Problem 10.15]. At z ¼ 0,�1,�2, . . . , G(z) has simple poles [see Problem 10.16].

10.9 Properties of the Gamma Function

The following list shows some important properties of the gamma function. The first two can be taken as
definitions from which all other properties can be deduced.

1. G(zþ 1) ¼ lim
k!1

1 � 2 � 3 � � � k
(zþ 1)(zþ 2) � � � (zþ k)

kz ¼ lim
k!1

Y
(z, k)

where
Q

(z, k) is sometimes called Gauss’
Q

function.

2. 1

G(z)
¼ zeg z

Y1
k¼1

1þ z

k

n o
e�z=k

where g ¼ lim
p!1 1þ 1

2
þ 1

3
þ � � � þ 1

p
� ln p

� �
¼ :5772157 . . . is called Euler’s constant.

3. G(z)G(1� z) ¼ p

sinpz

In particular, if z ¼ 1
2
, G 1

2


 �
¼ ffiffiffiffi

p
p

.

4. 22z�1G(z)G zþ 1

2

� �
¼

ffiffiffiffi
p

p
G(2z)

This is sometimes called the duplication formula for the gamma function.

5. For m ¼ 1, 2, 3, . . . ,

G(z)G zþ 1

m

� �
G zþ 2

m

� �
� � �G zþ m� 1

m

� �
¼ m(1=2�mz)(2p)(m�1)=2G(mz)

Property 4 is a special case of this with m ¼ 2.

6. G0(z)

G(z)
¼ �gþ 1

1
� 1

z

� �
þ 1

2
� 1

zþ 1

� �
þ � � � þ 1

n
� 1

zþ n� 1

� �
þ � � �

7. G0(1) ¼
ð1
0

e�t ln t dt ¼ �g
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8. G(z) ¼ 1

e2piz � 1

þ
C

tz�1e�t dt

where C is the contour in Fig. 10-5. This is an analytic continuation to the left hand half plane of the
gamma function defined in (10.4).

B A

FE

D

y

x

t plane

Fig. 10-5

9. Another contour integral using contour C [Fig. 10-5] is given by

G(z) ¼ i

2 sinpz

þ
C

(�t)z�1e�t dt ¼ � 1

2pi

þ
C

(�t)�ze�t dt

10.10 The Beta Function

For Refmg . 0, Refng . 0, we define the beta function by

B(m, n) ¼
ð1
0

tm�1(1� t)n�1 dt (10:8)

As seen in Problem 10.18, this is related to the gamma function according to

B(m, n) ¼ G(m)G(n)

G(mþ n)
(10:9)

Various integrals can be expressed in terms of the beta function and thus in terms of the gamma function.
Two interesting results are ðp=2

0

sin2m�1 u cos2n�1 u du ¼ 1

2
B(m, n) ¼ G(m)G(n)

2G(mþ n)
(10:10)

ð1
0

t p�1

1þ t
dt ¼ B( p, 1� p) ¼ G( p)G(1� p) ¼ p

sin pp
(10:11)

the first holding for Refmg . 0 and Refng . 0, and the second holding for 0 , Ref pg , 1.
For Refmg � 0 and Refng � 0, the definition (10.8) can be extended by use of analytic continuation.

10.11 Differential Equations

Suppose we are given the linear differential equation

Y 00 þ p(z)Y 0 þ q(z)Y ¼ 0 (10:12)

If p(z) and q(z) are analytic at a point a, then a is called an ordinary point of the differential equation. Points
at which p(z) or q(z) or both are not analytic are called singular points of the differential equation.

EXAMPLE 10.1 For Y 00 þ zY 0 þ (z2 � 4)Y ¼ 0, every point is an ordinary point.
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EXAMPLE 10.2 For (1� z2)Y 00 � 2zY 0 þ 6Y ¼ 0 or Y 00 � f2z=(1� z2)gY 0 þ f6=(1� z2)gY ¼ 0, we note that

z ¼ +1 are singular points; all other points are ordinary points.

Let z ¼ a be a singular point but (z� a)p(z) and (z� a)2q(z) are analytic at z ¼ a. Then z ¼ a is called a
regular singular point. If z ¼ a is neither an ordinary point or a regular singular point, it is called an irre-
gular singular point.

EXAMPLE 10.3 In Example 10.2, z ¼ 1 is a regular singular point since

(z� 1) � 2z

1� z2

� �
¼ 2z

zþ 1
and (z� 1)2

6

1� z2

� �
¼ 6� 6z

zþ 1

are analytic at z ¼ 1. Similarly, z ¼ �1 is a regular singular point.

EXAMPLE 10.4 z3Y 00 þ (1� z)Y 0 � 2Y ¼ 0 has z ¼ 0 as a singular point. Also,

z
1� z

z3

� �
¼ 1� z

z2
and z2 � 2

z3

� �
¼ � 2

z

are not analytic at z ¼ 0, so that z ¼ 0 is an irregular singular point.

If Y1(z) and Y2(z) are two solutions of (10.12) that are not constant multiples of each other, we call the
solutions linearly independent. In such a case, if A and B are any constants, the general solution of (10.12) is

Y ¼ AY1 þ BY2 (10:13)

The following theorems are fundamental.

THEOREM 10.1. Let z ¼ a be an ordinary point of (10.12). Then there exist two linearly independent
solutions of (12) having the form X1

k¼0

ak(z� a)k (10:14)

where the constants ak are determined by substitution in (10.12). In doing this, it may be
necessary to expand p(z) and q(z) in powers of (z� a). In practice, it is desirable to
replace (z� a) by a new variable.

The solutions (10.14) converge in a circle with center at a, which extends up to the nearest singularity of
the differential equation.

EXAMPLE 10.5 The equation (1� z2)Y 00 � 2zY 0 þ 6Y ¼ 0 [see Example 10.2] has a solution of the formP
akz

k that converges inside the circle jzj ¼ 1.

THEOREM 10.2. Suppose z ¼ a is a regular singular point. Then there exists at least one solution having
the form

(z� a)c
X1
k¼0

ak(z� a)k (10:15)

where c is a constant. By substituting into (10.12) and equating the lowest power of
(z� a) to zero, a quadratic equation for c (called the indicial equation) is obtained. If
we call the solutions of this quadratic equation c1 and c2, the following situations arise.

1. c1 � c2=an integer. In this case, there are two linearly independent solutions
having the form (10.15).
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2. c1 ¼ c2. Here one solution has the form (10.15) while the other linearly indepen-
dent solution has the form

ln(z� a)
X1
k¼0

bk(z� a)kþc (10:16)

3. c1 � c2 ¼ an integer=0. In this case, there is either one solution of the form
(10.15) or two linearly independent solutions having this form. If only one solution
of the form (10.15) can be found, the other linearly independent solution has the
form (10.16).

All solutions obtained converge in a circle with center at a, which extends up to the nearest singularity of
the differential equation.

10.12 Solution of Differential Equations by Contour Integrals

It is often desirable to seek a solution of a linear differential equation in the form

Y(z) ¼
þ
C

K(z, t)G(t) dt (10:17)

where K(z, t) is called the kernel. One useful possibility occurs when K(z, t) ¼ ezt, in which case

Y(z) ¼
þ
C

eztG(t) dt (10:18)

Such solutions may occur where the coefficients in the differential equation are rational functions
(see Problems 10.25 and 10.26).

10.13 Bessel Functions

Bessel’s differential equation of order n is given by

z2Y 00 þ zY 0 þ (z2 � n2)Y ¼ 0 (10:19)

A solution of this equation when n � 0 is

Jn(z) ¼
zn

2nG(nþ 1)
1� z2

2(2nþ 2)
þ z4

2 � 4(2nþ 2)(2nþ 4)
� � � �

� �
(10:20)

which is called Bessel’s function of the first kind of order n.
If n is not an integer, the general solution of (10.18) is

Y ¼ AJn(z)þ BJ�n(z) (10:21)

where A and B are arbitrary constants. However, if n is an integer, then J�n(z) ¼ (�1)nJn(z) and (10.20)
fails to yield the general solution. The general solution in this case can be found as in Problems 10.182
and 10.183.

Bessel functions have many interesting and important properties, among them being the following.

1. ez(t�1=t)=2 ¼
X1
n¼�1

Jn(z)t
n

The left side is often called the generating function for the Bessel functions of the first kind for
integer values of n.
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2. zJn�1(z)� 2nJn(z)þ zJnþ1(z) ¼ 0

This is called the recursion formula for Bessel functions [see Problem 10.27].

3. d

dz
fznJn(z)g ¼ znJn�1(z),

d

dz
fz�nJn(z)g ¼ �z�nJnþ1(z)

4. Jn(z) ¼
1

p

ðp
0

cos(nf� z sinf) df, n ¼ integer

5. Jn(z) ¼
1

p

ðp
0

cos(nf� z sinf) df� sin np

p

ð1
0

e�nf�z sinhf df

6.

ðz
0

tJn(at)Jn(bt) dt ¼
zfaJn(bz)J0n(az)� bJn(az)J

0
n(bz)g

b2 � a2
, a=b

7.

ðz
0

tJn(at)Jn(bt) dt ¼
azJn(bz)Jn�1(az)� bzJn(az)Jn�1(bz)

b2 � a2
, a=b

8.
ðz
0

tfJn(at)g2 dt ¼
z2

2
[fJn(az)g2 � Jn�1(az)Jnþ1(az)]

9. Jn(z) ¼
1

2pi

þ
C

t�n�1e(1=2)z(t�1=t) dt, n ¼ 0,+1,+2, . . .

where C is any simple closed curve enclosing t ¼ 0.

10.
Jn(z) ¼

zn

1 � 3 � 5 � � � (2n� 1)p

ð1
�1

eizt(1� t2)n�1=2 dt

¼ zn

1 � 3 � 5 � � � (2n� 1)p

ðp
0

cos(z cosf) sin2nf df

A second solution to Bessel’s differential equation, when n is a positive integer, is called Bessel’s func-
tion of the second kind of order n or Neumann’s function and is given by

Yn(z) ¼ Jn(z) ln z�
1

2

Xn�1

k¼0

(n� k � 1)!

k!

�
z

2

�2k�n

� 1

2

X1
k¼0

(�1)k

(k!)(nþ k)!

�
z

2

�2kþn

fG(k)þ G(nþ k)g
(10:22)

where G(k) ¼ 1þ 1
2
þ 1

3
þ � � � þ 1=k and G(0) ¼ 0.

If n ¼ 0, we have

Y0(z) ¼ J0(z) ln zþ
z2

22
� z4

2242
1þ 1

2

� �
þ z6

224262
1þ 1

2
þ 1

3

� �
� � � � (10:23)
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In terms of these, the general solution of (10.19), when n is a positive integer, can be written

Y ¼ AJn(z)þ BYn(z) (10:24)

10.14 Legendre Functions

Legendre’s differential equation of order n is given by

(1� z2)Y 00 � 2zY 0 þ n(nþ 1)Y ¼ 0 (10:25)

The general solution of this equation is

Y ¼ A 1� n(nþ 1)

2!
z2 þ n(n� 2)(nþ 1)(nþ 3)

4!
z4 � � � �

� �

þ B z� (n� 1)(nþ 2)

3!
z3 þ (n� 1)(n� 3)(nþ 2)(nþ 4)

5!
z5 � � � �

� � (10:26)

If n is not an integer, these series solutions converge for jzj , 1. If n is zero or a positive integer, polynomial
solutions of degree n are obtained. We call these polynomial solutions Legendre polynomials and denote
them by Pn(z), n ¼ 0, 1, 2, 3, . . . . By choosing these so that Pn(1) ¼ 1, we find that they can be expressed
by Rodrigues’ formula

Pn(z) ¼
1

2nn!

dn

dzn
(z2 � 1)n (10:27)

from which P0(z) ¼ 1, P1(z) ¼ z, P2(z) ¼ 1
2
(3z2 � 1), P3(z) ¼ 1

2
(5z3 � 3z), etc.

The following are some properties of Legendre polynomials.

1.
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2zt þ t2
p ¼

X1
n¼0

Pn(z)t
n

This is called the generating function for Legendre polynomials.

2. Pn(z) ¼
(2n)!

2n(n!)2
zn � n(n� 1)

2(2n� 1)
zn�2 þ n(n� 1)(n� 2)(n� 3)

2 � 4(2n� 1)(2n� 3)
zn�4 � � � �

� �

3. Pn(z) ¼
1

2pi

þ
C

(t2 � 1)n

2n(t � z)nþ1
dt

where C is any simple closed curve enclosing the pole t ¼ z.

4.

ð1
�1

Pm(z)Pn(z) dz ¼
0 if m=n

2

2nþ 1
if m ¼ n

(

[See Problems 10.30 and 10.31.]

5. Pn(z) ¼
1

p

ðp
0

[zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
cosf]n df

[See Problem 6.34]

6. (nþ 1)Pnþ1(z)� (2nþ 1)zPn(z)þ nPn�1(z) ¼ 0

This is called the recursion formula for Legendre polynomials [see Problem 10.32].
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7. (2nþ 1)Pn(z) ¼ P0
nþ1(z)� P0

n�1(z)

If n is a positive integer or zero, the general solution of Legendre’s equation can be written as

Y ¼ APn(z)þ BQn(z) (10:28)

where Qn(z) is an infinite series convergent for jzj , 1 obtained from (10.26). If n is not a positive integer,
there are two infinite series solutions obtained from (10.26) that are convergent for jzj , 1. These solutions
to Legendre’s equation are called Legendre functions. They have properties analogous to those of the
Legendre polynomials.

10.15 The Hypergeometric Function

The function defined by

F(a, b; c; z) ¼ 1þ a � b
1 � c zþ

a(aþ 1)b(bþ 1)

1 � 2 � c(cþ 1)
z2 þ � � � (10:29)

is called the hypergeometric function and is a solution to Gauss’ differential equation or the hypergeometric
equation

z(1� z)Y 00 þ fc� (aþ bþ 1)zgY 0 � abY ¼ 0 (10:30)

The series (10.29) is absolutely convergent for jzj , 1 and divergent for jzj . 1. For jzj ¼ 1, it converges
absolutely if Refc� a� bg . 0.

Suppose jzj , 1 and Refcg . Refbg . 0. Then, we have

F(a, b; c; z) ¼ G(c)

G(b)G(c� b)

ð1
0

tb�1(1� t)c�b�1(1� tz)�a dt (10:31)

For jzj . 1, the function can be defined by analytic continuation.

10.16 The Zeta Function

The zeta function, studied extensively by Riemann in connection with the theory of numbers, is defined
for Refzg . 1 by

z(z) ¼ 1

1z
þ 1

2z
þ 1

3z
þ � � � ¼

X1
k¼1

1

kz
(10:32)

It can be extended by analytic continuation to other values of z. This extended definition of z(z) has the
interesting property that

z(1� z) ¼ 21�zp�zG(z) cos(pz=2)z(z) (10:33)
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Other interesting properties are as follows.

1.
z(z) ¼ 1

G(z)

ð1
0

tz�1

et þ 1
dt Refzg . 0

2. The only singularity of z(z) is a simple pole at z ¼ 1 having residue 1.
3. If Bk, k ¼ 1, 2, 3, . . . , is the coefficient of z2k in the expansion

1

2
z cot

1

2
z

� �
¼ 1�

X1
k¼1

Bkz
2k

(2k)!

then

z(2k) ¼ 22k�1p2kBk

(2k)!
k ¼ 1, 2, 3, . . .

We have, for example, B1 ¼ 1=6, B2 ¼ 1=30, . . . , from which z(2) ¼ p2=6, z(4) ¼ p4=90, . . . .
The numbers Bk are called Bernoulli numbers. For another definition of the Bernoulli numbers,
see Problem 6.163, page 203.

4. 1

z(z)
¼ 1� 1

2z

� �
1� 1

3z

� �
1� 1

5z

� �
1� 1

7z

� �
� � � ¼

Y
p

1� 1

pz

� �

where the product is taken over all positive primes p.

Riemann conjectured that all zeros of z(z) are situated on the line Refzg ¼ 1
2
, but as yet this has neither

been proved nor disproved. It has, however, been shown by Hardy that there are infinitely many zeros that
do lie on this line.

10.17 Asymptotic Series

A series

a0 þ
a1

z
þ a2

z2
þ � � � ¼

X1
n¼0

an

zn
(10:34)

is called an asymptotic series for a function F(z) if for any specified positive integer M,

lim
z!1 zM F(z)�

XM
n¼0

an

zn

( )
¼ 0 (10:35)

In such a case, we write

F(z) �
X1
n¼0

an

zn
(10:36)

Asymptotic series, and formulas involving them, are very useful in evaluation of functions for large
values of the variable, which might otherwise be difficult. In practice, an asymptotic series may diverge.
However, by taking the sum of successive terms of the series, stopping just before the terms begin to
increase, we may obtain a good approximation for F(z).

Various operations with asymptotic series are permissible. For example, asymptotic series may be added,
multiplied or integrated term by term to yield another asymptotic series. However, differentiation is not
always possible. For a given range of values of z, an asymptotic series, if it exists, is unique.
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10.18 The Method of Steepest Descents

Let I(z) be expressible in the form

I(z) ¼
ð
C

ezF(t) dt (10:37)

where C is some path in the t plane. Since F(t) is complex, we can consider z to be real.
The method of steepest descents is a method for finding an asymptotic formula for (10.37) valid for large

z. Where applicable, it consists of the following steps.

1. Determine the points at which F0(t) ¼ 0. Such points are called saddle points, and for this reason
the method is also called the saddle point method.
We shall assume that there is only one saddle point, say t0. The method can be extended if there

is more than one.
2. Assuming F(t) analytic in a neighborhood of t0, obtain the Taylor series expansion

F(t) ¼ F(t0)þ
F00(t0)(t � t0)

2

2!
þ � � � ¼ F(t0)� u2 (10:38)

Now deform contour C so that it passes through the saddle point t0, and is such that RefF(t)g is
largest at t0 while ImfF(t)g can be considered equal to the constant ImfF(t0)g in the neighborhood
of t0. With these assumptions, the variable u defined by (10.38) is real and we obtain to a high
degree of approximation

I(z) ¼ ezF(t0)
ð1
�1

e�zu2 dt

du

� �
du (10:39)

where from (10.38), we can find constants b0, b1, . . . such that

dt

du
¼ b0 þ b1uþ b2u

2 þ � � � (10:40)

3. Substitute (10.40) into (10.39) and perform the integrations to obtain the required asymptotic
expansion

I(z) �
ffiffiffiffi
p

z

r
ezF(t0) b0 þ

1

2

b2

z
þ 1 � 3
2 � 2

b4

z2
þ 1 � 3 � 5
2 � 2 � 2

b6

z3
þ � � �

� �
(10:41)

For many practical purposes, the first term provides enough accuracy and we find

I(z) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2p

zF00(t0)

r
ezF(t0) (10:42)

Methods similar to the above are also known as Laplace’s method and the method of stationary phase.

10.19 Special Asymptotic Expansions

1. The Gamma Function

G(zþ 1) � ffiffiffiffiffiffiffiffi
2pz

p
z2e�z 1þ 1

12z
þ 1

288z2
� 139

51,840z2
þ � � �

� �
(10:43)

This is sometimes called Stirling’s asymptotic formula for the gamma function. It holds for large
values of jzj such that �p , arg z , p.
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Let n be real and large. Then we have

G(nþ 1) ¼
ffiffiffiffiffiffiffiffi
2pn

p
nne�neu=12n where 0 , u , 1 (10:44)

In particular, if n is a large positive integer, we have

n! �
ffiffiffiffiffiffiffiffi
2pn

p
nne�n (10:45)

called Stirling’s asymptotic formula for n!.

2. Bessel Functions

Jn(z) �
ffiffiffiffiffiffi
2

pz

r
P(z) cos z� 1

2
np� 1

4
p

� �
þ Q(z) sin z� 1

2
np� 1

4
p

� �� �
(10:46)

where

P(z) ¼ 1þ
X1
k¼1

(�1)k[4n2 � 12][4n2 � 32] � � � [4n2 � (4k � 1)2]

(2k)!26kz2k

Q(z) ¼
X1
k¼1

(�1)k[4n2 � 12][4n2 � 32] � � � [4n2 � (4k � 3)2]

(2k � 1)!26k�3z2k�1

(10:47)

This holds for large values of jzj such that �p , arg z , p.

3. The Error Function

erf(z) ¼ 2ffiffiffiffi
p

p
ðz
0

e�t2dt � 1þ ze�z2

p

X1
k¼1

(�1)k
Gfk � (1=2)g

z2k
(10:48)

This result holds for large values of jzj such that �p=2 , arg z , p=2. For p=2 , arg z , 3p=2,
the result holds if we replace z by �z on the right.

4. The Exponential Integral

Ei(z) ¼
ð1
z

e�t

t
dt � e�z

X1
k¼0

(�1)kk!

zkþ1
(10:49)

This result holds for large values of jzj such that �p , arg z , p.

10.20 Elliptic Functions

The integral

z ¼
ðw
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p jkj , 1 (10:50)

is called an elliptic integral of the first kind. The integral exists if w is real and such that jwj , 1. By analytic
continuation, we can extend it to other values of w. If t ¼ sin u and w ¼ sinf, the integral (10.50) assumes
an equivalent form

z ¼
ðf
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p (10:51)

where we often write f ¼ am z.
Suppose k ¼ 0, then (10.50) becomes z ¼ sin�1 w or, equivalently, w ¼ sin z. By analogy, we denote

the integral in (10.50) when k=0 by sn�1(w; k) or simply sn�1w when k does not change during a
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given discussion. Thus

z ¼ sn�1w ¼
ðw
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2 t2)

p (10:52)

This leads to the function w ¼ sn z, which is called an elliptic function or sometimes a Jacobian
elliptic function.

By analogy with the trigonometric functions, it is convenient to define other elliptic functions

cn z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2 z

p
, dn z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2 z

p
(10:53)

Another function that is sometimes used is tn z ¼ (sn z)=(cn z). The following list shows various properties
of these functions.

1. sn(0) ¼ 0, cn(0) ¼ 1, dn(0) ¼ 1, sn(�z) ¼ �sn z, cn(�z) ¼ cn z, dn(�z) ¼ dn z

2. (d=dz) sn z ¼ cn z dn z, (d=dz) cn z ¼ �sn z dn z, (d=dz) dn z ¼ �k2 sn z cn z

3. sn z ¼ sin(am z), cn z ¼ cos(am z)

4. sn(z1 þ z2) ¼
sn z1 cn z2 dn z2 þ cn z1 dn z1 sn z2

1� k2 sn2 z1 sn2 z2
(10:54)

cn(z1 þ z2) ¼
cn z1 cn z2 � sn z1 sn z2 dn z1 dn z2

1� k2 sn2 z1 sn2 z2
(10:55)

dn(z1 þ z2) ¼
dn z1 dn z2 � k2 sn z1 sn z2 cn z1 cn z2

1� k2 sn2 z1 sn2 z2
(10:56)

These are called addition formulas for the elliptic functions.
5. The elliptic functions have two periods, and for this reason they are often called doubly-periodic

functions. Let us write

K ¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p ¼
ðp=2
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p (10:57)

K 0 ¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k02t2)

p ¼
ðp=2
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 sin2 u

p (10:58)

where k and k0, called the modulus and complementary modulus, respectively, are such that
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
. Then the periods of sn z are 4K and 2iK 0, the periods of cn z are 4K and

2K þ 2iK 0, and the periods of dn z are 2K and 4iK 0. It follows that there exists a periodic set of
parallelograms [often called period parallelograms] in the complex plane in which the values
of an elliptic function repeat. The smallest of these is often referred to as a unit cell or simply a cell.

The above ideas can be extended to other elliptic functions. Thus there exist elliptic integrals of the
second and third kinds defined, respectively, by

z ¼
ðw
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

1� t2

r
dt ¼

ðf
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p
du (10:59)

z ¼
ðw
0

dt

(1þ nt2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p ¼
ðf
0

du

(1þ n sin2 u)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p (10:60)
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SOLVED PROBLEMS

Analytic Continuation

10.1. Let F(z) be analytic in a region R and suppose that F(z) ¼ 0 at all points on an arc PQ inside R
[Fig. 10-6]. Prove that F(z) ¼ 0 throughout R.

Solution

Choose any point, say z0, on arc PQ. Then, in some circle of convergence C with center at z0 [this circle

extending at least to the boundary of R where a singularity may exist], F(z) has a Taylor series expansion

F(z) ¼ F(z0)þ F0(z0)(z� z0)þ 1
2
F00(z0)(z� z0)

2 þ � � �

But, by hypothesis, F(z0) ¼ F0(z0) ¼ F00(z0) ¼ � � � ¼ 0. Hence, F(z) ¼ 0 inside C.

By choosing another arc inside C, we can continue the process. In this manner, we can show that F(z) ¼ 0

throughout R.

z0

P

y

x

C

Q

x

y

Fig. 10-6 Fig. 10-7

10.2. Given that the identity sin2 zþ cos2 z ¼ 1 holds for real values of z, prove that it also holds for all
complex values of z.

Solution

Let F(z) ¼ sin2 zþ cos2 z� 1 and letR be a region of the z plane containing a portion of the x axis [Fig. 10-7].

Since sin z and cos z are analytic in R, it follows that F(z) is analytic in R. Also F(z) ¼ 0 on the x axis.

Hence, by Problem 10.1, F(z) ¼ 0 identically inR, which shows that sin2 zþ cos2 z ¼ 1 for all z inR. Since

R is arbitrary, we obtain the required result.

This method is useful in proving, for complex values, many of the results true for real values.

10.3. Let F1(z) and F2(z) be analytic in a region R [Fig. 10-8] and suppose that on an arc PQ in R,
F1(z) ¼ F2(z). Prove that F1(z) ¼ F2(z) in R.

Solution

This follows from Problem 10.1 by choosing F(z) ¼ F1(z)� F2(z).

P Q

M

J

TS
K

L

a

1
2

Fig. 10-8 Fig. 10-9
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10.4. LetF1(z) be analytic in regionR1 [Fig. 10-9] and on the boundary JKLM. Suppose that we can find a
function F2(z) analytic in regionR2 and on the boundary JKLM such that F1(z) ¼ F2(z) on JKLM.
Prove that the function

F(z) ¼
F1(z) for z in R1

F2(z) for z in R2

(

is analytic in the region R, which is composed of R1 and R2 [sometimes written R ¼ R1 þR2].

Solution

Method 1. This follows from Problem 10.3, since there can be only one function F2(z) in R2 satisfying the

required properties.

Method 2. Using Cauchy’s integral formulas.

Construct the simple closed curve SLTKS (dashed in Fig. 10-9) and let a be any point inside. From Cauchy’s

integral formula, we have (since F2(z) is analytic inside and on LTKL and since F2(z) ¼ F(z) on LTK)

F2(a) ¼
1

2pi

þ
LTKL

F2(z)

z� a
dz ¼ 1

2pi

ð
LTK

F(z)

z� a
dzþ 1

2pi

ð
KL

F(z)

z� a
dz

Also, we have by Cauchy’s theorem (since F1(z)=(z� a) is analytic inside and on KSLK and since

F1(z) ¼ F(z) on KSL)

0 ¼ 1

2pi

þ
KSLK

F1(z)

z� a
dz ¼ 1

2pi

ð
KSL

F(z)

z� a
dzþ 1

2pi

ð
LK

F(z)

z� a
dz

Adding, using the fact that F(z) ¼ F1(z) ¼ F2(z) on LK so that the integrals along KL and LK cancel,

we have since F(a) ¼ F2(a)

F(a) ¼ 1

2pi

þ
LTKSL

F(z)

z� a
dz

In a similar manner, we find

F(n)(a) ¼ n!

2pi

þ
LTKSL

F(z)

(z� a)nþ1
dz

so that F(z) is analytic at a. But since we can choose a to be any point in the region R by suitably

modifying the dashed contour of Fig. 10-9, it follows that F(z) is analytic in R.

Method 3. Using Morera’s theorem.

Referring to Fig. 10-9, we have

þ
KSLTK

F(z) dz ¼
ð

KSL

F(z) dzþ
ð
LK

F(z) dzþ
ð
KL

F(z) dzþ
ð

LTK

F(z) dz

¼
þ

KSLK

F1(z) dzþ
þ

KLTK

F2(z) dz ¼ 0

by Cauchy’s theorem. Thus, the integral around any simple closed path in R is zero, and so, by Morera’s

theorem, F(z) must be analytic.

The function F2(z) is called an analytic continuation of F1(z).
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10.5. (a) Prove that the function defined by F1(z) ¼ z� z2 þ z3 � z4 þ � � � is analytic in the region
jzj , 1. (b) Find a function that represents all possible analytic continuations of F1(z).

Solution

(a) By the ratio test, the series converges for jzj , 1. Then, the series represents an analytic function in this

region.

(b) For jzj , 1, the sum of the series is F2(z) ¼ z=(1þ z). But, this function is analytic at all points except

z ¼ �1. Since F2(z) ¼ F1(z) inside jzj ¼ 1, it is the required function.

10.6. (a) Prove that the function defined by F1(z) ¼
Ð1
0
t3e�zt dt is analytic at all points z for which

Refzg . 0. (b) Find a function that is the analytic continuation of F1(z) into the left hand
plane Refzg , 0.

Solution

(a) On integrating by parts, we have, when Refzg . 0,

ð1
0

t3e�zt dt ¼ lim
M!1

ðM
0

t3e�zt dt

¼ lim
M!1 (t3)

e�zt

�z

� �
� (3t2)

e�zt

z2

� �
þ (6t)

e�zt

�z3

� �
� (6)

e�zt

z4

� �� �����M
0

¼ lim
M!1

6

z4
�M3e�Mz

z
� 3M2e�Mz

z2
� 6Me�Mz

z3
� 6e�Mz

z4

� �
¼ 6

z4

(b) For Refzg . 0, the integral has the value F2(z) ¼ 6=z4. But this function is analytic at all points except

z ¼ 0. Since F2(z) ¼ F1(z) for Refzg . 0, we see that F2(z) ¼ 6=z4 must be the required analytic

continuation.

Schwarz’s Reflection Principle

10.7. Prove Schwarz’s reflection principle (see page 320).

Solution

Refer to Fig. 10-4, page 320. On the real axis [y ¼ 0], we have F1(z) ¼ F1(x) ¼ F1(x) ¼ F1(�z). Then, by
Problem 10.3, we have only to prove that F1(�z) ¼ F2(z) is analytic in R2.

Let F1(z) ¼ U1(x, y)þ iV1(x, y). Since this is analytic in R1 [i.e., y . 0], we have by the Cauchy–

Riemann equations,

@U1

@x
¼ @V1

@y
,

@V1

@x
¼ � @U1

@y
(1)

where these partial derivatives are continuous.

Now, F1(�z) ¼ F1(x� iy) ¼ U1(x, �y)þ iV1(x, �y), and so F1(�z) ¼ U1(x, �y)� iV1(x, �y). If this is to

be analytic in R2, we must have, for y . 0,

@U1

@x
¼ @(�V1)

@(�y)
,

@(�V1)

@x
¼ � @U1

@(�y)
(2)
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But these are equivalent to (1), since

@(�V1)

@(�y)
¼ @V1

@y
,
@(�V1)

@x
¼ � @V1

@x
and

@U1

@(�y)
¼ � @U1

@y

Hence, the required result follows.

Infinite Products

10.8. Prove that a necessary and sufficient condition for
Q1

k¼1 (1þ jwkj) to converge is that
P

jwkj
converges.

Solution

Sufficiency. If x . 0, then 1þ x � ex so that

Pn ¼
Yn
k¼1

(1þ jwkj) ¼ (1þ jw1j)(1þ jw2j) � � � (1þ jwnj) � ejw1jejw2j � � � ejwnj ¼ ejw1jþjw2jþ���þjwnj

If
P1

k¼1 jwkj converges, it follows that Pn is a bounded monotonic increasing sequence and so has a limit,

i.e.,
Q1

k¼1 (1þ jwkj), converges.

Necessity. If Sn ¼
Pn

k¼1 jwkj, we have

Pn ¼ (1þ jw1j)(1þ jw2j) � � � (1þ jwnj) � 1þ jw1j þ jw2j þ � � � þ jwnj ¼ 1þ Sn � 1

If limn!1 Pn exists, i.e., the infinite product converges, it follows that Sn is a bounded monotonic increasing

sequence and so has a limit, i.e.,
P1

k¼1 jwkj converges.

10.9. Prove that
Q1
k¼1

1� z2

k2

� �
converges.

Solution

Let wk ¼ �(z2=k2). Then jwkj ¼ jzj2=k2 and
P

jwkj ¼ jzj2
P

1=k2 converges. Hence, by Problem 10.8, the

infinite product is absolutely convergent and thus convergent.

10.10. Prove that sin z ¼ z 1� z2

p2

� �
1� z2

4p2

� �
1� z2

9p2

� �
� � � ¼ z

Y1
k¼1

1� z2

k2p2

� �
.

Solution

From Problem 7.35, page 233, we have

ðz
0

cot t � 1

t

� �
dt ¼ ln

sin t

t

� �����z
0

¼ ln
sin z

z

� �
¼
ðz
0

2t

t2 � p2
þ 2t

t2 � 4p2
þ � � �

� �
dt

¼
X1
k¼1

ln 1� z2

k2p2

� �
¼ ln

Y1
k¼1

1� z2

k2p2

� �

Then, sin z ¼ z
Y1
k¼1

1� z2

k2p2

� �
.
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The Gamma Function

10.11. Prove that G(zþ 1) ¼ zG(z) using definition 10.4, page 321.

Solution

Integrating by parts, we have if Refzg . 0,

G(zþ 1) ¼
ð1
0

t ze�t dt ¼ lim
M!1

ðM
0

t ze�t dt ¼ lim
M!1 (tz)(�e�t)

�����
M

0

�
ðM
0

(ztz�1)(�e�t) dt

9=
;

8<
:

¼ z

ð1
0

tz�1e�t dt ¼ zG(z)

10.12. Prove that G(m) ¼ 2

ð1
0

x2m�1e�x2dx, m . 0.

Solution

If t ¼ x2, we have

G(m) ¼
ð1
0

tm�1e�t dt ¼
ð1
0

(x2)m�1e�x22x dx ¼ 2

ð1
0

x2m�1e�x2 dx

The result also holds if Refmg . 0.

10.13. Prove that G(z)G(1� z) ¼ p

sinpz
.

Solution

We first prove it for real values of z such that 0 , z , 1. By analytic continuation, we can then extend it to

other values of z.

From Problem 10.12, we have for 0 , m , 1,

G(m)G(1� m) ¼ 2

ð1
0

x2m�1e�x2dx

8<
:

9=
; 2

ð1
0

y1�2me�y2dy

8<
:

9=
;

¼ 4

ð1
0

ð1
0

x2m�1y1�2me�(x2þy2)dx dy

In terms of polar coordinates (r, u) with x ¼ r cos u, y ¼ r sin u, this becomes

4

ðp=2
u¼0

ð1
r¼0

(tan1�2m u)(re�r2 ) dr du ¼ 2

ðp=2
0

tan1�2m u du ¼ p

sinmp

using Problem 7.20, page 223, with x ¼ tan2 u and p ¼ 1� m.
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10.14. Prove that G 1
2


 �
¼ 2

Ð1
0
e�u2du ¼ ffiffiffiffi

p
p

.

Solution

From Problem 10.12, letting m ¼ 1
2
, we have

G 1
2


 �
¼ 2

ð1
0

e�x2dx

From Problem 10.13, letting z ¼ 1
2
, we have

G 1
2


 �� �2¼ p or G 1
2


 �
¼

ffiffiffiffi
p

p

since G 1
2


 �
. 0. Thus, the required result follows.

Another Method. As in Problem 10.13,

G 1
2


 �� �2 ¼ 2

ð1
0

e�x2dx

8<
:

9=
; 2

ð1
0

e�y2dy

8<
:

9=
; ¼ 4

ð1
0

ð1
0

e�(x2þy2) dx dy

¼ 4

ðp=2
u¼0

ð1
r¼0

e�r2r dr du ¼ p

from which G 1
2


 �
¼ ffiffiffiffi

p
p

.

10.15. By use of analytic continuation, show that G �1
2


 �
¼ �2

ffiffiffiffi
p

p
.

Solution

If Refzg . 0, G(z) is defined by (10.4), page 321, but this definition cannot be used for Refzg � 0. However,

we can use the recursion formula G(zþ 1) ¼ zG(z), which holds for Refzg . 0, to extend the definition for

Refzg � 0, i.e., it provides an analytic continuation into the left-hand plane.

Substituting z ¼ �1
2

in G(zþ 1) ¼ zG(z), we find G 1
2


 �
¼ �1

2
G �1

2


 �
or G �1

2


 �
¼ �2

ffiffiffiffi
p

p
using

Problem 10.14.

10.16. (a) Prove that G(z) ¼ G(zþ nþ 1)

z(zþ 1)(zþ 2) � � � (zþ n)
.

(b) Use (a) to show that G(z) is an analytic function except for simple poles in the left-hand plane
at z ¼ 0, �1, �2, �3, . . . .

Solution

(a) We have G(zþ 1) ¼ zG(z), G(zþ 2) ¼ (zþ 1)G(zþ 1) ¼ (zþ 1)zG(z), G(zþ 3) ¼ (zþ 2)G(zþ 2) ¼
(zþ 2)(zþ 1)zG(z) and, in general, G(zþ nþ 1) ¼ (zþ n)(zþ n� 1) � � � (zþ 2)(zþ 1)zG(z) from

which the required result follows.

(b) We know that G(z) is analytic for Refzg . 0, from definition (10.4), page 321. Also, it is clear from

the result in (a) that G(z) is defined and analytic for Refzg � �n except for the simple poles at

z ¼ 0, �1, �2, . . . , �n. Since this is the case for any positive integer n, the required result follows.
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10.17. Use Weierstrass’ factor theorem for infinite products [equation (10.2), page 321] to obtain the
infinite product for the gamma function [Property 2, page 327].

Solution

Let f (z) ¼ 1=G(zþ 1). Then f (z) is analytic everywhere and has simple zeros at z ¼ �1, �2, �3, . . . .
By Weierstrass’ factor theorem, we find

1

G(zþ 1)
¼ e f 0(0)z

Y1
k¼1

�
1þ z

k

�
e�z=k

To determine f 0(0), let z ¼ 1. Then, since G(2) ¼ 1, we have

1 ¼ e f
0(0)
Y1
k¼1

1þ 1

k

� �
e�1=k ¼ e f

0(0) lim
M!1

YM
k¼1

1þ 1

k

� �
e�1=k

Taking logarithms, we see that

f 0(0) ¼ lim
M!1

1

1
þ 1

2
þ 1

3
þ � � � þ 1

M
� ln 1þ 1

1

� �
1þ 1

2

� �
� � � 1þ 1

M

� �� 	� �

¼ lim
M!1 1þ 1

2
þ 1

3
þ � � � þ 1

M
� lnM

� �
¼ g

where g is Euler’s constant. Then, the required result follows on noting that G(zþ 1) ¼ zG(z).

The Beta Function

10.18. Prove that B(m, n) ¼ B(n, m).

Solution

Letting t ¼ 1� u,

B(m, n) ¼
ð1
0

tm�1(1� t)n�1 dt ¼
ð1
0

(1� u)m�1un�1 du ¼ B(n, m)

10.19. Prove that B(m, n) ¼ 2

ðp=2
0

sin2m�1u cos2n�1u du ¼ 2

ðp=2
0

cos2m�1u sin2n�1u du.

Solution

Let t ¼ sin2 u. Then

B(m, n) ¼
ð1
0

tm�1(1� t)n�1 dt ¼
ðp=2
0

(sin2 u)m�1(cos2 u)n�12 sin u cos u du

¼ 2

ðp=2
0

sin2m�1u cos2n�1u du ¼ 2

ðp=2
0

cos2m�1u sin2n�1u du

by Problem 10.18.
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10.20. Prove that B(m, n) ¼
ð1
0

tm�1(1� t)n�1 dt ¼ G(m)G(n)

G(mþ n)
.

Solution

From Problem 10.12, we have on transforming to polar coordinates,

G(m)G(n) ¼ 2

ð1
0

x2m�1e�x2dx

8<
:

9=
; 2

ð1
0

y2n�1e�y2 dy

8<
:

9=
; ¼ 4

ð1
0

ð1
0

x2m�1y2n�1e�(x2þy2) dx dy

¼ 4

ðp=2
u¼0

ð1
r¼0

(cos2m�1u sin2n�1u)(r2mþ2n�1e�r2 ) dr du

¼ 2

ðp=2
0

cos2m�1u sin2n�1u du

8<
:

9=
;

ð1
0

r2(mþn)�1e�r2dr

8<
:

9=
; ¼ B(m, n)G(mþ n)

where we have used Problem 10.19 and Problem 10.12 with r replacing t and mþ n replacing m. From this,

the required result follows.

10.21. Evaluate (a)

ð2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(2� x)

p
dx, (b)

ðp=2
0

ffiffiffiffiffiffiffiffiffiffi
tan u

p
du.

Solution

(a) Letting x ¼ 2t, the integral becomes

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t(1� t)

p
2 dt ¼ 4

ð1
0

t1=2(1� t)1=2 dt ¼ 4B(3=2, 3=2)

¼ 4
G(3=2)G(3=2)

G(3)
¼

4 1
2

ffiffiffiffi
p

p
 �
1
2

ffiffiffiffi
p

p
 �
2

¼ p

2

(b)

ðp=2
0

ffiffiffiffiffiffiffiffiffiffi
tan u

p
du ¼

ðp=2
0

sin1=2u cos�1=2u du ¼ 1
2
B 3

4
, 1
4


 �

¼ 1
2
G 3

4


 �
G 1

4


 �
¼ 1

2

p

sin(p=4)
¼ p

ffiffiffi
2

p

2

using Problems 10.13, 10.19, and 10.20.

10.22. Show that

ð4
0

y3=2(16� y2)1=2 dy ¼ 64

21

ffiffiffiffi
2

p

r
G 1

4


 �� �2
.

Solution

Let y3 ¼ 16t, i.e., y ¼ 4t1=2, dy ¼ 2t�1=2 dt. Then the integral becomes

ð1
0

f8t3=4gf4(1� t)1=2gf2t�1=2 dtg ¼ 64

ð1
0

t1=4(1� t)1=2 dt

¼ 64B 5
4
, 3
2


 �
¼

64G 5
4


 �
G 3

2


 �
G 11

4


 � ¼
64 1

4


 �
G 1

4


 �
1
2


 �
G 1

2


 �
7
4
� 3
4
G 3

4


 �
¼ 128

ffiffiffiffi
p

p

21

G 1
4


 �
G 3

4


 � ¼ 128
ffiffiffiffi
p

p

21

G 1
4


 �� �2
G 1

4


 �
G 3

4


 � ¼ 64

21

ffiffiffiffi
2

p

r
G 1

4


 �� �2
using the fact that G 1

4


 �
G 3

4


 �
¼ p=[sin(p=4)] ¼ p

ffiffiffi
2

p
[Problem 10.13].
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Differential Equations

10.23. Determine the singular points of each of the following differential equations and specify whether
they are regular or irregular.

(a) z2Y 00 þ zY 0 þ (z2 � n2)Y ¼ 0 or Y 00 þ 1

z
Y 0 þ z2 � n2

z2

� �
Y ¼ 0

(b) (z� 1)4Y 00 þ 2(z� 1)3Y 0 þ Y ¼ 0 or Y 00 þ 2

z� 1
Y 0 þ 1

(z� 1)4
Y ¼ 0

(c) z2(1� z)Y 00 þ Y 0 � Y ¼ 0 or Y 00 þ 1

z2(1� z)
Y 0 � 1

z2(1� z)
Y ¼ 0

Solution

(a) z ¼ 0 is a singular point. Since z(1=z) ¼ 1 and z2f(z2 � n2)=z2g ¼ z2 � n2 are analytic at z ¼ 0, it is a

regular singular point.

(b) At the singular point z ¼ 1, (z� 1)f2=(z� 1)g ¼ 2 is analytic but (z� 1)2 � f1=(z� 1)4g ¼ f1=(z� 1)2g is
not analytic. Then, z ¼ 1 is an irregular singular point.

(c) At the singular point z ¼ 0,

z
1

z2(1� z)

� �
¼ 1

z(1� z)
and z2

�1

z2(1� z)

� �
¼ �1

1� z

are not both analytic. Hence, z ¼ 0 is an irregular singular point.

At the singular point z ¼ 1,

(z� 1) � 1

z2(1� z)

� �
¼ �1

z2
and (z� 1)2

�1
z2(1� z)

� �
¼ z� 1

z2

are both analytic. Hence, z ¼ 1 is a regular singular point.

10.24. Find the general solution of Bessel’s differential equation

z2Y 00 þ zY 0 þ (z2 � n2)Y ¼ 0

where n=0, +1, +2, . . . .

Solution

The point z ¼ 0 is a regular singular point. Hence, there is a series solution of the form Y ¼
P1

k¼�1 akz
kþc

where ak ¼ 0 for k ¼ �1, �2, �3, . . . . By differentiation, omitting the summation limits, we have

Y 0 ¼
X

(k þ c)akz
kþc�1, Y 00 ¼

X
(k þ c)(k þ c� 1)akz

kþc�2

Then

z2Y 00 ¼
X

(k þ c)(k þ c� 1)akz
kþc, zY 0 ¼

X
(k þ c)akz

kþc

(z2 � n2)Y ¼
X

akz
kþcþ2 �

X
n2akz

kþc ¼
X

ak�2z
kþc �

X
n2akz

kþc

Adding,

z2Y 00 þ zY 0 þ (z2 � n2)Y ¼
X

f[(k þ c)2 � n2]ak þ ak�2gzkþc ¼ 0

from which we obtain

[(k þ c)2 � n2]ak þ ak�2 ¼ 0 (1)

If k ¼ 0, (c2 � n2)a0 ¼ 0; and if a0=0, we obtain the indicial equation c2 � n2 ¼ 0 with roots c ¼ +n.

Case 1: c ¼ n:
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From (1), [(k þ n)2 � n2]ak þ ak�2 ¼ 0 or k(2nþ k)ak þ ak�2 ¼ 0.

If k ¼ 1, a1 ¼ 0. If k ¼ 2, a2 ¼ �fa0=2(2nþ 2)g. If k ¼ 3, a3 ¼ 0.

If k ¼ 4, a4 ¼ �fa2=4(2nþ 4)g ¼ fa0=2 � 4(2nþ 2)(2nþ 4)g, etc. Then

Y ¼
X

akz
kþc ¼ a0z

n 1� z2

2(2nþ 2)
þ z4

2 � 4(2nþ 2)(2nþ 4)
� � � �

� �
(2)

Case 2: c ¼ �n.

The result obtained is

Y ¼ a0z
�n 1� z2

2(2� 2n)
þ z4

2 � 4(2nþ 2)(2nþ 4)
� � � �

� �
(3)

which can be obtained formally from Case 1 on replacing n by �n.

The general solution if n=0,+1,+2, . . . is given by

Y ¼ Azn 1� z2

2(2nþ 2)
þ z4

2 � 4(2nþ 2)(2nþ 4)
� � � �

� �

þ Bz�n 1� z2

2(2� 2n)
þ z4

2 � 4(2� 2n)(4� 2n)
� � � �

� �
(4)

If n ¼ 0,+1,+2, . . . only one solution is obtained. To find the general solution in this case, we must

proceed as in Problems 10.175 and 10.176.

Since the singularity nearest to z ¼ 0 is at infinity, the solutions should converge for all z. This is easily

shown by the ratio test.

Solution of Differential Equations by Contour Integrals

10.25. (a) Obtain a solution of the equation zY 00 þ (2nþ 1)Y 0 þ zY ¼ 0 having the form

Y ¼
Þ
C
eztG(t) dt.

(b) By letting Y ¼ zrU and choosing the constant r appropriately, obtain a contour integral sol-
ution of z2U00 þ zU0 þ (z2 � n2)U ¼ 0.

Solution

(a) If Y ¼
Þ
C
eztG(t) dt, we find Y 0 ¼

Þ
C
teztG(t) dt, Y 00 ¼

Þ
C
t2eztG(t) dt. Then, integrating by parts, assum-

ing that C is chosen so that the functional values at the initial and final points P are equal [and the inte-

grated part in zero], we have

zY ¼
þ
C

zeztG(t) dt ¼ eztG(t)

����
P

P

�
þ
C

eztG0(t) dt ¼ �
þ
C

eztG0(t) dt

(2nþ 1)Y 0 ¼
þ
C

(2nþ 1)teztG(t) dt

zY 00 ¼
þ
C

zt2eztG(t) dt ¼
þ
C

(zezt)ft2G(t)g dt

¼ eztft2G(t)g
����
P

P

�
þ
C

eztft2G(t)g0 dt ¼ �
þ
C

eztft2G(t)g0 dt

Thus

zY 00 þ (2nþ 1)Y 0 þ zY ¼ 0 ¼
þ
C

ezt[�G0(t)þ (2nþ 1)tG(t)� ft2G(t)g0] dt
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This is satisfied if we choose G(t) so that the integrand is zero, i.e.,

�G0(t)þ (2nþ 1)tG(t)� ft2G(t)g0 ¼ 0 or G0(t) ¼ (2n� 1)t

t2 þ 1
G(t)

Solving, G(t) ¼ A(t2 þ 1)n�(1=2) where A is any constant. Hence, a solution is

Y ¼ A

þ
C

ezt(t2 þ 1)n�(1=2) dt

(b) If Y ¼ zrU, then Y 0 ¼ zrU0 þ rzr�1U and Y 00 ¼ zrU00 þ 2rzr�1U0 þ r(r � 1)zr�2U. Hence

zY 00 þ (2nþ 1)Y 0 þ zY ¼ zrþ1U00 þ 2rzrU0 þ r(r � 1)zr�1U

þ (2nþ 1)zrU0 þ (2nþ 1)rzr�1U þ zrþ1U

¼ zrþ1U00 þ [2rzr þ (2nþ 1)zr]U0

þ [r(r � 1)zr�1 þ (2nþ 1)rzr�1 þ zrþ1]U

The given differential equation is thus equivalent to

z2U00 þ (2r þ 2nþ 1)zU0 þ [z2 þ r2 þ 2nr]U ¼ 0

Letting r ¼ �n, this becomes z2U00 þ zU 0 þ (z2 � n2)U ¼ 0.

Hence, a contour integral solution is

U ¼ znY ¼ Azn
þ
C

ezt(t2 þ 1)n�1=2 dt

10.26. Obtain the general solution of Y 00 � 3Y 0 þ 2Y ¼ 0 by the method of contour integrals.

Solution

Let Y ¼
þ
C

eztG(t) dt, Y 0 ¼
þ
C

teztG(t) dt, Y 00 ¼
þ
C

t2eztG(t) dt. Then

Y 00 � 3Y 0 þ 2Y ¼
þ
C

ezt(t2 � 3t þ 2)G(t) dt ¼ 0

is satisfied if we choose G(t) ¼ 1=(t2 � 3t þ 2). Hence Y ¼
þ
C

ezt

t2 � 3t þ 2
dt

If we choose C so that the simple pole t ¼ 1 lies inside C while t ¼ 2 lies outside C, the integral has the value

2piez. If t ¼ 2 lies inside C while t ¼ 1 lies outside C, the integral has the value 2pie2z.
The general solution is given by Y ¼ Aez þ Be 2z.

Bessel Functions

10.27. Prove that zJn�1(z)� 2nJn(z)þ zJnþ1(z) ¼ 0.

Solution

Differentiating with respect to t both sides of the identity

e(1=2)z(t�1=t) ¼
X1
n¼�1

Jn(z)t
n

yields

e(1=2)z(t�1=t) z

2
1þ 1

t2

� �� �
¼
X1
n¼�1

z

2
1þ 1

t2

� �
Jn(z)t

n ¼
X1
n¼�1

nJn(z) t
n�1
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that is, X1
n¼�1

zJn(z)t
n þ

X1
n¼�1

zJn(z)t
n�2 ¼

X1
n¼�1

2nJn(z)t
n�1

Equating coefficients of tn on both sides, we have

zJn(z)þ zJnþ2(z) ¼ 2(nþ 1)Jnþ1(z)

and the required result follows on replacing n by n� 1.

Since we have used the generating function, the above result is established only for integral values of n.

The result also holds for non-integral values of n [see Problem 10.114].

10.28. Prove Jn(z) ¼
1

2pi

þ
C

t�n�1e(1=2)z(t�1=t)dt, where C is a simple closed curve enclosing t ¼ 0.

Solution

We have e(1=2)z(t�1=t) ¼
P1

m¼�1
Jm(z)t

m

so that t�n�1e(1=2)z(t�1=t) ¼
P1

m¼�1
tm�n�1Jm(z) andþ

C

t�n�1e(1=2)z(t�1=t) dt ¼
X1

m¼�1
Jm(z)

þ
C

tm�n�1 dt (1)

Now, by Problems 4.21 and 4.22, page 132, we haveþ
C

tm�n�1 dt ¼ 2pi if m ¼ n

0 if m=n

�
(2)

Thus the series on the right of (1) reduces to 2piJn(z), from which the required result follows.

10.29. Prove that if a=b,

ðz
0

tJn(at)Jn(bt) dt ¼ zfaJn(bz)J0n(az)� bJn(az)J
0
n(bz)g

b2 � a2

Solution

Y1 ¼ Jn(at) and Y2 ¼ Jn(bt) satisfy the respective differential equations

t2Y 00
1 þ tY 0

1 þ (a2t2 � n2)Y1 ¼ 0 (1)

t2Y 00
2 þ tY 0

2 þ (b2t2 � n2)Y2 ¼ 0 (2)

Multiplying (1) by Y2, (2) by Y1 and subtracting, we find

t2 Y2Y
00
1 � Y1Y

00
2


 �
þ t Y2Y

0
1 � Y1Y

0
2


 �
¼ (b2 � a2)t2Y1Y2

This can be written

t
d

dt
Y2Y

0
1 � Y1Y

0
2


 �
þ Y2Y

0
1 � Y1Y

0
2


 �
¼ (b2 � a2)tY1Y2

or
d

dt
ft(Y2Y 0

1 � Y1Y
0
2)g ¼ (b2 � a2)tY1Y2

Integrating with respect to t from 0 to z yields

(b2 � a2)

ðz
0

tY1Y2 dt ¼ t(Y2Y
0
1 � Y1Y

0
2)

����
z

0
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or since a=b ðz
0

tJn(at)Jn(bt) dt ¼
zfaJn(bz)J0n(az)� bJn(az)J

0
n(bz)g

b2 � a2

Legendre Functions

10.30. Prove that

ð1
�1

Pm(z)Pn(z) dz ¼ 0 if m=n.

Solution

We have

(1� z2)P00
m � 2zP0

m þ m(mþ 1)Pm ¼ 0 (1)

(1� z2)P00
n � 2zP0

n þ n(nþ 1)Pn ¼ 0 (2)

Multiplying (1) by Pn, (2) by Pm, and subtracting, we obtain

(1� z2) PnP
00
m � PmP

00
n

� �
� 2z PnP

0
m � PmP

0
n

� �
¼ fn(nþ 1)� m(mþ 1)gPmPn

which can be written

(1� z2)
d

dz
PnP

0
m � PmP

0
n

� �
� 2z PnP

0
m � PmP

0
n

� �
¼ fn(nþ 1)� m(mþ 1)gPmPn

or

d

dz
1� z2

 �

PnP
0
m � PmP

0
n


 �� �
¼ fn(nþ 1)� m(mþ 1)gPmPn

Integrating from �1 to 1, we have

fn(nþ 1)� m(mþ 1)g
ð1
�1

Pm(z)Pn(z) dz ¼ (1� z2) PnP
0
m � PmP

0
n


 �����
1

�1

¼ 0

from which the required result follows, since m=n.

The result is often called the orthogonality principle for Legendre polynomials and we say that the Legendre

polynomials form an orthogonal set.

10.31. Prove that

ð1
�1

Pm(z)Pn(z) dz ¼
2

2nþ 1
if m ¼ n.

Solution

Squaring both sides of the identity,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2zt þ t2

p ¼
X1
n¼0

Pn(z)t
n

we obtain

1

1� 2zt þ t2
¼
X1
m¼0

X1
n¼0

Pm(z)Pn(z)t
mþn

Integrating from �1 to 1 and using Problem 10.30, we findð1
�1

dz

1� 2zt þ t2
¼
X1
m¼0

X1
n¼0

ð1
�1

Pm(z)Pn(z) dz

� �
tmþn

¼
X1
n¼0

ð1
�1

fPn(z)g2 dz
� �

t2n (1)
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But the left side is equal to

� 1

2t
ln(1� 2zt þ t2)

����1
�1

¼ 1

t
ln

1þ t

1� t

� �
¼
X1
n¼0

2

2nþ 1

� �
t2n (2)

using Problem 6.23(c), page 185. Equating coefficients of t2n in the series (1) and (2) yields the required result.

10.32. Prove that (nþ 1)Pnþ1(z)� (2nþ 1)zPn(z)þ nPn�1(z) ¼ 0.

Solution

Differentiating with respect to t both sides of the identity

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2zt þ t2

p ¼
X1
n¼0

Pn(z)t
n

we have

z� t

(1� 2zt þ t2)3=2
¼
X1
n¼0

nPn(z)t
n�1

Then, multiplying by 1� 2zt þ t2, we have

(z� t)
X1
n¼0

Pn(z)t
n ¼ (1� 2zt þ t 2)

X1
n¼0

nPn(z)t
n�1

or

X1
n¼0

zPn(z)t
n �

X1
n¼0

Pn(z)t
nþ1 ¼

X1
n¼0

nPn(z)t
n�1 �

X1
n¼0

2nzPn(z)t
n þ

X1
n¼0

nPn(z)t
nþ1

Equating coefficients of tn on each side, we obtain

zPn(z)� Pn�1(z) ¼ (nþ 1)Pnþ1(z)� 2nzPn(z)þ (n� 1)Pn�1(z)

which yields the required result on simplifying.

The Hypergeometric Function

10.33. Show that F(1=2, 1=2; 3=2; z2) ¼ sin�1 z

z
.

Solution

Since

F(a, b; c; z) ¼ 1þ a � b
1 � c zþ

a(aþ 1)b(bþ 1)

1 � 2 � c(cþ 1)
z2 þ � � �

we have

F(1=2, 1=2; 3=2; z2) ¼ 1þ (1=2)(1=2)

1 � (3=2) z2 þ (1=2)(3=2)(1=2)(3=2)

1 � 2 � (3=2)(5=2) z4

þ (1=2)(3=2)(5=2)(1=2)(3=2)(5=2)

1 � 2 � 3 � (3=2)(5=2)(7=2) z6 þ � � �

¼ 1þ 1

2

z2

3
þ 1 � 3
2 � 4

z4

5
þ 1 � 3 � 5
2 � 4 � 6

x6

7
þ � � � ¼ sin�1 z

z

using Problem 6.89, page 197.
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The Zeta Function

10.34. Prove that the zeta function z(z) ¼
P1

k¼1 1=k
z is analytic in the region of the z plane for which

Refzg � 1þ d where d is any fixed positive number.

Solution

Each term 1=kz of the series is an analytic function. Also, if x ¼ Refzg � 1þ d, then

1

kz

����
���� ¼ 1

ez ln k

����
���� ¼ 1

ex ln k
¼ 1

kx
� 1

k1þd

Since
P

1=k1þd converges, we see by the Weierstrass M test that
P1

k¼1 1=k
z converges uniformly for

Refzg � 1þ d. Hence, by Theorem 6.21, page 172, z(z) is analytic in this region.

Asymptotic Expansions and the Method of Steepest Descents

10.35. (a) Let p . 0. Prove that

F(z) ¼
ð1
z

e�t

tp
dt ¼ e�z 1

zp
� p

zpþ1
þ p( pþ 1)

z pþ2
� � � � (�1)n

p( pþ 1) � � � ( pþ n� 1)

z pþn

� �

þ (�1)nþ1p( pþ 1) � � � ( pþ n)

ð1
z

e�t

t pþnþ1
dt

(b) Use (a) to prove that

F(z) ¼
ð1
z

e�t

tp
dt � e�z 1

zp
� p

z pþ1
þ p(pþ 1)

z pþ2
� � � �

� �
¼ S(z)

that is, the series on the right is an asymptotic expansion of the function on the left.

Solution

(a) Integrating by parts, we have

Ip ¼
ð1
z

e�t

tp
dt ¼ lim

M!1

ðM
z

e�tt�pdt ¼ lim
M!1 (�e�t)(t�p)

����
M

z

�
ðM
z

(�e�t)(�pt�p�1) dt

8<
:

9=
;

¼ lim
M!1

e�z

zp
� e�M

Mp
� p

ðM
z

e�t

t pþ1
dt

8<
:

9=
; ¼ e�z

zp
� p

ð1
z

e�t

t pþ1
dt ¼ e�z

zp
� pIpþ1

Similarly, Ipþ1 ¼ (e�z=zpþ1)� ( pþ 1)Ipþ2 so that

Ip ¼
e�z

zp
� p

e�z

z pþ1
� ( pþ 1)I pþ2

� �
¼ e�z

zp
� pe�z

z pþ1
þ p( pþ 1)I pþ2

By continuing in this manner, the result follows.

(b) Let

Sn(z) ¼ e�z 1

zp
� p

zpþ1
þ p( pþ 1)

zpþ2
� � � � (�1)n

p( pþ 1) � � � ( pþ n� 1)

zpþn

� �
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Then

Rn(z) ¼ F(z)� Sn(z) ¼ (�1)nþ1p( pþ 1) � � � ( pþ n)

ð1
z

e�t

t pþnþ1
dt

Now, for real z . 0,

jRn(z)j ¼ p( pþ 1) � � � ( pþ n)

ð1
z

e�t

t pþnþ1
dt � p( pþ 1) � � � ( pþ n)

ð1
z

e�t

z pþnþ1
dt

� p( pþ 1) � � � ( pþ n)

z pþnþ1

since

ð1
z

e�t dt �
ð1
0

e�tdt ¼ 1

Thus

lim
z!1 jznRn(z)j � lim

z!1
p( pþ 1) � � � ( pþ n)

zp
¼ 0

and it follows that limz!1 znRn(z) ¼ 0. Hence, the required result is proved for real z . 0. The result can

also be extended to complex values of z.

Note that since

unþ1

un

����
���� ¼ p( pþ 1) � � � ( pþ n)=zpþnþ1

p( pþ 1) � � � ( pþ n� 1)=zpþn

����
���� ¼ pþ n

jzj

where un is the nth term of the series, we have for all fixed z

lim
n!1

unþ1

un

����
���� ¼ 1

and the series diverges for all z by the ratio test.

10.36. Show that G(zþ 1) � ffiffiffiffiffiffiffiffi
2pz

p
z ze�z 1þ 1

12z
þ 1

288z2
� 139

51,840z3
þ � � �

� �
.

Solution

We have G(zþ 1) ¼
Ð1
0
t ze�t dt. By letting t ¼ zt, this becomes

G(zþ 1) ¼ zzþ1

ð1
0

tze�ztdt ¼ zzþ1

ð1
0

ez( ln t�t)dt (1)

which has the form (10.37), page 330, where F(t) ¼ ln t � t.

F0(t) ¼ 0 when t ¼ 1. Letting t ¼ 1þ w, we find, using Problem 6.23, page 185, or otherwise, the

Taylor series

F(t) ¼ ln t � t ¼ ln(1þ w)� (1þ w) ¼ w� w2

2
þ w3

3
� w4

4
þ � � �

� �
� 1� w

¼ �1� w2

2
þ w3

3
� w4

4
þ � � � ¼ �1� (t � 1)2

2
þ (t � 1)3

3
� (t � 1)4

4
þ � � �
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Hence from (1),

G(zþ 1) ¼ zzþ1e�z

ð1
0

e�z(t�1)2=2ez(t�1)3=3�z(t�1)4=4þ��� dt

¼ zzþ1e�z

ð1
�1

e�zw2=2ezw
2=3�zw4=4þ��� dw (2)

Letting w ¼
ffiffiffiffiffiffiffi
2=z

p
v, this becomes

G(zþ 1) ¼
ffiffiffi
2

p
zzþ1=2e�z

ð1
�

ffiffiffiffiffi
z=2

p
e�v2e(2=3)

ffiffi
2

p
z�1=2v3�z�1v4þ��� dv (3)

For large values of z, the lower limit can be replaced by �1, and on expanding the exponential, we have

G(zþ 1) �
ffiffiffi
2

p
zzþ1=2e�z

ð1
�1

e�v2f1þ 2
3

ffiffiffi
2

p
z�1=2v3 � z�1v4


 �
þ � � �g dv (4)

or

G(zþ 1) � ffiffiffiffiffiffiffiffi
2pz

p
zze�z 1þ 1

12z
þ 1

288z2
� 139

51,840z3
þ � � �

� �
(5)

Although we have proceeded above in a formal manner, the analysis can be justified rigorously.

Another Method. Given

F(t) ¼ �1� (t � 1)2

2
þ (t � 1)3

3
� (t � 1)4

4
þ � � � ¼ �1� u2

Then

u2 ¼ (t � 1)2

2
� (t � 1)3

3
þ � � �

and by reversion of series or by using the fact that F(t) ¼ ln t � t, we find

dt

du
¼ b0 þ b1uþ b2u

2 þ � � � ¼
ffiffiffi
2

p
þ

ffiffiffi
2

p

6
u2 þ

ffiffiffi
2

p

216
u4 þ � � �

Then, from (10.41), page 330, we find

G(zþ 1) �
ffiffiffiffi
p

z

r
zzþ1ez(ln 1�1)

ffiffiffi
2

p
þ 1

2

ffiffiffi
2

p

6

� �
1

z
þ 1 � 3
2 � 2

ffiffiffi
2

p

216

� �
1

z2
þ � � �

� �

or

G(zþ 1) � ffiffiffiffiffiffiffiffi
2pz

p
zze�z 1þ 1

12z
þ 1

288z2
þ � � �

� �

Note that since F00(1) ¼ �1, we find on using (10.42), page 330,

G(zþ 1) � ffiffiffiffiffiffiffiffi
2pz

p
zze�z

which is the first term. For many purposes this first term provides sufficient accuracy.
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Elliptic Functions

10.37. Prove: (a)
d

dz
sn z ¼ cn z dn z, (b)

d

dz
cn z ¼ �sn z dn z.

Solution

By definition, if z ¼
ðw
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p , then w ¼ sn z. Hence

(a)
d

dz
(sn z) ¼ dw

dz
¼ 1

dz=dw
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� w2)(1� k2w2)

p
¼ cn z dn z

(b)
d

dz
(cn z) ¼ d

dz
(1� sn2 z)1=2 ¼ 1

2
(1� sn2 z)�1=2 d

dz
(�sn2 z)

¼ 1

2
(1� sn2 z)�1=2(�2 sn z)(cn z dn z) ¼ �sn z dn z

10.38. Prove (a) sn(�z) ¼ �sn z, (b) cn(�z) ¼ cn z, (c) dn(�z) ¼ dn z.

Solution

(a) If z ¼
ðw
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p , then w ¼ sn z. Let t ¼ �r; then

z ¼ �
ð�w

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r2)(1� k2r2)

p or �z ¼
ð�w

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r2)(1� k2r2)

p ,

that is, sn(�z) ¼ �w ¼ �sn z

(b) cn(�z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2(�z)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2 z

p
¼ cn z

(c) dn(�z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2(�z)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2 z

p
¼ dn z

10.39. Prove that (a) sn(zþ 2K) ¼ �sn z, (b) cn(zþ 2K) ¼ �cn z.

Solution

We have z ¼
ðf
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p so that f ¼ am z and sinf ¼ sn z, cosf ¼ cn z. Now

ðfþp

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ¼
ðp
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p þ
ðfþp

p

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p

¼ 2

ðp=2
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p þ
ðf
0

dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

p
using the transformation u ¼ pþ c. Hence, fþ p ¼ am (zþ 2K).

Thus we have

(a) sn(zþ 2K) ¼ sinfam(zþ 2K)g ¼ sin(fþ p) ¼ � sinf ¼ �an z

(b) cn(zþ 2K) ¼ cosfam(zþ 2K)g ¼ cos(fþ p) ¼ � cosf ¼ �cn z
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10.40. Prove that (a) sn(zþ 4K) ¼ sn z, (b) cn(zþ 4K) ¼ cn z, (c) dn(zþ 2K) ¼ dn z.

Solution

From Problem 10.39

(a) sn(zþ 4K) ¼ �sn(zþ 2K) ¼ sn z

(b) cn(zþ 4K) ¼ �cn(zþ 2K) ¼ cn z

(c) dn(zþ 2K) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2(zþ 2K)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2 z

p
¼ dn z

Another Method. The integrand 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p
has branch points at t ¼ +1 and t ¼ +1=k in the t

plane [Fig. 10-10]. Consider the integral from 0 to w along two paths C1 and C2. We can deform C2 into the

path ABDEFGHJAþ C1, where BDE and GHJ are circles of radius e while JAB and EFG, drawn separately

for visual purposes, are actually coincident with the x axis.

x

y
t plane

w

C1

C2

1–1–1/k 1/k

C1

w
y

xDBAJ
H

G F E

t plane

–1–1/k 1 1/k

Fig. 10-10 Fig. 10-11

We then have

ðw
0
C2

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p ¼
ð1�e

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p þ
ð

BDE

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p

þ
ð0

1�e

dx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p þ
ð�1þe

0

dx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p

þ
ð

GHJ

dt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p þ
ðu

�1þe

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p

þ
ðw
0
c1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p

¼ 4

ð1�e

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p þ
ðw
0
c1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p

þ
ð

BDE

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p þ
ð

GHJ

dt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p
where we have used the fact that in encircling a branch point, the sign of the radical is changed.
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On BDE and GHJ, we have t ¼ 1� eeiu and t ¼ �1þ eeiu, respectively. Then, the corresponding

integrals equal

ð2p
0

�ieeiu duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� eeiu)(eeiu)f1� k2(1� eeiu)2g

p ¼ �i
ffiffiffi
e

p ð2p
0

eiu=2 duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� eeiu)f1� k2(1� eeiu)2g

p
ð2p
0

ieeiu duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eeiu)(2� eeiu)f1� k2(�1þ eeiu)2g

p ¼ i
ffiffiffi
e

p ð2p
0

eiu=2 duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� eeiu)f1� k2(�1þ eeiu)2g

p
As e ! 0, these integrals approach zero and we obtain

ðw
0
C2

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p ¼ 4

ð1
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x2)(1� k2x2)

p þ
ðw
0
C1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p

Now, if we write

z ¼
ðw
0
C1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p , i:e:, w ¼ sn z

then

zþ 4K ¼
ðw
0
C2

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k2t2)

p , i:e:, w ¼ sn(zþ 4K)

and since the value of w is the same in both cases, sn(zþ 4K) ¼ sn z.

Similarly, we can establish the other results.

10.41. Prove that (a) sn(K þ iK 0) ¼ 1=k, (b) cn(K þ iK 0) ¼ �ik0=k, (c) dn(K þ iK 0) ¼ 0.

Solution

(a) We have

K 0 ¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� k02t2)

p
where k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
.

Let u ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02t2

p
. When t ¼ 0, u ¼ 1; when t ¼ 1, u ¼ 1=k. Thus as t varies from 0 to 1, u varies

from 1 to 1/k. By Problem 2.43, page 69, with p ¼ 1=k, it follows that
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
¼ �ik0u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02u2

p
.

Thus, by substitution, we have

K 0 ¼ �i

ð1=k
1

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� u2)(1� k2u2)

p
from which

K þ iK 0 ¼
ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� u2)(1� k2u2)

p þ
ð1=k
1

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� u2)(1� k2u2)

p ¼
ð1=k
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� u2)(1� k2u2)

p
i.e., sn(K þ iK 0) ¼ 1=k.

(b) From part (a),

cn(K þ iK 0) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2(K þ iK 0)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=k2

p
¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
=k ¼ �ik0=k

(c) dn(K þ iK 0) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sn2(K þ iK 0)

p
¼ 0 by part (a).
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10.42. Prove that (a) sn(2K þ 2iK 0) ¼ 0, (b) cn(2K þ 2iK 0) ¼ 1, (c) dn(2K þ 2iK 0) ¼ �1.

Solution

From the addition formulas with z1 ¼ z2 ¼ K þ iK 0, we have

(a) sn(2K þ 2iK 0) ¼ 2 sn(K þ iK 0) cn(K þ iK 0) dn(K þ iK 0)

1� k2 sn4(K þ iK 0)
¼ 0

(b) cn(2K þ 2iK 0) ¼ cn2(K þ iK 0)� sn2(K þ iK 0) dn2(K þ iK 0)

1� k2 sn4(K þ iK 0)
¼ 1

(c) dn(2K þ 2iK 0) ¼ dn2(K þ iK 0)� k2 sn2(K þ iK 0) cn2(K þ iK 0)

1� k2 sn4(K þ iK 0)
¼ �1

10.43. Prove that (a) sn(zþ 2iK 0) ¼ sn z, (b) cn(zþ 2K þ 2iK 0) ¼ cn z, (c) dn(zþ 4iK 0) ¼ dn z.

Solution

Using Problems 10.39, 10.42, 10.170, and the addition formulas, we have

(a) sn(zþ 2iK 0) ¼ sn(z� 2K þ 2K þ 2iK 0)

¼ sn(z� 2K) cn(2K þ 2iK 0) dn(2K þ 2iK 0)þ sn(2K þ 2iK 0) cn(z� 2K) dn(z� 2K)

1� k2 sn2(z� 2K) sn2(2K þ 2iK 0)

¼ sn z

(b) cn(zþ 2K þ 2iK 0) ¼ cn z cn(2K þ 2iK 0)� sn z sn(2K þ 2iK 0) dn z dn(2K þ 2iK 0)

1� k2 sn2 z sn2(2K þ 2iK 0)
¼ cn z

(c) dn(zþ 4iK 0) ¼ dn(z� 4K þ 4K þ 4iK 0)

¼ dn(z� 4K) dn(4K þ 4iK 0)� k2 sn(z� 4K) sn(4K þ 4iK 0) cn(z� 4K) cn(4K þ 4iK 0)

1� k2 sn2(z� 4K) sn2(4K þ 4iK 0)

¼ dn z

10.44. Construct period parallelograms or cells for the functions (a) sn z, (b) cn z, (c) dn z.

Solution

The results are shown in Figs. 10-12, 10-13, and 10-14, respectively.

(a)

y

x

2iK′

4K

(b)

y

x

2K+ 2iK′

4K

y

x
2K

4iK′

(c)

Fig. 10-12 Fig. 10-13 Fig. 10-14
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Miscellaneous Problems

10.45. Prove that Pn(z) ¼ F �n, nþ 1; 1;
1� z

2

� �
, n ¼ 0, 1, 2, 3, . . . .

Solution

The Legendre polynomials Pn(z) are of degree n and have the value 1 for z ¼ 1. Similarly, from (10.29),

page 328, it is seen that

F �n, nþ 1; 1;
1� z

2

� �
¼ 1� n(nþ 1)

2
(1� z)þ n(n� 1)(nþ 1)(nþ 2)

16
(1� z)2 þ � � �

is a polynomial of degree n having the value 1 for z ¼ 1.

The required result follows if we show that Pn and F satisfy the same differential equation. To do this, let

(1� z)=2 ¼ u, i.e., z ¼ 1� 2u, in Legendre’s equation (10.25), page 327, to obtain

u(1� u)
d2Y

du2
þ (1� 2u)

dY

du
þ n(nþ 1)Y ¼ 0

But this is the hypergeometric equation (10.30), page 328, with a ¼ �n, b ¼ nþ 1, c ¼ 1, and u ¼ (1� z)=2.
Hence the result is proved.

10.46. Prove that for m ¼ 1, 2, 3, . . . ,

G
1

m

� �
G

2

m

� �
G

3

m

� �
� � �G m� 1

m

� �
¼ (2p)(m�1)=2ffiffiffiffi

m
p

Solution

We have

P ¼ G
1

m

� �
G

2

m

� �
� � �G 1� 1

m

� �
¼ G 1� 1

m

� �
G 1� 2

m

� �
� � �G 1

m

� �

Then, multiplying these products term by term and using Problem 10.13, page 337, and Problem 1.52,

page 32, we find

P2 ¼ G
1

m

� �
G 1� 1

m

� �� �
G

2

m

� �
G 1� 2

m

� �� �
� � � G 1� 1

m

� �
G

1

m

� �� �

¼ p

sin(p=m)
� p

sin(2p=m)
� � � p

sin(m� 1)p=m

¼ pm�1

sin(p=m) sin(2p=m) � � � sin(m� 1)p=m
¼ pm�1

m=2m�1
¼ (2p)m�1

m

or P ¼ (2p)(m�1)=2=
ffiffiffiffi
m

p
, as required.

10.47. Show that for large positive values of z,

Jn(z) �
ffiffiffiffiffiffi
2

pz

r
cos z� np

2
� p

4

� 


Solution

By Problem 6.33, we have

Jn(z) ¼
1

p

ðp
0

cos(nt � z sin t) dt ¼ Re
1

p

ðp
0

e�inteiz sin t dt

8<
:

9=
;
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Let F(t) ¼ i sin t. Then F0(t) ¼ i cos t ¼ 0 where t ¼ p=2. If we let t ¼ p=2þ v, the integral in braces

becomes

1

p

ðp=2
�p=2

e�in(p=2þv)eiz sin(p=2þv) dv ¼ e�inp=2

p

ðp=2
�p=2

e�inveiz cos v dv ¼ e�inp=2

p

ðp=2
�p=2

e�inveiz(1�v2=2þv4=24����) dv

¼ ei(z�np=2)

p

ðp=2
�p=2

e�inve�izv2=2þizv4=24���� dv

Let v2 ¼ �2iu2=z or v ¼ (1� i)u=
ffiffi
z

p
, i.e., u ¼ 1

2
(1þ i)

ffiffi
z

p
v. Then, the integral can be approximated by

(1� i)ei(z�np=2)

p
ffiffi
z

p
ð1
�1

e�(1þi)nu=
ffiffi
z

p
e�u2�iu4=6z���� du

or for large positive values of z,

(1� i)ei(z�np=2)

p
ffiffi
z

p
ð1
�1

e�u2 du ¼ (1� i)ei(z�np=2)ffiffiffiffiffiffi
p z

p

and the real part is

1ffiffiffiffiffiffi
pz

p cos z� np

2

� 

þ sin z� np

2

� 
n o
¼

ffiffiffiffiffiffi
2

pz

r
cos z� np

2
� p

4

� 


Higher-order terms can also be obtained [see Problem 10.162].

10.48. Let C be the contour of Fig. 10-15. Prove that for all values of z

G(z) ¼ 1

e2piz � 1

þ
C

tz�1e�t dt

Solution

Referring to Fig. 10-15, we see that along AB, t ¼ x; along BDE, t ¼ eeiu; and along EF, t ¼ xe2pi. Then

ð
ABDEF

tz�1e�t dt ¼
ðe
R

xz�1e�x dxþ
ð2p
0

(eeiu)z�1e�eeiu ieeiu duþ
ðR
e

xz�1e2pi(z�1) e�x dx

¼ (e2piz � 1)

ðR
e

xz�1e�x dxþ i

ð2p
0

ezeiuze�eeiudu

Now, if Refzg . 0, we have on taking the limit as e ! 0 and R ! 1,

ð
C

tz�1e�t dt ¼ (e2piz � 1)

ð1
0

xz�1e�x dx

¼ (e2piz � 1)G(z)

But the functions on both sides are analytic for all z.

Hence, for all z,

G(z) ¼ 1

e2piz � 1

þ
C

tz�1e�t dt

y

x

FE

B A
D

R

t plane

Fig. 10-15
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10.49. Prove that sn(z1 þ z2) ¼
sn z1 cn z2 dn z2 þ cn z1 sn z2 dn z1

1� k2 sn2 z1 sn2 z2
:

Solution

Let z1 þ z2 ¼ a, a constant. Then dz2=dz1 ¼ �1. Let us define U ¼ sn z1, V ¼ sn z2. It follows that

dU

dz1
¼ _U ¼ cn z1dn z1,

dV

dz1
¼ _V ¼ dV

dz2

dz2

dz1
¼ �cn z2 dn z2

where dots denote differentiation with respect to z1. Then

_U2 ¼ (1� U2)(1� k2U2) and _V2 ¼ (1� V2)(1� k2V2)

Differentiating and simplifying, we find

€U ¼ 2k2U3 � (1þ k2)U (1)

€V ¼ 2k2V3 � (1þ k2)V (2)

Multiplying (1) by V, (2) by U, and subtracting, we have

€UV � U €V ¼ 2k2UV(U2 � V2) (3)

It is easy to verify that

_U2V2 � U2 _V2 ¼ (1� k2U2V2)(V2 � U2) (4)

or

_UV � U _V ¼ (1� k2U2V2)(V2 � U2)

_UV þ U _V
(5)

Dividing equations (3) and (5), we have

€UV � U €V

_UV � U _V
¼ �2k2UV( _UV þ U _V)

1� k2U2V2
(6)

But

€UV � U €V ¼ d

dz1
( _UV � U _V)

and

�2k2UV( _UV þ U _V) ¼ d

dz1
(1� k2U2V2)

so that (6) becomes

d( _UV � U _V)

_UV � U _V
¼ d(1� k2U2V2)

1� k2U2V2

An integration yields
_UV � U _V

1� k2U2V2
¼ c (a constant), that is,

sn z1 cn z2 dn z2 þ cn z1 sn z2 dn z1

1� k2 sn2 z1 sn2 z2
¼ c
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is a solution of the differential equation. It is also clear that z1 þ z2 ¼ a is a solution. The two solutions must be

related as follows:

sn z1 cn z2 dn z2 þ cn z1 sn z2 dn z1

1� k2 sn2 z1 sn2 z2
¼ F(z1 þ z2)

Putting z2 ¼ 0, we see that F(z1) ¼ sn z1. Then, F(z1 þ z2) ¼ sn(z1 þ z2) and the required result follows.

SUPPLEMENTARY PROBLEMS

Analytic Continuation

10.50. (a) Show that F1(z) ¼ zþ 1
2
z2 þ 1

3
z3 þ 1

4
z4 þ � � � converges for jzj , 1.

(b) Show that F2(z) ¼ 1
4
pi� 1

2
ln 2þ z� i

1� i

� �
þ 1

2

z� i

1� i

� �2

þ 1
3

z� i

1� i

� �3

þ � � � converges for jz� ij ,
ffiffiffi
2

p
.

(c) Show that F1(z) and F2(z) are analytic continuations of each other.

(d) Can you find a function that represents all possible analytic continuations of F1(z)? Justify your answer.

10.51. A function F(z) is represented in jz� 1j , 2 by the series

X1
n¼0

(�1)n(z� 1)2n

22nþ1

Prove that the value of the function at z ¼ 5 is 1/16.

10.52. (a) Show that F1(z) ¼
Ð1
0
(1þ t)e�zt dt converges only if Refzg . 0.

(b) Find a function that is the analytic continuation of F1(z) into the left hand plane.

10.53. (a) Find the region of convergence of F1(z) ¼
Ð1
0
e�(zþ1)2t dt and graph this region.

(b) Find the value of the analytic continuation of F1(z) corresponding to z ¼ 2� 4i.

10.54. (a) Prove that
z

1� z2
þ z2

1� z4
þ z4

1� z8
þ � � � ¼ z=(1� z) if jzj , 1

1=(1� z) if jzj > 1

�

(b) Discuss these results from the point of view of analytic continuation.

10.55. Show that the series
P1

n¼0 z
3n cannot be continued analytically beyond the circle jzj ¼ 1.

10.56. Suppose
P1

n¼1 anz
bn has jzj ¼ 1 as a natural barrier. Would you expect

P1
n¼1 (�1)nanz

bn to have jzj ¼ 1 as

natural barrier also? Justify your conclusion.

10.57. Let fzng, n ¼ 1, 2, 3, . . . be a sequence such that limn!1 zn ¼ a, and suppose that for all n, zn=a. Let F(z) and

G(z) be analytic at a and such that F(zn) ¼ G(zn), n ¼ 1, 2, 3, . . . .

(a) Prove that F(z) ¼ G(z). (b) Explain the relationship of the result in (a) with analytic continuation. [Hint.

Consider the expansion of F(z)� G(z) in a Taylor series about z ¼ a.]

Schwarz’s Reflection Principle

10.58. Work Problem 10.2 using Schwarz’s reflection principle.
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10.59. (a) Given that sin 2z ¼ 2 sin z cos z holds for all real values of z, prove that it also holds for all complex

values of z.

(b) Can you use the Schwarz reflection principle to prove that tan 2z ¼ (2 tan z)=(1� tan2 z)? Justify your

conclusion.

10.60. Does the Schwarz reflection principle apply if reflection takes place in the imaginary rather than the real axis?

Prove your statements.

10.61. Can you extend the Schwarz reflection principle to apply to reflection in a curve C?

Infinite Products

10.62. Investigate the convergence of the infinite products

(a)
Y1
k¼1

1þ 1

k3

� �
, (b)

Y1
k¼1

1� 1ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
� �

, (c)
Y1
k¼1

1þ cos kp

k2 þ 1

� �

10.63. Prove that a necessary condition for
Q1

k¼1 (1þ wk) to converge is that limn!1 wn ¼ 0.

10.64. Investigate the convergence of (a)
Y1
k¼1

1þ 1

k

� �
, (b)

Y1
k¼1

1þ kffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
� �

, (c)
Y1
k¼1

(1þ cot�1 k2).

10.65. Suppose an infinite product is absolutely convergent. Prove that it is convergent.

10.66. Prove that cos z ¼
Y1
k¼1

1� 4z2

(2k � 1)2p2

� �
.

10.67. Show that
Y1
k¼1

1þ e�kz

k2

� �
(a) converges absolutely and uniformly in the right half plane Refzg � 0 and

(b) represents an analytic function of z for Refzg � 0.

10.68. Prove that 1� 1

22

� �
1� 1

32

� �
1� 1

42

� �
� � � ¼ 1

2
.

10.69. Prove that 1� 1

2

� �
1þ 1

3

� �
1� 1

4

� �
� � � ¼ 1

2
.

10.70. Prove that: (a) sinh z ¼
Y1
k¼1

1þ z2

k2p2

� �
, (b) cosh z ¼

Y1
k¼1

1þ 4z2

(2k � 1)2p2

� �
.

10.71. Use infinite products to show that sin 2z ¼ 2 sin z cos z. Justify all steps.

10.72. Prove that
Y1
k¼1

1þ 1

k
sin

z

k

� �
(a) converges absolutely and uniformly for all z and

(b) represents an analytic function.

10.73. Prove that
Y1
k¼1

1þ z

k

� 

e�z=k converges.
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The Gamma Function

10.74. Evaluate each of the following by use of the gamma function.

(a)
Ð1
0
y3e�2y dy (c)

Ð1
0
y2e�2y2 dy (e)

Ð1
0
fye�y2g1=4 dy

(b)
Ð1
0
u3=2e�3u du (d)

Ð 1
0
fln(1=t)g�1=2 dt

10.75. Prove that G(z) ¼
Ð 1
0
fln(1=t)gz�1 dt for Refzg . 0.

10.76. Show that

ð1
1

(x� 1)p

x2
dx ¼ G(1þ p)G(1� p), where �1 , p , 1.

10.77. Suppose m, n, and a are positive constants. Show that

ð1
0

xme�axndx ¼ 1

n
a�(mþ1)=nG

mþ 1

n

� �

10.78. Show that

ð1
0

e�ztffiffi
t

p dt ¼
ffiffiffiffi
p

z

r
if Refzg . 0.

10.79. Evaluate
Ð 1
0
(x ln x)4 dx.

10.80. Evaluate (a) G(�7=2), (b) G(�1=3).

10.81. Show that G �1
2
� m


 �
¼ (�1)mþ1 ffiffiffiffi

p
p

2mþ1

1 � 3 � 5 � � � (2mþ 1)
, m ¼ 0, 1, 2, . . . .

10.82. Prove that the residue of G(z) at z ¼ �m, m ¼ 0, 1, 2, 3, . . . , is (�1)m=m! where 0! ¼ 1 by definition.

10.83. Use the infinite product representation of the gamma function to prove that

(a) G(z)G(1� z) ¼ p

sinpz
, (b) 22z�1G(z)G zþ 1

2


 �
¼ ffiffiffiffi

p
p

G(2z)

10.84. Prove that if y . 0, then jG(iy)j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

y sinhpy

r
.

10.85. Discuss Problem 10.84 if y , 0.

10.86. Prove (a) Property 6, (b) Property 7, (c) Property 9 on pages 322 and 323.

10.87. Prove that G 1
5


 �
G 2

5


 �
¼ 4p2=

ffiffiffi
5

p
.

10.88. (a) By using the infinite product representation of the gamma function, prove that for any positive integer m,

mmzG(z)G(zþ 1=m)G(zþ 2=m) � � �G(zþ [m� 1]=m)

G(mz)

is a constant independent of z.

(b) By letting z ! 0 in the result of (a), evaluate the constant and thus establish Property 5, page 322.

The Beta Function

10.89. Evaluate: (a) B(3, 5/2), (b) B(1/3, 2/3).

10.90. Evaluate each of the following using the beta function:

(a)
Ð 1
0
t�1=3(1� t)2=3 dt, (b)

Ð 1
0
u2(1� u2)�1=2 du, (c)

Ð 3
0
(9� t2)3=2 dt, (d)

Ð 4
0
dt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t � t2

p
.
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10.91. Prove that
B(mþ 1, n)

B(m, nþ 1)
¼ m

n
.

10.92. Given a . 0, prove that

ða
0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � y4

p ¼ fG(1=4)g2

4a
ffiffiffiffiffiffi
2p

p .

10.93. Prove that

B
pþ 1

2
,
1

2

� �

B
pþ 1

2
,
pþ 1

2

� � ¼ 2p stating any restrictions on p.

10.94. Evaluate: (a)
Ð p=2
0

sin6 u cos4 u du, (b)
Ð p=2
0

ffiffiffiffiffiffiffiffiffiffi
tan u

p
du.

10.95. Prove that B(m, n) ¼ 1

2

ð1
0

xm�1 þ xn�1

(1þ x)mþn dx where Refmg . 0 and Refng . 0. [Hint. Let y ¼ x=(1þ x).]

10.96. Prove that

ð1
0

x3 dx

1þ x6
¼ p

3
ffiffiffi
3

p .

10.97. (a) Show that if either m or n (but not both) is a negative integer and if mþ n , 0, then B(m, n) is infinite.

(b) Investigate B(m, n) when both m and n are negative integers.

Differential Equations

10.98. Determine the singular points of each of the following differential equations and state whether they are regular

or irregular. (a) (1� z2)Y 00 � 2Y 0 þ 6Y ¼ 0, (b) (2z4 � z5)Y 00 þ zY 0 þ (z2 þ 1)Y ¼ 0,

(c) z2(1� z)2Y 00 þ (2� z)Y 0 þ 4z2Y ¼ 0

10.99. Solve each of the following differential equations using power series and find the region of convergence. If

possible, sum the series and show that the sum satisfies the differential equation.

(a) Y 00 þ 2Y 0 þ Y ¼ 0, (b) Y 00 þ zY ¼ 0, (c) zY 00 þ 2Y 0 þ zY ¼ 0.

10.100. (a) Suppose you solved (1� z2)Y 00 þ 2Y ¼ 0 by substituting the assumed solution Y ¼
P

anz
n. What region

of convergence would you expect? Explain.

(b) Determine whether your expectations in (a) are correct by actually finding the series solution.

10.101. (a) Solve Y 00 þ z2Y ¼ 0 subject to Y(0) ¼ 1, Y 0(0) ¼ �1 and (b) determine the region of convergence.

10.102. Suppose Y ¼ Y1(z) is a solution of Y 00 þ p(z)Y 0 þ q(z)Y ¼ 0. Show that the general solution is

Y ¼ AY1(z)þ BY1(z)

ð
expf�

Ð
p(z) dzg

fY1(z)g2
dz

10.103. (a) Solve zY 00 þ (1� z)Y 0 � Y ¼ 0 and (b) determine the region of convergence.

10.104. (a) Use Problem 10.102 to show that the solution to the differential equation of Problem 10.103 can be

written as

Y ¼ Aez þ Bez
ð
e�z

z
dz

(b) Reconcile the result of (a) with the series solution obtained in Problem 10.103.

10.105. (a) Solve zY 00 þ Y 0 � Y ¼ 0 and (b) determine the region of convergence.
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10.106. Prove that Y ¼ V expf� 1
2

Ð
p(z) dzg transforms the differential equation Y 00 þ p(z)Y 0 þ q(z)Y ¼ 0 into

V 00 þ
n
q(z)� 1

2
p0(z)� 1

4
[p(z)]2

o
V ¼ 0

10.107. Use the method of Problem 10.106 to find the general solution of zY 00 þ 2Y 0 þ zY ¼ 0 [see Problem 10.99(c)].

Solution of Differential Equations by Contour Integrals

10.108. Use the method of contour integrals to solve each of the following.

(a) Y 00 � Y 0 � 2Y ¼ 0, (b) Y 00 þ 4Y 0 þ 4Y ¼ 0, (c) Y 00 þ 2Y 0 þ 2Y ¼ 0.

10.109. Prove that a solution of zY 00 þ (a� z)Y 0 � bY ¼ 0, where Refag . 0, Refbg . 0, is given by

Y ¼
ð1
0

ezttb�1(1� t)a�b�1 dt

Bessel Functions

10.110. Prove that J�n(z) ¼ (�1)nJn(z) for n ¼ 0, 1, 2, 3, . . . .

10.111. Prove (a)
d

dz
fznJn(z)g ¼ znJn�1(z), (b)

d

dz
fz�nJn(z)g ¼ �z�nJnþ1(z).

10.112. Show that (a) J00(z) ¼ �J1(z), (b)
Ð
z3J2(z) dz ¼ z3J3(z)þ c, (c)

Ð
z3J0(z) dz ¼ z3J1(z)�2z2J2(z)þ c.

10.113. Show that (a) J1=2(z) ¼
ffiffiffiffiffiffiffiffiffiffi
2=pz

p
sin z, (b) J�1=2(z) ¼

ffiffiffiffiffiffiffiffiffiffi
2=pz

p
cos z.

10.114. Prove the result of Problem 10.27 for non-integral values of n.

10.115. Show that J3=2(z) sin z� J�3=2 cos z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=pz3

p
.

10.116. Prove that J0n(z) ¼ 1
2
fJn�1(z)� Jnþ1(z)g.

10.117. Prove that (a) J00n (z) ¼ 1
4
fJn�2(z)� 2Jn(z)þ Jnþ2(z)g

(b) J000n (z) ¼ 1
8
fJn�3(z)� 3Jn�1(z)þ 3Jnþ1(z)� Jnþ3(z)g.

10.118. Generalize the results in Problems 10.116 and 10.117.

10.119. By direct substitution, prove that J0(z) ¼
1

p

ðp
0

cos(z sin u) du satisfies the equation

zY 00 þ Y 0 þ zY ¼ 0

10.120. Suppose Refzg . 0. Prove that

ð1
0

e�ztJ0(t) dt ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ 1
p .

10.121. Prove that: (a) cos(a cos u) ¼ J0(a)� 2J2(a) cos 2uþ 2J4(a) cos 4uþ � � �
(b) sin(a cos u) ¼ 2J1(a) cos u� 2J3(a) cos 3uþ 2J5(a) cos 5u� � � � .

10.122. Suppose p is an integer. Prove that Jp(xþ y) ¼
P1

n¼�1
Jn(x)J p�n( y)

[Hint. Use the generating function.]

10.123. Establish Property 8, page 326.
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10.124. Let Refzg . 0. Prove that

Jn(z) ¼
zn

2pi

þ
C

e(1=2)(t�z2=t)t�n�1 dt

where C is the contour of Fig. 10-5, page 323.

10.125. Let Refzg . 0. Prove that Jn(z) ¼
1

p

ðp
0

cos(nf� z sinf) df� sin np

p

ð1
0

e�nf�z sinhf df

10.126. (a) Verify that Y0(z), given by equation (10.23) on page 326, is a solution to Bessel’s equation of order zero.

(b) Verify that Yn(z) given by equation (10.22) on page 326 is a solution to Bessel’s equation of order n.

10.127. Show that: (a) zYn�1(z)� 2nYn(z)þ zYnþ1(z) ¼ 0

(b)
d

dz
fznYn(z)g ¼ znYn�1(z), (c)

d

dz
fz�nYn(z)g ¼ �z�nYnþ1(z).

10.128. Prove that V ¼ ffiffi
z

p fAJn(z)þ BYn(z)g is the general solution of

V 00 þ 1� (n2 � 1=4)

z2

� �
V ¼ 0

10.129. Prove that Jnþ1(z)Yn(z)� Jn(z)Ynþ1(z) ¼ 1=z.

10.130. Show that the general solution of V 00 þ 2m�2V ¼ 0 is

V ¼
ffiffi
z

p
AJ1=m

2

m
zm=2

� �
þ BY1=m

2

m
zm=2

� �� �

10.131. (a) Show that the general solution to Bessel’s equation z2Y 00 þ zY 0 þ (z2 � n2)Y ¼ 0 is

Y ¼ AJn(z)þ BJn(z)

ð
dz

zJ2n (z)

(b) Reconcile this result with that of equation (24), page 327.

Legendre Functions

10.132. Obtain the Legendre polynomials (a) P3(z), (b) P4(z), (c) P5(z).

10.133. Prove (a) P0
nþ1(z)� P0

n�1(z) ¼ (2nþ 1)Pn(z), (b) (nþ 1)Pn(z) ¼ P0
nþ1(z)� zP0

n(z).

10.134. Prove that nP0
nþ1(z)� (2nþ 1)zP0

n(z)þ (nþ 1)P0
n�1(z) ¼ 0.

10.135. Prove that (a) Pn(�1) ¼ (�1)n, (b) P2nþ1(0) ¼ 0.

10.136. Prove that P2n(0) ¼
(�1)n

n!

1

2

� �
3

2

� �
5

2

� �
� � � 2n� 1

2

� �
¼ (�1)n

1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � (2n) .

10.137. Verify Property 2, page 327.

10.138. Let [n=2] denotes the greatest integer � n=2. Show that Pn(z) ¼
X[n=2]
k¼0

(�1)k(2n� 2k)!

2nk!(n� k)!(n� 2k)!
zn�2k

10.139. Prove that the general solution of Legendre’s equation (1� z2)Y 00 � 2zY 0 þ n(nþ 1)Y ¼ 0 for

n ¼ 0, 1, 2, 3, . . . is Y ¼ APn(z)þ BQn(z) where Qn(z) ¼ Pn(z)
Ð1
z
dt=(t2 � 1)fPn(t)g2:

10.140. Use Problem 10.139 to find the general solution of the differential equation (1� z2)Y 00 � 2zY 0þ 2Y ¼ 0.
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The Zeta Function

10.141. Let Refzg . 0. Prove that z(z) ¼ 1

1z
þ 1

2z
þ 1

3z
þ � � � ¼ 1

G(z)

ð1
0

tz�1 dt

et � 1

10.142. Prove that, where 2, 3, 5, 7, . . . represent prime numbers, 1� 1

22

� �
1� 1

32

� �
1� 1

52

� �
1� 1

72

� �
� � � ¼ p2

6

10.143. Prove that the only singularity of z(z) is a simple pole at z ¼ 1 whose residue is equal to 1.

10.144. Use the analytic continuation of z(z) given by equation (10.33), page 328, to show that

(a) z(�1) ¼ �1=12, (b) z(�3) ¼ 1=120.

10.145. Show that if z is replaced by 1� z in equation (10.33), page 328, the equation remains the same.

The Hypergeometric Function

10.146. Prove that: (a) ln(1þ z) ¼ zF(1, 1; 2; �z), (b)
tan�1 z

z
¼ F(1=2, 1; 3=2; �z2).

10.147. Prove that cos 2az ¼ F(a,�a; 1=2; sin2 z).

10.148. Prove that
d

dz
F(a, b; c; z) ¼ ab

c
F(aþ 1, bþ 1; cþ 1; z).

10.149. Suppose Refc� a� bg . 0 and c=0,�1,�2, . . . . Prove that

F(a, b; c; 1) ¼ G(c)G(c� a� b)

G(c� a)G(c� b)

10.150. Prove the result (10.31), page 328.

10.151. Prove that: (a) F(a, b; c; z) ¼ (1� z)c�a�bF(c� a, c� b; c; z)

(b) F(a, b; c; z) ¼ (1� z)�aF(a, c� b; c; z=[z� 1]).

10.152. Show that for jz� 1j , 1, the equation z(1� z)Y 00 þ fc� (aþ bþ 1)zgY 0 � abY ¼ 0 has the solution

F(a, b; aþ b� cþ 1; 1� z).

Asymptotic Expansions and the Method of Steepest Descents

10.153. Prove that

ð1
p

e�zt2dt ¼ e�zp2

2pz
1� 1

2p2z
þ 1 � 3
(2p2z)2

� � � � (�1)n
1 � 3 � 5 � � � (2n� 1)

(2p2z)n

� �

� (�1)nþ1 1 � 3 � 5 � � � (2nþ 1)

(2z)nþ1

ð1
p

e�zt2

t2nþ2
dt

and thus obtain an asymptotic expansion for the integral on the left.

10.154. Use Problem 10.153 to verify the result (10.48) on page 331.

10.155. Evaluate 50!.

10.156. Show that for large values of n,
1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � (2n) � 1ffiffiffiffiffiffi
pn

p .

10.157. Obtain the asymptotic expansions:

(a)

ð1
0

e�zt2

1þ t2
dt � 1

2

ffiffiffiffi
p

z

r
1� 1

2z
þ 1 � 3
(2z)2

� 1 � 3 � 5
(2z)3

þ � � �
� �
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(b)

ð1
0

e�zt

1þ t
dt � 1

z
� 1!

z2
þ 2!

z3
� 3!

z4
þ � � �

10.158. Verify the asymptotic expansion (10.49) on page 331.

10.159. Use asymptotic series to evaluate

ð1
10

e�t

t
dt.

10.160. Under suitable conditions on F(t), prove that

ð1
0

e�ztF(t) dt � F(0)

z
þ F0(0)

z2
þ F00(0)

z3
þ � � �

10.161. Perform the steps needed in order to go from (4) to (5) of Problem 10.36.

10.162. Prove the asymptotic expansion (10.46), page 331, for the Bessel function.

10.163. Let F(z) �
X1
n¼0

an

zn
and G(z) �

X1
n¼0

bn

zn
. Prove that:

(a) F(z)þ G(z) �
X1
n¼0

an þ bn

zn
, (b) F(z)G(z) �

X1
n¼0

cn

zn
where cn ¼

Xn
k¼0

akbn�k.

10.164. Let F(z) �
X1
n¼2

an

zn
. Prove that

ð1
z

F(z) dz �
X1
n¼2

an

(n� 1)zn�1
.

10.165. Show that for large values of z,

ð1
0

dt

(1þ t2)z
�

ffiffiffiffi
p

p

2

1

z1=2
þ 3

8z3=2
þ 25

128z5=2
þ � � �

� �

Elliptic Functions

10.166. Suppose 0 , k , 1. Prove that

K ¼
ðp=2
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ¼ p

2
1þ 1

2

� �2

k2 þ 1 � 3
2 � 4

� �2

k4 þ � � �
( )

10.167. Prove: (a) sn 2z ¼ 2 sn z cn z dn z

1� k2 sn4 z
, (b) cn 2z ¼ 1� 2 sn2 zþ k2 sn4 z

1� k2 sn4 z
.

10.168. If k ¼
ffiffiffi
3

p
=2, show that (a) sn(K=2) ¼

ffiffiffiffiffiffiffiffi
2=3

p
, (b) cn(K=2) ¼

ffiffiffiffiffiffiffiffi
1=3

p
, (c) dn(K=2) ¼

ffiffiffiffiffiffiffiffi
1=2

p
.

10.169. Prove that
snAþ snB

cnAþ cnB
¼ tn 1

2
(Aþ B) dn 1

2
(A� B).

10.170. Prove that (a) sn(4K þ 4iK 0) ¼ 0, (b) cn(4K þ 4iK 0) ¼ 1, (c) dn(4K þ 4iK 0) ¼ 1.

10.171. Prove: (a) sn z ¼ z� 1
6
(1þ k2)z3 þ 1

120
(1þ 14k þ k4)z5 þ � � �,

(b) cn z ¼ 1� 1
2
z2 þ 1

24
(1þ 4k2)z4 þ � � �, (c) dn z ¼ 1� 1

2
k2z2 þ 1

24
k2(k2 þ 4)z4 þ � � �

10.172. Prove that

ð1
1

dtffiffiffiffiffiffiffiffiffiffiffiffi
t4 � 1

p ¼ 1ffiffiffi
2

p K
1ffiffiffi
2

p
� �

.

10.173. Use contour integration to prove the results of Problem 10.40 (b) and (c).
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10.174. (a) Show that

ðf
0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 f

p ¼ 2

1þ k

ðf1

0

df1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 f1

p
where k1 ¼ 2

ffiffiffi
k

p
=(1þ k) by using Landen’s transformation, tanf ¼ (sin 2f1)=(k þ cos 2f1).

(b) If 0 , k , 1, prove that k , k1 , 1.

(c) Show that by successive applications of Landen’s transformation a sequence of moduli kn, n ¼ 1, 2, 3, . . .

is obtained such that limn!1 kn ¼ 1. Hence, show that if F ¼ limn!1 fn,

ðf
0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2

p
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3 . . .

k

r
ln tan

p

4
þF

2

� �

(d) Explain how the result in (c) can be used in the evaluation of elliptic integrals.

10.175. Is tn z ¼ (sn z)=(cn z) a doubly periodic function? Explain.

10.176. Derive the addition formulas for (a) cn(z1 þ z2) and (b) dn(z1 þ z2) given on page 332.

Miscellaneous Problems

10.177. Let jpj , 1. Show that

ðp=2
0

tanp u du ¼ 1

2
p sec( pp=2).

10.178. Let 0 , n , 2. Show that

ð1
0

sin t

tn
dt ¼ p csc(np=2)

2G(n)
.

10.179. Let 0 , n , 1. Show that

ð1
0

cos t

tn
dt ¼ p sec(np=2)

2G(n)
.

10.180. Prove that the general solution of (1� z2)Y 00 � 4zY 0 þ 10Y ¼ 0 is given by

Y ¼ AF(5=2, �1; 1=2; z2)þ BzF(3, �1=2; 3=2; z2)

10.181. Show that: (a)

ð1
0

sin t3 dt ¼ 1

6
G(1=3), (b)

ð1
0

cos t3 dt ¼
ffiffiffi
3

p

6
G(1=3).

10.182. (a) Find a solution of zY 00 þ Y 0 þ zY ¼ 0 having the form (ln z)
P1

k¼0 akz
k


 �
, and thus verify the result (10.23)

given on page 326. (b) What is the general solution?

10.183. Use the method of Problem 10.182 to find the general solution of z2Y 00 þ zY 0 þ (z2 � n2)Y ¼ 0. [See equation

(10.22), page 326.]

10.184. Show that the general solution of zU 00 þ (2mþ 1)U0 þ zU ¼ 0 is U ¼ z�mfAJm(z)þ BYm(z)g:

10.185. (a) Prove that z1=2J1(2iz
1=2) is a solution of zU00 � U ¼ 0. (b) What is the general solution?

10.186. Prove that fJ0(z)g2 þ 2fJ1(z)g2 þ 2fJ2(z)g2 þ � � � ¼ 1:

10.187. Prove that ez cosaJ0(z sina) ¼
X1
n¼0

Pn(cosa)

n!
zn:

10.188. Prove that G0 1
2


 �
¼ � ffiffiffiffi

p
p

(gþ 2 ln 2).

10.189. (a) Show that

ð1
z

e�t

t
dt ¼ �g� ln zþ z� z2

2 � 2!þ
z3

3 � 3!� � � �.

(b) Is the result in (a) suitable for finding the value of

ð1
10

e�t

t
dt? Explain. [Compare with Problem 10.159.]
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10.190. Let m be a positive integer. Show that F 1
2
, � m; 1

2
� m; 1


 �
¼ 2 � 4 � 6 � � � 2m

1 � 3 � 5 � � � (2m� 1)
.

10.191. Prove that (1þ z) 1� z

2

� 

1þ z

8

� 

1� z

4

� 

� � � ¼

ffiffiffiffi
p

p

G
1þ z

2

� �
G

2� z

2

� �.

10.192. Prove that

ðp=2
0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 f

p ¼ p

2
F 1

2
, 1

2
; 1; k2


 �
.

10.193. The associated Legendre functions are defined by P(m)
n (z) ¼ (1� z2)m=2 dm

dzm
Pn(z)

(a) Determine P(2)
3 (z).

(b) Prove that P(m)
n (z) satisfies the differential equation

(1� z2)Y 00 � 2zY 0 þ n(nþ 1)� m2

1� z2

� �
Y ¼ 0

(c) Prove that
Ð 1
�1

P(m)
n (z)P(m)

l (z) dz ¼ 0 if n= l.

This is called the orthogonality property for the associated Legendre functions.

10.194. Suppose m, n, and r are positive constants. Prove that

ð1
0

xm�1(1� x)n�1

(xþ r)mþn dx ¼ B(m, n)

rm(1þ r)mþn

[Hint. Let x ¼ (r þ 1)y=(r þ y).]

10.195. Prove that if m, n, a, and b are positive constants,

ðp=2
0

sin2m�1 u cos2n�1 u du

(a sin2 uþ b cos2 u)mþn
¼ B(m, n)

2anbm

[Hint. Let x ¼ sin2 u in Problem 10.194 and choose r appropriately.]

10.196. Prove that: (a) z=2 ¼ J1(z)þ 3J3(z)þ 5J5(z)þ � � � , (b) z2=8 ¼ 12J2(z)þ 22J4(z)þ 32J6(z)þ � � �

10.197. Let m be a positive integer. Prove that: (a) P2m(z) ¼
(�1)m(2m)!

22m(m!)2
F �m, mþ 1

2
; 1

2
; z2


 �

(b) P2mþ1(z) ¼
(�1)m(2mþ 1)!

22m(m!)2
zF �m, mþ 3

2
; 3

2
; z2


 �
10.198. (a) Prove that 1/(sn z) has a simple pole at z ¼ 0 and (b) find the residue at this pole.

10.199. Prove that G 1
4


 �� �2¼ 8
ffiffiffiffi
p

p 4 � 6 � 8 � 10 � 12 � 14 � 16 � 18 � � �
5 � 5 � 9 � 9 � 13 � 13 � 17 � 17 � � � .

10.200. Let jzj , 1. Prove Euler’s identity: (1þ z)(1þ z2)(1þ z3) � � � ¼ 1

(1� z)(1� z3)(1� z5) � � � .

10.201. Let jzj , 1. Prove that (1� z)(1� z2)(1� z3)� � � ¼ 1þ
P1

n¼1 (�1)nfzn(3n�1)=2 þ zn(3nþ1)=2g.

10.202. (a) Prove that the following converges for jzj , 1 and jzj . 1:

z

1þ z
þ z2

(1þ z)(1þ z2)
þ z4

(1þ z)(1þ z2)(1þ z4)
þ � � �

(b) Show that in each region the series represents an analytic function, say F1(z) and F2(z), respectively.

(c) Are F1(z) and F2(z) analytic continuations of each other? Is F1(z) ¼ F2(z) identically? Justify your

answers.
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10.203. (a) Show that the series
X1
n¼1

zn

n2
converges at all points of the region jzj � 1.

(b) Show that the function represented by all analytic continuations of the series in (a) has a singularity at

z ¼ 1 and reconcile this with the result in (a).

10.204. Let
P

anz
n have a finite circle of convergence C and let F(z) be the function represented by all analytic

continuations of this series. Prove that F(z) has at least one singularity on C.

10.205. Prove that
cn 2zþ dn 2z

1þ cn 2z
¼ dn2 z.

10.206. Prove that a function, which is not identically constant, cannot have two periods whose ratio is a real irrational

number.

10.207. Prove that a function, not identically constant, cannot have three or more independent periods.

10.208. (a) If a doubly-periodic function is analytic everywhere in a cell [period parallelogram], prove that it must

be a constant. (b) Deduce that a doubly-periodic function, not identically constant, has at least one singularity

in a cell.

10.209. Let F(z) be a doubly-periodic function. (a) Suppose C is the boundary of its period parallelogram. Prove thatÞ
C
F(z) dz ¼ 0. (b) Prove that the number of poles inside a period parallelogram equals the number of zeros,

due attention being paid to their multiplicities.

10.210. Prove that the Jacobian elliptic functions sn z, cn z and dn z (a) have exactly two zeros and two poles in each

cell and that (b) each function assumes any given value exactly twice in each cell.

10.211. Prove that 1þ 1

12

� �
1þ 1

42

� �
1þ 1

72

� �
� � � ¼ fG(1=3)g2

G
1þ i

3

� �� �2

G
1� i

3

� �� �2
.

10.212. Prove that

ðp=2
0

e�z tan u du � 1

2
� 2!

z3
þ 4!

z5
� 6!

z7
þ � � �

10.213. Prove that Pn(cos u) ¼ 2
1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � (2n)

� �
cos nuþ 1 � 2n

2 � (2n� 1)
cos(n� 2)u

�

þ 1 � 3 � 2n(2n� 2)

2 � 4 � (2n� 1)(2n� 3)
cos(n� 4)uþ � � �

�

[Hint. 1� 2t cos uþ t2 ¼ (1� teiu)(1� te�iu).]

10.214. (a) Prove that G(z) is a meromorphic function and (b) determine the principal part at each of its poles.

10.215. Let Refng . �1=2. Prove that

Jn(z) ¼
zn

2n
ffiffiffiffi
p

p
G nþ 1

2


 � ð1
�1

eizt(1� t2)n�1=2 dt ¼ zn

2n
ffiffiffiffi
p

p
G nþ 1

2


 � ðp
0

cos(z cos u) sin2n u du

10.216. Prove that

ð1
0

tnJm(t) dt ¼
2nG

mþ nþ 1

2

� �

G
m� nþ 1

2

� � .

10.217. Prove that

ðp=2
0

cospu cos qu du ¼ pG( pþ 1)

2pþ1G
2þ pþ q

2

� �
G

2þ p� q

2

� �.
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10.218. Prove that G 1
4


 �� �2¼ 4
ffiffiffiffi
p

p ðp=2
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
sin2 u

q .

ANSWERS TO SUPPLEMENTARY PROBLEMS

10.50. (d) �ln(1� z) 10.79. 24/3125

10.52. (b) (zþ 1)=z2 10.80. (a) 16
ffiffiffiffi
p

p
=105, (b) �3G(2=3)

10.53. (a) Refzþ 1g2 . 0, (b) (�7þ 24i)=625 10.89. (a) 16/315, (b) 2p
ffiffiffi
3

p

10.62. (a) conv., (b) div., (c) conv., 10.90. (a) 4p=3
ffiffiffi
3

p
, (b) p=4, (c) 243p=16, (d) p

10.64. (a) div., (b) div., (c) conv., 10.94. (a) 3p=512, (b) p=
ffiffiffi
2

p

10.74. (a) 3/8, (b)
ffiffiffiffiffiffi
3p

p
=36, (c)

ffiffiffiffiffiffi
2p

p
=16, (d)

ffiffiffiffi
p

p
,

(e) G(5=8)=
ffiffiffi
24

p

10.98. (a) z ¼ +1, regular. (b) z ¼ 2, regular; z ¼ 0, irregular. (c) z ¼ 0, 1, irregular.

10.99. (a) Y ¼ Ae�z þ Bze�z

(b) Y ¼ A 1� z3

3!
þ 1 � 4

6!
z6 � 1 � 4 � 7

9!
z9 þ � � �

� �
þ B z� 2z4

4!
þ 2 � 5

7!
z7 � 2 � 5 � 8

10!
z10 þ � � �

� �

(c) Y ¼ A sin zþ B cos z

z

10.100. (b) Y ¼ A(1� z2)þ B z� z3

1 � 3�
z5

3 � 5�
z7

5 � 7� � � �
� �

10.101. (a) Y ¼ 1� z� z4

3 � 4þ
z5

4 � 5þ
z8

3 � 4 � 7 � 8�
z9

4 � 5 � 8 � 9� � � �, (b) jzj , 1

10.103. (a) Y ¼ (Aþ B ln z)ez � B zþ z2

2!
1þ 1

2


 �
þ z3

3!
1þ 1

2
þ 1

3


 �
þ � � �

� �
; (b) jzj . 0

10.105. (a) Y ¼ (Aþ B ln z)
z

(1!)2
þ z2

(2!)2
þ z3

(3!)2
þ � � �

� �
� 2B

z

(1!)2
þ z2

(2!)2
1þ 1

2


 �
þ z3

(3!)2
1þ 1

2
þ 1

3


 �
þ � � �

� �

10.108. (a) Y ¼ Ae2z þ Be�z, (b) Y ¼ Ae�2z þ Bze�2z, (c) Y ¼ e�z(A sin zþ B cos z)

10.132. (a) 1
2
(5z3 � 3z), 1

8
(35z4 � 30z2 þ 3), (c) 1

8
(63z5 � 70z3 þ 15z)

10.140. Y ¼ Azþ B 1þ (1=2)z ln
z� 1

zþ 1

� �� �
10.155. 3:04� 1064

10.185. (b) Y ¼ z1=2 AJ1(2iz
1=2)þ BY1(2iz

1=2)
� �

10.193. (a) 15z(1� z2) 10.198. 1
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Index

Abel’s theorem, 173, 196

Absolute convergence, 170, 179, 183, 195, 320, 328, 358

Absolute value, 2, 3, 4

Acceleration, 83

Addition, 1, 2

formula, 332, 365

Airfoil, 271

Algebraic:

function, 45

number, 29

Alternating series test, 152

Amplitude, 4

Analytic:

continuation, 176, 319, 322, 323, 328, 331, 333,

334, 337, 338, 357, 363, 366, 367

extension, 176

function, 77, 87, 88, 98, 105, 109, 115, 131, 142,

149, 160, 161, 282, 290, 291, 311, 319, 330,

333, 338, 341, 347, 357, 358, 366

part, 174

Annular region, 174

Annulus, 174, 255

Anti-derivative, 115

Arc, 83

Arc sine, 44

Area magnification factor, 243

Arg (Argument), 4

Argand diagram, 4

Argument, 4

theorem 145, 154, 155, 164

Associative law:

of addition 3, 9, 34

of multiplication 3, 9, 34

Asymptotic:

expansion, 330, 347, 363

series 329, 364

Axes 3

Axiomatic foundation of complex numbers, 3

Bernoulli:

numbers, 203, 329

theorem, 286

Bessel’s:

differential equation of order n, 325, 341, 362, 366

function, 193

of the first kind of order n, 325, 331, 343, 344,

354, 361, 362

of the second kind of order n, 326

Beta function, 323, 339, 340, 359, 360

Biharmonic equation, 316

Bilinear transformation, 43, 245, 261, 263,

273, 278

Binomial:

coefficients, 19

formula, 19, 174

theorem, 174, 197

Blasius theorem, 301

Boundary:

conditions, 280

point, 8

Boundary-value problem, 280

Bounded set, 8, 48, 171

Branch, 41, 53

cut, 46, 5

line, 46, 53

point, 46, 81, 98, 175, 319, 351

Capacitance, 289

Capacitor, 289, 313

Cardioid, 255

Casorati–Weierstrass theorem, 175, 202

Cauchy principal value, 208

Cauchy–Goursat theorem, 115, 125, 140,

163, 334

Cauchy–Riemann equations, 27, 87, 102, 142,

296, 335

Cauchy’s:

convergence criterion, 171

inequality, 145, 151, 167, 176

integral formulas, 144, 146, 150, 163, 206,

238, 334

integral theorem, 115

theorem, 115, 125, 130, 140, 206, 238, 312

Cavitation, 312

Cell, 332, 353, 367

Centripetal acceleration, 100

Chain rules, 79

Change of variable, 113

Circle of convergence, 170, 183, 320, 358

Circular functions, 43

Circulation, 283

free flow, 283

Closed:

curve, 83

interval, 2

region 8, 48
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Closure:

law, 3

of a set, 8

property, 1

Cluster point, 8

Commutative law:

of addition, 3, 9

of multiplication, 3, 9

Compact set, 8

Comparison tests, 171, 178

Complement, 8

Complementary modulus of an elliptic function, 332

Complex:

conjugate, 2

conjugate coordinates, 7

electrostatic potential, 288

line integral, 112

numbers, 2

plane, 4

potential, 283, 288, 295, 301, 302

temperature, 290

variable, 41

velocity, 283

Components, 11

Composite function, 48

Condensor, 289

Conditional convergence, 170, 320

Conformal mapping, 83, 243, 259, 277, 282,

313, 316

Conjugate, 2

coordinates, 7

functions, 77, 109, 163, 280, 290, 314

Connected set, 8

Continuity, 47

Continuous curve, 83

Contour, 83, 207, 355, 362

integral, 114, 325, 342, 343, 344, 345, 361, 364

Convergence, 49, 169, 194, 320, 325, 328, 336, 342,

358, 366

to zero, 320

Converse of Cauchy’s theorem, 115, 125, 140

Coordinate curves, 42

Coulomb’s law, 287

Countable set, 8

Critical points, 243, 259

Cross:

product, 7

ratio, 245, 261

Curl, 85, 104

Definite integral, 112

Degree, 5, 43

Del, 84, 142

bar, 84

Deleted neighborhood, 7

Delta neighborhood, 7

DeMoivre’s theorem, 5, 35

Denominator, 1

Denumerable set, 8

Dependent variable, 41

Derivative, 77

Dielectric constant, 287

Differentiability, 77

Differential, 79

equations, 341, 360

Dipole, 285, 289

moment, 285

Dirchlet’s problem, 280, 309, 314

Direction, 6, 83

Disjoint sets, 8

Distributive law, 3, 16, 29

Divergence:

of a sequence, 49

of a vector function, 84, 108

Division, 1, 2

Domain, 8

Dot product, 7

Doublet, 285, 289

Doubly periodic function, 332, 365, 367

Dummy:

symbol, 117

variable, 117

Duplication formula, 332

Electric field intensity, 287

Element:

of an analytic function, 176, 319

of a set, 7

Elliptic:

function of the second kind, 332

function of the third kind, 332

integral of the first kind, 331

Entire:

complex plane, 7

function, 176, 202, 321

Equality, 3

Equation of continuity, 283

Equilibrant, 34

Equipotential:

curves, 284

lines, 284, 288, 296

Error function, 331

Essential singularity, 82, 97, 175

Euler’s:

constant, 330

formula, 5

identity, 366

Evaluation of definite integral, 207

Even function, 55

Exponential:

functions, 43

integral, 331
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Extended complex plane, 7

Exterior:

of a curve, 114

point, 8

Factored form, 6

Factorial:

function, 322

n, 19

Field, 3

Finite sequence, 48

Fixed point, 70, 244

Fourier series, 201

Fluid:

density, 301

dynamics, 282

flow, 282

about an obstacles, 286

lines, 288, 290

Fraction, 1

Fractional linear transformation, 43, 245

Function, 41

Fundamental theorem of algebra, 6, 145, 152, 156

Gamma function, 321, 325, 337, 348, 354, 359,

363, 367

Gauss’:

differential equation, 328

mean value theorem, 145, 152

P function, 322

test, 172

theorem, 288

Generating function, 325, 327, 361

Geometric series, 68

Green’s:

first identity, 142

second identity, 142

theorem, 114, 120, 122, 123, 124, 125

Harmonic function, 78, 88, 104, 142, 160, 163, 167,

280, 288, 290, 311, 314

Heat flux, 289

Heine–Borel theorem, 8

Higher order derivatives, 81

Holomorphic function, 77

Hydrodynamics, 282

Hyperbolic functions, 43

Hypergeometric:

equation, 328, 354

function, 328, 346, 354, 363, 366

series, 200

Ideal fluid, 283

Identity with respect to:

addition, 3

multiplication, 3

Image, 42, 242

point, 50

Imaginary part, 2

Incompressible flow, 283

Indefinite integral, 115, 131

Independence of path, 117

Independent variable, 41

Indicial equation, 324, 341

Infinite:

product, 320, 336, 358, 359

sequence, 48

series, 49, 169

Infinity, 47

Initial point, 6

Inside of a curve, 114

Integer, 1

Integrability, 112

Integral:

function, 176

test, 172, 195

Integration by parts, 134

Interior:

of a curve, 114

point, 8

Intersection of sets, 8

Invariant point, 70, 244

Inverse:

function, 41

hyperbolic functions, 45

of addition, 1

of a point with respect to a circle, 157

of a transformation, 242

of multiplication, 1

trigonometric functions, 44

with respect to addition, 3

with respect to multiplication, 3

Inversion, 245, 263

Involutory transformation, 277

Irrational number, 1

Irregular singular point, 324, 341, 360

Irrotational flow, 283

Isogonal mapping, 243

Isolated singularity, 81, 98, 239

Isothermal lines, 290

Jacobian, 242, 278

elliptic function, 332

of a transformation, 259

Jensen’s theorem, 167

Jordan curve, 114

theorem, 114

Joukowski:

airfoils, 271

profiles, 271

transformation 271, 276
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Kepler’s problem, 198

Kernel, 325

Lacunary function, 177

Lagrange’s expansions, 176, 190, 198

Landen’s transformation, 365

Laplace’s:

equation, 78, 103, 165, 280, 283, 288, 309, 314

method, 330

Laplacian, 78, 85

operator, 85

Laurant:

expansion, 174

series, 174, 178

theorem, 176, 186

Least upper bound, 75

Legendre:

functions, 328, 345, 366

polynomials, 193, 327, 354, 362, 366,

differential equation of order n, 327, 362

Leibnitz’s rule, 148, 208

Leminscate, 27, 276

Length, 6, 112, 137, 142

L’Hospital’s rule, 81, 95

Limit, 46, 49, 159

of a sequence, 49

point, 8

Linear:

differential equation, 323, 325

independence, 324

transformation, 43, 245

Line:

integral, 112, 118

sink, 284

source, 284

Liouville’s theorem, 145, 151, 163, 201

Logarithmic functions, 44

Maclaurin series, 173

Magnification factor, 243, 259

Magnitude, 6

Many-valued function, 41

Mapping, 242

function, 42, 50

Mathematical model, 282

Maximum modulus theorem, 145, 153, 164

Member, 7

Meromorphic function, 176, 367

Method of:

stationary phase, 330

steepest descents, 330, 363

Minimum modulus theorem, 145, 154

Mittag-Leffler’s expansion theorem, 209, 231

Modulus, 3, 4

of an elliptic function, 332

Moment, 286, 302

Monotonic:

decreasing, 171

increasing, 171

Morera’s theorem, 115, 145, 151, 163, 192, 334

Multiple-valued function, 41

Multiplication, 1, 2

Multiply-connected region, 113, 239

Mutually exclusive sets, 8

Natural:

barrier, 357

base of logarithms, 43

boundary, 43

logarithm, 43

number, 1

Negative number, 1

Neumann’s problem, 281

Non-countable set, 8

Non-denumerable set, 8

Non-essential singularity, 82

Non-isolated singularity, 81, 97, 98

Non-viscous flow, 283

North pole, 6

nth:

derivative, 81, 144

partial sum, 49, 169

roots, 23

roots of unity, 26

term, 48

Null set, 8, 29

Numerator, 1

Odd function, 55

One-to-one:

mapping, 242

transformation, 242

Open:

region, 8

set, 8

Operator, 79

Ordinary point, 323

Origin, 1

Orthogonal:

family of curves, 82, 98

property for associated Legendre functions, 366

set, 345

trajectories, 108

Orthogonality principle, 345

Outside of a curve, 114

Parallelogram, 332, 353

area, 27

law, 6

Parametric equations, 14

Partial differential equation, 280

Path, 177
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Perfect conductor, 289

Period, 54

Picard’s theorem, 175, 202

Piecewise smooth, 83

Point, 4

at infinity, 7, 47, 57, 175

of accumulation, 8

Poisson’s integral formulas, 281

for a circle, 145, 157, 281

for a half plane, 146, 158, 281

Polar:

coordinates, 4

form, 4, 16

Pole of order n, 81, 97, 161, 175, 205, 211

Polygonal path, 8

Polynomial:

equation, 5

function, 43

Position vector, 6

Positive:

direction, 114

integer, 1

Power series, 170, 173, 183

Principal:

branch, 41, 44, 53, 57

of mathematical induction, 19

part, 79, 174, 367

range, 4, 53

value, 4, 41, 44

Proper subset, 8

Pure imaginary number, 2

Quadratic equation, 24

Quotient, 1

Raabe’s test, 172, 196

Radius of convergence, 170, 180, 183

Ratio test, 172, 180, 342, 348

Rational:

function, 43, 198, 207, 325

number, 1

transformation, 43

Ray, 57

Real:

axis, 1, 4

line integral, 112

number, 1

part, 2

variable, 2

Rectangular coordinates, 42

Rectifiable curve, 111

Region, 8

of convergence, 169, 170, 360

Regular:

function, 77

singular point, 324, 341, 360

Remainder, 170

Removable:

discontinuity, 47, 65

singularity, 82, 98, 175

Residue, 162, 205, 211, 329

theorem, 162, 206, 209, 234

Riemann:

mapping theorem, 233–234, 282

sphere, 7

surface, 46, 61, 72, 319

Rodrigue’s formula, 327

Root:

complex number, 22

of an equation, 5

of unity, 6

test, 172, 195

Rotation, 244, 263

Rouche’s Theorem, 156, 165

Saddle point, 330

method, 330

Scalar product, 7

Schlaefli’s:

formula, 193

representation, 193

Schwarz–Christoffel transformation, 246, 265, 270

Schwarz’s:

inequality, 39

reflection principle, 320, 335, 357,

theorem, 160

Sectionally smooth, 83

Sequence, 48

Series (infinite), 49, 169–177

Simple:

closed curve, 83, 314, 327, 344

harmonic motion, 100

pole, 81, 97, 175, 322, 329, 338, 343, 363, 366

zero, 82, 97, 175

Simply connected region, 113

Single-valued function, 41

Singular point, 81, 105, 323, 341, 360

Singularity, 81, 198, 319, 325, 329, 363, 367

at infinity 82, 97, 175

Sink, 284, 288

Smooth:

arc, 83

curve, 83

Solutions of an equation, 23

Source, 284, 288, 312

South pole, 6

Stagnation point, 283

Standard form, 14

Stationary flow, 282

Steady state, 282

Steepest decent, 347, 363

Stereographic projection, 7
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Stirling’s formula for:

", 330
n!, 331

Straight line equation, 14

Stream:

curve, 284

function, 284, 295, 312

Streamline, 284, 296

Strength, 285, 312

Stretching, 245, 263

Subset, 8

Subtraction, 1, 2

Successive transformations, 245, 273

Summation of series, 5

Symmetric form, 14

Tangent, 83

Taylor:

expansion, 173, 278, 330

series, 173, 278, 330, 348, 357

theorem, 173, 184

Terminal point, 6

Terms of a sequence, 48

Theorems of Blasius, 286, 301, 302

Theory of:

alternating currents, 109

elasticity, 316

Thermal conductivity, 289

Transcendental:

function, 45

number, 30

Transformation, 42, 50, 242

Translation, 244, 263

Trigonometric functions, 43

Unbounded set, 8

Uniform:

convergence, 170, 183, 320, 358

flow, 284

Union of sets, 8

Uniqueness theorem for analytic continuation,

319, 333

Unit:

cell, 332

circle, 6

disk, 243

Upper bound, 112

Value of a function, 41

Velocity, 83

potential, 282, 284

potential function, 284, 295

Vortex, 285

Weierstrass–Bolzano theorem, 8

Weierstrass’:

factor theorems, 321, 339

M test, 172, 181, 321, 347

Zero, 1

of an equation, 5

of order n, 81, 206, 321

Zeta function, 328, 347, 363
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