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Preface

The main purpose of this second edition is essentially the same as the first edition with changes noted below.
Accordingly, first we quote from the preface by Murray R. Spiegel in the first edition of this text.

“The theory of functions of a complex variable, also called for brevity complex variables or complex
analysis, is one of the beautiful as well as useful branches of mathematics. Although originating in an
atmosphere of mystery, suspicion and distrust, as evidenced by the terms imaginary and complex
present in the literature, it was finally placed on a sound foundation in the 19th century through the
efforts of Cauchy, Riemann, Weierstrass, Gauss, and other great mathematicians.”

“This book is designed for use as a supplement to all current standards texts or as a textbook for a formal
course in complex variable theory and applications. It should also be of considerable value to those taking
courses in mathematics, physics, aerodynamics, elasticity, and many other fields of science and
engineering.”

“Each chapter begins with a clear statement of pertinent definitions, principles and theorems together
with illustrative and other descriptive material. This is followed by graded sets of solved and supplementary
problems. . .. Numerous proofs of theorems and derivations of formulas are included among the solved pro-
blems. The large number of supplementary problems with answers serve as complete review of the material
of each chapter.”

“Topics covered include the algebra and geometry of complex numbers, complex differential and inte-
gral calculus, infinite series including Taylor and Laurent series, the theory of residues with applications to
the evaluation of integrals and series, and conformal mapping with applications drawn from various fields.”

“Considerable more material has been included here than can be covered in most first courses. This has
been done to make the book more flexible, to provide a more useful book of reference and to stimulate
further interest in the topics.”

Some of the changes we have made to the first edition are as follows: (a) We have expanded and cor-
rected many of the sections to make it more accessible for our readers. (b) We have reformatted the
text, such as, the chapter number is now included in the label of all sections, examples, and problems.
(c) Many results are stated formally as Propositions and Theorems.

Finally, we wish to express our gratitude to the staff of McGraw-Hill, particularly to Charles Wall, for
their excellent cooperation at every stage in preparing this second edition.

SEYMOUR LIPSCHUTZ
JOHN J. SCHILLER
DENNIS SPELLMAN
Temple University
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Complex Numbers

1.1 The Real Number System

The number system as we know it today is a result of gradual development as indicated in the following list.

ey

2

3)

)

Natural numbers 1,2, 3,4, ..., also called positive integers, were first used in counting. If a and
b are natural numbers, the sum a + b and product a - b, (a)(b) or ab are also natural numbers. For
this reason, the set of natural numbers is said to be closed under the operations of addition and
multiplication or to satisfy the closure property with respect to these operations.
Negative integers and zero, denoted by —1, —2, —3, ... and 0, respectively, permit solutions
of equations such as x + b = a where a and b are any natural numbers. This leads to the operation
of subtraction, or inverse of addition, and we write x = a — b.

The set of positive and negative integers and zero is called the set of integers and is closed
under the operations of addition, multiplication, and subtraction.
Rational numbers or fractions such as %, —%, ... permit solutions of equations such as bx = a
for all integers a and b where b # 0. This leads to the operation of division or inverse of multipli-
cation, and we write x = a/b or a + b (called the quotient of a and b) where a is the numerator
and b is the denominator.

The set of integers is a part or subset of the rational numbers, since integers correspond to
rational numbers a/b where b = 1.

The set of rational numbers is closed under the operations of addition, subtraction, multipli-
cation, and division, so long as division by zero is excluded.
Irrational numbers such as \/Z and 7r are numbers that cannot be expressed as a/b where a and b
are integers and b # 0.

The set of rational and irrational numbers is called the set of real numbers. It is assumed that the student
is already familiar with the various operations on real numbers.

1.2 Graphical Representation of Real Numbers

Real numbers can be represented by points on a line called the real axis, as indicated in Fig. 1-1. The point
corresponding to zero is called the origin.

23 _3 r —1. 3 \2 T
2% pAets &y or®

-3 -2 1 (I)
Fig. 1-1
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Conversely, to each point on the line there is one and only one real number. If a point A corresponding to
a real number a lies to the right of a point B corresponding to a real number b, we say that a is greater than b
or b is less than a and write a > b or b < a, respectively.

The set of all values of x such that a < x < b is called an open interval on the real axis while a < x < b,
which also includes the endpoints a and b, is called a closed interval. The symbol x, which can stand for any
real number, is called a real variable.

The absolute value of a real number a, denoted by |a|, is equal to a if a > 0, to —a if a < 0 and to O if
a = 0. The distance between two points a and b on the real axis is |a — b|.

1.3 The Complex Number System

There is no real number x that satisfies the polynomial equation x*> + 1 = 0. To permit solutions of this and
similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a + bi where a and b are real numbers and i,
which is called the imaginary unit, has the property that i> = —1. If z = a + bi, then a is called the real
part of z and b is called the imaginary part of z and are denoted by Re{z} and Im{z}, respectively. The
symbol z, which can stand for any complex number, is called a complex variable.

Two complex numbers a + bi and ¢ + di are equal if and only if a = ¢ and b = d. We can consider real
numbers as a subset of the set of complex numbers with b = 0. Accordingly the complex numbers 0 4 0i
and —3 + 0i represent the real numbers 0 and —3, respectively. If a = 0, the complex number 0 + bi or bi is
called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number a + bi is a — bi. The complex
conjugate of a complex number z is often indicated by z or z*.

1.4 Fundamental Operations with Complex Numbers

In performing operations with complex numbers, we can proceed as in the algebra of real numbers,
replacing i? by —1 when it occurs.

(1) Addition
(a+bi)+(c+di)y=a+bi+c+di=@+c)+D+d)i

(2) Subtraction
(a+bi)—(c+d)=a+bi—c—di=(@—c)+ (b—d)i

(3) Multiplication
(a + bi)(c + di) = ac + adi + bci + bdi? = (ac — bd) + (ad + bc)i

(4) Division
If ¢ #£ 0 and d # 0, then
a+bi a+bi c—di_ac—adi—i—bci—bdi2
c+di c+di c—di 2 — &2
ac+ bd + (bc —ad)i ac+bd bc—ad .
- 2+ “ere ey a!
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1.5 Absolute Value

The absolute value or modulus of a complex number a + bi is defined as |a + bi| = «/a? + b2.

EXAMPLE 1.1: |—4 + 2i| = /(—=4)> + (2)> = +/20 = 2./5.
If z1, 22, z3, ..., 2, are complex numbers, the following properties hold.
(D) lziz2] = |z1llz2] or lz122 - zm| = lz1llz2l - - - |Zml
Z Z .
@ 2= if 2 #£0
22 22
3 la+ 2zl < lal+ |z or lz1+ 22+ +zml <zl + |22l + - + 2wl
@ Nz £ 22| = |zl — lz2]

1.6 Axiomatic Foundation of the Complex Number System

From a strictly logical point of view, it is desirable to define a complex number as an ordered pair (a, b) of
real numbers a and b subject to certain operational definitions, which turn out to be equivalent to those
above. These definitions are as follows, where all letters represent real numbers.

A. Equality (a,b)=(c,d)ifandonlyifa=c,b=d
B. Sum (a,b)+(c,d)=(@a+c,b+d)
C. Product (a, b)-(c, d) = (ac — bd, ad + bc)

m(a, b) = (ma, mb)

From these we can show [Problem 1.14] that (a, b) = a(1, 0) + b(0, 1) and we associate this with a + bi
where i is the symbol for (0, 1) and has the property that 2 = (0, 1)(0, 1) = (-1, 0) [which can be
considered equivalent to the real number —1] and (1, 0) can be considered equivalent to the real
number 1. The ordered pair (0, 0) corresponds to the real number 0.

From the above, we can prove the following.

THEOREM 1.1:  Suppose zi, 22, z3 belong to the set S of complex numbers. Then

(1) z1 + 2z and z;2, belong to S Closure law

2) ntn=+zu Commutative law of addition

Q) z+@+n)=~@+22)+2 Associative law of addition

@) 222 =2nnu Commutative law of multiplication
(5 21(z2223) = (T122)z3 Associative law of multiplication
©) z+n)=un+uzs Distributive law

7N z21+40=04+2z =21, 121 =21 -1 =2z, 0 is called the identity with respect to addition, 1 is
called the identity with respect to multiplication.

(8) For any complex number z; there is a unique number z in S such that z 4+ z; = 0;
[z is called the inverse of z; with respect to addition and is denoted by —z;].

(9) For any z; #0 there is a unique number z in S such that 7,z = zz; = 1;
[z is called the inverse of z with respect to multiplication and is denoted by z;!' or 1/z1].

In general, any set such as S, whose members satisfy the above, is called a field.

1.7 Graphical Representation of Complex Numbers

Suppose real scales are chosen on two mutually perpendicular axes X’OX and Y’'OY [called the x and y axes,
respectively] as in Fig. 1-2. We can locate any point in the plane determined by these lines by the ordered
pair of real numbers (x, y) called rectangular coordinates of the point. Examples of the location of such
points are indicated by P, O, R, S, and T in Fig. 1-2.
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Since a complex number x + iy can be considered as an ordered pair of real numbers, we can represent
such numbers by points in an xy plane called the complex plane or Argand diagram. The complex number
represented by P, for example, could then be read as either (3, 4) or 3 + 4i. To each complex number there
corresponds one and only one point in the plane, and conversely to each point in the plane there corresponds
one and only one complex number. Because of this we often refer to the complex number z as the point z.
Sometimes, we refer to the x and y axes as the real and imaginary axes, respectively, and to the complex
plane as the z plane. The distance between two points, z; = x1 + iy} and z; = x; + iy,, in the complex plane is

given by |z1—22| = v/ (x1 —x2)* + (y1 —y2)*.

Y
Y
44 °
PG, 4)
®063,3) 3 P )
12
.
1 y
)
7(2.5,0) ,
X (X X 0 e X
-4 3 2 -1 1 2 3 4
+-1
R(-2.5,-1.5)
- T2 %502
43
Y’ Y’
Fig. 1-2 Fig. 1-3

1.8 Polar Form of Complex Numbers

Let P be a point in the complex plane corresponding to the complex number (x, y) or x + iy. Then we see
from Fig. 1-3 that

x=rcosfh, y=rsinf

where r = \/x2 + y2 = |x + iy| is called the modulus or absolute value of z = x + iy [denoted by mod z or
|z|]; and 6, called the amplitude or argument of z = x + iy [denoted by arg z], is the angle that line OP makes
with the positive x axis.

It follows that

z=x+ iy = r(cos 6 4 isin 6) (1.1

which is called the polar form of the complex number, and r and 0 are called polar coordinates. It is some-
times convenient to write the abbreviation cis 6 for cos 6 + i sin 6.

For any complex number z #0 there corresponds only one value of 6in 0 <6 <2#. However, any other
interval of length 27, for example —7 <6 <, can be used. Any particular choice, decided upon in
advance, is called the principal range, and the value of 6 is called its principal value.

1.9 De Moivre’s Theorem

Let z; = x; +iy; = ri(cos 0; +isin ;) and 7z, = xp + iy, = ry(cos 6, + i sin 6,), then we can show that
[see Problem 1.19]
2122 = rir2{cos(6; + 62) + isin(6; + 6,)} (1.2)
21 r

L Licos(6; — 6) + isin(6; — 6,)) (1.3)
22 r
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A generalization of (1.2) leads to

2122+ Zn = iy 1p{cos(0y + 6y + - - + 6,) +isin(6; + 6, + - - - + 6,)} (1.4)
and if z; = zp = - -+ = z, = z this becomes
7" = {r(cos 0+ isin )} = r"(cosnb + i sinnb) (1.5)

which is often called De Moivre’s theorem.

1.10 Roots of Complex Numbers

A number w is called an nth root of a complex number z if w" =z, and we write w = 7z, From
De Moivre’s theorem we can show that if » is a positive integer,

ZM" = {r(cos @ + isin 6)}'/"
2%k 2%k (1.6)
=rl/n{cos(9+ 77)+isin<0+ 77)} k=0,1,2,....n—1
n n

1/n

from which it follows that there are n different values for z'/”, i.e., n different nth roots of z, provided z # 0.

1.11 Euler’'s Formula

By assuming that the infinite series expansion ¢* = 1 + x 4+ (x*>/2!) + (x*/3!) 4 - - - of elementary calculus
holds when x = i6, we can arrive at the result

€' = cos O+ isin 0 (1.7)

which is called Euler’s formula. It is more convenient, however, simply to take (1.7) as a definition of ¢'’.
In general, we define

=&Y = % = e“(cosy + isiny) (1.8)

In the special case where y = 0 this reduces to ¢*.
Note that in terms of (1.7) De Moivre’s theorem reduces to (¢'?)" = ™.

1.12 Polynomial Equations

Often in practice we require solutions of polynomial equations having the form

a? +ar? '+ P+ +apz+a, =0 (1.9)

where ag #0, a;,..., a, are given complex numbers and n is a positive integer called the degree of
the equation. Such solutions are also called zeros of the polynomial on the left of (1.9) or roots of the
equation.
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A very important theorem called the fundamental theorem of algebra [to be proved in Chapter 5] states
that every polynomial equation of the form (1.9) has at least one root in the complex plane. From this we can
show that it has in fact n complex roots, some or all of which may be identical.

If z1, 20, ..., z, are the n roots, then (1.9) can be written

az—z1)z—22) - (2—z) =0 (1.10)

which is called the factored form of the polynomial equation.

1.13 The nth Roots of Unity

The solutions of the equation z* = 1 where n is a positive integer are called the nth roots of unity and are
given by

2% 2%k .
= cos D pisin T = kT —0,1,2,....n—1 (1.11)
n n

If we let @ = cos 27/n + isin27/n = €*™/", the n roots are 1, w, ?, ..., o""'. Geometrically, they rep-
resent the n vertices of a regular polygon of n sides inscribed in a circle of radius one with center at the
origin. This circle has the equation |z| = 1 and is often called the unit circle.

1.14 Vector Interpretation of Complex Numbers

A complex number z = x + iy can be considered as a vector OP whose initial point is the origin O and
whose terminal point P is the point (x, y) as in Fig. 1-4. We sometimes call OP = x + iy the position
vector of P. Two vectors having the same length or magnitude and direction but different initial points,
such as OP and AB in Fig. 1-4, are considered equal. Hence we write OP = AB = x + iy.

B
/ ZZ_________—-::'B
A ——————— ,—”‘ ,rl
PG ) n*2o-" =
-7 2 'C
0 . x
Fig. 1-4 Fig. 1.5

Addition of complex numbers corresponds to the parallelogram law for addition of vectors [see
Fig. 1-5]. Thus to add the complex numbers z; and zp, we complete the parallelogram OABC whose
sides OA and OC correspond to z; and z,. The diagonal OB of this parallelogram corresponds to z; 4 z;.
See Problem 1.5.

1.15 Stereographic Projection

Let P [Fig. 1-6] be the the complex plane and consider a sphere S tangent to P at z = 0. The diameter NS is
perpendicular to P and we call points N and S the north and south poles of S. Corresponding to any point A
on P we can construct line NA intersecting S at point A’. Thus to each point of the complex plane P
there corresponds one and only one point of the sphere S, and we can represent any complex number by
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a point on the sphere. For completeness we say that the point N itself corresponds to the “point at infinity” of
the plane. The set of all points of the complex plane including the point at infinity is called the entire
complex plane, the entire 7 plane, or the extended complex plane.

N

Fig. 1-6
The above method for mapping the plane on to the sphere is called stereographic projection. The sphere

is sometimes called the Riemann sphere. When the diameter of the Riemann sphere is chosen to be unity,
the equator corresponds to the unit circle of the complex plane.

1.16 Dot and Cross Product

Let z; = x; 4+ iy; and 25 = x; + iy, be two complex numbers [vectors]. The dot product [also called the
scalar product] of z; and z, is defined as the real number

71 - 22 = X1X2 + y1y2 = |z1]|z2] cos 0 (1.12)

where 6 is the angle between z; and z, which lies between 0 and .
The cross product of z; and z, is defined as the vector z; x 7o = (0, 0, x;y, — y1x2) perpendicular to the
complex plane having magnitude

lz1 X 22| = x192 — y1%2 = |z1]]z2| sin 6 (1.13)
THEOREM 1.2:  Let z; and z; be non-zero. Then:

(1) A necessary and sufficient condition that z; and z, be perpendicular is that z; - z = 0.
(2) A necessary and sufficient condition that z; and z, be parallel is that |z; X 2| = 0.
(3) The magnitude of the projection of z; on z; is |z; - 221/|22].

(4) The area of a parallelogram having sides z; and z; is |71 X 23]

1.17 Complex Conjugate Coordinates

A point in the complex plane can be located by rectangular coordinates (x, y) or polar coordinates (r, 6).
Many other possibilities exist. One such possibility uses the fact that x = %(z—l—i), y=(1/2i)(z—7)
where z = x 4 iy. The coordinates (z, z) that locate a point are called complex conjugate coordinates or
briefly conjugate coordinates of the point [see Problems 1.43 and 1.44].

1.18 Point Sets

Any collection of points in the complex plane is called a (two-dimensional) point set, and each point is
called a member or element of the set. The following fundamental definitions are given here for reference.

(1) Neighborhoods. A delta, or 8, neighborhood of a point zj is the set of all points z such that
|z — z0] < 6 where 0 is any given positive number. A deleted 6 neighborhood of zj is a neigh-
borhood of zy in which the point z; is omitted, i.e., 0 < |z — z9| < .
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Limit Points. A point z is called a limit point, cluster point, or point of accumulation of a point
set S if every deleted & neighborhood of zy contains points of S.

Since 6 can be any positive number, it follows that S must have infinitely many points. Note
that zop may or may not belong to the set S.

Closed Sets. A set S is said to be closed if every limit point of S belongs to S, i.e., if S contains all
its limit points. For example, the set of all points z such that |z] < 1 is a closed set.

Bounded Sets. A set S is called bounded if we can find a constant M such that |z| < M for every
point z in S. An unbounded set is one which is not bounded. A set which is both bounded and
closed is called compact.

Interior, Exterior and Boundary Points. A point z is called an interior point of a set S
if we can find a é neighborhood of zj all of whose points belong to S. If every § neighborhood
of zp contains points belonging to S and also points not belonging to S, then zg is called a
boundary point. If a point is not an interior or boundary point of a set S, it is an exterior
point of S.

Open Sets. An open set is a set which consists only of interior points. For example, the set of
points z such that |[z] < 1 is an open set.

Connected Sets. An open set S is said to be connected if any two points of the set can be
joined by a path consisting of straight line segments (i.e., a polygonal path) all points of
which are in S.

Open Regions or Domains. An open connected set is called an open region or domain.
Closure of a Set. If to a set S we add all the limit points of S, the new set is called the closure of S
and is a closed set.

Closed Regions. The closure of an open region or domain is called a closed region.

Regions. If to an open region or domain we add some, all or none of its limit points, we obtain a
set called a region. If all the limit points are added, the region is closed; if none are added, the
region is open. In this book whenever we use the word region without qualifying it, we shall
mean open region or domain.

Union and Intersection of Sets. A set consisting of all points belonging to set S; or set S, or to
both sets S| and S is called the union of S; and S, and is denoted by S; U S5.

A set consisting of all points belonging to both sets S} and S is called the intersection of S;
and S, and is denoted by S; N S.

Complement of a Set. A set consisting of all points which do not belong to § is called the comp-
lement of S and is denoted by S or S°.

Null Sets and Subsets. It is convenient to consider a set consisting of no points at all. This set is
called the null set and is denoted by . If two sets S; and S, have no points in common (in which
case they are called disjoint or mutually exclusive sets), we can indicate this by writing
SiNS=g.

Any set formed by choosing some, all or none of the points of a set S is called a subset
of S. If we exclude the case where all points of S are chosen, the set is called a proper
subset of S.

Countability of a Set. Suppose a set is finite or its elements can be placed into a one to one
correspondence with the natural numbers 1, 2, 3, .... Then the set is called countable or denu-
merable; otherwise it is non-countable or non-denumerable.

The following are two important theorems on point sets.

H
@)

Weierstrass—Bolzano Theorem. Every bounded infinite set has at least one limit point.
Heine—Borel Theorem. Let S be a compact set each point of which is contained in one or more
of the open sets A;, A,, ... [which are then said to cover S]. Then there exists a finite number of
the sets Ay, Aj, ... which will cover S.
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SOLVED PROBLEMS

Fundamental Operations with Complex Numbers

1.1. Perform each of the indicated operations.

Solution

@ G+2)+(-7—)=3-T4+2i—i=-4+1i
® (—7-D4+0@+2)=-T+3—-i+2i=—-4+1i
The results (a) and (b) illustrate the commutative law of addition.

c) 8B=6))—QRi—7)=8—-6i—2i+7=15-8i
@ G+3)+{(-14+2D0+T=5D}=0C+3)+{-14+2i+7—-5i} =065 +3)+(6—-3i) =11
e {6+3)+1+20}+T-=5)=5+3i—-14+2{}+T=5)=@A+5)+ 7T -5) =11

The results (d) and (e) illustrate the associative law of addition.

() 2—3i)4+2i)=2(4+2i)—3i(4+2)=8+4i— 12 — 61> =8 +4i— 12i +6 =14 — 8i
(€) (4+2)2—=3)=4Q2—3)+2i2—3))=8—12i+4i — 62 =8 — 12i +4i +6 =14 —8i

The results (f) and (g) illustrate the commutative law of multiplication.
(h) 2 —D{(=3 +2i)(5 —4i)} = 2 — D){—15 + 12i + 10i — 8i*}

= (2 —i)(—7+22i) = —14 +44i + 7i — 22i* = 8 + 51i
() {2 = D(=342D)}(5 — 4i) = {—6 +4i + 3i — 22}(5 — 4i)

= (—4+7i)(5 — 4i) = —20 + 16i + 35i — 28i* = 8 + 51i
The results (h) and (i) illustrate the associative law of multiplication.
G) 14207 =5+ (=344 =(—14+2)d—i)=—4+i+8 —2°=—-2+9i
Another Method.

(=1 +2){(7 — 5i) + (=3 + 4i)} = (=1 4+ 2i)(7 — 5i) + (—1 + 2)(—3 + 4i)

= {—7 + 5i + 14i — 10®} + {3 — 4i — 6i + 8{*}
=@B+19) 4+ (=5—10i) = -2+ 9i

The above illustrates the distributive law.

G 3% _3-2 —l—i —3-3i+2i+2% —5-i 5 1
—14i —1+i —1—i 1—22 22

—=—=i

Another Method. By definition, (3 — 2i)/(—1 + i) is that number a + bi, where a and b are real, such that
(=1+4+ida+bi)=—a—b+ (a—b)i=3—2i. Then —a— b =3, a— b = —2 and solving simultaneously,
a=-5/2,b=—1/20ora+bi=-5/2—1i/2.
@O 5+5i 20 5+5i 344 20 4-3;
3—4i 4+43i 3—4i 3+4i 4+3i 4-3i
_15420i + 15i + 202 80 — 60i —5+35i+80—60i
N 9 — 162 16—92 25 25

=3—i

(m) 3l'30 _ l'l9 _ 3(l-2)15 _ (12)9l _ 3(_1)15 _ (_1)91
2i—1  2i—1 n —1+2i
B340 —1-2 3+46i—i—2 5+45i
Tl 42i —1-2i 1 — 42 R

=14
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1 3
Suppose 7 =241,z =3 —2iand 73 = — 5 + {i. Evaluate each of the following.

Solution
(@) 3z1 —4z] =132+ — 4B —2i)| =6 +3i — 12 + 8i]

= =6+ 11i| = /(=6)> + (11)? = /157

() 7 =37 +471—-8=02+i) 32+’ +42+i)—8

={2°® +3Q2)°O +3Q)()> +i} =34 +4i+i>)+8+4i—8
=8412i—6—i—12—12i+3+8+4i—8=—7+3i

2
w1V BN (1 BN [ By
R R —(‘5‘7’>— (‘5‘7’)
CTLLNE 3,7 (1 VAN V33, 1 3
= [1*7’*1’] —(7*7’) RV R U RN

2

@ 2+z-5-iF [20-20)+Q+)—5—i
20—z +3—i 2Q4+i)—(3—2i)+3—i
_ B4 B4l (O
SR Y@t e?

Find real numbers x and y such that 3x + 2iy — ix + 5y =7 4 5i.

Solution

The given equation can be written as 3x + 5y 4+ i(2y — x) = 7 + 5i. Then equating real and imaginary parts,
3x+5y =17, 2y —x = 5. Solving simultaneously, x = —1, y = 2.

Prove: (a) z1 + 22 = 71 + 22, () |z122] = 21122 ).

Solution

Let z1 = x; +iy1, 22 = x2 +iy;. Then

@ z+zn=xi+iyi+x2+iyy=x1+x+i(y1+y)
=xi+xn—iyi+y)=xi—iyi+x—ip=xi+iyvi+to+tin=u+2

(b) |ziz2| = |(x1 + iy + iy2)| = X122 — y1y2 + i(x1y2 + y1x2)|

= \/(X1X2 —y2)? + iy + yix)’ = \/(X% + D03 +y3) = \/x% +Y%\/x% + ¥} = lzllzal
Another Method.

2 S == = = 20,12
lz122]" = (2122)(Z122) = 21222122 = (2121)(2222) = |z1]7]22]” or |z122] = |z1]]22]

where we have used the fact that the conjugate of a product of two complex numbers is equal to the product of
their conjugates (see Problem 1.55).

Graphical Representation of Complex Numbers. Vectors

1.5.

Perform the indicated operations both analytically and graphically:

(@) B+4i)+ (5 +2i), (1) (6—20)—(2—5i), () (=3+5i)+@+2i)+ (5 —3i) + (—4 — 6i).
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Solution
(a) Analytically. G+4)+ G5 +2)=3+5+4i+2i=8+6i

Graphically. Represent the two complex numbers by points P; and P,, respectively, as in Fig. 1-7.
Complete the parallelogram with OP; and OP, as adjacent sides. Point P represents the sum, 8 + 64,
of the two given complex numbers. Note the similarity with the parallelogram law for addition of
vectors OP; and OP; to obtain vector OP. For this reason it is often convenient to consider a complex
number a + bi as a vector having components a and b in the directions of the positive x and y axes,

respectively.
y y
T _z7 P
Py i
Q. y
- X . 4
N & %
*x L /
” /’/ P, } X
T/ 5)(7,\
t t t t t t t t t X
o

Fig. 1.7

(b) Analytically. (6 —-20))—(2—-5)=6—-2—-2i+5i=4+3i
Graphically. (6 —2i) — (2 —5i) = 6 — 2i + (—2 + 5i). We now add 6 — 2i and (—2 + 5i) as in part (a).
The result is indicated by OP in Fig. 1-8.

(c) Analytically.
(=34+5)+@+20+06-3)+(—4—-6)=(-34+44+5-4DH+Gi+2i-3i—-6i))=2-2i

Graphically. Represent the numbers to be added by zj, z2, z3, z4, respectively. These are shown graphi-
cally in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal point of vector z;
construct vector z,. At the terminal point of z, construct vector z3, and at the terminal point of z3 construct
vector z4. The required sum, sometimes called the resultant, is obtained by constructing the vector OP
from the initial point of z; to the terminal point of z4, i.e., OP =71+ 2 + 23 + 24 =2 — 2i.

sl +

24

Fig. 1.9 Fig. 1-10
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1.6. Suppose z; and z, are two given complex numbers (vectors) as in Fig. 1-11. Construct graphically
(a) 321 — 2z, (b) 322+ 3z
Solution

(a) In Fig. 1-12, OA = 3z, is a vector having length 3 times vecter z; and the same direction.
OB = —2z, is a vector having length 2 times vector z, and the opposite direction.
Then vector OC = OA 4+ OB = 3z; — 225.

y
y C
e .
,r”// L{:‘“\ ~~~~~~~~~~~~
B <L "\ “\ y A
Zl ‘\E)‘ \\\
X \232 \\‘ sy
2 0‘ X
Fig. 1-11 Fig. 1-12
y
Qo
§Z| e P
o — ‘:, = x
S
Fig. 1-13
(b) The required vector (complex number) is represented by OP in Fig. 1-13.
1.7. Prove (a) |z1 + 22| < |zil + |2l (b) lz1 + 22 + 23] < |za] + |z2] + |z3l, (©) |21 — 22| = |z1] — |22

and give a graphical interpretation.

Solution

(a) Analytically. Let z; = x; + iy, 220 = xp + iy,. Then we must show that

Jo 32+ 01327 < 802+ 243

Squaring both sides, this will be true if

(1 +:2)7 + 01 4+ 32 <x7 + 37 + 2,03 +yD03 +33) + x5 + 33
ie., if X1+ y1y2 <4/ + D3 +33)

or if (squaring both sides again)

x5 + 201001y + Y1y < X005 + X3 + ¥ + vy
or 2x10y1y2 < X5 + 010

But this is equivalent to (x;y, — x2y1)2 > 0, which is true. Reversing the steps, which are reversible,
proves the result.
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Graphically. The result follows graphically from the fact that |z;|, |z2|, |21 + z2| represent the lengths of
the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of a triangle is greater

than or equal to the length of the third side.

y

o|
Fig. 1-14
(b) Analytically. By part (a),

Fig. 1-15

|zt + 22 + 23] = |21 + (22 + 23)| < |21l + |22 + 23] < |z1] + |z2] + |z3]

Graphically. The result is a consequence of the geometric fact that, in a plane, a straight line is the shortest

distance between two points O and P (see Fig. 1-15).

(c) Analytically. By part (a), |z1] = |z1 — 22 + 22| < |z1 — 22| 4 |z2]. Then |z; — 22| = |z1| — |z2]. An equival-
ent result obtained on replacing z, by —z; is |z1 4+ z2| > |z1]| — |22]-
Graphically. The result is equivalent to the statement that a side of a triangle has length greater than or

equal to the difference in lengths of the other two sides.

1.8. Let the position vectors of points A(x;, y;) and B(x,, y») be represented by z; and z;, respectively.
(a) Represent the vector AB as a complex number. (b) Find the distance between points A and B.

Solution

(a) From Fig. 1-16, OA + AB = OB or

AB=0B - 0A =723 — 71 = (x2 + iy2) — (x1 +iy1) = (x2 — x1) +i(y2 — ¥1)

(b) The distance between points A and B is given by

IAB = (32 — x1) + iy — ¥l = /(2 — x1) + (52 — 1 )?

Alxy,yp)

21 -

2

4| P

Fig. 1-16

9] C

Fig. 1-17

1.9. Let z; = x; 4 iy; and 7z = x, + iy, represent two non-collinear or non-parallel vectors. If a and b
are real numbers (scalars) such that az; 4+ bz, = 0, prove that a = 0 and b = 0.
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Solution

The given condition az; + bz, = 0 is equivalent to

a(xy +iy1) + b(xa +iy2) = 0 or ax; + bxy + i(ayr + byy) = 0.

Then ax; + bx, =0 and ay; + by, = 0. These equations have the simultaneous solution a =0, b =0 if
yi/Xx1 # y2/X2, i.e., if the vectors are non-collinear or non-parallel vectors.

Prove that the diagonals of a parallelogram bisect each other.

Solution

Let OABC [Fig. 1-17] be the given parallelogram with diagonals intersecting at P.

Since z; + AC =z, AC = 25 — z1. Then AP = m(z, — z1) where 0 <m < 1.

Since OB = z; + 22, OP = n(z; + ) where 0 <n < 1.

But OA+AP =0P, ie, z1+m(zo —z1) =n(zi +22) or (1 —m—n)z; +(m —n)z; =0. Hence, by
Problem 1.9,1 —m —n =0, m —n=0o0rm =3}, n=1Jand so P is the midpoint of both diagonals.

Find an equation for the straight line that passes through two given points A(x;, y;) and B(xz, y2).

Solution

Let z; = x; + iy; and zp = x, + iy, be the position vectors of A and B, respectively. Let z = x + iy be the
position vector of any point P on the line joining A and B.
From Fig. 1-18,

OA+AP=0P or z1+AP=2z 1ie,AP=z—17
OA+AB=0B or z1+AB=2z, ie,AB=2—2

Since AP and AB are collinear, AP = tAB or z — z; = t(zo — z1) where ¢ is real, and the required equation is
=71+t —z1) or z=(1—-0z1+1t2
Using 73 = x; +1iy;, 2 =X +1iy; and z = x + iy, this can be written

X=X _Yy—n
X2 — X1 2= V1

xX—xy =1tx;—x1), y—y =t —y) or

The first two are called parametric equations of the line and ¢ is the parameter; the second is called the equation
of the line in standard form.

Another Method. Since AP and PB are collinear, we have for real numbers m and n:

mAP =nPB or m(z—2z1) =n(za —2)

Solving,

_mzy+nn or x_mxl—i—nxg _my; +ny;

m+n m4+n ' m+n

which is called the symmetric form.
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21 P

2 |

Fig. 1-18 Fig. 1-19

1.12. LetA(1, —2), B(—3, 4), C(2, 2) be the three vertices of triangle ABC. Find the length of the median

1.13.

from C to the side AB.

Solution

The position vectors of A, B, and C are given by z; = 1 — 2i, 20 = —3 + 4i and z3 = 2 + 2i, respectively.
Then, from Fig. 1-19,

AC=z3—z71=24+2i—(1-2))=1+4i
BC=23—20=24+2i—(-3+4)=5-2i
AB=2—z1=-34+4i—(1-2i))=—-4+6i

AD =3AB =4(—4+6i) = —2+3i since D is the midpoint of AB.
AC+CD=AD or CD=AD—-AC=-243i—(1+4+4)=-3—1.

Then the length of median CD is |CD| = |-3 — i| = +/10.

Find an equation for (a) a circle of radius 4 with center at (—2, 1), (b) an ellipse with major axis of
length 10 and foci at (—3, 0) and (3, 0).

Solution

(a) The center can be represented by the complex number —2 + i. If z is any point on the circle [Fig. 1-20], the
distance from z to —2 + i is

z—(=2+0)| =4
Then |z + 2 — i| = 4 is the required equation. In rectangular form, this is given by

(x+2)+iy—1| =4, ie,x+2?+G-17>=16

z Z
4
\(i/ X Qy x

Fig. 1-20 Fig. 1-21
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(b) The sum of the distances from any point z on the ellipse [Fig. 1-21] to the foci must equal 10. Hence, the
required equation is

lz4+3|+1z—3] =10

In rectangular form, this reduces to x2/25 4 y?/16 = 1 (see Problem 1.74).

Axiomatic Foundations of Complex Numbers

1.14. Use the definition of a complex number as an ordered pair of real numbers and the definitions on
page 3 to prove that (a, b) = a(1, 0) + b(0, 1) where (0, 1)(0, 1) = (-1, 0).
Solution

From the definitions of sum and product on page 3, we have

(a, b) = (a, 0)+ (0, b) = a(1, 0) + b(0, 1)
where

0, 10,1)=0-0-1-1,0-14+1-0=(-1,0)

By identifying (1, 0) with 1 and (0, 1) with i, we see that (a, b) = a + bi.
1.15. Suppose z; = (a1, by), z2 = (az, by), and z3 = (a3, b3). Prove the distributive law:
21(z2 + 23) = 2122 + 2123.
Solution
We have

z1(z2 + z3) = (a1, bi){(az, b2) + (a3, b3)} = (a1, bi)(ax + a3, by + b3)
= {ai(az + a3) — b1(ba + b3), a1(by + b3) + bi(az + a3)}
= (a1a2 — b1by + aja3 — b1b3, a1by + biax + arbs + biaz)
= (a1ay — b1by, a1by + b1az) + (a1as — b1b3, arbs + bas)
= (a1, b1)(az, b2) + (a1, b1)(a3, b3) = 2122 + 2123

Polar Form of Complex Numbers

1.16. Express each of the following complex numbers in polar form.
@) 2+2V3i, () —5+5i, (© —v6-v2i, (@ —3i

Solution
(@) 2+42+/3i [See Fig. 1-22.]

Modulus or absolute value, r = |2 + 2«/§i| =4+ 12 =4.
Amplitude or argument, 6 = sin~! 24/3/4 = sin"'/3/2 = 60° = 7/3 (radians).
Then

2 + 2+/3i = r(cos 0+ i sin 6) = 4(cos 60° + i sin 60°) = 4(cos /3 + isin7/3)

The result can also be written as 4 cis /3 or, using Euler’s formula, as 4e™/3.
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¥
2+ 2V3i y
y V2
243 N2,
5 €N
600 450 o
| 2 ' S '
Fig. 1-22 Fig. 1-23

(b) —5+ 5i[See Fig. 1-23.]

r=1-5+5i| =v/25+25=5v2
0 = 180° — 45° = 135° = 37/4 (radians)

Then

—5 4 5i = 5+/2(cos 135° + i sin 135°) = 5+/2 cis 3m/4 = 5/2°™/4

(c) —+/6 —/2i [See Fig. 1-24.]

r=|-v6—V2il=v6+2=2v2
6 = 180° 4 30° = 210° = 77/6 (radians)

Then
—/6 — V/2i = 2+/2(c0s 210° + i sin 210°) = 2+/2 cis 77/6 = 23/2¢7™/¢
Y y
7 Q
o3 /‘\0" ‘H\
X X
5 230° \J 3
- 22
Fig. 1-24 Fig. 1-25

(d) —3i[See Fig. 1-25.]

r=1-3i=10-3i=/0+9=3
0 = 270° = 37/2 (radians)

Then
—3i = 3(cos 37/2 + isin37/2) = 3 cis 37/2 = 33™/2

1.17. Graph each of the following: (a) 6(cos240° + isin240°), (b) 4e3™/3, (c) 2e~™/4,

Solution

(a) 6(cos240° + isin 240°) = 6 cis 240° = 6 cis 47/3 = 6e*™/3 can be represented graphically by OP in
Fig. 1-26.
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If we start with vector OA, whose magnitude is 6 and whose direction is that of the positive x axis, we can

obtain OP by rotating OA counterclockwise through an angle of 240°. In general, re’? is equivalent to a vector
obtained by rotating a vector of magnitude » and direction that of the positive x axis, counterclockwise through

an angle 6.
y y y
W P
W/ \ 6 0 2 N
0 A * > x
45° A
4
6 %o
2
P X
o P
Fig. 1-26 Fig. 1-27 Fig. 1-28
(b) 4¢3™/5 = 4(cos 37/5 + isin37/5) = 4(cos 108° + i sin 108°)

©)

is represented by OP in Fig. 1-27.
2~ ™/* = 2{cos(—m/4) + isin(—m/4)} = 2{cos(—45°) + i sin(—45°)}

This complex number can be represented by vector OP in Fig. 1-28. This vector can be obtained by start-
ing with vector OA, whose magnitude is 2 and whose direction is that of the positive x axis, and rotating

it counterclockwise through an angle of —45° (which is the same as rotating it clockwise through an angle
of 45°).

A man travels 12 miles northeast, 20 miles 30° west of north, and then 18 miles 60° south of west.
Determine (a) analytically and (b) graphically how far and in what direction he is from his starting
point.
Solution
(a) Analytically. Let O be the starting point (see Fig. 1-29). Then
the successive displacements are represented by vectors OA,
AB, and BC. The result of all three displacements is represented
by the vector
OC =0A+AB+BC
Now
OA = 12(cos 45° + isin45°) = 12¢™/* . 12
. ~45e
AB = 20{c0s(90° + 30°) + i sin(90° + 30°)} = 20¢°™ 0
BC = 18{cos(180° + 60°) + i sin(180° + 60°)} = 18¢*™/3 Fig. 1-29
Then
OC = 12¢™* 4 20e*™/% 4 18¢*™/3
= {12cos45° 4+ 20 cos 120° + 18 cos 240°} + i{12 sin45° + 20 sin 120° + 18 sin 240°}
= {(12)(v/2/2) + 20)(—=1/2) + (18)(—1/2)} + i{(12)(+/2/2) + (20)(+/3/2) + (18)(—v/3/2)
= (6v/2 = 19) + (6v/2 + V/3)i
If r(cos@+isin6) =652 — 19+ (652 + /3)i, then r=+/ (62— 19+ (624 +/3)? = 14.7
approximately, and 6 = cos~'(64/2 — 19)/r = cos~'(— .717) = 135°49’ approximately.
Thus, the man is 14.7 miles from his starting point in a direction 135°49" — 90° = 45°49’ west of north.
(b) Graphically. Using a convenient unit of length such as PQ in Fig. 1-29, which represents 2 miles, and a

protractor to measure angles, construct vectors OA, AB, and BC. Then, by determining the number of units
in OC and the angle that OC makes with the y axis, we obtain the approximate results of (a).
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De Moivre’s Theorem

1.19.

1.20.

1.21.

Suppose z; = ri(cos 0; + isin ;) and z, = ry(cos 6, + isin 6,). Prove:
. . Z r ..
(@) z122 = rira{cos(By + 6,) + isin(6; + 6,)}, (b) ?1: r—l{cos(Ol — 6,) + isin(6; — 6,)}.
2 2

Solution

(@) z1z2 = {ri(cos 6 + isin 6;)}{r>(cos 6, + isin 6,)}
= riry{(cos 6y cos 6, — sin 6 sin 0,) + i(sin B cos B, + cos 0 sin 6,)}
= riry{cos(6; + 6,) +isin(6; + 6,)}

71 ri(cos 6 +isin ;) (cos 6, —isin6)

5 - r2(cos 6, + isin 6;) . (cos 6, — isin 6,)

11 [(cos 6; cos 6, + sin 6; sin 6;) + i(sin 6 cos 6, — cos 6; sin 6;)
rn { cos? 6 + sin” 6, }

(b)

=
8l ..
= —{cos(f; — 6,) + isin(6, — 6,)}
p)
In terms of Euler’s formula, ¢ = cos 8 + i sin 6, the results state that if z; = rie® and z, = rye’®, then
2120 = et and 71 /zp = r1e'% [re'® = (r/ry)e 0%,

Prove De Moivre’s theorem: (cos 6 + i sin 6)" = cosnf + isinn6f where n is any positive integer.

Solution

We use the principle of mathematical induction. Assume that the result is true for the particular positive integer
k, i.e., assume (cos 6 + i sin 6)F = cos k@ + i sin k6. Then, multiplying both sides by cos 6 + i sin 6, we find

(cos 6 + i sin 0! = (cos k6 + i sin kO)(cos 0 + i sin ) = cos(k + 1)0 + isin(k + 1)0

by Problem 1.19. Thus, if the result is true for n = k, then it is also true for n = k + 1. But, since the result is
clearly true forn = 1, it must alsobe true forn =14+ 1 =2andn =2 + 1 = 3, etc., and so must be true for all
positive integers.

The result is equivalent to the statement (¢’%)" = ¢,

Prove the identities: (a) cos 58 = 16cos’® 6 — 20 cos®  + 5 cos 6;
(b) (sin50)/(sin §) = 16 cos* — 12cos®> O+ 1,if 0 #0, +m, +2m, ....

Solution

We use the binomial formula

(a+bd)=d"+ (T)a”_lb—l— (’21>a”_2b2+~~+ (’;)a"_’b’—i—---—kb"

where the coefficients

ny  n
<r) T rln—r)

also denoted by C(n, r) or ,C,, are called the binomial coefficients. The number n! or factorial n, is defined as
the product n(n — 1)---3-2 -1 and we define 0! = 1.
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From Problem 1.20, with n = 5, and the binomial formula,

cos 50+ isin 50 = (cos 0 + isin 6)°

5 . 5 .
=cos’ 0+ < ) )(cos4 0)(i sin 6) + (2)(0033 6)(i sin 6)°

5 . 5 . .
+ (3 )(cos2 0)(i sin 0)° + <4>(cos 6)(i sin 6)* + (i sin )’

= cos’ 0+ 5icos* Osin 6 — 10 cos® Osin® 6
— 10i cos? @sin® 6+ 5cos Osin* 6+ isin® 0
= cos’ 8 — 10 cos® Osin® 6+ 5 cos Osin* 0

+i(5 cos* Osin 6 — 10 cos® Osin® 6 + sin’ 6)

Hence

(@) cos560=cos’ @— 10cos’ Osin® 6+ 5 cos Osin* 6
= cos’ 6 — 10cos® (1 — cos? 6) + 5 cos 6(1 — cos? §)*
=16cos’ § —20cos® B+ 5cos 0

(b) sin560 = 5cos* Osin 6 — 10 cos? Osin® O + sin’ 6
or

sin560

—~ = 5cos* @ — 10cos’ Osin® 6 + sin* 0
sin 6

= 5cos* 9 — 10cos? 6(1 — cos’ 6) + (1 — cos? 6)>
=16cos* 6 — 12cos® 6+ 1
provided sin § # 0, i.e., 6 # 0, + 7, +2m,....

i0 —i 0 _—if
1.22. Show that (a) cos 8 = %, (b) sin 6 = %
i
Solution
We have
¢ = cos O+ isin D
e =cos §—isin 6 )

(a) Adding (1) and (2),
€% +e®=2cosh or cosf=
(b) Subtracting (2) from (1),

e — ¢ =2isin® or sinf=
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1.23. Prove the identities (a) sin® 6 = 3sin 6 — 1sin36, (b) cos* 6 = Lcos46+1cos26+ 3.

Solution
. 2if _ p=if\ 3 (el — e7i0)3 1. ) . o _
(a) Slll3 0= ( 5 ) — =5 — _g{(819)3 _ 3(619)2(6 19) + 3(619)(6 16)2 _ (e 16)3}
I i0 Lo ey 3 (€ —e\ 10—
= 8i(e 3e'” + 3e e ") = 7 2 2 2

3 1
:ZsinG—ZSin?sO

el 4 o0 4_ (ei9+e—i0)4
2 o 16

(b) cos*= (

— % {(ei6)4 + 4(ei9)3(€_i0) + 6(ei0)2(e—i9)2 + 4(ei9)(e—i0)3 + (e—i0)4}

1 . . . ) 1 /%0 —4i0 1 /20 —2i6
= (M0 4 420 4 6 4 4o 20 4 oH0) — = (i) 4= (%) +

16 8 2 2

1 1 3
= gcos40+§c0526+§

1.24. Given a complex number (vector) z, interpret geometrically ze'® where « is real.

Solution

Let z = re’® be represented graphically by vector OA in
Fig. 1-30. Then
Zeia — reiG . eia — rei(9+0£)
is the vector represented by OB. o
Hence multiplication of a vector z by ¢'* amounts to ze®
rotating z counterclockwise through angle «. We can con-

3

8

sider e'® as an operator that acts on z to produce this o
rotation.

1.25. Prove: €' = ¢/+2k™ | =0, +1, +2,.... Fig. 1-30

Solution
&OH2k™ — cos(0 + 2kr) + i sin(0 + 2ka) = cos 6 + isin 6 = €°

1.26. Evaluate each of the following.
a 3(cos40° + isin40°)][4(cos 80° + isin80°)], (b)) ———,
(@ [3( 4( )1, (b) @ cis 4577
Solution
(a) [3(cos40° + isin40°)][4(cos 80° + isin 80°)] = 3 - 4[cos(40° + 80°) + i sin(40° + 80°)]
= 12(c0s 120° + isin 120°)

= 12(—;+“fi> = —6+6/3i

(2 cis 15°) © (1 + /30
1 —/3i
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(2 cis 15°)7 128 cis 105°
(4 cis 45°)° 64 cis 135°

(b) =2 cis(105° — 135°)
= 2[cos(—30°) + i sin(—30°)] = 2[cos 30° — isin30°] = V3—i

10
1 3
} = (cis 120°)'° = cis 1200° = cis 120° = -3 +§i

14+ 31\ [ 2 cis(60°)
© (1_¢§i) = 2 cis(—60°)

Another Method.

10

. p 10
(1 +£1) _ (2267 /;) _ (27310 — 203
_ i e~

= eMe?™3 = (1)[cos(2m/3) + i sin(2m/3)] = — % + ?i

1.27. Prove that (a) arg(z122) = argz; + arg 2o, (b) arg(z;/z2) = argz; — arg 2», stating appropriate con-
ditions of validity.
Solution
Let z; = ri(cos 0; + isin 6;), zo = ry(cos 0, + isin 6,). Then argz; = 6,, argz, = 0.
(a) Since z1z0 = rirp{cos(0; + 6,) + isin(6; + 6»)}, arg(z1z2) = 61 + 6, = argzy + argzp.
(b) Since z1/z2 = (r1/r2){cos(0) — 02) +isin(0) — 62)}, arg(z1/z2) = 0 — 6, = argz; — arg 2.

Since there are many possible values for 6, = argz; and 6, = argz,, we can only say that the two sides
in the above equalities are equal for some values of argz; and argz,. They may not hold even if principal
values are used.

Roots of Complex Numbers
1.28. (a) Find all values of z for which z> = —32, and (b) locate these values in the complex plane.

Solution

(a) In polar form, —32 = 32{cos(7 + 2km) + isin(7 + 2km)}, k =0, +1, 2, ....
Let z = r(cos 6 + isin 6). Then, by De Moivre’s theorem,

2 = r(cos 50 + isin56) = 32{cos(m + 2k) + i sin(7r + 2k)}

and so r° = 32, 50 = 7 + 2k, from which r =2, 6 = (7 + 2km)/5. Hence

7= 2{003(77- +52k77> + isin(w +52k77> }

Ifk=0,z=2z =2(cos/5+isinw/5).

If k=1, z=2 =2(cos3w/5 +isin3m/5).

If k=2, z=2z3 = 2(cos5m/5 + isin57/5) = —2.
If k=3, z=24 =2(cos7m/5 + isinTm/5).

If k=4, z=25=2(cos9m/5 + isin97/5).
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By considering k = 5, 6, ... as well as negative y
values, —1, —2, ..., repetitions of the above five
values of z are obtained. Hence, these are the only
solutions or roots of the given equation. These five
roots are called the fifth roots of —32 and are collec-
tively denoted by (—32)!/°. In general, a'/" rep-
resents the nth roots of a and there are n such roots.

22

23

21

(b) The values of 7 are indicated in Fig. 1-31. Note that
they are equally spaced along the circumference of
a circle with center at the origin and radius
2. Another way of saying this is that the roots are
represented by the vertices of a regular polygon.

QP "
/“

24

Fig. 1-31
1.29. Find each of the indicated roots and locate them graphically. &

(@ -1+ () (—2/3-2)"*
Solution
(@ (—1+'°

—1+i = v/2{cos(3/4 + 2km) + i sin(37/4 + 2km)}

3mw/4 4+ 2k 3m/4 42k
(=143 = 21/6{C05<¥T> + isin(#)}

If k =0, z; = 2"/%(cos /4 + isin 7/4).
Ifk=1, z =2"%Ccos 11/12 + isin 117/12).
If k =2, z3 = 25(cos 1977/12 + isin 1977/12).

These are represented graphically in Fig. 1-32.

y
y % S
2 2
%
A
\\q, 2 12
A
2 /4
A
x 2
2\ > %
2 2
/Y) ‘)7 24
23
3
Fig. 1-32 Fig. 1-33

(b) (—2v/3-2)"*
—2+/3 — 2i = 4{cos(Tm/6 + 2km) + i sin(7 /6 + 2km))

(_2\/§ - 21)1/4 = 41/4{005(M> + lsul(w)}

If k=0, z; = V2(cos Tm/24 + i sin T7/24).

If k =1, 0 = /2(cos 1971/24 + i sin 197/24).
If k =2, 73 = v/2(cos 3171/24 + isin 311/24).
If k =3, z4 = +/2(cos 437/24 + i sin437/24).

These are represented graphically in Fig. 1-33.

25
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1.30. Find the square roots of —15 — 8i.

Solution
Method 1.

—15 — 8i = 17{cos(6 + 2k) + i sin(0 + 2k)}

where cos 0 = —15/17, sin § = —8/17. Then the square roots of —15 — 8i are

«/ﬁ(cos 0/2 4 isin 6/2) (D
and
V17{cos(6/2 + m) + i sin(6/2 + m} = —v/17(cos 6/2 + i sin 6/2) )
Now

cos /2 = +/(1 +cos )/2 = +/(1 = 15/17)/2 = +1/v/17

sin /2 = +£/(1 —cos 0)/2 = £/(1 +15/17)/2 = +4//17

Since 6 is an angle in the third quadrant, 6/2 is an angle in the second quadrant. Hence,
cos 0/2 = —1/+/17, sin /2 = 4/+/17, and so from (1) and (2) the required square roots are
—1+4iand 1 — 4i. As a check, note that (—1 + 4i)* = (1 —4i)*> = —15 — 8i.

Method 2.

Let p + ig, where p and g are real, represent the required square roots. Then
( +ig)* =p* — ¢* +2pgi = —15 - 8i

or
pP—q =-15 3)

pg=—4 4
Substituting g = —4/p from (4) into (3), it becomes p> — 16/p> = —15 or p* + 15p> — 16 =0,
ie., (p*>+16)(p> — 1) =0 or p?> = —16, p> = 1. Since p is real, p = + 1. From (4),if p =1, ¢ = —4;
if p = —1, ¢ = 4. Thus the roots are —1 4+ 4i and 1 — 4i.
Polynomial Equations

1.31. Solve the quadratic equation az*> + bz + ¢ =0, a #0.

Solution

Transposing ¢ and dividing by a #0,

Adding (b/2a)* [completing the square],
2 b (b > < (P : ™ L b > b —dac
ST \2a) T4 2a) M) T A

Taking square roots,

+ /b2 —4ac —b + v/b? — dac

— = H =
Z+2a 2a ence < 2a
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1.32.

1.33.

1.34.

1.35.

Solve the equation z* + (2i —3)z +5 —i = 0.

Solution

From Problem 1.31,a =1, b =2i — 3, ¢ = 5 — i and so the solutions are

b+ VP —dac  —Qi—3)+ JQi—37 4B —i) 3—2i +/—15—8i
= 2a - 2(1) - 2
320 + (1 —4i)
- 2

using the fact that the square roots of —15 — 8i are + (1 — 4i) [see Problem 1.30]. These are found to satisfy the
given equation.

=2-3i or 1+4i

Suppose the real rational number p/q (where p and g have no common factor except + 1, i.e., p/q is
in lowest terms) satisfies the polynomial equation aoz" 4+ a;z" '+ ---+a, =0 where
ay, ai, . .., a, are integers. Show that p and ¢ must be factors of a, and ay, respectively.

Solution

Substituting z = p/q in the given equation and multiplying by ¢" yields
app" +app" g+ -+ anipq" +aq" =0 o)
Dividing by p and transposing the last term,

a” n
Clop'hl _|_a1p"*2q 4+ 4 anilq”’] = —7[)‘1 2)

Since the left side of (2) is an integer, so also is the right side. But since p has no factor in common with ¢, it
cannot divide ¢" and so must divide a,,.

Similarly, on dividing (1) by ¢ and transposing the first term, we find that ¢ must divide ag.
Solve 6z* —25z° 43222 + 3z — 10 = 0.

Solution

The integer factors of 6 and —10 are, respectively, +1, +2, +3, +6 and +1, +2, +5, +10. Hence, by
Problem 1.33, the possible rational solutions are +1, +1/2, +1/3, +1/6, +2, +2/3, 45, +5/2, +5/3,
+5/6, +10, +10/3.

By trial, we find that z = —1/2 and z = 2/3 are solutions, and so the polynomial
(224 1)(3z — 2) = 622 — z — 2 is a factor of 6z* —257° + 3272 4+ 3z — 10
the other factor being z2 — 4z + 5 as found by long division. Hence
628 =252 +3222 + 32— 10 = (62 —z—2)(* —42+5) =0

The solutions of z2 — 4z + 5 = 0 are [see Problem 1.31]
4+ /16-20 4+ /-4 442
= = = =
2 2 2
Then the solutions are —1/2,2/3, 2 +1i, 2 —1i.

241

Prove that the sum and product of all the roots of apz” + a;z"~' + - -- + a, = 0 where ay # 0, are
—ay/ap and (—1)"a,/ay, respectively.

Solution

If z1, 22, ..., 2, are the n roots, the equation can be written in factored form as

az—z2)z—22) - (2—2,) =0
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Direct multiplication shows that

al — @+t F) o+ (=D "nz 2} =0

It follows that —ag(z; +22 + -+ + z,) = a1 and ag(~1)"z122 - - - 2, = a,,, from which
a+n+-dz=—ai/a, 2= D "'a/a

as required.

Suppose p + gi is a root of agz" + a7 ' + - 4 a, = 0 where ag #0, ai, .. .,a,, p and g are real.
Prove that p — gi is also a root.
Solution

Let p + gi = re'” in polar form. Since this satisfies the equation,
aorneinﬁ + alrn—lei(n—l)(? 4t an_lreiﬁ + a, = 0
Taking the conjugate of both sides

aorneﬂnﬁ _I_alrnfleft(nfl)ﬁ 4. _’_an_lreﬂa +a, = 0

we see that re ™ = p — gi is also a root. The result does not hold if ay, . . . , a, are not all real (see Problem 1.32).

The theorem is often expressed in the statement: The zeros of a polynomial with real coefficients occur in
conjugate pairs.

The nth Roots of Unity

1.37.

1.38.

Find all the 5th roots of unity.

Solution

2 =1 =cos 2k +i sin 2k7 = &*™

where k =0, +1, +2, .... Then

7= cos?—i—i sin?: g2k

where it is sufficient to use k =0, 1, 2, 3, 4 since all other values of k lead to repetition.

Thus the roots are 1, e27/5 e*m/5 ¢0m/5 o87/5 [f we call 2™/5
1, w, 0?, &, &

= w, these can be denoted by

Suppose n = 2, 3, 4, .. .. Prove that

2 4 6 2n —1
(a) cos—77+cos—77+cos—77+~--+cosu=

-1
n n n n
2 4 6 2n—1
® sin 2T 4 sin 7 4 5in &7 4 . 4 sin 22— DT _ g
n n n n
Solution

Consider the equation 7" — 1 = 0 whose solutions are the nth roots of unity,

l, eZm/n, e4m/n, e6m/n, e eZ(nfl)m/n
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By Problem 1.35, the sum of these roots is zero. Then
1+627Ti/n +e4m'/n +66m'/n 4 x eZ(n—l)m'/n -0

ie.,

4 L 2n— 1)77}
in————¢ =0
n

{ 27 47 2(n — 1)77} { L 2T
1 4+cos—4cos— 4 -+ +cos—————¢ +iysin—4sin—+4--- +5s
n n n n n

from which the required results follow.
Dot and Cross Product
1.39. Suppose z; =3 —4i and z, = —4 + 3i. Find: (@) z1 - 22, (b) |21 X 22].

Solution
(@) z1-22 =Re{Z1z2} = Re{(3 + 4i)(—4 + 3i)} = Re{—-24 — 7i} = —24

Another Method. 7 - 7 = (3)(—4) + (—=4H)(3) = —24
(b) |z1 X 22] = |Im{Z122}| = |Im{(3 + 4i)(—4 + 3i)}| = |Im{—24 — 7i}| = |-T7| =7

Another Method. |7, x 23| = |(3)(3) — (—4)(—4)| = |-T7| =7
1.40. Find the acute angle between the vectors in Problem 1.39.

Solution
From Problem 1.39(a), we have

22 —24 —24
cos 6 = = —— T _ _ 96
lzillzal 3 —4il|-4+3i] 25

Then the acute angle is cos™' .96 = 16°16’ approximately.

1.41. Prove that the area of a parallelogram having sides z; and z; is |z; X z2].

Solution
Area of parallelogram [Fig.1-34] = (base)(height)
= (lz21)(|z1] sin 6) = |z1]lz2] sin 6 = |21 X 22|
y
C(x3, y3)
21
22

]

|
2 : . A(xy, 1)

:h=|z1| sin 6 B(xy, ¥,)

6 ! o
| %

Fig. 1-34 Fig. 1-35
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Find the area of a triangle with vertices at A(xy, y;), B(xz, ¥2), and C(x3, y3).

Solution

The vectors from C to A and B [Fig. 1-35] are, respectively, given by
21 = —x3) + i —y3) and 2= (0 —x3) +i(y2 — y3)

Since the area of a triangle with sides z; and z; is half the area of the corresponding parallelogram, we have by
Problem 1.41:
Area of triangle = 1|z; x 25| = 3 [Im{[(x; — x3) — i(y1 — y3)][(x2 — x3) + i(y2 — y3)}
=11 — x3)(2 — ¥3) — (11 — y3)x2 — x3)]
= 3|12 — yix2 + Xoy3 — yox3 4 X3y1 — yaxi|
xono 1
=4lx ¥y 1]
xoy3 1

in determinant form.

Complex Conjugate Coordinates

1.43.

1.44.

Express each equation in terms of conjugate coordinates: (a) 2x +y =15, (b) x> +y* = 36.

Solution

(@) Sincez=x+1iy,z=x—1iy, x =(2+72)/2, y = (z—2)/2i. Then, 2x + y = 5 becomes

z(ﬂ> + <Z_z> =5 or Qi+ 1z+Q2i—1)7=10i

2 2i

The equation represents a straight line in the z plane.
(b) Method 1. The equation is (x + iy)(x — iy) = 36 or zz = 36.

Method 2. Substitute x = (z +7)/2, y = (z — 2)/2i in x> + y*> = 36 to obtain zZ = 36.

The equation represents a circle in the z plane of radius 6 with center at the origin.

Prove that the equation of any circle or line in the z plane can be written as azz + 3z + Bz+v=0
where « and 7 are real constants while 8 may be a complex constant.

Solution
The general equation of a circle in the xy plane can be written

AP +y)+Bx+Cy+D=0

which in conjugate coordinates becomes

_ 24z 7—2 _ B C B C\._
Z+ ( 2 )+C< T )—i— 0 or zz+(2+2i)z+(2 2l.)z~|— 0

Calling A = «, (B/2) 4+ (C/2i) = B and D = v, the required result follows.

In the special case A = a = 0, the circle degenerates into a line.
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Point Sets

1.45. Given the point set S:{i, 3i, 3i, 1i, ...} or briefly {i/n}. (a) Is S bounded? (b) What are its limit
points, if any? (c) Is S closed? (d) What are its interior and boundary points? (e) Is S open? (f) Is
S connected? (g) Is S an open region or domain? (h) What is the closure of S? (i) What is the comp-
lement of S? (j) Is S countable? (k) Is S compact? (1) Is the closure of S compact?

1.46.

Solution

(a) S is bounded since for every point z in S, |z] < 2 (for example), i.e., all points of § lie inside a circle of
radius 2 with center at the origin.

(b) Since every deleted neighborhood of z = 0 contains points of S, a limit point is z = 0. It is the only limit
point.

Note that since S is bounded and infinite, the Weierstrass—Bolzano theorem predicts at least one limit
point.

(c) Sis not closed since the limit point z = 0 does not belong to S.

(d) Every & neighborhood of any point i/n (i.e., every circle of radius 8 with center at i /n) contains points that
belong to S and points that do not belong to S. Thus every point of S, as well as the point z = 0, is a bound-
ary point. S has no interior points.

(e) S does not consist of any interior points. Hence, it cannot be open. Thus, S is neither open nor closed.

(f) If we join any two points of S by a polygonal path, there are points on this path that do not belong to S.
Thus S is not connected.

(g) Since S is not an open connected set, it is not an open region or domain.

(h) The closure of S consists of the set S together with the limit point zero, i.e., {0, i, %i, %i, )

(i) The complement of S is the set of all points not belonging to S, i.e., all points z # i, i/2, i/3,....

(G) There is a one to one correspondence between the elements of S and the natural numbers 1, 2, 3, ... as
indicated below:

T T T

A

1 2 3 4
Hence, S is countable.

(k) S is bounded but not closed. Hence, it is not compact.

(1) The closure of S is bounded and closed and so is compact.

Given the point sets A ={3, —i,4,2+i,5},B={—i,0, —1,24i}, C= {—\/ii, % 3}. Find

@AUB, MDANB, )ANC,ANMBUC),e)(ANBUMANC),H)YANBNO).

Solution

(a) A U B consists of points belonging either to A or B or both and is given by {3, —i, 4,2 +1, 5, 0, —1}.

(b) A N B consists of points belonging to both A and B and is given by {—i, 2 + i}.

(c) AN C = {3}, consisting of only the member 3.

(d BUC={-i,0,—1,2+i, —~2i, 1,3}

Hence A N (BU C) = {3, —i, 2 + i}, consisting of points belonging to both A and B U C.
() ANB={—i,2+i}, AN C = {3} from parts (b) and (c). Hence A N B) UA N C) = {—i, 2+, 3}.
From this and the result of (d), we see that A N (B U C) = (A N B) U (A N C), which illustrates the
fact that A, B, C satisfy the distributive law. We can show that sets exhibit many of the properties
valid in the algebra of numbers. This is of great importance in theory and application.
() BN C =, the null set, since there are no points common to both B and C. Hence, AN (BN C) = J

also.
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Miscellaneous Problems

1.47. A number is called an algebraic number if it is a solution of a polynomial equation

1.48.

a? + a1+ 4+ a1z + a, = 0 where ag, ay, .. .,a, are integers.

Prove that (a) ~/3 + +/2 and (b) /4 — 2i are algebraic numbers.

Solution

(a)

(b)

Let z=+/3 ++/2 or z — /2 = +/3. Squaring, 7> — 242z +2 =3 or 7> — | = 2+/2z. Squaring again,
=222+ 1 =87 or * — 1022 + 1 = 0, a polynomial equation with integer coefficients having /3 +
ﬁ as a root. Hence, «/?; + ﬁ is an algebraic number.

Let z=+/4—2i or z+2i=+/4 Cubing, z*+322(2i)+322)* + i)’ =4 or 22— 12z -4 =
i(8 — 6z%). Squaring, z°+ 12z* — 87> + 482> +9674+80 =0, a polynomial equation with integer
coefficients having /4 — 2i as a root. Hence, ~/4 — 2i is an algebraic number.

Numbers that are not algebraic, i.e., do not satisfy any polynomial equation with integer coefficients, are

called transcendental numbers. It has been proved that the numbers 7 and e are transcendental. However, it
is still not yet known whether numbers such as e or e + , for example, are transcendental or not.

y
Represent %rgpél'cally the set %f values of z for
which (a) f =2, (b) = <2.
z+3 ’ z+3
Solution
(a) The given equation is equivalent to |z —3| = \\\f
2|z + 3| or, if (3,0)
z=x+1dy, |x+iy—3|=2|x+iy+ 3|, ie.,
V=312 =2 /w437 + 2
Squaring and simplifying, this becomes Fig. 1-36
P4+ +10x4+9=0
or
(x+572+y* =16
i.e., |2+ 5] =4, a circle of radius 4 with center at (-5, 0) as shown in Fig. 1-36.
Geometrically, any point P on this circle is such that the distance from P to point B(3, 0) is twice the
distance from P to point A(=3, 0).
Another Method.
z—3 z—3\(z-3 -
Tl =2i ivalent t — ) =4 72+52+5z2+9=0
Z+3‘ is equivalen O(Z+3><E+3> or zz+5z+5z+
ie,(z+5)@+5 =16o0r|z+5 =4
(b) The given inequality is equivalent to |z — 3| < 2|z + 3| or \/(x —3)P 42 < 2\/(x +3)? 4 y2. Squaring

and simplifying, this becomes x> 4+ y> + 10x +9 > 0 or (x + 52 +y2 > 16, ie., |2+ 5| > 4.
The required set thus consists of all points external to the circle of Fig. 1-36.
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1.49.

1.50.

1.51.

Given the sets A and B represented by |z — 1| <2 and |z — 2i| < 1.5, respectively. Represent
geometrically (a) A N B, (b) A U B.
Solution

The required sets of points are shown shaded in Figs. 1-37 and 1-38, respectively.

y y

Fig. 1-37 Fig. 1-38

Solve 22(1 — z2) = 16.

Solution

Method 1. The equation can be written z* — 22 + 16 = 0,i.e., 2* + 822 + 16 — 922 =0, (2 +4)> =922 =0or
(> +4+32)(z> +4 —3z) =0. Then, the required solutions are the solutions of z2+3z+4 =0 and
2 —3744=0,o0r

7 7
— i%i and i%i

N W
(ST

Method 2. Letting w = 22, the equation can be written wr—w+16=0and w :% + %«/71 To obtain sol-
utions of 72 = % + %«/71', the methods of Problem 1.30 can be used.

Let z;, 22, 73 represent vertices of an equilateral triangle. Prove that

2 2 2
O+t =02+ + 232

Solution
From Fig. 1-39, we see that
y
- = eﬂi/3(Z3 —21) Zz
21— =" —123)
Then, by division, ‘
21
22— 12 32 ‘
Zl_ZB_Zz—Z3 23
X
or

zf + z% —l—z% = 2122 + 2223 + 32
Fig. 1-39



1.52. Prove that form =2, 3, ...

SUPPLEMENTARY PROBLEMS

Solution

The roots of 7" = 1 are z = 1, &2™/™ e*mi/m .

Lo . 2.
sin —sin—sin —- -
m m m

CHAPTER 1 Complex Numbers

37 . (m—Dm m
- sin =

Zm 1= (Z _ l)(Z _ eZm'/m)(Z _ e4m'/m) . (Z _ ez(m

m 2m71

JeXm=Dmi/m Then we can write

7l)m'/m)

Dividing both sides by z — 1 and then letting z = 1 [realizing that (" — 1)/(z— 1) =142z + 24
we find

m= (1 _ eZm/m)(l _ e47Ti/m) . (1 _ eZ(m—l)’)Ti/m)

Taking the complex conjugate of both sides of (1) yields

m= (1 _ e—Zm'/m)(l _ 674771-/,”) .

(1 _ 672(m71)m'/m)

Multiplying (1) by (2) using (1 — e*™/™)(1 — e=2k™/m) = 2 — 2 cos(2km/m), we have

Since 1 — cos(2km/m) = 2 sinz(kﬂ'/m), (3) becomes

Then, taking the positive square root of both sides yields the required result.

m2 — 22m72 s

Fundamental Operations with Complex Numbers

1.53. Perform each of the indicated operations:

1.54.

(a)

(b)

© @+20)2 -1,

Suppose z; =1 — 1,

(@ zZ+27-3

(b)

©

4-3)+2i-38),

31 +4i) — 2(7 — i),

1225 — 321

(z3 —7)°

1n

T, 52T C,(m—1Dm
27S1n27"'sln2!
m m

@ (=DRA+H-3G-D} (@
2 —3i

© Z— (h)

) @+H3+2)1—1i) @)

2 4 2m— 1
m? = 2’”71(1 —cos—ﬂ)(l —cos—ﬂ-> e (1 —COSM)
m m m

2+ )3 — 2i)(1 + 2i)

(1 =iy

4
1—i

(i — 1)2{ +

i4+i9+i16
2—i5+i10—i15

72 = =2 +4i, z3 = /3 — 2i. Evaluate each of the following:

(d)

(e)

(f)

2122 + 2221

1

2

<3

21+z22+1
u—2z22+i

&

2)
3

(@ (@+un)u—23)
() 12 +3B17+ 1B - 3P

(i) Re{2z} +32 — 523}

2—i
1+i

+mel]’

!

)]

(@)

3

“)
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1.55.
1.56.
1.57.
1.58.
1.59.

1.60.

Prove that (a) (Z122) = 7122, (b) (Z12223) = Z12223. Generalize these results.

Prove that (a) (z1/22) = Z1/Z2, (b) lz1/22] = |z1l/lz2] if 2 # 0.

Find real numbers x and y such that 2x — 3iy +4ix —2y —5—10i = (x +y+2) — (y — x + 3)i.

Prove that (a) Re{z} = (z +2)/2, (b) Im{z} = (z — 2)/2i.

Suppose the product of two complex numbers is zero. Prove that at least one of the numbers must be zero.

Let w = 3iz — 7> and z = x + iy. Find |w|? in terms of x and y.

Graphical Representation of Complex Numbers. Vectors.

1.61.

1.62.

1.63.

1.64.

1.65.

1.66.
1.67.
1.68.
1.69.

1.70.

1.71.

1.72.

Perform the indicated operations both analytically and graphically.
@ Q+3)+@-5) (d 3(0+i)+24—-3i)—(2+50)
by (T+i)—@4—-20) (e) %(4 -3+ %(5 + 2i)

() 3(142i)—22-3i)

Let zj, 22, and z3 be the vectors indicated in Fig. 1-40. Construct y
graphically:
2 7
@ 2z1+z
b)) (@ +22)+z A
© z+(@+z) .
Fig. 1-40

(d) 3z1 — 2z + 523
) izm—-3u+3in

Let z; =4 — 3i and zp = —1 + 2i. Obtain graphically and analytically
@ lz1+2l, )l -zl ©z2—2, (@22 -3 -2

The position vectors of points A, B, and C of triangle ABC are given by z; =14 2i, 20 =4 — 2i, and
z3 = 1 — 61, respectively. Prove that ABC is an isosceles triangle and find the lengths of the sides.

Let zi, 22, 23, 24 be the position vectors of the vertices for quadrilateral ABCD. Prove that ABCD is a
parallelogram if and only if z; — 7z — z3 + 24 = 0.

Suppose the diagonals of a quadrilateral bisect each other. Prove that the quadrilateral is a parallelogram.
Prove that the medians of a triangle meet in a point.

Let ABCD be a quadrilateral and E, F, G, H the midpoints of the sides. Prove that EFGH is a parallelogram.
In parallelogram ABCD, point E bisects side AD. Prove that the point where BE meets AC trisects AC.

The position vectors of points A and B are 2 + i and 3 — 2i, respectively. (a) Find an equation for line AB. (b)
Find an equation for the line perpendicular to AB at its midpoint.

Describe and graph the locus represented by each of the following: (a) |z — i| = 2,
®) lz+2i+z—2i|=6, (©)z—3]—[z+3]=4, (Dz2z+2)=3, (e) Im{z*}=4.

Find an equation for (a) a circle of radius 2 with center at (—3, 4), (b) an ellipse with foci at (0, 2) and (0, —2)
whose major axis has length 10.



1.73.

1.74.

CHAPTER 1 Complex Numbers

Describe graphically the region represented by each of the following:
@1<|z+i <2, ®Re{Z}>1, ©Iz+3il>4, (d)I]z+2-3i]+|z—2+3i <10.

Show that the ellipse |z + 3| + |z — 3| = 10 can be expressed in rectangular form as x2/25 4+ y?/16 = 1 [see
Problem 1.13(b)].

Axiomatic Foundations of Complex Numbers

1.75.

1.76.
1.77.

1.78.

1.79.

1.80.

Use the definition of a complex number as an ordered pair of real numbers to prove that if the product of two
complex numbers is zero, then at least one of the numbers must be zero.

Prove the commutative laws with respect to (a) addition, (b) multiplication.

Prove the associative laws with respect to (a) addition, (b) multiplication.

(a) Find real numbers x and y such that (c, d) - (x, ¥) = (a, b) where (c, d) # (0, 0).

(b) How is (x, y) related to the result for division of complex numbers given on page 2?
Prove that

(cos 6y, sin 0;)(cos 6,, sin 6,) - - - (cos 6, sin 6,)
= (cos[0) + 6 + -+ - + O,], sin[6 + 6 + - + 6,])

(a) How would you define (a, b)'/" where n is a positive integer?

(b) Determine (a, b)'/? in terms of a and b.

Polar Form of Complex Numbers

1.81.

1.82.

1.83.

1.84.

1.85.

1.86.

1.87.

1.88.

Express each of the following complex numbers in polar form:

(@) 2 = 2i, (b) =1 + /3, (¢) 2v/2 + 2320, (d) —i, (e) —4, (F) —2+/3 — 2i, (2) /2, (h) /3/2 — 3i/2.
Show that 2 +i = +/Sel“n ' (1/2),

Express in polar form: (a) =3 —4i, (b) 1 —2i.

Graph each of the following and express in rectangular form:

(a) 6(cos 135° + isin 135°), (b) 12 cis 90°, (c) 4 cis 315°, (d) 2e°™/4, (e) 5¢7™/5, (f) 3e=2™/3.

An airplane travels 150 miles southeast, 100 miles due west, 225 miles 30° north of east, and then 200 miles
northeast. Determine (a) analytically and (b) graphically how far and in what direction it is from its starting
point.

Three forces as shown in Fig. 1-41 act in a plane on an object
placed at O. Determine (a) graphically and (b) analytically what
force is needed to prevent the object from moving. [This force
is sometimes called the equilibrant.]

Prove that on the circle z = Re'?, |e?| = e Rsin 0, ]00/6

(a) Prove that rie’® + re'® = r3¢'% where 30°

r3 = \/F% + l’% + 2rirycos(6; — 6,) 2
and

b — tan-! <r1 sin 0; + r; sin 02>
3 =

11 €08 01 + 1y cos 6 Fig. 1-41

(b) Generalize the result in (a).
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De Moivre’s Theorem

1.89.

1.90.

1.91.

1.92.

1.93.

1.94.

Evaluate each of the following: (a) (5 cis 20°)(3 cis 40°) (b) (2 cis 50°)°

(8 cis 40°)° @ (3e™/0)(2e=5714)(657/3) © («/g—i>4<1 +i>5
(2 cis 60°)* (4e2m/3) V3+i) \I—i

Prove that (a) sin36 = 3 sin § — 4 sin® 6, (b) cos 36 = 4 cos® 6 — 3 cos 6.

Prove that the solutions of z* — 37> + 1 = 0 are given by
z=2c0s36° 2cos72° 2co0s216°, 2 cos252°.

Show that (a) cos 36° = (/3 + 1)/4, (b) cos 72° = (/5 — 1)/4. [Hint: Use Problem 1.91.]
Prove that (a) sin46/sin 6 = 8 cos® 6§ —4cos 0 =2cos360+2cos 6
(b) cos40 = 8sin* 0 — 8sin” O+ 1

Prove De Moivre’s theorem for (a) negative integers, (b) rational numbers.

Roots of Complex Numbers

1.95.

1.96.

1.97.
1.98.
1.99.

Find each of the indicated roots and locate them graphically.
(@) 2v3 = 20", (b) (=4 +4)'7, (¢) 2+ 23D, (d) (—160)'%, (e) (64", (F) (i)*/°.

Find all the indicated roots and locate them in the complex plane. (a) Cube roots of 8,
(b) square roots of 44/2 4+ 4+/2i, (c) fifth roots of —16 + 16+/3i, (d) sixth roots of —27i.

Solve the equations (a) z* 4+ 81 = 0, (b) 2L +1=43i
Find the square roots of (a) 5 — 12i, (b) 8 + 4./5i.

Find the cube roots of —11 — 2i.

Polynomial Equations

1.100.

1.101.
1.102.

1.103.

1.104.

Solve the following equations, obtaining all roots:
()52 +2z4+10=0, B Z+3G—2)z+B—-i)=0.

Solve 7> —27* — 22 + 6z —4 =0.
(a) Find all the roots of z* +z%> + 1 = 0 and (b) locate them in the complex plane.

Prove that the sum of the roots of ayz" + a;z"~' 4+ a»7""> + - - - + a, = 0 where ay#0 taken r at a time is
(=1)"a,/ay where 0 < r < n.

Find two numbers whose sum is 4 and whose product is 8.

The nth Roots of Unity

1.105.

1.106.

1.107.

Find all the (a) fourth roots, (b) seventh roots of unity, and exhibit them graphically.
(a) Prove that 1 + cos72° + cos 144° + cos 216° + cos 288° = 0.
(b) Give a graphical interpretation of the result in (a).

Prove that cos 36° 4 cos 72° + cos 108° 4 cos 144° = 0 and interpret graphically.



1.108.

1.109.
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Prove that the sum of the products of all the nth roots of unity taken 2, 3, 4,...,(n — 1) at a time is zero.

Find all roots of (1 +z)° = (1 — z)°.

The Dot and Cross Product

1.110.

1.111.

1.112.

1.113.
1.114.

1.115.

Given z; =2+ 5iand 7z = 3 — i. Find

@z1-z2, Oz xzl, ©z2-z21, @) lz2xzl, © a2, ) lz2-zl
Prove that z; - 2o = 25 - 73.

Suppose z; = r1e'” and z, = rye'®. Prove that
(@) z1 - 22 = riracos(6r — 01), (b) |21 X 22| = 1172 8in(6, — 0y).
Prove thatz) - (n+ )=z 22+ 21 - 3.

Find the area of a triangle having vertices at —4 — i, 1 4 2i, 4 — 3i.

Find the area of a quadrilateral having vertices at (2, —1), (4, 3), (-1, 2), and (—3, —2).

Conjugate Coordinates

1.116.

1.117.

Describe each of the following loci expressed in terms of conjugate coordinates z, z.
@z=16, (b)zz—2z—2z+8=0, (0)z+z=4, (dz=z+6i

Write each of the following equations in terms of conjugate coordinates.
@ x—=372+y>=9, (b)2x—3y=5, (c)4x>+ 16y*> =25.

Point Sets

1.118.

1.119.
1.120.

1.121.

1.122,

1.123.

1.124.
1.125.

1.126.

Let § be the set of all points a+ bi, where a and b are y
rational numbers, which lie inside the square shown shaded in ) ]
Fig. 1-42. (a) Is S bounded? (b) What are the limit points of S, if ! L+i
any? (c) Is S closed? (d) What are its interior and boundary points?
(e) Is S open? (f) Is S connected? (g) Is S an open region or
domain? (h) What is the closure of S? (i) What is the complement 0 1
of §? (j) Is S countable? (k) Is S compact? (1) Is the closure of §
compact?

Fig. 1-42

Answer Problem 1.118 if S is the set of all points inside the square.
Answer Problem 1.118 if S is the set of all points inside or on the square.

Given the point sets A = {1, i, —i}, B={2, 1, —i}, C = {i, —i, 1 + i}, D = {0, —i, 1}. Find:
@AUMBUC), b)yANC)UBND), (c)(AUC)N(BUD).

Suppose A, B, C, and D are any point sets. Prove that (a) AUB=BUA, (b) ANB=BNA,
C©AUBUO=(AUBUC, (dANBNCO)=ANBNC,
©ANBUCO=ANBUMANO).

Suppose A, B, and C are the point sets defined by |z + i| < 3, |z| <5, |z + 1] < 4. Represent graphically each
of the following:

(@@ANBNC, ()AUBUC, (c)ANBUC, (dCN@AUB), (&) (AUBNBUDOL),
) ANBUBNC)U(CNA), (21 ANBUMBNC)UCNA).

Prove that the complement of a set S is open or closed according as S is closed or open.
Suppose Si, Ss,...,S, are open sets. Prove that S; U S, U --- U S, is open.

Suppose a limit point of a set does not belong to the set. Prove that it must be a boundary point of the set.
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Miscellaneous Problems

1.127.
1.128.

1.129.

1.130.

1.131.
1.132.
1.133.

1.134.

1.135.

1.136.

1.137.

1.138.
1.139.
1.140.

1.141.

Let ABCD be a parallelogram. Prove that (AC)? 4+ (BD)? = (AB)* + (BC)? + (CD)? + (DA).
Explain the fallacy: —1 = v/ -1+ -1 = /(= 1)(—1) = ~/1=1.Hence 1 = —1.

(a) Show that the equation A+ a1 + a7 + asz + as = 0 where a,, as, as, as are real constants different
from zero, has a pure imaginary root if a3 + atas = aiazas.

(b) Is the converse of (a) true?

(@) Prove that cost & = 2%' {COS”¢ +ncos(n—2)¢+ ”(nzT S Rn} where
n! . _
R, = | 1= D/2M(n + nyaqcose if mis odd
T if n is even
2[(n/2)?

(b) Derive a similar result for sin” ¢.
Let z = 6¢™/3. Evaluate |e?|.

L pi 1)
Show that for any real numbers p and m, ¢>"/<°""' 7 {Ii} =1.

pi—1
Let P(z) be any polynomial in z with real coefficients. Prove that P(z) = P(Z).

Suppose z;, 22, and z3 are collinear. Prove that there exist real constants «, 3, v, not all zero, such that az; +
Bz2 + yz3 =0 where a + B+ y=0.

Given the complex number z, represent geometrically (a) Z, (b) —z, (c) 1/z, (d) z2.

Consider any two complex numbers z; and z, not equal to zero. Show how to represent graphically using only

ruler and compass (a) z122, (b) z1/22, (¢) 2} + 23, (d) Z{/Z’ (e) 23/4-

Prove that an equation for a line passing through the points z; and z, is given by
arg{(z —z1)/(z2 —z)} =0

Suppose z = x + iy. Prove that |x| + |y| < V2)x + iy|.

Is the converse to Problem 1.51 true? Justify your answer.

Find an equation for the circle passing through the points 1 —i, 2i, 14 .

Show that the locus of z such that |z — al|z 4+ a| = a?, a > 0 is a lemniscate as shown in Fig. 1-43.

a2

Fig. 1-43 Fig. 1-44



1.142.

1.143.

1.144.

1.145.

1.146.

1.147.

1.148.

1.149.

1.150.

1.151.

1.152.

1.153.

1.154.

1.155.
1.156.

1.157.
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Let p, = aﬁ + bz, n=1,2,3, ... where a, and b, are positive integers. Prove that for every positive integer

M, we can always find positive integers A and B such that p,p; - - - pyy = A2 + B%. [Example: If 5 = 2% + 1% and

25=32+4% then5-25=2+112]

sin%(n + Da
sin% a

Prove that: (a) cos 0+ cos(0+ a) + - - -+ cos(0 + na) = cos(0 + %na)

sin%(n + D

(b) sin 6+ sin(6+ @) + - - - + sin(8 + na) = —2— ——sin(6 + Lne)
Slnia

Prove that (a) Re{z} > 0 and (b) |z — 1| < |z + 1| are equivalent statements.

A wheel of radius 4 feet [Fig. 1-44] is rotating counterclockwise about an axis through its center at 30 revolu-
tions per minute. (@) Show that the position and velocity of any point P on the wheel are given, respectively, by
4¢'™ and 47rie'™, where t is the time in seconds measured from the instant when P was on the positive x axis. (b)
Find the position and velocity when t = 2/3 and t = 15/4.

Prove that for any integer m > 1,

m—1
@+a)™ — (2 — a)™ = 4maz [ [{* + a® cot? (k/2m))}
k=1

where ]_[Z;] denotes the product of all the factors indicated from k =1 tom — 1.

Suppose points P; and P,, represented by z; and zp respectively, are such that |z; + 22| = |71 — 22].
Prove that (a) z;/z; is a pure imaginary number, (b) £P;OP, = 90°.

Prove that for any integer m > 1,

T 27 37 (m— 1)
cot—cot—cot—:--cot———— =

1
2m 2m  2m 2m

Prove and generalize: (a) csc?(m/7) + csc?(2m/7) + csc®(dm/7) =2
(b) tan?(7r/16) + tan>(37/16) + tan*(57/16) + tan>(77/16) = 28

Let masses m;, my, m3 be located at points z;, 22, z3, respectively. Prove that the center of mass is given by

myzy +my2 +m3z3
my +my + ms3

2 =
Generalize to n masses.
Find the point on the line joining points z; and zo which divides it in the ratio p: q.

Show that an equation for a circle passing through three points z;, z, z3 is given by
7—2 /(Z3—Z1 _(Z-Z / -2
-2 3 — 2 -2 32

Prove that the medians of a triangle with vertices at z;, z;, z3 intersect at the point %(zl + 22 4+ 23).

Prove that the rational numbers between 0 and 1 are countable.

112 13
’2’3’3’4?4’

wir
[W119%}

]

s bl

=

[Hint. Arrange the numbers as O

Prove that all the real rational numbers are countable.
Prove that the irrational numbers between O and 1 are not countable.

Represent graphically the set of values of z for which (a) |z] > |z — 1], (b) |24+ 2| > 1+ |z —2|.
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1.158. Show that (a) /2 + +/3 and (b) 2 — +/2i are algebraic numbers. [See Problem 1.47.]
1.159. Prove that +/2 + /3 is an irrational number.

1.160. Let ABCD--- PQ represent a regular polygon of n sides inscribed in a circle of unit radius. Prove that the
product of the lengths of the diagonals AC, AD, ..., AP is fncsc?(m/n).

. sinnf el
1.161. Suppose sin 8 # 0. Prove that (a) pemry =2 l_[{cos 0 — cos(k/n)}

sm(Zn +1)6 sin® 6
®) ~ sing =(@n+ I)H{ sin? k7r/(2n + 1)}.

s b SRR y | PR -
.162. Prove cos2n = 11 cos2(2k — Dmr/4n]’

1.163. Suppose the product of two complex numbers z; and z; is real and different from zero. Prove that there exists a
real number p such that z; = pZz,.

1.164. Letzbe any point on the circle |z — 1| = 1. Prove that arg(z — 1) = 2argz = Zarg(z> — z) and give a geometri-
cal interpretation.

1.165. Prove that under suitable restrictions (a) z”'z" = 2", (b) (")" = 7™
1.166. Prove (a) Re{z1z2} = Re{z1}Re{zo} — Im{z;}Im{z,}
(b) Im{z;2,} = Re{zi}Im{z,} + Im{z;}Re{z>}.
1.167. Find the area of the polygon with vertices at 2 4+ 3i, 3+ i, —2 —4i, —4 —i, —1 4+ 2i.

1.168. Letay, ay,...,a, and by, by,. .., b, be any complex numbers. Prove Schwarz’s inequality,

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.53. (a) —4—i, (b) —17+ 14i, (¢) 8+1i,(d) =9+ 7i, () 11/17 — (10/17)i, () 21 +1i,
(2) —15/2+5i, (h) —11/2 —(23/2)i, () 2+i

1.54. (a) —1 —4i, (b) 170, (c) 10244, (d) 12, (e) 3/5, () —1/7,(g) =7+ 3/3 +/3i,
(h) 765 + 128+/3, (i) —35

1.57. x=1,y=-2
1.60. x* +y* 4+ 2x%y? — 6x%y — 6y° + 9% + 9y?
1.61. (a) 6 —2i, (b)3+3i,(c) —1+12i,(d) 9—8i, (e) 19/2 4+ (3/2)i
1.63. (a) V10, (b) 5v/2, (¢) 5+ 5i, (d) 15
1.64. 5,5,8
1.70. (@) z— 2+ =t(1—-3)orx=2+t,y=1—-3tor3x+y=7
b) z—(5/2—i/2)=t3+i)orx=3t+5/2,y=t—1/20r3 -3y =4
1.71. (a) circle, (b) ellipse, (c) hyperbola, (d) z =1 and x = —3, (e) hyperbola
172, (@) lz+3—4i|=20r (x+3)*+ (y—4)> =4, (b) [z+2i| + [z —2i| = 10
173, @1 <|z+i <2, () Re{z?}>1,(c) [z+3i| >4, (d) |z+2—3i| +]z—2+3i| <10

1.81. (a) 24/2 cis 3»15O or 2+/2e7™/* ) (b) 2 cis 120° or 22773 (c) 4 cis 45° or 4e™/*, (d) cis 270° or €3™/2, (e)
4 cis 180° or 4e™, (f) 4 cis 210° or 4¢7™/0, (g) /2 cis 90° or /2¢™/2, (h) 4/3 cis 300° or +/3¢°7/3
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1.99.
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1.104.
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1.109.
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(a) 5expli(m + tan~1(4/3), (b) v/5 exp[ —itan~! 2]

() —3v/2 + 3+/2i, (b) 12, (¢) 2¢/2 — 23/2i, (d) —v/2 — V/2i, () =5+/3/2 — (5/2)i,

(f) —3+/3/2 = (3/2)i

375 miles, 23° north of east (approx.)

() 15/2 + (154/3/2)i, (b) 32 — 32+/3i, (c) —16 — 16+/3i, (d) 3/3/2 — (3+/3/2)i,

() —v/3/2—(1/2)i

(@  2cis 165° 2 cis 345  (b) /2 cis 27°, /2 cis 99°, /2 cis 171°, /2 cis 243°, /2 cis 315°;
(c) /4 cis 20°, /4 cis 140°, /4 cis 260°; (d) 2 cis 67.5°, 2 cis 157.5°, 2 cis 247.5°, 2 cis 337.5% (e)

2 cis 0°, 2 cis 60°, 2 cis 120°, 2 cis 180°, 2 cis 240°, 2 cis 300°; (f) cis 60°, cis 180°, cis 300°

(@ 2cis 0% 2 cis 120°, 2 cis 240%  (b) /8 cis 22.5°, +/8 cis 202.5% (c) 2 cis 48°, 2 cis 120°,
2 cis 192°, 2 cis 264°, 2 cis 336°; (d) +/3 cis 45°, /3 cis 105°, 4/3 cis 165°, 4/3 cis 225°,
/3 cis 285°, 4/3 cis 345°

(a) 3 cis 45°, 3 cis 135°, 3 cis 225°, 3 cis 315°

(b) /2 cis 40°, ¥/2 cis 100°, /2 cis 160°, /2 cis 220°, /2 cis 280°, /2 cis 340°

(@) 3 —2i, =3 +2i, (b) V10 + +2i, —/10 — +/2i

1420, § =3+ +5V3)i, =5 -3+ (V3 -1)i

@1 +7)/5,b) 1+i, 1 —-2i

1,1,2, -1 +1i

1A +iv3), L(-1 +iV3)

242i,2—2i

(a) E2™K/4 = 2mk/2 | =0, 1, 2,3, (b) 2™/, k=0,1,...,6

Oi(w—D/(w+ 1), (0 = /(e + 1), (&® = 1)/(e® + 1), (0* — 1)/(e* + 1), where w = >™/3

@ 1,()178,(c) 1,(d) 17, (e) 1, () 1

17

18

@x*+y>=16,(b) > +y* —4x+8=0,(c)x=2,(d) y=-3

(@) (z—3)z—3)=9,(b) 2i—3)z+ Qi +3)z=10i, (c) 3(*+75) - 102 +25=0

(a) Yes. (b) Every point inside or on the boundary of the square is a limit point. (c) No. (d) All points of the
square are boundary points; there are no interior points. (e) No. (f) No. (g) No. (h) The closure of § is the set of

all points inside and on the boundary of the square. (i) The complement of S is the set of all points that are not
equal to a + bi when a and b [where 0 < a < 1, 0 < b < 1] are rational. (j) Yes. (k) No. (I) Yes.

(a) Yes. (b) Every point inside or on the square is a limit point. (c) No. (d) Every point inside is an interior point,
while every point on the boundary is a boundary point. (e) Yes. (f) Yes. (g) Yes. (h) The closure of S is the set
of all points inside and on the boundary of the square. (i) The complement of S is the set of all points exterior to
the square or on its boundary. (j) No. (k) No. (I) Yes.

(a) Yes. (b) Every point of S is a limit point. (c) Yes. (d) Every point inside the square is an interior point, while
every point on the boundary is a boundary point. (e) No. (f) Yes. (g) No. (h) Sitself. (i) All points exterior to the
square. (j) No. (k) Yes. (1) Yes.

@12, 1, =i, i, 1+, () {1, i, =i}, (©) {1, =i}

e V3

Yes

lz4+1l=+v50r (x+ 12 +y2=5

. (qz; +p2)/(q +p)
1.167.

4712



Functions, Limits, and
Continuity

2.1 Variables and Functions

A symbol, such as z, which can stand for any one of a set of complex numbers is called a complex variable.

Suppose, to each value that a complex variable z can assume, there corresponds one or more values of a
complex variable w. We then say that w is a function of z and write w = f(z) or w = G(z), etc. The variable z
is sometimes called an independent variable, while w is called a dependent variable. The value of a function
at z = a is often written f(a). Thus, if f(z) = z2, then f(2i) = (2i)* = —4.

2.2 Single and Multiple-Valued Functions

If only one value of w corresponds to each value of z, we say that w is a single-valued function of z or that
f(2) is single-valued. If more than one value of w corresponds to each value of z, we say that w is a multiple-
valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions, each member of
which is called a branch of the function. It is customary to consider one particular member as a principal
branch of the multiple-valued function and the value of the function corresponding to this branch as the
principal value.

EXAMPLE 2.1

(a) Ifw= 72, then to each value of z there is only one value of w. Hence, w = f(2) = Zisa single-valued

function of z.
(b) If w? =z, then to each value of z there are two values of w. Hence, w? = z defines a multiple-valued (in this

case two-valued) function of z.

Whenever we speak of function, we shall, unless otherwise stated, assume single-valued function.

2.3 Inverse Functions

If w=f(z), then we can also consider z as a function, possibly multiple-valued, of w, written
z=gw) =f"!(w). The function f~! is often called the inverse function corresponding to f. Thus,
w =f(z) and w = f~1(2) are inverse functions of each other.
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2.4 Transformations

If w = u + iv (where u and v are real) is a single-valued function of z = x + iy (where x and y are real), we
can write u + iv = f(x + iy). By equating real and imaginary parts, this is seen to be equivalent to

u=ulx,y), v=uvx,y) 2.1

Thus given a point (x, y) in the z plane, such as P in Fig. 2-1, there corresponds a point (u, v) in the w plane,
say P’ in Fig. 2-2. The set of equations (2.1) [or the equivalent, w = f(z)] is called a transformation. We
say that point P is mapped or transformed into point P’ by means of the transformation and call P’ the
image of P.

EXAMPLE 2.2 If w = z?, then u + iv = (x 4 iy)> = x> —y*> + 2ixy and the transformation is u = x> —y?,
v =2xy. The image of a point (1, 2) in the z plane is the point (-3, 4) in the w plane.

z plane P w plane

/\/\/Q o
P /_/

Fig. 2-1 Fig. 2-2

In general, under a transformation, a set of points such as those on curve PQ of Fig. 2-1 is mapped into a
corresponding set of points, called the image, such as those on curve P’'Q’ in Fig. 2-2. The particular charac-
teristics of the image depend of course on the type of function f(z), which is sometimes called a mapping
Sfunction. If f(z) is multiple-valued, a point (or curve) in the z plane is mapped in general into more than one
point (or curve) in the w plane.

2.5 Curvilinear Coordinates

Given the transformation w = f(z) or, equivalently, u = u(x, y), v = v(x, y), we call (x, y) the rectangular
coordinates corresponding to a point P in the z plane and (u, v) the curvilinear coordinates of P.

w plane
v=c, v

Fig. 2-3 Fig. 2-4
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The curves u(x, y) = ¢y, v(x, y) = ¢, where c¢; and ¢, are constants, are called coordinate curves [see
Fig. 2-3] and each pair of these curves intersects in a point. These curves map into mutually orthogonal
lines in the w plane [see Fig. 2-4].

2.6 The Elementary Functions

1.

Polynomial Functions are defined by

w=a'+a "'+ + a2+ a, = PR) (2.2)

where ay #0, ay, ..., a, are complex constants and » is a positive integer called the degree of
the polynomial P(z).
The transformation w = az + b is called a linear transformation.
Rational Algebraic Functions are defined by
(] 2.3)
0(z)
where P(z) and Q(z) are polynomials. We sometimes call (2.3) a rational transformation. The
special case w = (az + b)/(cz + d) where ad — bc # 0 is often called a bilinear or fractional
linear transformation.
Exponential Functions are defined by

w=¢e" = e = ¢Ycosy+isiny) (2.4)

where e is the natural base of logarithms. If a is real and positive, we define
a = e 2.5)

where In a is the natural logarithm of a. This reduces to (4) if a = e.

Complex exponential functions have properties similar to those of real exponential functions.
For examp]e’ el . o2 = eZ1+zz’ % /812 = %1722,
Trigonometric Functions. We define the trigonometric or circular functions sin z, cos z, etc., in
terms of exponential functions as follows:

eiz _ e—iz eiz + e—iz

sing =— coszg=——
2i 2
1 2 1 20

seCz=—=—"—, csCzg=—""=—"—

cosz e +4e & sinzg e%—e™©

sin z ef—e™% cosz i(e®+e7%)
tanz = = otz = =

cosz i(e 4 e iz)’ sinz ez — e~ iz

Many of the properties familiar in the case of real trigonometric functions also hold for the
complex trigonometric functions. For example, we have:
sin?z + cos?z = 1, 1 + tan®z = sec?z, 1+ cot?z =csc?z
sin(—z) = —sing, cos(—z) = cos z, tan(—z) = —tanz
sin(z; £ zp) = sinz; cos z £ cos z; sin 2
cos(z; £+ 22) = cosz; coSZp F sinz; sinzp

tanz; +tanzp
tan(zi +20) =————
@ 2) 1 Ftanz; tanz,
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5. Hyperbolic Functions are defined as follows:

] et — et &+ et
hz=——— hz=——
sinh z > cosh z >
1 2 1 2
sechz = = s cschz = — =
coshz et+e2 sinhz eZ—e2
sinhz e —e* coshz e +e*
tanhz = = s cothz = — =
coshz e*+4e? sinhz e?—e2
The following properties hold:
cosh?z — sinh?z = 1, 1 — tanh®z = sech’ z, coth?z — 1 = csch?z
sinh(—z) = —sinh z, cosh(—z) = cosh z, tanh(—z) = —tanhz

sinh(z; &+ zp) = sinh z; cosh z, + cosh z; sinh z,
cosh(z; +z2) = cosh z; cosh z; 4 sinh z; sinh z,

tanh z; + tanh 2,
1+ tanhz; tanh 2,

tanh(z; +22) =

The following relations exist between the trigonometric or circular functions and the hyperbolic
functions:

siniz = isinhz, cosiz = coshz, taniz = itanhz

sinhiz = isinz, coshiz = cosz, tanhiz = itanz

6. Logarithmic Functions. If 7 = ¢, then we write w = In z, called the natural logarithm of z. Thus
the natural logarithmic function is the inverse of the exponential function and can be defined by

w=Inz=Inr+i(0+2km, k=0, +1, £2, ...
where z = re'? = /™27 Note that In z is a multiple-valued (in this case, infinitely-many-
valued) function. The principal-value or principal branch of ln z is sometimes defined as
In r 4+ i where 0 < 0 < 27. However, any other interval of length 27 can be used, e.g.,
—7 < 0 <, etc.
The logarithmic function can be defined for real bases other than e. Thus, if z = @", then
w = log,z where a > 0 and a # 0, 1. In this case, z = e""¢ and so, w = (Inz)/(Ina).

7. Inverse Trigonometric Functions. If z = sinw, then w = sin~! z is called the inverse sine of z
or arc sine of z. Similarly, we define other inverse trigonometric or circular functions cos~ !z,
tan~! z, etc. These functions, which are multiple-valued, can be expressed in terms of natural

logarithms as follows. In all cases, we omit an additive constant 2kmi, k =0, +1, 42, ..., in
the logarithm:
. 1 . . 1 i+V2 -1
sin Z:fln(lZ-F 1—z2>, csc i z=-In| ———
i i Z
1 1 1 1 — 72
COS_IZ:fIIl(Z—F 22 — 1), Sec_lzz'ln(_l_z)
i i z

tan‘lz—lln 1t cot‘]z—lln z+?
T2 \1—iz)’ T2 \z—i
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8. Inverse Hyperbolic Functions. If z = sinhw, then w = sinh~! z is called the inverse hyperbolic
sine of z. Similarly, we define other inverse hyperbolic functions cosh™' z, tanh™! z, etc. These
functions, which are multiple-valued, can be expressed in terms of natural logarithms as

follows. In all cases, we omit an additive constant 2k, k = 0, +1, £2,..., in the logarithm:
sinh™' z = ln<z + V2 + 1), csch™!z = ln<1+\/zm)
cosh™' z = ln<Z + vz — 1), sech™'z = ln<1 * \/Zm)
tanh ™!z = %ln (iti) coth™!z = %ln (ii)

9. The Function z%, where « may be complex, is defined as <. Similarly, if f(z) and g(z) are two
given functions of z, we can define f(2)5¢) = @™ n general, such functions are multiple-
valued.

10. Algebraic and Transcendental Functions. If w is a solution of the polynomial equation

Po@w" + Pr@w" ™ - + Py @w + Pa(2) =0 (2.6)

where Py # 0, P1(2), ..., P,(2) are polynomials in z and 7 is a positive integer, then w = f(z) is
called an algebraic function of z.

EXAMPLE 2.3 w = z!/? is a solution of the equation w> — z = 0 and so is an algebraic function of z.

Any function that cannot be expressed as a solution of (6) is called a transcendental function. The
logarithmic, trigonometric, and hyperbolic functions and their corresponding inverses are examples of
transcendental functions.

The functions considered in 1-9 above, together with functions derived from them by a finite number of
operations involving addition, subtraction, multiplication, division and roots are called elementary
functions.

2.7 Branch Points and Branch Lines

1/2

further that we allow z to make a complete circuit (counter-
clockwise) around the origin starting from point A [Fig. 2-5]. B
We have z=re% w=,re? so that at A, =6, and
w=.re®/?. After a complete circuit back to A, 5= 0
0
have not achieved the same value of w with which we \
started. However, by making a second complete circuit
and we then do obtain the same value of w with which we Fig. 25
started.
function z!/2, while if 27r < 6 < 441, we are on the other branch of the function.
It is clear that each branch of the function is single-valued. In order to keep the function single-valued,

Suppose that we are given the function w = z'/<. Suppose zplane
0=0,+2m and w = /re"+?™M/2 = __ [re%/2 Thus, we J ?
back to A, ie., 0= 0; +4m w=SreOT4m2 = [reit/?

We can describe the above by stating that if 0 < 6 < 241, we are on one branch of the multiple-valued
we set up an artificial barrier such as OB where B is at infinity [although any other line from O can be used],
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which we agree not to cross. This barrier [drawn heavy in the figure] is called a branch line or branch cut,
and point O is called a branch point. It should be noted that a circuit around any point other than z = 0 does
not lead to different values; thus, z = 0 is the only finite branch point.

2.8 Riemann Surfaces

There is another way to achieve the purpose of the branch line described above. To see this, we imagine that
the z plane consists of two sheets superimposed on each other. We now cut the sheets along OB and imagine
that the lower edge of the bottom sheet is joined to the upper edge of the top sheet. Then, starting in the
bottom sheet and making one complete circuit about O, we arrive in the top sheet. We must now
imagine the other cut edges joined together so that, by continuing the circuit, we go from the top sheet
back to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the function z!/2. Each sheet
corresponds to a branch of the function and on each sheet the function is single-valued.

The concept of Riemann surfaces has the advantage that the various values of multiple-valued functions
are obtained in a continuous fashion.

The ideas are easily extended. For example, for the function z
In z, the Riemann surface has infinitely many sheets.

1/3 the Riemann surface has 3 sheets; for

2.9 Limits

Let f(z) be defined and single-valued in a neighborhood of 7 = zy with the possible exception of z = zj itself
(i.e., in a deleted & neighborhood of zp). We say that the number / is the limit of f(z) as z approaches zo
and write lim,,,, f(z) =/ if for any positive number e (however small), we can find some positive
number & (usually depending on €) such that |f(z) — I| < € whenever 0 < |z — 79| < .

In such a case, we also say that f(z) approaches [ as z approaches zy and write f(z) — [ as z — zo. The
limit must be independent of the manner in which z approaches z.

Geometrically, if zo is a point in the complex plane, then lim,,,, f(z) = [ if the difference in absolute
value between f(z) and / can be made as small as we wish by choosing points z sufficiently close to zg
(excluding z = zy itself).

EXAMPLE 2.4 Let

f(z):{zz 7#i

0 z=i
Then, as z gets closer to i (i.e., z approaches i), f(z) gets closer to i> = —1. We thus suspect that
lim,_,; f(z) = —1. To prove this, we must see whether the above definition of limit is satisfied. For this proof, see

Problem 2.23.
Note that lim,_,; f(z) # f(i), i.e., the limit of f(z) as z — i is not the same as the value of f(z) at z = i, since
f(@@ = 0 by definition. The limit would, in fact, be —1 even if f(z) were not defined at z = i.

When the limit of a function exists, it is unique, i.e., it is the only one (see Problem 2.26). If f(z) is
multiple-valued, the limit as z — zo may depend on the particular branch.

2.10 Theorems on Limits

THEOREM 2.1.  Suppose lim,_,,, f(z) = A and lim,_,,, g(z) = B. Then

1. lim, {f(2) + g(@)} = lim,_,, f(z) + lim,_,,, g(z) =A + B
2. limg . {f(2) — g@)} = lim,—, f(z) — lim,, 8(z) = A — B
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3. lime, {f(2)8(@)} = {lim., f@}H{lim.—,, g(2)} = AB

. f@) _lim, f(z) A
4. lim—=——"""——=—1if B#0
—0g(z) limg,,g(z) B

2.11 Infinity

By means of the transformation w = 1/z, the point z = 0 (i.e., the origin) is mapped into w = oo, called the
point at infinity in the w plane. Similarly, we denote by z = o0, the point at infinity in the 7 plane. To con-
sider the behavior of f(z) at z = oo, it suffices to let z = 1/w and examine the behavior of f(1/w) at w = 0.
We say that lim,_, » f(z) = [ or f(z) approaches [ as z approaches infinity, if for any € > 0, we can find
M > 0 such that |f(z) — | < € whenever |z| > M.
We say thatlim,_, ,, f(z) = o0 or f(z) approaches infinity as z approaches z, if for any N > 0, we can find
6 > 0 such that | f(z)] > N whenever 0 < |z — 79| < é.

2.12 Continuity

Let f(z) be defined and single-valued in a neighborhood of z =zy as well as at z=2zp (i.e., in a
neighborhood of zp). The function f(z) is said to be continuous at z =z if lim,_,,, f(z) = f(z0). Note
that this implies three conditions that must be met in order that f(z) be continuous at z = z;:

1. lim,,, f(z) = [ must exist
2. f(zp) must exist, i.e., f(z) is defined at zg

3. 1=f(z0)

Equivalently, if f(z) is continuous at zy, we can write this in the suggestive form

lim f(z) = f(lim )
=20 <20
EXAMPLE 2.5
(a) Suppose
_ 2 z#i
f@= { 0 .

=1

Then, lim,_,; f(z) = —1. But f(i) = 0. Hence, lim,_,; f(z) # f(i) and the function is not continuous at z = i.

(b) Suppose f(z) = z* for all z. Then lim,_,; f(z) = f(i) = —1 and f(z) is continuous at z = i.

Points in the z plane where f(z) fails to be continuous are called discontinuities of f(z), and f(z) is said
to be discontinuous at these points. If lim,_, ;; f(z) exists but is not equal to f(z¢), we call zy a removable
discontinuity since by redefining f(zo) to be the same as lim,,,, f(z), the function becomes continuous.

Alternative to the above definition of continuity, we can define f(z) as continuous at z = z, if for any
€ > 0, we can find 6 > 0 such that | f(z) — f(zo)| < € whenever |z — 79| < 8. Note that this is simply the
definition of limit with / = f(z9) and removal of the restriction that z # z,.

To examine the continuity of f(z) at z = oo, we let z = 1/w and examine the continuity of f(1/w) at
w=0.

Continuity in a Region

A function f(z) is said to be continuous in a region if it is continuous at all points of the region.
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2.13 Theorems on Continuity

THEOREM 2.2. Given f(z) and g(z) are continuous at z = zo. Then so are the functions f(z) + g(z),
f(2) — g(), f()g(z) and f(z)/g(z), the last if g(zo)#0. Similar results hold for
continuity in a region.

THEOREM 2.3. Among the functions continuous in every finite region are (a) all polynomials, (b) €%,
(c) sin z and cos z.

THEOREM 2.4. Suppose w = f(z) is continuous at 7 =z9 and z = g({) is continuous at = ,.
If zo = g({y), then the function w = f[g({)], called a function of a function or
composite function, is continuous at ¢ = {,. This is sometimes briefly stated as:
A continuous function of a continuous function is continuous.

THEOREM 2.5.  Suppose f(z) is continuous in a closed and bounded region. Then it is bounded in the
region; i.e., there exists a constant M such that | f(z)| < M for all points z of the region.

THEOREM 2.6. If f(z) is continuous in a region, then the real and imaginary parts of f(z) are also
continuous in the region.

2.14 Uniform Continuity

Let f(z) be continuous in a region. Then, by definition at each point z; of the region and for any € > 0, we can
find 6 > O (which will in general depend on both € and the particular point zg) such that | f(z) — f(z0)] < €
whenever |z — zg| < é. If we can find & depending on € but not on the particular point zg, we say that f(z) is
uniformly continuous in the region.

Alternatively, f(z) is uniformly continuous in a region if for any € > 0 we can find 6 > 0 such that
|f(z1) — f(z2)] < € whenever |71 — 22| < & where z; and z, are any two points of the region.

THEOREM 2.7.  Let f(z) be continuous in a closed and bounded region. Then it is uniformly continuous
there.

2.15 Sequences

A function of a positive integral variable, designated by f(n) or u,, where n =1, 2, 3, ..., is called a
sequence. Thus, a sequence is a set of numbers u;, up, us, ... in a definite order of arrangement and
formed according to a definite rule. Each number in the sequence is called a ferm and u, is called the
nth term. The sequence u,, u,, us, ... is also designated briefly by {u,}. The sequence is called finite or
infinite according as there are a finite number of terms or not. Unless otherwise specified, we shall only
consider infinite sequences.

EXAMPLE 2.6

(a) The set of numbers i, i2, i%, ..., ' is a finite sequence; the nth term is given by
u, =i",n=1,2,...,100

(b) The set of numbers 1+ i, (1 4+ i)?/2!, (1 +i)%/3!, ... is an infinite sequence; the nth term is given by
u, =1+d"/n,n=1,2,3,....
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2.16 Limit of a Sequence

A number [ is called the limit of an infinite sequence u;, u,, us, ... if for any positive number € we can find
a positive number N depending on € such that |u, —[| < € for all n > N. In such case, we write
lim,,_, o u,, = I. If the limit of a sequence exists, the sequence is called convergent; otherwise it is called
divergent. A sequence can converge to only one limit, i.e., if a limit exists it is unique.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
uy, Uy, us, ... has a limit [ if the successive terms get “closer and closer” to /. This is often used to
provide a “guess” as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

2.17 Theorems on Limits of Sequences

THEOREM 2.8.  Suppose lim, _,« a, = A and lim,,_, b, = B. Then

1. lim,_ e (a, +b,) =1lim, ,xa, +1lim, b, =A+ B
2. lim,(a, —b,) =1lim,,wa, —lim,,0b, =A—B
3. lim,_ o (a,b,) = (lim,_, & a,)(lim,_, « b,) = AB

.oa, lim,,ca, A .
4, lim —=—"""—— if B#0
A T limywb, B NP7

Further discussion of sequences is given in Chapter 6.

2.18 Infinite Series

Let uy, up, us, ... be a given sequence.
Form a new sequence Si, S, S3, ... defined by
Si=u, Ss=u+u, Ss=u+tutus,..., S,=ur+u+---+u,

where S, called the nth partial sum, is the sum of the first n terms of the sequence {u,}.
The sequence Si, S», S3, ... is symbolized by

00

M1+M2+M3+"'=Zun

n=1

which is called an infinite series. If lim, .« S,, = S exists, the series is called convergent and S is its sum;
otherwise the series is called divergent. A necessary condition that a series converges is lim,_, o u, = 0;
however, this is not sufficient (see Problems 2.40 and 2.150).

Further discussion of infinite series is given in Chapter 6.

SOLVED PROBLEMS

Functions and Transformations

2.1. Let w = f(z) = z°. Find the values of w that correspond to (a) z = —2 + i and (b) z = 1 — 3i, and
show how the correspondence can be represented graphically.
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2.3.
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Solution

(@ w=f2+i) =2+ =4—4di+i*=3—4i
b) w=f1-3)=0-3)=1—-6i+9>=—-8—6i

z plane w plane

y v

P —+ —+

-2+ie - X -+ u
——t—+—— "+ttt —t—+———+—+——+—+++++t++

T e 1-3i T ’
+ , -+ ®3-4
+ o 8060 +

Fig. 2-6 Fig. 2-7

The point z = —2 + i, represented by point P in the z plane of Fig. 2-6, has the image point w =3 — 4i
represented by P’ in the w plane of Fig. 2-7. We say that P is mapped into P’ by means of the mapping function
or transformation w = z>. Similarly, z = 1 — 3i [point Q of Fig. 2-6] is mapped into w = —8 — 6i [point Q' of
Fig. 2-7]. To each point in the z plane, there corresponds one and only one point (image) in the w plane, so that
w is a single-valued function of z.

Show that the line joining the points P and Q in the z plane of Problem 2.1 [Fig. 2-6] is mapped by
w = z? into curve joining points P’'Q’ [Fig. 2-7] and determine the equation of this curve.

Solution

Points P and Q have coordinates (—2, 1) and (1, —3). Then, the parametric equations of the line joining these
points are given by

x—(=2) y—1
= =t =3t-2,y=1—-4
(2~ 3.1 or X t , ¥ t

The equation of the line PQ can be represented by z = 3t — 2 + i(1 — 4¢). The curve in the w plane into which
this line is mapped has the equation

w=2z>={3t—2+i(1 — 40} = 3t — 2)> — (1 — 41)* + 23t — 2)(1 — 41)i
=3 — 4t — T + (—4 + 22t — 24%)i

Then, since w = u + iv, the parametric equations of the image curve are given by
u=3—4r—77, v=—4+22t—24r

By assigning various values to the parameter ¢, this curve may be graphed.

A point P moves in a counterclockwise direction around a circle in the z plane having center at the
origin and radius 1. If the mapping function is w = z*, show that when P makes one complete revo-
lution, the image P’ of P in the w plane makes three complete revolutions in a counterclockwise
direction on a circle having center at the origin and radius 1.
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Solution

Let z = re'”. Then, on the circle |z| = 1 [Fig. 2-8], r = 1 and z = ¢'’. Hence, w = 2> = (¢/%)® = %%, Letting

(p, ¢) denote polar coordinates in the w plane, we have w = pe'® = ¢¥? so that p = 1, ¢ = 36.

z plane w plane

y v

P’
A
L_A\P R ¢ =36 u

ol / o’

p

Fig. 2-8 Fig. 2-9

Since p = 1, it follows that the image point P’ moves on a circle in the w plane of radius 1 and center at the
origin [Fig. 2-9]. Also, when P moves counterclockwise through an angle 6, P’ moves counterclockwise
through an angle 30. Thus, when P makes one complete revolution, P’ makes three complete revolutions.
In terms of vectors, it means that vector O'P’ is rotating three times as fast as vector OP.

2.4. Suppose c; and c; are any real constants. Determine the set of all points in the z plane that map into
the lines (a) u = ¢y, (b) v = c; in the w plane by means of the mapping function w = z?. Illustrate by
considering the cases ¢c; =2, 4, —2, —4 and ¢; = 2, 4, -2, —4.

Solution
We have w = u + iv = 22 = (x + iy)* = x> — y* + 2ixy so that u = x> — y?, v = 2xy. Then lines u = ¢, and
v = ¢, in the w plane correspond, respectively, to hyperbolas x> — y? = ¢; and 2xy = ¢, in the z plane as
indicated in Figs. 2-10 and 2-11.
> w plane
z plane V7 P v N I V « <
NN o 1l I I I
Y SRS AN 3 2 3 3
AN + /:1/ /ﬂq///
N ¥ S , '
R 2 . R 0 v=4
\\ S //
2xy =4
2xy =—4 ‘ ‘~ ,—
0 NN = u
*—— | \ _
2xy=2 [/ g 2xy =2
2xy=4 ."}ﬂ“%\" 2xy =—4 =2
% ““" N T or X UorY
Z2CUTAN
=y = 7 v=-+4
Poy?=2 7
// \‘
4 <(xz—yz =4
P-yr==2
Fig. 2-10 Fig. 2-11

2.5. Referring to Problem 2.4, determine: (a) the image of the region in the first quadrant bounded
by x> —y> = =2, xy = 1, x> —y> = —4, and xy = 2; (b) the image of the region in the z plane
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bounded by all the branches of x> —y?> =2, xy=1,x> —y>= -2, and xy= —1; (c) the
curvilinear coordinates of that point in the xy plane whose rectangular coordinates are (2, —1).

Solution

(a) The region in the z plane is indicated by the shaded portion PORS of Fig. 2-10. This region maps into the
required image region P’Q'R’'S’ shown shaded in Fig. 2-11. It should be noted that curve PQRSP is tra-
versed in a counterclockwise direction and the image curve P'Q'R'S'P’ is also traversed in a counter-
clockwise direction.

(b) The region in the z plane is indicated by the shaded portion PTUVWXYZ of Fig. 2-10. This region maps
into the required image region P'T'U’V’ shown shaded in Fig. 2-11.

It is of interest to note that when the boundary of the region PTUVWXYZ is traversed only once, the
boundary of the image region P'T'U'V’ is traversed twice. This is due to the fact that the eight points P
and W, Tand X, U and Y, V and Z of the z plane map into the four points P" or W, T" or X', U’ or Y’, V' or
7', respectively.

However, when the boundary of region PORS is traversed only once, the boundary of the image region
is also traversed only once. The difference is due to the fact that in traversing the curve PTUVWXYZP, we
are encircling the origin z = 0, whereas when we are traversing the curve PORSP, we are not encircling

the origin.
() u=x*—y*= 2? = (=12 =3, 0= 2xy = 2(2)(—1) = —4. Then the curvilinear coordinates are
u=3,v=—-4

Multiple-Valued Functions

2.6. Letw’ = zand suppose that corresponding to the particular value z = z;, we have w = wy. (a) If we
start at the point z; in the z plane [see Fig. 2-12] and make one complete circuit counterclockwise
around the origin, show that the value of w on returning to z; is w1e2™/5_(b) What are the values of
w on returning to z;, after 2, 3, ... complete circuits around the origin? (c) Discuss parts (a) and (b)
if the paths do not enclose the origin.

z plane w plane
y v
C w, €275
B
r Wi
0, X w, ¥l u
W) 68”1/5
w, €675
Fig. 2-12 Fig. 2-13

Solution

(a) We have z = re', so that w = z!/5 = 13¢5 If r = r| and 6 = 6,, then w; = r}/seie‘/s.
As 6 increases from 6; to 6; 4 21, which is what happens when one complete circuit counterclockwise
around the origin is made, we find

W= rll/se;(ol+2w)/5 _ r11/5ei0|/582m‘/5 = w27
(b) After two complete circuits around the origin, we find
w= r{/sei(0,+4m/5 _ ri/Se“"/Se‘“ﬁ/s _ Wle4m'/5
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2.7.

Similarly, after three and four complete circuits around the origin, we find

6i/5 87i/5

w = wie and w=we

After five complete circuits, the value of w is wiel97/5 — ), | so that the original value of w is obtained

after five revolutions about the origin. Thereafter, the cycle is repeated [see Fig. 2-13].

Another Method. Since w> = z, we have arg z = 5 arg w from which
Change in arg w = %(Change in arg z)

Then, if arg z increases by 2m, 4w, 6w, 8w, 10m, ..., arg w increases by 2x/5, 4m/5, 6m/5,
8m/S, 2, ... leading to the same results obtained in (a) and (b).

(c) If the path does not enclose the origin, then the increase in arg z is zero and so the increase in arg w is also
zero. In this case, the value of w is wy, regardless of the number of circuits made.

(a) In the preceding problem, explain why we can consider w as a collection of five single-valued
functions of z.

(b) Explain geometrically the relationship between these single-valued functions.

(c) Show geometrically how we can restrict ourselves to a particular single-valued function.

Solution

(@) Since w’ =z = re'® = re/®*™ where k is an integer, we have

w = pPefHM/S — p1/5(cos(0 + 2kam) /5 + i sin(0 + 2km)/5)

and so w is a five-valued function of z, the five values being given by k =0, 1, 2, 3, 4.
Equivalently, we can consider w as a collection of five single-valued functions, called branches of the
multiple-valued function, by properly restricting 6. Thus, for example, we can write

w = r'3(cos 6/5 + i sin 6/5)

where we take the five possible intervals for 6 given by 0 < 0 <27, 2w < 0 <4, ..., 87w < 0 < 10, all
other such intervals producing repetitions of these.

The first interval, 0 < 8 < 27, is sometimes called the principal range of 6 and corresponds to the
principal branch of the multiple-valued function.

Other intervals for 0 of length 277 can also be taken; for example, —7m < 0 < 7, m < 6 < 31, etc., the first
of these being taken as the principal range.
(b) We start with the (principal) branch

w = r'/3(cos 6/5 + isin 6/5)

where 0 < 60 < 277,

After one complete circuit about the origin in the z plane, 6 increases by 27 to give another branch of
the function. After another complete circuit about the origin, still another branch of the function is
obtained until all five branches have been found, after which we return to the original (principal) branch.

Because different values of f(z) are obtained by successively encircling z = 0, we call z = 0 a branch
point.

(c) We can restrict ourselves to a particular single-valued function, usually the principal branch, by
insuring that not more than one complete circuit about the branch point is made, i.e., by suitably
restricting 6.

In the case of the principal range 0 < 0 < 27, this is accomplished by constructing a cut, indicated by
OA in Fig. 2-14, called a branch out or branch line, on the positive real axis, the purpose being that we do
not allow ourselves to cross this cut (if we do cross the cut, another branch of the function is obtained).

If another interval for 6 is chosen, the branch line or cut is taken to be some other line in the z plane
emanating from the branch point.
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For some purposes, as we shall see later, it is useful to consider the curve of Fig. 2-15 of which
Fig. 2-14 is a limiting case.

z plane z plane

y al”

J

Fig. 2-14 Fig. 2-15

The Elementary Functions

2.8.

2.9.

Prove that (a) €% - €2 = %12, (b) |€°] = €%, (c) et2km — e k=0, +1, £2,....
Solution
(a) By definition e = e*(cosy + isiny) where z = x 4 iy. Then, if z; = x; +iy; and 2o = x; + iyy,

e - e? = ¢"(cosy| +isiny;) - €?(cosy, + isiny,)
=€ - " (cosy| + isiny;)(cosy, + isiny,)
= "2 {cos(y +y2) + isin(y; +y2)} = €72

X

(b) |€°] = |e"(cosy +isiny)| = |e*]||cosy +isiny|=¢" -1 =¢

(¢) By part (a),
T — 22T — o%(cos 2k + i sin 2kw) = €°
This shows that the function e* has period 2kri. In particular, it has period 27ri.
Prove:
(a) sinz+cos’z=1 (c) sin(z; + 22) = sinz; cosz + cos z; sinzy

(b) € =cosz+isinz, e2 =cosz—isinz (d) cos(z; + z2) = cosz| coszy — sinz; sinz,

Solution
iz _ ,—iz iz —iz
By definition, sinz = %, cosz = %. Then
i

iz _ ,—iz 2 iz —iz 2
(a) sin? z 4+ cos’z = (e 2; ) +(e —;e )

eZiz -2 + e—2iz eZiz + 2 + e—2iz

=- + =1
4 4

(b) e — e % =2isinz (1

e+ e =2cosz 2
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Adding (1) and (2):

267 =2cosz+2isinz and €7 =cosz+isinzg
Subtracting (1) from (2):
2¢e % =2cosz—2isinz and e % =cosz—isinz
elata) _ pmititn) it | pita _ pmit1 | it
(c) sin(z; +22) = . = -
2i 2i
_ (coszy + isinz;)(coszy +isinzy) — (coszy — isinz)(cosz; — isinzy)

2i

= sinz| cos zp + COs 71 Sinzp

ei(Z1+Zz) + e*i(ZhLZz) ei21 . eizz + e*iZI . e*iZZ
(d) cos(zi +22) = =
2 2
_ (coszy +isinzy)(cosza +isinzy) + (cosz; —isinzy)(cosz — isinzy)

2

= C0S8 7] COSZp — sinzy sinzp

2.10. Prove that the zeros of (a) sinz and (b) cosz are all real and find them.

Solution

iz __ ,—iz

(a) Ifsing :%:O, then e = e Zore? =1 =¢e*m k=0, +1, +2, ....
i

Hence, 2iz = 2kmi and z = kmr, ie.,z=0, + o, +2m, +3m, ... are the zeros.

eiZ _I_e*iZ X . X X
(b) Ifcosz= — = 0, then e = —e % or 2% = —1 = @D | — 0, +1, +2, ....

Hence, 2iz = 2k + 1)7i and z = (k —l—%)ﬂ, ie.,z= +mw/2, £3m/2, +57/2, ... are the zeros.

2.11. Prove that (a) sin(—z) = —sinz, (b) cos(—z) =cosz, (c) tan(—z) = —tanz.
Solution
i(=2) _ p=i(=2)  p=iz _ iz i _ iz
@ sin-g="— = = %) — sin:
D L pmiCD iz g gz iy oz
(b) cos(—z) = 3 = 2 = ) =087
(c) tan(—z) = sin(=z) _ —sinz = —tanz, using (a) and (b).

cos(—z)  cosz

Functions of z having the property that f(—z) = —f(z) are called odd functions, while those for which
f(—2) = f(z) are called even functions. Thus sin z and tan z are odd functions, while cos z is an even
function.

2.12. Prove: (a) 1 —tanh?z = sech’z
(b) siniz = isinhz
(c) cosiz =coshz
(d) sin(x 4+ iy) = sinxcoshy 4+ icosxsinhy

Solution
eZ e -2 Z e -z

(a) By definition, coshz = — sinhz = ¢ . Then

—z\ 2 z —z\ 2 2z -2z 2z —2z
2. w2 (€ te (e e\ _ et 424 e ¥ 247
cosh” z — sinh z-( ) ) ( 5 = 4 4 =1
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2.14.
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cosh?z — sinh? z

Dividing by cosh? z, or 1 — tanh? z = sech® z

cosh® z cosh’ z

o ei(iz) _ e*i(iz) et — ¢f ) et — ot o
(b) siniz = = =i = isinhz

2i 2i 2
ei(iz) + e—i(iz) e+ ¢f e+ e ¢
(c) cosiz= 5 = 5 = > = coshz

(d) From Problem 2.9(c) and parts (b) and (c), we have
sin(x + iy) = sinxcos iy + cosxsiniy = sinxcoshy + i cos x sinh y

(a) Suppose z =e¢" where z=r(cosf+isinf) and w=u+iv. Show that u =Inr and
v=0+42km, k=0, +1, +£2, ... so that w =Inz = Inr + i(6 + 2k). (b) Determine the values
of In(1 — 7). What is the principal value?

Solution

(a) Since z = r(cos 4+ isin ) = e¥ = "+ = ¢*(cos v + i sinv), we have on equating real and imaginary
parts,
e cosv =rcos 6 €))
e'sinv =rsin @ 2
Squaring (1) and (2) and adding, we find e? = ? or ¢* =r and u = Inr. Then, from (1) and (2),
rcosv = rcos 6, rsinv = rsin 6 from which v = 6 + 2ka. Hence, w = u + iv = Inr + i(0 + 2km).
If z = €%, we say that w = In z. We thus see that Inz = In r 4 i(0 4 2kr). An equivalent way of saying
the same thing is to write Inz = Inr + {0 where 0 can assume infinitely many values which differ by 2.
Note that formally Inz = In(re’?) = Inr 4 i0 using laws of real logarithms familiar from elementary
mathematics.
; . 7 i )4 2k . T : 1 7 i )
(b) Since 1 —i=+2e , we have In(1 — i) = Inv/2 + - F2kmi ) =2In2 4 =+ 2k

1 7 i
The principal value is §1n2 + Tm obtained by letting k = 0.

Prove that f(z) = Inz has a branch point at z = 0.

Solution

We have Inz =1Inr+i6. Suppose that we start at some point z; #0 in the complex plane for which
r=ry, 6= 0; so that Inz; =Inr; +i6; [see Fig. 2-16]. Then, after making one complete circuit about the
origin in the positive or counterclockwise direction, we find on returning to z; that r = ry, 6 = 6; 4+ 27 so
that Inz; = Inr; + i(6; 4 27). Thus, we are on another branch of the function, and so z = 0 is a branch point.

z plane

1

il
91 X

Fig. 2-16
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2.15.

Further complete circuits about the origin lead to other branches and (unlike the case of functions such as
7172 or z!/3), we never return to the same branch.

It follows that In z is an infinitely many-valued function of z with infinitely many branches. That particular
branch of In z which is real when z is real and positive is called the principal branch. To obtain this branch,

we require that § = 0 when z > 0. To accomplish this, we can take Inz = Inr 4 i6 where 6 is chosen so that
0<60<22mor —m <6<, etc.

As a generalization, we note that In(z — a) has a branch point at z = a.

Consider the transformation w = Inz. Show that (a) circles with center at the origin in the z plane
are mapped into lines parallel to the v axis in the w plane, (b) lines or rays emanating from the origin
in the z plane are mapped into lines parallel to the u axis in the w plane, (c) the z plane is mapped
into a strip of width 27 in the w plane. Illustrate the results graphically.

Solution

Wehavew =u+iv=Inz=Inr+ifsothatu =Inr, v = 6.
Choose the principal branch as w = Inr + i6 where 0 < 6 < 2.

(a) Circles with center at the origin and radius « have the equation |z| = r = «. These are mapped into lines

in the w plane whose equations are u = Ina. In Figs. 2-17 and 2-18, the circles and lines corresponding
toa=1/2, 1, 3/2, 2 are indicated.

w plane
v
_____ N S O B ok
_____ N N O k.4
- 1Ll a=al6
a=0 u
) o e e
I o
—_ — W
S} S}
Fig. 2-17 Fig. 2-18

(b) Lines or rays emanating from the origin in the z plane (dashed in Fig. 2-17) have the equation 6 = «.
These are mapped into lines in the w plane (dashed in Fig. 2-18) whose equations are v = . We have
shown the corresponding lines for a = 0, 7/6, 7/3, and /2.

(c) Corresponding to any given point P in the z plane defined by z#0 and having polar coordinates (r, )
where 0 < 6 < 271, r > 0 [as in Fig. 2-19], there is a point P’ in the strip of width 27 shown shaded
in Fig. 2-20. Thus, the z plane is mapped into this strip. The point z = 0 is mapped into a point of this
strip sometimes called the point at infinity.

If 0 is such that 27 < 6 < 4, the z plane is mapped into the strip 27 < v < 4 of Fig. 2-20.
Similarly, we obtain the other strips shown in Fig. 2-20.
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2.17.
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It follows that given any point z # 0 in the z plane, there are infinitely many image points in the
w plane corresponding to it.

z plane w plane
y v
| v=4n
z ) )
7 el e P
P
Fig. 2-19 Fig. 2-20

It should be noted that if we had taken 6 such that —7m < 6 < 7, m < 6 < 3, etc., the strips of Fig. 2-20
would be shifted vertically a distance .

Suppose we choose the principal branch of sin~! z to be that one for which sin~! 0 = 0. Prove that

1
sin"'z = —,ln(iz +v1 - 12)
i

Solution
iw e—iw
If w=sin"'z then z = sinw = — from which
i
e —2iz—e™ =0 or & —2ize™ —1=0
Solving,

2zt 4 —42
em:%:izi 1—z2=iz+ /1_Z2

since ++/1 — 22 is implied by +/1 — z2. Now, & = ¢¥=2km | =0, +1, +2, ... so that

. 1
VTN — 41— or w= 2k7T+fln(iz +vVI1-— Zz)
i

The branch for which w = 0 when z = 0 is obtained by taking k = O from which we find, as required,

1
w:sin_lz:f_ln<iz+ 1 —Z2>
i

Suppose we choose the principal branch of tanh~! z to be that one for which tanh~! 0 = 0. Prove

that
1 14z
tanh™' z = —In[ ——
an Z 2 n(l —Z)

Solution
_ sinh w e e

If w=tanh™! z, then z = tanhw = from which

coshw e" + e

1=-2e"=0+2e™" or e =010+2/1-2)
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2w eZ(W—km)’ we have

. 1 1 1
2wk —1*e or w=kmi+=In te
-z 2 \l—-z

Since e

The principal branch is the one for which k = 0 and leads to the required result.

2.18. (a) Suppose z = re'?. Prove that 7' = e~ %™ {cos(Inr) + isin(Inr)} where k =0, +1, +2, ....
(b) Suppose z is a point on the unit circle with center at the origin. Prove that z' represents infinitely
many real numbers and determine the principal value.
(c) Find the principal value of i'.
Solution
(a) By definition,
Zi _ eilnz — ei{lnr+i(0+2k‘n')}

= ! INr=(0+2km) _ (=(+2kM (0 65(In 7) + i sin(In )}

The principal branch of the many-valued function f(z) = 7' is obtained by taking k = 0 and is given by
e %{cos(Inr) + i sin(In7)} where we can choose 6 such that 0 < 6 < 2.

(b) If z is any point on the unit circle with center at the origin, then |z| = r = 1. Hence, by part (a), since
Inr =0, we have 7/ = ¢~ (**2*" which represents infinitely many real numbers. The principal value
is =% where we choose 6 such that 0 < 6 < 2.

(c) By definition, il = /"' = M(T/2H2kM}E — p=(m/242km) gince | = (™2™ and Ini = i(w/2 + k).
The principal value is given by e~™/2,
Another Method. By part (b), since z =i lies on the unit circle with center at the origin and since
6 = 7/2, the principal value is e~ /2.

Branch Points, Branch Lines, Riemann Surfaces

2.19. Letw = f(z) = (2> + 1)'/2. (a) Show that z = i are branch points of f(z). (b) Show that a complete
circuit around both branch points produces no change in the branches of f(z).

Solution

(@) Wehave w = (2 + D'/? = {(z — i)z + )}'/*. Then, argw = Jarg(z — i) + S arg(z + i) so that
Change in argw = }{Change in arg(z — i)} + }{Change in arg(z + i)}

Let C [Fig. 2-21] be a closed curve enclosing the point i but not the point —i. Then, as point z goes once
counterclockwise around C,

Change in arg(z — i) = 2w, Change in arg(z +i) =0
so that
Change in argw = 7

Hence, w does not return to its original value, i.e., a change in branches has occurred. Since a complete
circuit about z = i alters the branches of the function, z = i is a branch point. Similarly, if C is a closed
curve enclosing the point —i but not i, we can show that z = —i is a branch point.

Another Method.
Letz —i=rie, z4i=re"™. Then
w= {rlrzei(91+92)}1/2 — mei()]/zeigz/z

Suppose we start with a particular value of z corresponding to 6, = «; and 6, = a,. Then
w= Jrire"/ 2pim/2 Ag 7 goes once counterclockwise around i, 6, increases to «; + 27 while 6,
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remains the same, i.e., 6, = a,. Hence

W = Jrre M2 giw/2

=—Jn rzezal/Zetozz/Z

showing that we do not obtain the original value of w, i.e., a change of branches has occurred, showing
that z =i is a branch point.

z plane z plane
y y

Fig. 2-21 Fig. 2-22

(b) If Cencloses both branch points z = =+ as in Fig. 2-22, then as point z goes counterclockwise around C,

Change inarg(z — i) = 27
Change inarg(z + i) = 2
so that

Changeinargw = 2

Hence a complete circuit around both branch points produces no change in the branches.
Another Method.

In this case, referring to the second method of part (a), 6; increases from «; to a; + 27 while 6, increases
from a, to ap + 2. Thus

W= S22 [ i /2 e 2
and no change in branch is observed.
2.20. Determine branch lines for the function of Problem 2.19.

Solution

The branch lines can be taken as those indicated with a heavy line in either of Figs. 2-23 or 2-24. In both cases,
by not crossing these heavy lines, we ensure the single-valuedness of the function.

z plane z plane
y y

Fig. 2-23 Fig. 2-24
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2.21.

2.22

Limits

2.23.

2.24.

Discuss the Riemann surface for the function of Problem 2.19.

Solution

We can have different Riemann surfaces corresponding to Figs. 2-23 or 2-24 of Problem 2.20. Referring to
Fig. 2-23, for example, we imagine that the z plane consists of two sheets superimposed on each other and
cut along the branch line. Opposite edges of the cut are then joined, forming the Riemann surface. On
making one complete circuit around z = i, we start on one branch and wind up on the other. However, if
we make one circuit about both z =i and z = —i, we do not change branches at all. This agrees with the
results of Problem 2.19.

Discuss the Riemann surface for the function f(z) = Inz [see Problem 2.14].

Solution

In this case, we imagine the z plane to consist of infinitely many sheets superimposed on each other and cut
along a branch line emanating from the origin z = 0. We then connect each cut edge to the opposite cut edge of
an adjacent sheet. Then, every time we make a circuit about z = 0, we are on another sheet corresponding
to a different branch of the function. The collection of sheets is the Riemann surface. In this case, unlike
Problems 2.6 and 2.7, successive circuits never bring us back to the original branch.

(a) Suppose f(z) = z*. Prove that lim,_.,, f(z) = z3.

N . |2 z# 2
(b) Find lim,_, ., f(z) if f(z) = { 0 z=z"

Solution

(a) We must show that, given any € > 0, we can find 8 (depending in general on €) such that | — 73| < €
whenever 0 < |z — 79| < 6.
If § < 1, then 0 < |z — 79| < & implies that

122 — 251 = |z — 20llz + 20| < Blz — 20 + 220| < 8|z — 20| + 12201} < 8(1 + 2Iz0])

Take & as 1 or €/(1 + 2|z9|), whichever is smaller. Then, we have |22 — 73| < € whenever |z — zo| < §,
and the required result is proved.

(b) There is no difference between this problem and that in part (a), since in both cases we exclude z = z9
from consideration. Hence, lim,_,,, f(z) = z(z). Note that the limit of f(z) as z — zo has nothing whatso-
ever to do with the value of f(z) at zo.

Interpret Problem 2.23 geometrically.

Solution

(a) The equation w = f(z) = z* defines a transformation or mapping of points of the z plane into points of the
w plane. In particular, let us suppose that point zo is mapped into wy = z3. [See Fig. 2-25 and 2-26.]

z plane w plane
y v

Fig. 2-25 Fig. 2-26
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In Problem 2.23(a), we prove that given any € > 0 we can find 6 > 0 such that |w — wy| < € whenever

|z — zo| < 6. Geometrically, this means that if we wish w to be inside a circle of radius € [see Fig. 2-26]

we must choose & (depending on €) so that z lies inside a circle of radius & [see Fig. 2-25]. According to

Problem 2.23(a), this is certainly accomplished if & is the smaller of 1 and €/(1 + 2|z|).

(b) In Problem 2.23(a), w = wy = zf) is the image of z = z9. However, in Problem 2.23(b), w = 0 is the image
of z = z9. Except for this, the geometric interpretation is identical with that given in part (a).

37 — 273 + 822 —2z+5
2.25. Prove that lim < ¢ et =4+ 4.

7—1 Z—i

Solution

We must show that for any € > 0, we can find > 0 such that

3z — 22 + 822 —2z+5
| Z—i

—(@4+4+4)<e when 0 < |z—i] <&

Since z#i, we can write
32 =228 482 —2:4+5  [32 — (2 — 30> 4 (5 — 2i)z + 5illz — i]
7—1i o 7—i
=32 -2 -302 +(5-2i)z+5i

on cancelling the common factor z — i #0.
Then, we must show that for any € > 0, we can find § > 0 such that

B2 —(Q2=3)2+(5—-2)z—4+i<e when0<|z—i| <&
If § <1, then 0 < |z —i| < & implies
1322 = (2 =302+ (5 =20z —4+i| = |z —i|I32> + (6i — 2)z — 1 — 4i]
= e —ill3E =i+ )° + (6 = 2)(z — i +1i) — 1 — 4il
= |z —i||3(z — )> + (12i — 2)(z — i) — 10 — 6i]

< 8{3lz —i|* + [12i — 2||z — i| + |—10 — 6i]}
<63+ 13+12) =286

Taking 0 as the smaller of 1 and €/28, the required result follows.

Theorems on Limits

2.26. Suppose lim,_,,, f(z) exists. Prove that it must be unique.

Solution
We must show that if lim,_,,, f(z) =/, and lim__,,, f(z) = b, then [} = L,.
By hypothesis, given any € > 0, we can find > 0 such that

[f(z)— L] <e€2 when0<|z—2z0| <6
[ f(z) —bL| <e€/2 when0<|z—2z0| <6

Then
h—bl=1L —f@Q+f@—bl <L —f@OI+1f@D—hl<e2+te2=¢

i.e., |l} — l»] is less than any positive number € (however small) and so must be zero. Thus [} = I,.
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2.27.

2.28.

Suppose lim,_,,, g(z) = B # 0. Prove that there exists 6 > 0 such that
lg()] > B for 0 <|z—2z0| <8
Solution
Since lim,_, ., g(z) = B, we can find & such that |g(z) — B| < %|B| for 0 < |z —z9| < 6.
Writing B = B — g(2) + g(2), we have

IB| < |B— g(2)| + |g(2)] < 3|B| + [g(2)|
|B| < 1IB| + |g(z)] from which |g(z)| > }IB]

Given lim,_,,, f(z) = A and lim,_,,, g(z) = B, prove that
(a) lim;, [f(2) + g(z)] = A + B, (¢) lim._,;, 1/g(z) = 1/B if B#0,
(b) lim,—,;, f(2)g(z) = AB, (d) lim,—, f(z)/8(z) = A/B if B#0.

Solution

(a) We must show that for any € > 0, we can find 6 > 0 such that
ILf@)+g@]—A+B)|<e when0<|z—2]<3é
We have

I[f(@+g@]— A+ B) =|[f(z) — Al + [g(z) — Bll = |f(2) —A| + |g(z) — Bl

By hypothesis, given € > 0 we can find §, > 0 and 8, > 0 such that

If(z) —A| < €/2 when 0 < |z— 70| <&
lg(z) — Bl < €/2 when 0 <|z—2z <6,

Then, from (1), (2), and (3),
If@+8@)] —(A+B)| < e/2+€/2=€ when0<|z—z| <5

where 6 is chosen as the smaller of 8; and &,.
(b) We have

|f(2)g(2) —AB| = | f(2){g(z) — B} + B{f(2) — A}| < |f(2)llg(z) — Bl + |B||f(2) — Al

= [f@Ilg() = Bl + (IB| + DI f(z) — Al

()]

(@)
3

“

Since lim,,,, f(z) = A, we can find 6; such that |f(z) —A| <1 for 0 < |z —zo| < 6;. Hence, by

inequalities 4, page 3, Section 1.5.

f@ —Al = [f@I— Al ie, 1= |f@I—IAl or [f(2)] <|Al+1

i.e., | f(z)| < P where P is a positive constant.

Since lim,,, g(z) =B, given € >0, we can find 8 >0 such that |g(z) —B| < /2P for

0 <l|z—zl < &.

Since lim,_,,, f(z) = A, given € > 0, we can find 63 > 0 such that |f(z) —A| < €/2(|B| + 1) for

0<|z—2z0| < 63.
Using these in (4), we have
€

If(2)8() — AB| < P

HOBI+ Dape =

for 0 < |z — z9| < & where 6 is the smaller of 8;, &;, 03, and the proof is complete.
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(c) We must show that, for any € > 0, we can find 6 > 0 such that

1 1‘_|g(z)—B|

¢@ Bl |Bllg()

By hypothesis, given any € > 0, we can find §; > 0 such that

<e when0<|z—z)| < b (@)

lg(z) — Bl < i|BI*¢ when 0 < |z—z| < §
By Problem 2.27, since lim,_, ;, g(z) = B#0, we can find 6, > 0 such that
lg(2)] > 3Bl when 0 < |z—z0| < &

Then, if 6 is the smaller of 6, and &,, we can write

gz B

and the required result is proved.
(d) From parts (b) and (c),

=€ whenever 0 < |z—79| < &

‘ 1 1‘_Ig(z)—B|< 31BI%e
Blig@|  IBI- 1B

lim —= = lim
= g(z)

/@ LV i fo tim L a LA
(1 g = s i = 5=

This can also be proved directly [see Problem 2.145].
Note. In the proof of (a), we have used the results |f(z) — A| < €/2 and |g(z) — B| < €/2, so that the final
result would come out to be | f(z) + g(z) — (A + B)| < e. Of course, the proof would be just as valid if we had

used 2e€ [or any other positive multiple of €] in place of e. Similar remarks hold for the proofs of (b), (c),
and (d).

2.29. Evaluate each of the following using theorems on limits:

Qz+3)z—-1) ) 2+8
AN lim

. . 2 _ . e
(@) lim_,4;(z" = 52z+10) (b) lim (©) A a7 16

—>-2 2 —2z+4
Solution
(@ lim._ 4 (22 =5z +10) = lim, 1 4; 22 +lim__, 4 (—=5z2) + lim,_ 4, 10
= (lim, 14 2)(lim 144 2) + (lim 14y —5)(1im 14y 2) +lim,14; 10
=(1+dA+i)-51+i)+10=5-3i
In practice, the intermediate steps are omitted.

2z4+3)—1D _lim_ 52z +3)lim i (z—1)  @G—-4)(-2i—-1) 1 11,

b) i = =
®) il ¥ 2—2z+4 lim, 2 (2 — 2z +4) 4 2 4

(¢) In this case, the limits of the numerator and denominator are each zero and the theorems on limits fail
to apply. However, by obtaining the factors of the polynomials, we see that

lim i — lim (Z + 2)(Z — 26771./3)(1 _ 265171'/3)
ren A A4 A2 416 zoremn (2 — 2eT)(z — 2e2T)(z — 24T)(z — 265)
-1 (z+2) B e™/3 41
" e (z — 2627/3)(z — 2e*7/3) — 2(e™/3 — e2m/3) (/3 — 47il3)
3 V3,
=S — 1!
8 8

Another Method. Since z° — 64 = (22 — 4)(z* + 42% + 16), the problem is equivalent to finding

i (2 - +98) : P-4 7P _1 3 /3,
)| _ m = n = - — 1
z—>2e™/3 20 — 64 20773 — 8 2(e™—1) 8 8
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2.30. Prove that lim,_,( (z/z) does not exist.
Solution
If the limit is to exist, it must be independent of the manner in which z approaches the point 0.
Let z — 0 along the x axis. Theny = 0, and z = x + iy = x and z = x — iy = x, so that the required limit is
lim-=1
x—>0Xx
Let z — 0 along the y axis. Then x =0, and z = x + iy = iy and z = x — iy = —iy, so that the required
limit is
lim—2 = —1
y—0 Ly
Since the two approaches do not give the same answer, the limit does not exist.
Continuity
2.31. (a) Prove that f(z) = z* is continuous at 7 = z.
2
(b) Prove that f(z) = { ZO ; 7 20 , where zg # 0, is discontinuous at z = zj.
= <0
Solution
(a) By Problem 2.23(a), lim,, ., f(2) = f(20) = z% and so f(z) is continuous at z = zp.
Another Method. We must show that given any € > 0, we can find 6 > 0 (depending on €) such that
|f(z) — f(z0)| = |22 — Z}| < € when |z — 79| < 8. The proof patterns that given in Problem 2.23(a).
(b) By Problem 2.23(b), lim,_,, f(z) = z(z), but f(z9) = 0. Hence, lim,_,,, f(z) # f(z0) and so f(z) is discon-
tinuous at z = zg if zp # 0.
If zo = 0, then f(z) = 0; and since lim,_,,, f(z) = 0 = f(0), we see that the function is continuous.
, 32— 2284+ 82 —2z+5 :
2.32. Is the function f(z) = - continuous at z = i?
Z—1
Solution
f(i) does not exist, i.e., f(x) is not defined at z = i. Thus f(z) is not continuous at z = i.
By redefining f(z) so that f(i) = lim,,; f(z) = 4 + 4i (see Problem 2.25), it becomes continuous at z = i. In
such a case, we call z = i a removable discontinuity.
2.33. Prove that if f(z) and g(z) are continuous at z = zg, so also are
f@ .
(@ f@+g@, O fg@, () <@ if g(z9) #0
Solution
These results follow at once from Problem 2.28 by taking A = f(z9), B = g(z0) and rewriting 0 < |z — 79| < &
as |z — zo| < 6, i.e., including 7 = zo.
2.34. Prove that f(z) = z? is continuous in the region |z| < 1.

Solution

Let zo be any point in the region |z| < 1. By Problem 2.23(a), f(z) is continuous at zy. Thus, f(z) is continuous
in the region since it is continuous at any point of the region.
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2.35. For what values of z are each of the following functions continuous?

Solution

(@) f(2) = z/(z* + 1) = z/(z — i)(z + i). Since the denominator is zero when z = =i, the function is continu-
ous everywhere except z = +1i.

(b) f(z) = cscz = 1/sinz. By Problem 2.10(a), sinz = 0 for z = 0, 4+, 42, ... . Hence, f(2) is continuous
everywhere except at these points.

Uniform Continuity
2.36. Prove that f(z) = 2% is uniformly continuous in the region |z| < 1.

Solution

We must show that given any € > 0, we can find § > 0 such that |7> — z%l < e when |z — z9| < 8, where &
depends only on € and not on the particular point zy of the region.
If z and zp are any points in |z| < 1, then

2 2
|27 = 75| = Iz + 20llz — 20| < {lz] + lz0l}1z — 20| < 2]z — 20|

Thus, if |z —z0| < 8, it follows that |z — z3| < 28. Choosing 8 = €/2, we see that |22 — 73| < € when
|z — zo| < 8, where & depends only on € and not on zy. Hence, f(z) = 7 is uniformly continuous in the region.

2.37. Prove that f(z) = 1/z is not uniformly continuous in the region |z| < 1.

Solution

Method 1.
Suppose that f(z) is uniformly continuous in the region. Then, for any € > 0, we should be able to find 6,
say between 0 and 1, such that |f(z) — f(z0)| < € when |z — zo| < & for all z and zp in the region.

Let z =6 and zo :17_?_6. Then |z — z9| = ‘6—17_?_6 :ﬁeeﬁ< d.
However, l—i = 1— 1+e :E> €(since 0 < 6 < 1).
Z 20 o o é
Thus, we have a contradiction, and it follows that f(z) = 1/z cannot be uniformly continuous in the region.
Method 2.
Let z9 and zop 4+ { be any two points of the region such that |zo + { — 79| = |{| = 0. Then

1 1‘_ w8
20 20+{| lzollzo+ {4 lzollzo + ¢

1f(z0) = f(z0 + D) = ‘

can be made larger than any positive number by choosing zj sufficiently close to 0. Hence, the function cannot
be uniformly continuous in the region.

Sequences and Series

2.38. Investigate the convergence of the sequences

i" 140"
@ u,=—,n=1,2,3,..., (b) u,,=( ).
n n
Solution
(a) The first few terms of the sequence are i PR etc., or i L1 On plotting the
S W sequ L =5 755 7> o SO, — =, —, — Ty
a 2'3°4°5 2’345 plotiing

corresponding points in the z plane, we suspect that the limit is zero. To prove this, we must show that

lu, — 1) =1i"/n—0] < e whenn>N 1)
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2.39.

2.40.

241.

Now

[i"/n—0|=1|"/n|=|i|"/n=1/n< € whenn>1/e
Let us choose N = 1/e. Then we see that (1) is true, and so the sequence converges to zero.

(b) Consider

n n/2
|l+i|:i
n+1 n+1

Un+1

Up

B ‘(1 + i+ D]
a4y |

For all n > 10 (for example), we have nﬁ/(n + 1) > 6/5 = 1.2. Thus |u,+1| > 1.2|u,| forn > 10, i.e.,
lunt] > 1.2[ur0], lurz] > 1.20ur1| > (1.2)%|u1o], and in general |u,| > (1.2)"1uy0]. It follows that |u,|
can be made larger than any preassigned positive number (no matter how large) and thus the limit of
|u,| cannot exist, and consequently the limit of u, cannot exist. Thus, the sequence diverges.

Given lim,_,« a, = A and lim,_, » b, = B. Prove that lim,_,« (a, + b,) = A + B.
Solution
By definition, given € we can find N such that
la, —A| < €/2, |b, —B| < €/2 forn>N
Then for n > N,
[(an + bn) —(A+ B)| = [(an —A) + (by — B)| < layn — Al + |by — B| < €

which proves the result.
It is seen that this parallels the proof for limits of functions [Problem 2.28].

Prove that if a series u; + uy + u3z + - - - is to converge, we must have lim,,_, o 1, = 0.

Solution

If S, is the sum of the first n terms of the series, then S,,+1 = S, + u,. Hence, if lim,_,  S,, exists and equals S,
we have lim,, 00 S11 = lim, 00 S + lim, oo ut, Or S = S+ lim,, 0 1y, i.€., lim,, oo u, = 0.

Conversely, however, if lim,_, o u,, = 0, the series may or may not converge. See Problem 2.150.

Provethat | +z+ 22+ 2° +--- = 1/(1 —z) if |z7] < 1.

Solution

Let Sp=l+z4+2+ -+

Then = 2424+ 4
1-7"

Subtracting, (1-28,=1—-7" or §,= T
-z

If |z| < 1, then we suspect that lim,,_,« 2" = 0. To prove this, we must show that given any € > 0, we can find
N such that |z" — 0] < € for all n > N. The result is certainly true if z = 0; hence, we can consider z#0.

Now |7"] = |z]" < ewhennln|z| < Ineorn > (In€)/(In|z]) = N [since if |z] < 1, In|z] is negative]. We
have therefore found the required N and lim,,_,  z" = 0. Thus

1-2" 1-0 1
l4+z4+22+---=1lim S, = lim . =
n—>00 nseol—z 1-z 1-z
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The series

ataz+af 4 =—r
-z

is called a geometric series with first term equal to a and ratio z, and its sum is a/(1 — z) provided |z] < 1.
Miscellaneous Problems
242. Letw=(z>+ 1)"/2. (a) If w=1 when z =0, and z describes the curve C; shown in Fig. 2-27,

find the value of w when z = 1. (b) If z describes the curve C, shown in Fig. 2-28, is the value
of w, when z = 1, the same as that obtained in (a)?

Solution

(a) The branch points of w = f(z) = (22 + 1)'/? = {(z — i)(z + i)}"/? are at z = +i by Problem 2.19.
&
Ql

¢ 0
\ /

Fig. 2-27 Fig. 2-28

&
1

Let (1) z—i = rie', (2) z+ i = re'®. Then, since 6; and 6, are determined only within integer multiples
of 27, we can write

W= /—rl rzei(91+(b)/2€2km'/2 — /—rl }"2 ei(91+62)/2€k7ri (3)

Referring to Fig. 2-27 [or by using the equations (1) and (2)], we see that when zis at 0, r; = 1, 6; = 37/2,
and =1, 6, = m/2. Since w=1 at z=0, we have from (3), 1 =e**D™ and we choose k = —1
[or 1, =3, ...]. Then

w=—/r" ei(91+92)/2

As z traverses C; from O to 1, r; changes from 1 to V2, 0, changes from 37/2 to — /4, r, changes from 1
to +/2, 6, changes from 7/2 to /4. Then

w=— (ﬁ)(ﬁ) ei(—‘r{/4+77/4)/2 _ _\/j

(b) As in part (a), w = —/r7,e@79)/2 Referring to Fig. 2-28, we see that as z traverses C,, | changes
from 1 to ﬁ, 0, changes from 37/2 to 71/4, r, changes from 1 to «/5 and 6, changes from /2 to

/4. Then
w=— /(ﬁ)(ﬁ) ei(771'/4+‘n'/4)/2 — ﬁ

which is not the same as the value obtained in (a).
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2.43.

2.44.

Let +/1 — z2 = 1 for z = 0. Show that as z varies from O to p > 1 along the real axis, /1 — z2 varies

from 1 to —i\/p? — 1.

S

S
—q

o]
K )

=

Fig. 2-29

Solution

Consider the case where 7 travels along path ABDEF, where BDE is a semi-circle as shown in Fig. 2-29. From
this figure, we have

l—z=1—x—iy=rcosf—irsinf

so that \/l —z2= \/(1 —2)(1 +z) = /r(cos 0/2 — isin /2)v/2 — rcos 6 + irsin 0

AlongAB: z=x,r=1—x0=0and V1 —2Z2 =1 —xJ/T+x=+1—x2
Along EF: z=x,r=x—1,0=mand /1 — 22 = —iv/x — IJ/x+ 1 = —ir/x2 — 1.
Hence, as z varies from 0 [where x = 0] to p [where x = p], +/1 — z2 varies from 1 to —i/p? — 1.

Find a mapping function which maps the points z = 0, +i, +2i, +3i, ... of the z plane into the
point w = 1 of the w plane [see Figs. 2-30 and 2-31].

z plane w plane
y v
3i
2i
i
x _ u
0 1
—i
—2i
Fig. 2-30 Fig. 2-31

Solution

Since the points in the z plane are equally spaced, we are led, because of Problem 2.15, to consider a logar-
ithmic function of the type z = Inw.

Now, if w=1=¢e*" k=0, +1, +2, ..., then z = Inw = 2k so that the point w = 1 is mapped into
the points 0, +2mi, +4mi, ....

If, however, we consider z = (Inw)/27r, the point w = 1 is mapped into z = 0, +i, +2i, ... as required.
Conversely, by means of this mapping function, the points z = 0, +i, +2i, ... are mapped into the point
w=1.

Then, a suitable mapping function is z = (Inw)/27 or w = €>™.



2.45.

2.46.
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Given lim,,_, » 2z, = [. Prove that lim,,_, - Re{z,} = Re{l} and lim,_, « Im{z,} = Im{/}.

Solution

Let z, =x, + iy, and | =[; + il,, where x,, y,, and [;, [, are the real and imaginary parts of z, and /,
respectively.
By hypothesis, given any € > 0 we can find N such that |z, — | < e for n > N, i.e.,

X, + iy, — (1 + i) <€ forn>N

or

\/(xn —L) +Ou—h)P?<e forn>N
From this, it necessarily follows that
X, —h|<e€e and |y, —Db|<e forn>N

ie., lim, 0 x, = [; and lim, .« y, = I, as required.

Prove that if |a| < 1,

B 1 —acos@
"1 —2acos 0+ a?
. asin 0

T 1—2acos 0+ a?

(@) 14acosf+a’cos20+a’cos30+---

(b) asinf+a’sin20+a’sin30+ - - -

Solution

Let z = ae'? in Problem 2.41. We can do this since |z| = |a| < 1. Then
. . ; 1
1+a619+a2€219+a3 319+.”= i
1 — ae'®
or
i0

1 1 —ae”
(1 +acos O+ a*cos20+---) +i(asin O+ a*sin20+ - --) ae

T 1—ae® 1—ae?

1 — acos 0+ iasin 0
T 1—2acosO+a?

The required results follow on equating real and imaginary parts.

SUPPLEMENTARY PROBLEMS

Functions and Transformations

2.47.

2.48.

2.49.

2.50.

Let w = f(2) = 2(2 — 7). Find the values of w corresponding to (a)z =144, (b)z =2 — 2i and graph cor-
responding values in the w and z planes.

Let w =f(z) = (1 +2)/(1 — 2). Find: (a) f(i), (b) f(1 — i) and represent graphically.
Suppose f(z) = 2z+ 1)/(3z—2), z # 2/3. Find (a) f(1/2), (b) f{f(2)}.

(@ If w=f) =+2)/Qz—1), find f(0), f(i), f(1 +i). (b) Find the values of z such that f(z) =i,
f(2) =2 —3i. (c) Show that z is a single-valued function of w. (d) Find the values of z such that f(z) =z
and explain geometrically why we would call such values the fixed or invariant points of the transformation.
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2.51.

2.52.

2.53.

2.54.

A square S in the z plane has vertices at (0, 0), (1, 0), (1, 1), (0, 1). Determine the region in the w plane into
which S is mapped under the transformations (a) w =22, (b)w=1/(z+ 1).

Discuss Problem 2.51 if the square has vertices at (1, 1), (-1, 1), (=1, —1), (1, —1).

Separate each of the following into real and imaginary parts, i.e., find u(x, y) and v(x, y) such that f(z) = u + iv:

(@) f(2) =222 =3iz, O f@=z+1/z, ©f@=1-2/(1+2), (@ f@) ="~

Suppose f(z) = 1/z = u + iv. Construct several members of the families u(x, y) = «, v(x, y) =  where « and
B are constants, showing that they are families of circles.

Multiple-Valued Functions

2.55.

2.56.

2.57.

Let w3 = z and suppose that, corresponding to z = 1, we have w = 1. (a) If we start at z = 1 in the z plane and
make one complete circuit counterclockwise around the origin, find the value of w on returning to z = 1 for the
first time. (b) What are the values of w on returning to z = 1 after 2, 3, 4, . .. complete circuits about the origin?
Discuss (a) and (b) if the paths do not enclose the origin.

Let w = (1 — z2)"/? and suppose that, corresponding to z = 0, we have w = 1. (a) If we start at z = 0 in the z
plane and make one complete circuit counterclockwise so as to include z = 1 but not to include z = —1, find
the value of w on returning to z = O for the first time. (b) What are the values of w if the circuit in (a) is repeated
over and over again? (c) Work parts (a) and (b) if the circuit includes z = —1 but does not include z = 1. (d)
Work parts (a) and (b) if the circuit includes both z = 1 and z = —1. (e) Work parts (a) and (b) if the circuit
excludes both z = 1 and z = —1. (f) Explain why z = 1 and z = —1 are branch points. (g) What lines can be
taken as branch lines?

Find branch points and construct branch lines for the functions

@ f@ = {z/(0 =2}'% O f@ =@ =D (©f@)=InE-2).

The Elementary Functions

2.58.
2.59.
2.60.
2.61.

2.62.

2.63.
2.64.
2.65.
2.66.
2.67.
2.68.

2.69.

2.70.

Prove that (a) €% /e = 72, (b) || = e7.

Prove that there cannot be any finite values of z such that e¢* = 0.
Prove that 277 is a period of ¢”. Are there any other periods?
Find all values of z for which (a) €3 = 1, (b) ¢* = i.

Prove (a) sin2z = 2sinzcosz, (b) cos2z = cos®z —sin’z, (c) sin’(z/2) = %(l — €08 7),
(d) cos?(z/2) = 4(1 + cos 2).

Prove (a) 1 + tan®z = sec?z, (b) 1 + cot? z = csc? z.

Let cosz = 2. Find (a) cos 2z, (b) cos 3z.

Prove that all the roots of (a) sinz = a, (b) cosz = a, where —1 < a < 1, are real.
Prove that if [sinz| < 1 for all z, then [Im{z}| < In(+~/2 + 1).

Show that (a) sinz =sinz, (b)Tosz =cosZz, (c)tanz=tanZ.

For each of the following functions, find u(x, y) and v(x, y) such that f(z) = u + iv, i.e., separate into real and
imaginary parts: (a) f(z) = €%, (b) f(z) =cosz, (c) f(z) =sin2z, (d) f(z) = 2.

Prove that (a) sinh(—z) = —sinh z, (b) cosh(—z) = cosh z, (¢) tanh(—z) = —tanh z.

Prove that (a) sinh(z; 4 z2) = sinh z; cosh zp + cosh z; sinhz;, (b) cosh2z = cosh? z + sinh? z,
(c) 1 — tanh® z = sech’ z.



2.71.
2.72.

2.73.

2.74.

2.75.

2.76.

2.71.

2.78.
2.79.
2.80.
2.81.
2.82.
2.83.

2.84.
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Prove that (a) sinh*(z/2) = J(coshz — 1), (b) cosh®(z/2) = L(coshz + 1).
Find u(x, y) and v(x, y) such that (a) sinh2z = u + iv, (b) zcoshz = u + iv.

Find the value of (a) 4 sinh(7i/3), (b) cosh(2k + 1)mi/2, k =0, +1, £2, ..., (c) coth3mi/4.

1 3 4
(a) Show that ln(— 3~ é—l) = (777- + 2k77> i, k=0, 1, £2, .... (b) What is the principal value?

Obtain all the values of (a) In(—4), (b) In(3i), (¢) In(+/3 — i) and find the principal value in each case.

Show that In(z — 1) = %ln{(x — 1> +y*} +itan~!y/(x — 1), giving restrictions if any.

| .
Prove that (a) cos™' z = 1In(z + /22 — 1), (b) cot ™' z = ?ln (Z——H) indicating any restrictions.
i

Z—1
1 1
Prove that (a) sinh™! z = In(z + V22 + 1), (b) coth™!z = E1n (”—J
i

Find all the values of (a) sin™' 2, (b) cos™' i.

Find all the values of (a) cosh™! i, (b) sinh ™' {In(—1)}.
Determine all the values of (a) (1 + i)', (b) 1V2,

Find (a) Re{(1 —'*}, (b) [(=i)~'|.

Find the real and imaginary parts of z* where z = x + iy.

Show that (a) f(z) = (z> — )!/3, (b) f(z) = z'/? + z'/3 are algebraic functions of z.

Branch Points, Branch Lines, and Riemann Surfaces

2.85.

2.86.

2.87.
2.88.

Limits

2.89.

2.90.

2.91.

2.92.

2.93.

Prove that z = + are branch points of (z> + D73,

1/3
. . z+2
Construct a Riemann surface for the functions (a) z'/3, (b) z2'2(z — D2, (¢) (—2> .
i
Show that the Riemann surface for the function z'/> 4 z!/3 has six sheets.

Construct Riemann surfaces for the functions (a) In(z+2), (b)sin"'z, (c) tan™' z.

(a) Suppose f(z) = z> + 2z. Prove that lim._,; f(z) = 2i — 1.

2 .
(b) Suppose f(z) = &+ 2.Z s l. . Find lim,_,; f(z) and justify your answer.
342§ z=1
2 .
=zt —i 1

Prove that zgﬂ[m =1- El.
Guess at a possible value for (a) lim 5 (b) lim Zz_i and investigate the correctness of your guess

P =2+l + 7 i 244 & yOur guess.
Let lim,_,,, f(z) = A and lim,_,,, g(z) = B. Prove that (a) lim,_,, {2f(z) — 3ig(z)} = 2A — 3iB,
(b) lim,_, . {pf(z) + qg(z)} = pA + gB where p and g are any constants.

Let lim,_,, f(z) = A. Prove that (a) lim,,{ f@P =A% (b) lim,, ., { f()}® =A% Can you make a
similar statement for lim__, . { f(z)}"? What restrictions, if any, must be imposed?
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2.94. Evaluate using theorems on limits. In each case, state precisely which theorems are used.
(@) lim,_,o; (iz* 4+ 3722 — 10i), (©) 1@3}2%’
2 2 N
O @mE e 55
295. Find lim (z—e™") (ﬁ)
2.96. Suppose f(z) = 372 + 2z. Prove that lirr}) JC(Z%J;()ZO) =620 + 2.
2.97. Letf(z) = % Prove that %1_51(1) fa+ h;L —f @) = Ga 127 provided zo # —2/3.
2.98. Suppose we restrict ourselves to that branch of f(z) = +/z2 + 3 for which f(0) = +/3. Prove that
lim 7\/22T =2 = l
=1 z—1 2
2.99. Explain exactly what is meant by the statements (a) lzl_I)I} 1/(z — i)*> = o0, (b) Zli)nolo 2;4_:_ 11 =2.
2.100. Show that (a) lim,_, > (sinz)/z = 2/, (b) lim,_, ;2 2> cosh4z/3 = 7/8.
2.101. Suppose we restrict ourselves to that branch of f(z) = tanh™' z such that f(0)=0. Show that
lim,_, _; f(z) = 3mi/4.
Continuity
2.102. Letf(z) = fj;: if 7 # 2i, while f(2i) = 3 + 4i. (a) Prove that lim,_,; f(z) exists and determine its value. (b) Is
f) continubus at 7 = 2i? Explain. (c) Is f(z) continuous at points z # 2i? Explain.
2.103. Answer Problem 2.102 if f(2i) is redefined as equal to 4i and explain why any differences should occur.
2.104. Prove that f(z) = z/(z* + 1) is continuous at all points inside and on the unit circle |z = 1 except at four points,
and determine those points.
2.105. Suppose f(z) and g(z) are continuous at 7z = zy. Prove that 3f(z) — 4ig(z) is also continuous at z = zp.
2.106. Suppose f(z) is continuous at z = zy. Prove that (a) { f(z)}2 and (b) { f(z)}3 are also continuous at z = z.
Can you extend the result to {f(z)}" where n is any positive integer?
2.107. Find all points of discontinuity for the following functions.
@ Q= ) f@) = jfzflz, © f@=cote, @ fQ =1 —secz, © [0 =5
2.108. Prove that f(z) = 7> — 2z + 3 is continuous everywhere in the finite plane.
2.109. Prove that f(z) = i I ; is (a) continuous and (b) bounded in the region |z| < 2.
2.110. Prove that if f(z) is continuous in a closed region, it is bounded in the region.
2.111. Prove that f(z) = 1/z is continuous for all z such that |z] > 0, but that it is not bounded.
2.112. Prove that a polynomial is continuous everywhere in the finite plane.
2.113. Show that f(z) = Zzz_z;l is continuous for all z outside |z] = 2.

3242
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Uniform Continuity

2.114.

2.115.

2.116.

Prove that f(z) = 3z — 2 is uniformly continuous in the region |z| < 10.

Prove that f(z) = 1/7? (a) is not uniformly continuous in the region |z| < 1 but (b) is uniformly continuous in
the region 1 < |z] < 1.

Prove that if f(z) is continuous in a closed region R, it is uniformly continuous in R.

Sequences and Series

2.117.
2.118.
2.119.
2.120.
2.121.

2.122.

2.123.

2.124.
2.125.
2.126.

2.127.

2.128.

n" n in
Prove that (a) lim ——— = 0, (b) li S -
rove that (@) iy 5 = O )nin3°<n+3i n+1> ’

Prove that for any complex number z, lim,_, (1 4 3z/n%) = 1.

1 N N
Prove that lim n( —2’_1> =0.

n—oo
Prove that lim,,_, , ni" does not exist.

Let lim,—,« |u,| = 0. Prove that lim,_, . #, = 0. Is the converse true? Justify your conclusion.

Let lim,_, o a, = A and lim,,_, b,, = B. Prove that (a) lim,,_, . (a, + b,) =A + B,
(b) limn%oo (an - bn) =A-B, (C) limn%oo anbn =AB, (d) limnaoo an/bn = A/B if B#0.

Use theorems on limits to evaluate each of the following:
in? —in+1—3i

li i 5 -
@ Nm e g —hm—p © Amvnt2i-vnti
| * 43D —i) . : -
Let lim,_, & u, = I. Prove that lim Mttt =1
n— 00 n
Prove that the series 1 4 i/3 + (i/3)* +--- = ZZO:I (i/3)"~! converges and find its sum.

Prove that the series i — 2i 4+ 3i — di 4 - - - diverges.

Suppose the series Y .| @, converges to A, and Y -, b, converges to B. Prove that Y ., (a, + ib,) converges

to A + iB. Is the converse true?

/1

[o )
Investigate the convergence of Z where @ = /3 + .
n=1

w
5n/2

Miscellaneous Problems

2.129.

2.130.

2.131.
2.132.
2.133.

2.134.

Let w = {(4 — 2)(z2 +4)}'/2. If w = 4 when z = 0, show that if z Y

describes the curve C of Fig. 2-32, then the value of w at z = 6 is C

—4i+/5.

Prove that a necessary and sufficient condition for f(z) = u(x, y) + | 0 3 =

iv(x, y) to be continuous at z = zp = xp + iyp is that u(x, y) and
v(x, y) be continuous at (xg, yo).

Prove that the equation tan z = z has only real roots.

A student remarked that 1 raised to any power is equal to 1. Was the student correct? Explain.
Show thatSiLe+M+Sin730+~u :723“10 .
2 22 23 5—4cos 6
Show that the relation | f(x + iy)| = | f(x) 4+ f(iy)| is satisfied by f(z) = sin z. Can you find any other functions
for which it is true?
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2.135.

2.136.

2.137.

2.138.

2.139.
2.140.
2.141.

2.142.

2.143.

2.144.

2.145.

2.146.

2.147.

2.148.
2.149.

2.150.

2.151.

3
—3z+2
Prove that lim % =
oozt 472 —3z45

Prove that |cscz| < Ze/(e2 —Dif [y| > 1.

0.

Show that Refsin™' z} = }{{/x2 +y2 + 2x + 1 — /X2 +y? — 2x + 1}.

Suppose f(z) is continuous in a bounded closed region R. Prove that
(a) there exists a positive number M such that for all z in R, |f(z)| < M,
(b) | f(z)| has a least upper bound p in R and there exists at least one value zy in R such that | f(z9)| = .

Show that |tanh 7(1 + i)/4| = 1.

Prove that all the values of (1 — i)‘@ lie on a straight line.

Evaluate (a) cosh 77i/2, (b) tanh™! co.

Let tanz = u + iv. Show that

sin 2x v sinh 2y
u = N =
cos 2x + cosh 2y cos 2x 4 cosh 2y

Evaluate to three decimal place accuracy: (a) ¢>~%, (b) sin(5 — 4i).

1 4+ itan(60/2)

Prove Re| - 29/2)
rove e{l—itan(@/Z)

} = cos 0, indicating any exceptional values.

Let lim,, ., f(z) = A and lim,_,,, g(z) = B # 0. Prove that lim,_,,, f(z)/g(z) = A/B without first proving that
lim_,, 1/g(z) = 1/B.

1 if |z| is rational

Let f(z) = { 0 if |2| is irrational Prove that f(z) is discontinuous at all values of z.

Suppose f(z) = u(x, y) +iv(x, y) is continuous in a region. Prove that (a) Re{f(z)} = u(x, y) and
(b) Im{f(z)} = v(x, y) are continuous in the region.

Prove that all the roots of ztanz = k, where k > 0, are real.
Prove that if the limit of a sequence exists, it must be unique.
(a) Prove that lim,_, o (v/n+1—/n) =0.

(b) Prove that the series Y .| (+/n + I — /n) diverges, thus showing that a series whose nth term approaches
zero need not converge.

Let 7,41 = %(z,, +1/z,),n=0,1,2,...and —7/2 < argzy < 7/2. Prove that lim, _, . z, = 1.

ANSWERS TO SUPPLEMENTARY PROBLEMS

247.
2.48.
2.49.
2.50.
2.53.

(a) 2,4+ 4i

(@i, (b) —1-2i

@ (2+2/3-22,0)z

(@ =2, =i, 1 —i,(b) —i, 2+1)/3

1—x2—y? —2y
(@) u=2x*—2y* 43y, v=4xy — 3x c) u= 0=

Y ! O e T
) u=x+x/+y), 0=y—y/@&+y*) () u=r"?cos /2, v=r'?sin /2

where x = rcos 6, y = rsin 0
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2.61.
2.64.
2.68.

2.72.

2.73.
2.74.
2.75.

2.79.
2.80.

2.81.

2.82.

2.94.
2.95.
2.104.
2.107.

2.123.
2.125.
2.128.
2.141.
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(a) 62771'/3’ (b) e4m'/3’ 1’ 62771'/3
(a) 2kmi/3, (b) (1/8)mi + (1/2)kri, where k = +1, +2, ...
(a) 7, (b) 26

(@) u=e ¥ cos3x, v = e ¥ sin3x. (b) u = cosxcoshy, v = —sinxsinhy. (¢) u = sin 2xcosh 2y,
v = cos 2xsinh 2y. (d) u = e*{(x* — y?) cos 2y — 2xysin2y}, v = e*{2xy cos 2y + (x> — y?) sin 2y}.

(a) u = sinh2xcos2y, v = cosh2xsin2y

(b) u =xcoshxcosy — ysinhxsiny, v = ycoshxcosy + xsinhxsiny
(@) 2iv/3, (0) 0, () i

(b) 4ri/3

(a) 2102 + (7 + 2km)i, 2102 + mi. (b) In3 + (/2 + 2km)i, In3 + mi/2. (¢) In2 + (117/6 + k)i,
In2+ 117i/6

(@) +In2 +/3) + /2 +2km (b) —iln(v/2Z+ 1) + /2 4 2km, —iln(v/2 — 1) 4 37/2 + 2kw
(@) In(+/2 + 1) + 7i/2 + 2kai, In(~/2 — 1) 4 37i/2 + ki

(b) 1n[(2k F a4kt 127 — 1 ] 4 7i/2 + 2mi,
ln|:,/(2k S — 1 — 2k 1)77} 4 3mi/2 + 2mi, k,m =0, 41, 42, ...

(a) e‘”/4+2k”{cos(% In 2) + isin(% In 2)}, (b) cos(2+/2kr) + i sin(2+/2k )

(a) e/2In2=Tm/4—2km cos(77r/4 +%ln 2), (b) 37/ 2+ 2%
(@) —12 + 6i, (b) V2(1 4 1)/2, (c) —4/3 — 4i, (d) 1/3, (e) —1/4

1/6 —iv/3/6

e(2k+l)”i/4, k = 0’ 1’ 2’ 3

(@ —1+i (b) 42, +2i (c) km k=0, +1, +2, ... (d) 0, (k—}—%)m k=0, +1, 42, ...
() +i, (k+3)mi, k=0, £1, +2, ...

(a) 3i, (b) 1, (¢) 0, (d) §i

(9 +3i)/10

Converges

(@) 0, (b) 2k + Dmi/2, k=0, +1, +2, ...



Complex Differentiation and
the Cauchy-Riemann Equations

3.1 Derivatives

If f(2) is single-valued in some region R of the z plane, the derivative of f(z) is defined as

provided that the limit exists independent of the manner in which Az — 0. In such a case, we say that f(z) is

differentiable at z. In the definition (3.1), we sometimes use & instead of Az. Although differentiability
implies continuity, the reverse is not true (see Problem 3.4).

3.2 Analytic Functions

If the derivative f(z) exists at all points z of a region R, then f(z) is said to be analytic in R and is referred to
as an analytic function in R or a function analytic in R. The terms regular and holomorphic are sometimes
used as synonyms for analytic.

A function f(z) is said to be analytic at a point z if there exists a neighborhood |z — zo| < & at all points
of which f'(z) exists.

3.3 Cauchy-Riemann Equations

A necessary condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region R is that, in ‘R, u and v
satisfy the Cauchy—Riemann equations
w_o e a2
ox  dy ay ax
If the partial derivatives in (3.2) are continuous in R, then the Cauchy—Riemann equations are sufficient
conditions that f(z) be analytic in R. See Problem 3.5.
The functions u(x, y) and v(x, y) are sometimes called conjugate functions. Given u having continuous
first partials on a simply connected region R (see Section 4.6), we can find v (within an arbitrary additive
constant) so that u + iv = f(z) is analytic (see Problems 3.7 and 3.8).
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3.4 Harmonic Functions

If the second partial derivatives of u and v with respect to x and y exist and are continuous in a region R,
then we find from (3.2) that (see Problem 3.6)

Pu  FPu Pv v

wtap=" sty G

It follows that under these conditions, the real and imaginary parts of an analytic function satisfy Laplace’s
equation denoted by

Fv P ) , PP
The operator V? is often called the Laplacian.
Functions such as u(x, y) and v(x, y) which satisfy Laplace’s equation in a region R are called harmonic
functions and are said to be harmonic in R.

3.5 Geometric Interpretation of the Derivative

Let zo [Fig. 3-1] be a point P in the z plane and let wy [Fig. 3-2] be its image P’ in the w plane under the
transformation w = f(z). Since we suppose that f(z) is single-valued, the point zop maps into only one
point wy.

z plane w plane
y v
0’
0 I
19 S~
,,\& [N
S Y
20+ Az Az v <9
2© 5
P =
P
% o = f(l@
X 0 u
Fig. 3-1 Fig. 3-2

If we give zp an increment Az, we obtain the point Q of Fig. 3-1. This point has image Q' in the w plane.
Thus, from Fig. 3-2, we see that P'Q’ represents the complex number Aw = f(zg + Az) — f(20). It follows
that the derivative at zy (if it exists) is given by

i J@ A9 —fo) _ PO
im = lim
Az—0 Az 0—pP PQ

3.5

that is, the limit of the ratio P'Q’ to PQ as point Q approaches point P. The above interpretation clearly holds
when zy is replaced by any point z.
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3.6 Differentials

Let Az = dz be an increment given to z. Then

Aw = f(z + Az) — f(2) (3.6)
is called the increment in w = f(2). If f(z) is continuous and has a continuous first derivative in a region, then
Aw = f'(2)Az + €Az = f'(2) dz + edz (3.7)

where € — 0 as Az — 0. The expression
dw = f(2)dz (3.8)

is called the differential of w or f(z), or the principal part of Aw. Note that Aw # dw in general. We call dz
the differential of z.
Because of the definitions (3.1) and (3.8), we often write

dw fet+A)—f@) _ . Aw

A AI;TO Az A0 Az

= 3.9

It is emphasized that dz and dw are not the limits of Az and Aw as Az — 0, since these limits are zero
whereas dz and dw are not necessarily zero. Instead, given dz, we determine dw from (3.8), i.e., dw is a
dependent variable determined from the independent variable dz for a given z.

It is useful to think of d/dz as being an operator that, when operating on w = f(z), leads to
dw/dz = f'(2).

3.7 Rules for Differentiation

Suppose f(z), g(z), and h(z) are analytic functions of z. Then the following differentiation rules (identical
with those of elementary calculus) are valid.

d d d
L @ +8@) = f@) +-50) =) +§@
z dz dz
d d d , ,
2. Z {f(@) —g@)} = sz(Z) - dfzg(z) =1 @) —-¢@
3. i{cf(z)} = cif(z) = ¢f’(z) where ¢ is any constant
dz dz

d d d
4. e {f@2)g(2)} = f(2) - 8(2) + 8(2) —-f(2) = f(2)¢'(2) + g(2)f (2)
Z dz dz

5. 4 {f(Z) } _ 8(@)d/da)f2) — f(2)(d/d2)s(2) _ 8(2)f'(2) —f(2)g'@) 2(2) £0
©odz g [g()] (g2
6. If w=f({) where { = g(z) then
dw_dw d{_/ %_, ,
& dr iz —f(é“)a,Z =/1{8()}g (@) (3.10)

Similarly, if w = f({) where { = g(n) and 1 = h(z), then

d daw d{ d
i:iil (3.11)
dz di{ dn dz
The results (3.10) and (3.11) are often called chain rules for differentiation of composite functions.
7. If w = f(2) has a single-valued inverse f !, then z = f~!(w), and dw/dz and dz/dw are related by
‘LW 1
dz  dz/dw

(3.12)
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Similar rules can be formulated for differentials. For example,
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If z =f(¢) and w = g(¢) where ¢ is a parameter, then

dw dw/dt g'(1)

dz ~ dz/dt — f'(1)

(3.13)

d{f(2) + g(2)} = df(z) + dg(z) =f'(z) dz+ §'(z) dz = {f'(z) + §'(2)} dz
d{f(2)g(2)} = f(2) dg(z) + g(2) df (2) = {f(2)g' (2) + g(2) f'(2)} dz

3.8 Derivatives of Elementary Functions

In the following, we assume that the functions are defined as in Chapter 2. In the cases where functions have
branches, i.e., are multi-valued, the branch of the function on the right is chosen so as to correspond to the
branch of the function on the left. Note that the results are identical with those of elementary calculus.

10.

11.

12.

13.

14.

15.

d

2@ =0

dz ©

Zzzn — nZn—]

d

d—zeZ =é

d Z Z
—a*=d'In

dza a‘lna

—sinz = cos

dz me ¢
d—zcosz = —sinz
—tanz = sec’

dz ¢ ¢

d cotz = —csc?

dz = ¢
d—Zsecz =secztanz
—cscz = —csczceot
& z zcotz
d lo d 1

el = lnz =~
dz et T g Ty
d log, e
—log, 7z =—*

dz & Z

d sin™! !

il 7=

dz 1 -2
d cos™! !
— z

dz 1—-272
d tan"!z = !

dz T2

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

4 oortz= !

dz 1y

d sec”! !

“ 7=

dz Wz —1
d csc”! !
il =
dz w2 -1
d

d—zsinhz = coshz

d
pe cosh z = sinhz

d
— tanh z = sech’z

dz

d

— cothz = —csch?z

dz

d

—sech z = —sech ztanhz

dz

d

—csch z = —csch zcothz

dz

d 1

—sinh~ !z =

dz 1+ 722

d 1

—cosh™'z=

dz 2 —1

d 1

—tanh™ !z =

p anh™ ' z T

d 1

—coth 'z =

p co Z -

7sech71 7= _71

dz /1 =72
-1

—csch™lz=
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3.9 Higher Order Derivatives

If w = f(z) is analytic in a region, its derivative is given by f'(z), w', or dw/dz. If f'(2) is also analytic in the
region, its derivative is denoted by f”(z), w”, or (d/dz)(dw/dz) = d*w/dz*. Similarly, the nth derivative of
f(2), if it exists, is denoted by f"(z), w™, or d"w/d7" where n is called the order of the derivative. Thus
derivatives of first, second, third, ... orders are given by f'(z), f"(z), f”'(2), . ... Computations of these
higher order derivatives follow by repeated application of the above differentiation rules.

One of the most remarkable theorems valid for functions of a complex variable and not necessarily valid
for functions of a real variable is the following:

THEOREM 3.1.  Suppose f(z) is analytic in a region R. Then so also are f'(z), f”(z), . . . analytic in R, i.e.,
all higher derivatives exist in R.

This important theorem is proved in Chapter 5.

3.10 L'Hospital’s Rule

Let f(z) and g(z) be analytic in a region containing the point zp and suppose that f(z9) = g(zp) = 0 but
&'(z0) # 0. Then, L’Hospital’s rule states that
f@) _ f(z0)

1m =
—0g(z)  §(20)

In the case of f'(z9) = g'(z9) = 0, the rule may be extended. See Problems 3.21-3.24.

We sometimes say that the left side of (3.14) has the “indeterminate form” 0/0, although such terminol-
ogy is somewhat misleading since there is usually nothing indeterminate involved. Limits represented by
so-called indeterminate forms oo/00, 0 - 00, 00°, 0°, 1%, and 00 — oo can often be evaluated by appropriate
modifications of L’Hospital’s rule.

(3.14)

3.11 Singular Points

A point at which f(z) fails to be analytic is called a singular point or singularity of f(z). Various types of
singularities exist.

1. Isolated Singularities. The point z = zg is called an isolated singularity or isolated singular point
of f(z) if we can find 6 > 0 such that the circle |z — 79| = & encloses no singular point other than
70 (i.e., there exists a deleted 6 neighborhood of zy containing no singularity). If no such & can be
found, we call zy a non-isolated singularity.

If 79 is not a singular point and we can find 6 > 0 such that |z — zy| = & encloses no singular

point, then we call zy an ordinary point of f(z2).

2. Poles. If zp is an isolated singularity and we can find a positive integer n such that
lim,_,,, (z —20)"f(z) = A #0, then z = z¢ is called a pole of order n. If n =1, zg is called a
simple pole.

EXAMPLE 3.1

(@ f(@=1/(z—2)Y hasa pole of order 3 at z = 2.

®) f@=0Gz—2)/z—-1)*z+1)z—4)hasa pole of order 2 at z = 1, and simple poles at z = —1
andz = 4.

If g(z) = (z — 20)"f(2), where f(z9) # 0 and n is a positive integer, then z = z; is called a zero of
order n of g(z). If n = 1, zq is called a simple zero. In such a case, z is a pole of order n of the
function 1/g(z).

3. Branch Points of multiple-valued functions, already considered in Chapter 2, are non-isolated
singular points since a multiple-valued function is not continuous and, therefore, not analytic
in a deleted neighborhood of a branch point.
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EXAMPLE 3.2
(@) f(z) = (z—3)"? has a branch point at z = 3.
(b) f(z) = In(z?> + z — 2) has branch points where z> +7—2 =0, i.e., atz =1 and 7 = —2.

4. Removable Singularities. An isolated singular point z is called a removable singularity of f(z) if
lim,_,,, f(z) exists. By defining f(z9) = lim,_, ., f(2), it can then be shown that f(z) is not only con-
tinuous at 7z but is also analytic at zp.

EXAMPLE 3.3 The singular point z = 0is aremovable singularity of f(z) = sin z/z sincelim, ¢ (sinz/z) = 1.
5. Essential Singularities. An isolated singularity that is not a pole or removable singularity is

called an essential singularity.

EXAMPLE 3.4 f(z) = ¢'/@? has an essential singularity at z = 2.

If a function has an isolated singularity, then the singularity is either removable, a pole, or an
essential singularity. For this reason, a pole is sometimes called a non-essential singularity.
Equivalently, z = zo is an essential singularity if we cannot find any positive integer n such
that lim__, ;,(z — z0)"f(z) = A # 0.

6. Singularities at Infinity. The type of singularity of f(z) at z = oo [the point at infinity; see pages 7
and 47] is the same as that of f(1/w) at w = 0.

EXAMPLE 3.5 The function f(z) = z° has a pole of order 3 at z = oo, since f(1/w) = 1/w> has a pole of
order 3 atw = 0.

For methods of classifying singularities using infinite series, see Chapter 6.

3.12 Orthogonal Families

Let w = f(2) = u(x, y) + iv(x, y) be analytic and f'(z) # 0. Then the one-parameter families of curves
ux,y)=a, vx,y)=p (3.15)

where « and S are constants, are orthogonal, i.e., each member of one family [shown heavy in Fig. 3-3] is
perpendicular to each member of the other family [shown dashed in Fig. 3-3] at the point of intersection.
The corresponding image curves in the w plane consisting of lines parallel to the # and v axes also form
orthogonal families [see Fig. 3-4].

w plane
v

z plane
y

Fig. 3-3 Fig. 3-4

In view of this, one might conjecture that if the mapping function f(z) is analytic and f'(z) # 0, then the
angle between any two intersecting curves C; and C; in the z plane would equal (both in magnitude and
sense) the angle between corresponding intersecting image curves C; and C} in the w plane. This conjecture
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is in fact correct and leads to the subject of conformal mapping, which is of such great importance in both
theory and application that two chapters (8 and 9) will be devoted to it.

3.13 Curves

Suppose ¢(¢) and Y«(z) are real functions of the real variable # assumed continuous in #; < ¢t < f,. Then the
parametric equations

z=x+iy=¢O)+iPt) =z0), h <t=<n (3.16)

define a continuous curve or arc in the z plane joining points a = z(#;) and b = z(;) [see Fig. 3-5].

If 11 # 1, while z(¢)) = z(©2), i.e., a = b, the endpoints coincide and the curve is said to be closed. A closed
curve that does not intersect itself anywhere is called a simple closed curve. For example, the curve of
Fig. 3-6 is a simple closed curve while that of Fig. 3-7 is not.

If ¢(¢) and (¢) [and thus z(7)] have continuous derivatives in #; <t < f, the curve is often called a
smooth curve or arc. A curve, which is composed of a finite number of smooth arcs, is called a piecewise
or sectionally smooth curve or sometimes a contour. For example, the boundary of a square is a piecewise
smooth curve or contour.

y y y

s

Fig. 35 Fig. 3-6 Fig. 37

Unless otherwise specified, whenever we refer to a curve or simple closed curve, we shall assume it to be
piecewise smooth.

3.14 Applications to Geometry and Mechanics

We can consider z(f) as a position vector whose y
terminal point describes a curve C in a definite
sense or direction as t varies from t; to . If z(¢) P Az = 7(t+ A —2(D)
and z(r + Ar) represent position vectors of points
P and Q, respectively, then 0
2(8)

Az zZ(t+ Ar) —z(1)
vV t+Af

At At A+ A1) c

is a vector in the direction of Az [Fig. 3-8]. If
limp,_,0 Az/At = dz/dt exists, the limit is a vector
in the direction of the fangent to C at point P and Fig. 3-8
is given by

dz dx n dy
T
dt dt dt
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If 7 is time, dz/dr represents the velocity with which the terminal point describes the curve. Similarly,

d*z/dr* represents its acceleration along the curve.

3.15 Complex Differential Operators

Let us define the operators V (del) and V (del bar) by

3 8 0 —_ a2 .0
Ve—ti—=2—, V=——i—

ox 3y oz ox lay:

d

0z

(3.17)

where the equivalence in terms of the conjugate coordinates z and 7 (page 7) follows from Problem 3.32.

3.16 Gradient, Divergence, Curl, and Laplacian

The operator V enables us to define the following operations. In all cases, we consider F(x, y) as a real
continuously differentiable function of x and y (scalar), while A(x, y) = P(x, y) 4+ iQ(x, y) is a complex

continuously differentiable function of x and y (vector).
In terms of conjugate coordinates,

Flx,y) = F<¥%) —G(z7) and A(x,y) = B(z 2)

Gradient. We define the gradient of a real function F (scalar) by

oF OF oG
gradd F=VF=—+i—=2— (3.18)
ox ay oz

Geometrically, if VF # 0, then VF represents a vector normal to the curve F(x, y) = ¢ where c is
a constant (see Problem 3.33).
Similarly, the gradient of a complex function A = P + iQ (vector) is defined by

grad A = VA = 3—i—i3 (P+10)
ox  dy
9P 90 ,(BP 8Q) B 28B

y ) T

3.19
ay  ox ( )

——— i

Cox 9y

In particular, if B is an analytic function of z, then dB/dz = 0 and so the gradient is zero, i.e.,
oP/ox = 0Q/dy, oP/dy = —(3Q/dx), which shows that the Cauchy—Riemann equations are sat-
isfied in this case.

Divergence. By using the definition of dot product of two complex numbers (page 7) extended to
the case of operators, we define the divergence of a complex function (vector) by

divA =V-A =Re{VA} = Re{(3 — ii)(P-l- iQ)}
ox  dy

—=2R
+ e pE

P 0Q 9B
=5t { } (3.20)

Similarly, we can define the divergence of a real function. It should be noted that the divergence
of a complex or real function (vector or scalar) is always a real function (scalar).
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3. Curl. By using the definition of cross product of two complex numbers (page 7), we define the
curl of a complex function as the vector

VxA=10,0, @—aj
ox oy

orthogonal to the x-y plane having magnitude

lcurl A| = |V x A| = [Im{VA}| = ‘Im{ (3 - i3>(P + iQ)H

0x ay
_|9Q 9P _ |y l?8 (3.21)
ox oy 0z

4. Laplacian. The Laplacian operator is defined as the dot or scalar product of V with itself, i.e.,

— a a\[/o .9
V.V=V?=RefVV}=Re{(——i—|[—+i—
ox ay/\dox  dy

82 82 82
- 41— _—4___ 3.22
ox2 + oy? 0202 (3-22)

Note that if A is analytic, V?A = 0 so that V2P = 0 and V?Q = 0, i.e., P and Q are harmonic.

Some ldentities Involving Gradient, Divergence, and Curl

Suppose A, A, and A are differentiable functions. Then the following identities hold

1. grad(A; + A;) = grad A; + grad A,

2. div(A; +Ay) =div A +div A,

3. curl(A; +A,) =curl A; 4 curl A,

4. gradA1A) = (Ap)(grad Ay) + (grad A))(A2)

5. Jcurl grad A| =0 if A is real or, more generally, if Im{A} is harmonic.

6. divgradA =0 if A isimaginary or, more generally, if Re{A} is harmonic.

SOLVED PROBLEMS

Derivatives

3.1. Using the definition, find the derivative of w = f(z) = z° — 2z at the point where
(@) z=120, (b) z=—1.

Solution

(a) By definition, the derivative at 7 = zg is

fzo+A) —flz0)
mo— =

flzo)=li im (20 + A2)* — 2(z0 + A2) — {23 — 220}
Az—

AZ Alzl~>0 AZ

i 73882 + 35080 + (A2)° — 22 — 282 — 5 + 230
- Az—0 AZ

- Aljmo 3% + 3208z + (A7) —2 =37 —2

In general, f'(z) = 37> — 2 for all z.
(b) From (a), or directly, we find that if zp = —1, then f'(—1) = 3(— n?—2=1.
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3.2. Show that (d/dz)z does not exist anywhere, i.e., f(z) = 7 is non-analytic anywhere.
Solution

By definition,

d L fz+ A7) —f(2)
sz(z) o Alzlgo

Az
if this limit exists independent of the manner in which Az = Ax + iAy approaches zero.
Then
Az —7% iy + Ax + iAy — ]
Lo gim SHALTE g, THN Ry Z A
dz Az—0 Az Ax—0 Ax + iAy
Ay—0
. o x—iy+Ax—iAy — (x —iy) . Ax—iAy
= lim - = lim ;
Ax—0 Ax + iAy Ax—0Ax + iAy
Ay—0 Ay—0
If Ay = 0, the required limit is
Ax
lim —=1
o Ax
If Ax = 0, the required limit is
—idy
Ay—0 iAy -

Then, since the limit depends on the manner in which Az — 0, the derivative does not exist, i.e., f(z) = Z is
non-analytic anywhere.

3.3. Givenw =f(2) = (1 +2)/(1 — 2), find (a) dw/dz and (b) determine where f(z) is non-analytic.
Solution
(a) Method 1. Using the definition

1+@E@+A2) 1+:z
dw . fe+A)—f) . 1-(z+Ay) 1-—¢
dz Alzlgo Az - Alzl,glo Az
lim 2 2
= 1 =
a—0(1—z—A)(1—2) (1—2)°

independent of the manner in which Az — 0, provided z # 1.

Method 2. Using differentiation rules. By the quotient rule [see Problem 3.10(c)], we have if z # 1,

d d
d (1+z> Um0+ 0=y -+ 2
B (1 —2)? (1—2)? S (1-27

dz\1 -z

(b) The function f(z) is analytic for all finite values of z except z = 1 where the derivative does not exist and
the function is non-analytic. The point z = 1 is a singular point of f(z).

34. (a) If f(z) is analytic at z, prove that it must be continuous at z;.

(b) Give an example to show that the converse of (a) is not necessarily true.
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Solution
(a) Since

f@o+h =) |

fzo+h) —f(z0) = p

where h = Az # 0, we have

Jf@o+h —fzo)
0 h

. - o
lim f(z0 +h) — f(z0) = lim limh = f'(z0)- 0 =0

because f'(zo) exists by hypothesis. Thus
lim f(zo + ) —f(z) =0 or  lim f(zo +h) = f(z0)

showing that f(z) is continuous at z.

(b) The function f(z) = 7 is continuous at zp. However, by Problem 3.2, f(z) is not analytic anywhere. This
shows that a function, which is continuous, need not have a derivative, i.e., need not be analytic.

Cauchy-Riemann Equations

3.5. Prove that a (a) necessary and (b) sufficient condition that w = f(z) = u(x, y) + iv(x, y) be analytic in
aregion R is that the Cauchy —Riemann equations du/dx = dv/dy, du/dy = —(dv/dx) are satisfied in
‘R where it is supposed that these partial derivatives are continuous in R.

Solution
(a) Necessity. In order for f(z) to be analytic, the limit

lim fz+Az) —f(2) — )
Az

Az—0

. A{ulx + Ax, y + Ay) + iv(x + Ax, y + Ay)} — {ux, y) + iv(x, y)}

= lim - (1
Ax—0 Ax +iAy

Ay—0

must exist independent of the manner in which Az (or Ax and Ay) approaches zero. We consider two poss-
ible approaches.

Case 1. Ay = 0, Ax — 0. In this case, (1) becomes

fim G AN Y) —uxy) bt Av y) —vCo )] ou L3
Ax—0 Ax ! Ax a ox ! ox

provided the partial derivatives exist.

Case 2. Ax =0, Ay — 0. In this case, (1) becomes

. ulx, y+ Ay) —u(x, y)  olx, y+ Ay) — v(x, y) 10u v ou  ov
lim : + =+ —=—i—+=
Ay—0 iAy Ay idy Oy dy  dy

Now f{(z) cannot possibly be analytic unless these two limits are identical. Thus, a necessary condition
that f(z) be analytic is

8u+,81)_ ou  dv Bu_av 8v_ ou

T Tty aTy a
(b)  Sufficiency. Since du/0x and du/dy are supposed to be continuous, we have
Au = u(x + Ax, y + Ay) — u(x, y)
= {u(x + Ax, y + Ay) — u(x, y + Ap)} + {u(x, y + Ay) — ulx, y)}

ou ou ou ou
- + Ax+ | —+ Ay = —Ax+ —Ay + € Ax + 1A
<3x 61) <8y Tll) Y ox * ay YT € ey
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where €, — 0 and n; — 0 as Ax — 0 and Ay — 0.
Similarly, since dv/dx and dv/dy are supposed to be continuous, we have

av av ov av

Av=—+e&|Ax+|—+m |Ay = —Ax+ —Ay + eAx + n,Ay
ox ay ox ay

where €, — 0 and m, — 0 as Ax — 0 and Ay — 0. Then

Aw = Au+iAv = %—H@ Ax + %—Fi@ Ay + eAx + nAy ?2)
ox  ox ay ay

where € = € +ie; — 0and n =1, +in, — 0 as Ax - 0 and Ay — 0.
By the Cauchy—Riemann equations, (2) can be written
av

Aw = %+i@ Ax + ——+i% Ay + eAx + nAy
ox ox ox ox

= %—H@ (Ax + iAy) + €Ax + nAy
ox ox

Then, on dividing by Az = Ax 4 iAy and taking the limit as Az — 0, we see that

A
d%zf/(z): lim w_au Lo

d AzaO?Z_a l&

so that the derivative exists and is unique, i.e., f(z) is analytic in R.

3.6. Given f(z) = u + iv is analytic in a region R. Prove that u and v are harmonic in R if they have
continuous second partial derivatives in R.

Solution

If f(z) is analytic in R, then the Cauchy—Riemann equations

ou v
—== )
ax  ay
and
av ou
—=— @
ox ay

are satisfied in R. Assuming « and v have continuous second partial derivatives, we can differentiate both sides

of (1) with respect to x and (2) with respect to y to obtain

2 2
M — v 3)
oxz  Oxdy
and
v 8%u
= “
dyox ay
from which
8%u 8%u Pu  Fu

- T ety

i.e., u is harmonic.
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Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find

Pv 8%

wtgp =Y

and v is harmonic.

It will be shown later (Chapter 5) that if f(z) is analytic in R, all its derivatives exist and are continuous in

‘R. Hence, the above assumptions will not be necessary.
3.7. (a) Prove that u = e7*(xsiny — ycosy) is harmonic.
(b) Find v such that f(z) = u + iv is analytic.

Solution

d
@) 8714 = (e7*)(siny) + (—e ")(xsiny — ycosy) = e “siny — xe *siny + ye *cosy
X
*u _
o
ou

= e "(xcosy+ysiny —cosy) =xe “cosy+ye Fsiny —e Fcosy
y

Pu 9 . . . . o .
— =—(xe Fcosy+ye 'siny —e " cosy) = —xe siny + 2e¢ " siny 4 ye cosy
ayr Oy

Adding (1) and (2) yields (Bzu/axz) + (Bzu/ayz) = 0 and u is harmonic.

Ew (e7*siny —xe siny + ye " cosy) = —2¢ *siny + xe *siny — ye *cosy
X

(b) From the Cauchy—Riemann equations,

o ou . x —x
—=_—=e¢ 'siny—Xxe " siny+ye " CcoSy
dy ox

ov ou x . o
—=——=e¢ 'cosy—xe cosy—ye ‘sin
o oy Yy y=y y

Integrate (3) with respect to y, keeping x constant. Then

v=—e *cosy+xe “cosy+ e *(ysiny+ cosy) + F(x)
=ye *siny 4+ xe " cosy+ F(x)

where F(x) is an arbitrary real function of x.
Substitute (5) into (4) and obtain

—ye *siny —xe Fcosy+ e “cosy+ F'(x) = —ye “siny — xe *cosy — ye “siny
or F'(x) = 0 and F(x) = ¢, a constant. Then, from (5),
v=e*(ysiny+xcosy)+c

For another method, see Problem 3.40.

3.8. Find f(z) in Problem 3.7.

Solution
Method 1
We have f@) =fx+iy) = ulx, y) +iv(x, y).

M

(@)

3

“

(&)
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Putting y = 0 f(x) = u(x, 0) 4 iv(x, 0).
Replacing x by z, f(@) = u(z, 0) +iv(z, 0).

Then, from Problem 3.7, u(z, 0) =0, v(z, 0) = ze™* and so f(z) = u(z, 0) + iv(z, 0) = ize™%, apart from an
arbitrary additive constant.

Method 2

Apart from an arbitrary additive constant, we have from the results of Problem 3.7,
f@@ =u+iv=e(xsiny —ycosy) +ie *(ysiny + xcosy)

o (e —e™ e e N ey + eV
() (e () ()

= i(x 4 iy)e T = ize™*

Method 3

We have x = (z+7)/2, y = (z — 7)/2i. Then, substituting into u(x, y) + iv(x, y), we find after much tedious
labor that 7 disappears and we are left with the result ize <.

In general, method 1 is preferable over methods 2 and 3 when both u and v are known. If only u (or v) is
known, another procedure is given in Problem 3.101.

Differentials
3.9. Givenw =f(z) =22 —2z%. Find: (a) Aw, (b)dw, (c)Aw — dw.

Solution

@ Aw=f(z+A2)—f(2)={@+A) —2+A)*} — { —22%}
=22 43202+ 32(A2)* + (Az)® — 227 — 4zAz — 2(Az)* — 2 +27°
= (32 — 42)Az 4 (3z — 2)(A2)® + (A7)’

(b) dw = principal part of Aw = (37> — 4z)Az = (32> — 4z) dz, since, by definition, Az = dz.
Note that f'(z) = 3z — 4z and dw = (322 — 4z) dz, i.e., dw/dz = 3z% — 4z.

(c) From (a) and (b), Aw — dw = (3z — 2)(Az)* + (Az)® = €Az where € = (3z — 2)Az + (Az)%.
Note that € — 0 as Az — 0, i.e., (Aw — dw)/Az — 0 as Az — 0. It follows that Aw — dw is an infinitesi-
mal of higher order than Az.

Differentiation Rules. Derivatives of Elementary Functions

3.10. Prove the following assuming that f(z) and g(z) are analytic in a region K.
d d d
(a) Z {f(2)+ g} = p f@)+ d—zg(Z)

d d d
(b) = {(f(2)g(@)} =f(2)5-2() + g(@) = f(2)
'z dz dz

() = if g(z)#0

eI

d d
d {f(z)} 8@ () = [ -8()
e

8(2)
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Solution
@ d (D) + @) = lim flz+ A2 + gz + Az) — {f(2) + g(2)}
dz Az—0 AZ
flz+ A7) —f(z) + lim g(z+ Az) — g(2)

= lim
Az—0 AZ Az—0 AZ

d d
=7 f@+ d—zg(z)

d A Az) —
0 @) = fim LEF A2 ZTERE
_ i JE T AD{E+A2) — g} + g@Uf (2 + A7) — f(2)}
Az—0 AZ
= 11m f(Z+A )iw} + 11 g( ){W}

=f(@ zzg(z) +8@) z f ()

Note that we have used the fact that lima,_,o f(z + Az) = f(z) which follows since f(z) is analytic and

thus continuous (see Problem 3.4).

Another Method
Let U=f(z),V=gk. Then AU=f(z+A2)—f(2)

f(z+A2) = U+ AU, g(z+ Az) =V + AV. Thus

and AV =g(z+ A7) —g2), ie.,

UAV + VAU + AUAV

d (U+AUV +AV) — UV
0V = fim) Az et Az
AV AU AU dv dUu
= 1. — —_— 7A JR—
AZITO(U Az +VAZ Az V) Ud +de

where it is noted that AV — 0 as Az — 0, since V is supposed analytic and thus continuous.

A similar procedure can be used to prove (a).

(c) We use the second method in (b). Then

i U\ _ limi U+AU_H — lim VAU — UAV

dz\V)  a—0Az |VHAV V| a0Az(V+AVYV
— lim 1 AiU_ ﬂ _ V(dU/dz) — U(dV /dz)
TAaso(VHEAVV | Az Az V2

The first method of (b) can also be used.
3.11. Prove that (a) (d/dz)e* = €%, (b) (d/dz)e™ = ae®™ where a is any constant.

Solution
(a) By definition, w = €* = "t = ¢*(cosy +isiny) = u +iv or u = e*cosy, v = e*siny.
Since du/dx = ¢* cosy = dv/dy and dv/dx = €* siny = —(du/dy), the Cauchy—Riemann equations are
satisfied. Then, by Problem 3.5, the required derivative exists and is equal to

ou .ov 7 . C
— =—i—+—=¢"cosy+ie'siny =¢

w T Ty
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(b) Let w = e where { = az. Then, by part (a) and Problem 3.39,

d , d, d,dl ., .
dze _dze _d{e dz_e a = ae
We can also proceed as in part (a).
d . d . d ’
3.12. Prove that: (a) —sinz =cosz, (b)—cosz= —sinz, (c)—tanz = sec”z.
dz dz dz

Solution
(a) We have w = sinz = sin(x 4 iy) = sinx coshy + i cos x sinhy. Then
u = sinxcoshy, v =cosxsinhy

Now du/dx = cosxcoshy = dv/dy and dv/dx = —sinxsinhy = —(du/dy) so that the Cauchy—Riemann
equations are satisfied. Hence, by Problem 3.5, the required derivative is equal to

ou . dv ou  dv .. . .
—+i—=—i—+—=cosxcoshy —isinxsinhy = cos(x + iy) = cos z
ox  ox dy  ay
Another Method
iz _ ,—iz
Since sinz = 27,6, we have, using Problem 3.11(b),
i
d d (e —e 1d ; 1d _; 1. 1 _;
L hing — & e A AN e A
ot dz( 2i ) 2idz’ " 2idt T2¢ Ta¢ Tt
d d (e 4 e " 1d .. 1d _;
b)) — 2= Y__Z iz, 27 iz
(b) g cosz dz( 2 ) 24:° Y2z’
= i.e"Z - iefiz = —L —e” = —sin
=2 T2° % 2 e

The first method of part (a) can also be used.
(c) By the quotient rule of Problem 3.10(c), we have

d . . d
dt d [sinz cosz-sinz — sinz--cosz
—tlanz = — =
dz dz \cosz cos? z
_ (cosz)(cosz) — (sinz)(—sinz) cos?z+sin’z R
= 2 = 2 =2, sz
cos? z cos?z cos? z
d 12 1 .. 1/2 ; . .
3.13. Prove that d—z =2 realizing that z'/~ is a multiple-valued function.
z Z

Solution

A function must be single-valued in order to have a derivative. Thus, since z!/? is multiple-valued (in this case
two-valued), we must restrict ourselves to one branch of this function at a time.

Case 1
Let us first consider that branch of w = z!/2 for which w = 1 where z = 1. In this case, w? = z so that

dz dw 1 d i |1
%—ZW and so = or d—zz =57
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3.14.

3.15.

3.16.

Case 2
Next, we consider that branch of w = z!/2 for which w = —1 where z = 1. In this case too, we have w? = z
so that

dz dw 1 d | 1

= =2 d —==— =2 =

aw M G T Y Toan

Inboth cases, we have (d/dz)z'/* = 1/(2z!/?). Note that the derivative does not exist at the branch point z = 0.
In general, a function does not have a derivative, i.e., is not analytic, at a branch point. Thus branch points are
singular points.

d 1
Prove that —Inz = —.
dz z

Solution
Let w =1Inz. Then z = ¢" and dz/dw = " = z. Hence

d dw 1 1

dz nzzjz:dz/dw:z

Note that the result is valid regardless of the particular branch of In z. Also observe that the derivative does
not exist at the branch point z = 0, illustrating further the remark at the end of Problem 3.13.

d _f®@
Prove that d—zln fl@) = Q"

Solution
Let w = In { where { = f(2). Then

dw_dw df 1 d{_ [
dz —dl dz ¢ di f@2)

1
1—z2

d 1 d
Prove that: —sinlz=————, (b)—tanh 'z =
rove that: (a) & sin” " z = (b) & anh™ " z

5

Solution

(a) If we consider the principal branch of sin™! z, we have by Problem 2.22 and by Problem 3.15
d . d |1 1d
dz ) T4z 71 (I 1_ 2) :77< l_ 2) (‘ 1_ 2)
dzsm z dz{i n(iz + z i Z+ Z 1z + z
L. 1 2y-1/2 .
=3 l—l—i(l—z) (—22) (zz—i— 1—z2>

(o) e

The result is also true if we consider other branches.

(b) We have, on considering the principal branch,

1 14z 1 1
tanh™' z==In[ — ) = =1In(1 ——1In(1 —
anh™" z 2“(1—1) 2n( +2) 2n( 2)
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Then

d 1d 1d 1/ 1 1/ 1 1
—tanh™! z = ~—In(1 ———In(l—2) == = =
e A 2<1+Z>+2<1—z> [

Note that in both parts (a) and (b), the derivatives do not exist at the branch points z = +1.

3.17. Using rules of differentiation, find the derivatives of each of the following:
(a) cos’(2z + 3i), (b) ztan"!(Inz), (c) {tanh™'(iz+2)}"", (d) (z — 3i)**™2

Solution

(@) Letm=2z+4+3i,{=cosn,w= §2 from which w = cos?(2z + 3i). Then, using the chain rule, we have

dw dw d{ dn e _ o _ o . .
Gl A (2¢)(=sin m)(2) = (2 cos N)(—sin N)(2) = —4 cos(2z + 3i) sin(2z + 3i)

Another Method
d 2 | d .
—{cos(2z + 3i)}* = 2{cos(2z + 3i)}{—cos(2z + 3i)
dz dz

= 2{cos(2z + 3i)}{—sin(2z + Si)}{d%(Zz + 3i)}

= —4cos(2z + 3i) sin(2z + 3i)

(b) d%{(z)[tan*‘ (In2)]} = zd% [tan™!(In 2)] + [tan~"(In 2)] diz(Z)

1 d 1
=y——st—d tan'(Inz) = ——— + tan~'(l
Z{l+(lnz)2}dz(nz)+an o) = e T (2
d =1 -1 —1/- -2 d —1,:
() d—z{tanh (iz+2)}7" = —1{tanh™ " (iz + 2)} d—z{tanh (iz+2)}
= —{tanh ™! (iz + 2)} 2 _ i(iz +2)
B 1—(iz+2)?] dz
_ —iftanh™'(iz 4+ 2)}
T 1= (iz+2)?
d w4742 d (4z+2) In(z—3i) (4z+2) In(z—3i) d .
—{(@ =32} = — [P = (HADIET — (47 4 2) In(z — 3i)}
) dz dz dz

: d d
= MDD Y (47 4 2) —[In(z — 3)] + In(z — 3i) — (42 + 2)
dz dz
= DD {L 2 din— 3i)}
z—3i
= (z = 3" 4z 4+ 2) + 4z — 3)* " In(z — 3i)

3.18. Suppose w? — 3z>w +41Inz = 0. Find dw/dz.

Solution

Differentiating with respect to z, considering w as an implicit function of z, we have

d 5 d 5 d ,dw > dw 4
dz(w ) a’z(Z W)+ dz(nz) or 2w dz ¢ dz ZW—i_z

d 6zw —4
Then, solving for dw/dz, we obtain d—vzv = 33‘;7_35
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3.19. Given w = sin”!(+ — 3) and z = cos(In 7). Find dw/dz.

Solution

dw _dw/dt 1)1 =1 =37

t
dz — dz/dr — —sinIn0(1/)  gin(inHy/1 — (= 372

3.20. In Problem 3.18, find d?w/dz>.

dw _d (dw\ _d (6w —4/z

dz2 ~ dz\dz)  dz\3w? — 3z
_ (3w? —32)(6z dw/dz + 6w + 4/2%) — (62w — 4/2)(6w dw/dz — 67)
N (Bw? — 3z2)?

Solution

The required result follows on substituting the value of dw/dz from Problem 3.18 and simplifying.

L'Hospital’s Rule

3.21. Suppose f(z) is analytic in a region R including the point zy. Prove that
@) = f(20) +f'(20)(z = 20) + M(z — 20)

where n — 0 as z — 2.

Solution
Let M _f/(ZO) = 1M S0 that
Z—20

f(@) = f(zo) + 1 (z0)(z — 20) = M(z — 20)

Then, since f(z) is analytic at z, we have as required

lim = i {f(Z)—f(ZO)
im n = lim{——————
Z—20

=20 =20

—f/(Zo)} =f"(z0) —f'(z0) =0

3.22. Suppose f(z) and g(z) are analytic at zg, and f(z0) = g(z0) = 0 but g'(z9) # 0. Prove that

lim 1@ _ /o)
im-—=
= 8(2)  §'(20)

Solution

By Problem 3.21 we have, using the fact that f(z9) = g(z0) = 0,
F@ = f(z0) + ')z — 20) + Mz — 20) = f'(20)(z — 20) + M (z — 20)
8(2) = g(z20) + §'(20)(z — 20) + M(z — 20) = &'(20)(z — 20) + M (z — 20)

where lim__, ; n; = lim,_,,,n, = 0. Then, as required,
. f@ o Af@) +miz—20)  f'(z0)

lim — = lim =
=0g@)  =u{g )+ miz—2) &)
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Another Method
lim 1@ _ lim f(@) —f(z0) /82— g(z0)
—20g(z) —w  z2—2 Z—20
_ (hm f@ —f(Zo)>/<hm 8@ — g(Zo)> _J @)
720 Z—20 =0 Z—20 g'(Zo)
10
oz +1 . 1 —cosz . 1 —cosz
3.23. Evaluate (a) glg} m, (b) lgr(l) T’ (©) }%W
Solution

(@) Let f(z) =79+ 1 and g(z) = z° + 1. Then f(i) = g(i) = 0. Also, f(z) and g(z) are analytic at z = i.
Hence, by L’Hospital’s rule,
M4l 102 5, s

lim———— =1lim—— = m-=z ==
—i 720+ 1 =i 67° —i3 3

(b) Letf(z) =1 —coszand g(z) = z>. Then f(0) = g(0) = 0. Also, f(z) and g(z) are analytic at z = 0. Hence,
by L’Hospital’s rule,
. 1—cosz . sing
lim ——— = lim——
=0  Z2 =0 27
Since fi(z) = sinz and g;(z) = 2z are analytic and equal to zero when z = 0, we can apply L’Hospital’s
rule again to obtain the required limit,

(c) Method 1. By repeated application of L’Hospital’s rule, we have

i 1 —cosz i sinz . cosz 1
im— = lim = lim - =
0 sinz? =>02zcoszz2  z—02cosz? —4z2sinz? 2

. . _sinz L .
Method 2. Since lln(l)— = 1, we have by one application of L’Hospital’s rule,
=0 Z
. l—cosz . sinz . (sinz 1
lim — = lim =lim{—
z—0 sinz? ~02zc08z2 =0\ Z 2 cos 72

si 1 N 1

—tim () tim(—— ) =)= ) ==

=0\ z ) z>0\2cosz> 2 2
2

Method 3. Since lin(l)% =1 or, equivalently, lirré
=0 Z 7—

=1, we can write

sin z2

. 1 —cosz . 1 —cosz 2 . l—cosz 1
lim — = lim 5 — | = lim 5 =—
=0 sing =0 z sin z =0  Z 2

using part (b).

3.24. Evaluate lim,_,( (cosz)"/ 2,

Solution

Let w = (cosz)/<". Then Inw = (Incosz)/z> where we consider the principal branch of the logarithm. By
L’Hospital’s rule,

. . Incosz . (—sinz)/cosz
limlnw = lim =lim——
z—0 z—0 Z2 z—0 21

. (sinz 1 _ n_ 1
- gﬂ)(?) <_20052) B (1)(_5) )
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But since the logarithm is a continuous function, we have

1
limlnw = ln(limw) =—=
z—0 z—0 2
or lim,_,ow = e~!/2, which is the required value.
Note that since lim,_,o cosz = 1 and lim,_,¢ 1/z> = oo, the required limit has the “indeterminate form” 1%,

Singular Points

3.25. For each of the following functions, locate and name the singularities in the finite z plane and deter-

mine whether they are isolated singularities or not.

In(z — 2) sin \/z
(@ fl)= 7, (b) f@=sec(l/z), (©) fQD="F""F""F7z @D f@=
+4)? (22 42z +2)* N4
Solution
z b4
(@ fl@)= . 5 = . -
! 22+ 4)2 {Z 420z =20 (z+20)*(z—2i)
Since
lim (¢~ 207() = lim - = £ £0
i —2i = lim
< ¢ 2i(z + 20 8i
z = 2i is a pole of order 2. Similarly, z = —2i is a pole of order 2.
Since we can find 8 such that no singularity other than z = 2i lies inside the circle |z — 2i| = & (e.g.,
choose 6 = 1), it follows that z =2i is an isolated singularity. Similarly, z = —2i is an isolated
singularity.

(b) Since sec(1/z) = 1/cos(1/z), the singularities occur where cos(l1/z) =0, i.e., 1/z=Q2n+ 1)7/2 or
z=2/(2n+ 1)m, where n =0, +1, +£2, +3,.... Also, since f(z) is not defined at z = 0, it follows
that z = 0O is also a singularity.

Now, by L’Hospital’s rule,

C =2/Qn+ 7

lim
—>2/Qn+ ) cos(1/z)

. 1

lim — 5
z=2/@n+Dyr —sin(1/z){—1/7%}

_{2/@n+Dm? A=1)

. 2
Hz}%ﬁinw{z Qn+ D }f @ =

=— = #0
sinn 4+ D@/2  2n+ 1)* 72
Thus the singularities z =2/(2n+ 1)/, y
n=0, +1, £2,... are poles of order one,
i.e., simple poles. Note that these poles are
located on the real axis at z= +2/m, s | 25x

+2/3ar, £2/5m,... and that there are infi- ——e ————— ¢ ¢ e ¢ ¢
nitely many in a finite interval which includes —n —3 23m vr
0 (see Fig. 3-9).

Since we can surround each of these by a
circle of radius 8, which contains no other
singularity, it follows that they are isolated Fig. 3-9
singularities. It should be noted that the 6
required is smaller the closer the singularity is to the origin.

Since we cannot find any positive integer n such that lim,_,o (z — 0)"f(z) = A # 0, it follows that z = O is
an essential singularity. Also, since every circle of radius 6 with center at z = 0 contains singular points other
than z = 0, no matter how small we take 8, we see that z = 0 is a non-isolated singularity.
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(c) The point z =2 is a branch point and is a non-isolated singularity. Also, since 7> + 2z + 2 = 0 where
z=—1 4 i, it follows that 2> + 2z +2 = (z+ 1 + i)z + 1 — i) and that z = —1 =+ i are poles of order 4
which are isolated singularities.

(d) At first sight, it appears as if z =0 is a branch point. To test this, let z = re’® = re’®?2™ where
0<6<2m

% we have

Ifz=ré

sin(y/re'%?)

f@) = N

If z = re' ™2™ we have

sin(y/re'%?e™) _ sin(—/7e'%?) _ sin(y/re'%?)

f@= Jretlem T [reif2 T [rei®2

Thus, there is actually only one branch to the function, and so z = 0 cannot be a branch point.
Since lim,_,¢ sin v/z/+/z = 1, it follows in fact that z = 0 is a removable singularity.

B+ +2

3.26. (a) Locate and name all the singularities of f(z7) = —— .
® s 1@ (z— 1@z +2)7?

(b) Determine where f(z) is analytic.

Solution

(a) The singularities in the finite z plane are located at z =1 and z = —2/3; z = 1 is a pole of order 3 and
z = —2/3 is a pole of order 2.
To determine whether there is a singularity at z = oo (the point at infinity), let z = 1/w. Then

AP +a/wit+2  T+w 4208

A/w—=1°G/w+2?2 w1 —w)’3+2w)?

Thus, since w = 0 is a pole of order 3 for the function f(1/w), it follows that z = o is a pole of order 3
for the function f(z).

Then the given function has three singularities: a pole of order 3 at z =1, a pole of order 2 at
z=—2/3, and a pole of order 3 at 7z = .

Ja/w) =

(b) From (a) it follows that f(z) is analytic everywhere in the finite z plane except at the points z = 1 and —2/3.

Orthogonal Families

3.27. Letu(x, y) = a and v(x, y) = B, where u and v are the real and imaginary parts of an analytic func-
tion f(z) and « and B are any constants, represent two families of curves. Prove that if f'(z) # 0, then
the families are orthogonal (i.e., each member of one family is perpendicular to each member of the
other family at their point of intersection).

Solution

Consider any two members of the respective families, say u(x, y) = a; and v(x, y) = B; where a; and B, are
particular constants [Fig. 3-10].
Differentiating u(x, y) = «; with respect to x yields

ou Odudy

— = =

ox  dydx
Then the slope of u(x, y) = a; is

dy  ou /ou

dx  ox Biy
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Similarly, the slope of v(x, y) = B, is

dy v jov
dx  ax/ By
Now
ou Odv Ov . ou ou v v ou
"@=—+i—=——i— #0 ither —=— #0 =——#0
F@ 8x+18x ay 18y7é = er8x E)y7é Orax E)y7é

From these equations and inequalities, it follows that either the product of the slopes is —1 (when none of the
partials is zero) or one slope is 0 and the other infinity, i.e., one tangent line is horizontal and the other is vertical,

when
8u_av_0 Bu_ Bu_
o dy ax Ay
Thus, the curves are orthogonal if f/(z) # 0.
y
y
B c
/‘/z
D ot A
X
19) a
X \\/’/
E
Fig. 3-10 Fig. 3-11

3.28. Find the orthogonal trajectories of the family of curves in the xy plane which are defined by
e *(xsiny — ycosy) = a where « is a real constant.

Solution

By Problems 3.7 and 3.27, it follows that e *(y siny 4+ xcosy) = 3, where f3 is a real constant, is the required
equation of the orthogonal trajectories.

Applications to Geometry and Mechanics

3.29. An ellipse C has the equation z = a cos wt + bi sin wt where a, b, w are positive constants, a > b,
and ¢ is a real variable. (a) Graph the ellipse and show that as ¢ increases from ¢ = 0 the ellipse
is traversed in a counterclockwise direction. (b) Find a unit tangent vector to C at any point.

Solution

(a) Astincreases from Oto 7/2w, 7/2wtom/w, w/wto37/2w, and37/2wto2m7/w, pointzonC
moves from A to B, Bto D, D to E, and E to A, respectively (i.e., it moves in a counterclockwise direction
as shown in Fig. 3-11).
(b) A tangent vector to C at any point 7 is
dz

o = —aw sin wt + bwi cos wt

Then a unit tangent vector to C at any point ¢ is

dz/dt —aw sin wt + bwi cos wt —asin wt + bi cos wt

ldz/dt] | —aw sinwt +bwicoswt| /42 sin? wt + b2 cos? wt
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3.30. In Problem 3.29, suppose that z is the position vector of a particle moving on C and that ¢ is the time.
(a) Determine the velocity and speed of the particle at any time.
(b) Determine the acceleration both in magnitude and direction at any time.
(c) Prove that d°z/dt* = —w’z and give a physical interpretation.
(d) Determine where the velocity and acceleration have the greatest and least magnitudes.

Solution

(a) Velocity = dz/dt = —awsin wt 4+ bwi cos wt.

Speed = magnitude of velocity = |dz/dt| = wva? sin® wr + b2 cos? wt

(b) Acceleration = d’z/dt*> = —aw? cos wt — bw’i sin wt.

Magnitude of acceleration = |d*z/df*| = 0V a? cos? wt + b sin® wt

(c) From (b) we see that
dzz/a't2 = —aw’ cos ot — bw’isin wf = —w*(acos wi + bisin wf) = —w’z

Physically, this states that the acceleration at any time is always directed toward point O and has magni-
tude proportional to the instantaneous distance from O. As the particle moves, its projection on the x and y
axes describes what is sometimes called simple harmonic motion of period 27/ w. The acceleration is
sometimes known as the centripetal acceleration.

(d) From (a) and (b), we have

Magnitude of velocity = wy/a? sin® wt 4+ b2(1 — sin® wf) = w\/ (a% — b?) sin® wt + b2

Magnitude of acceleration = w”y/a? cos? wt + b2(1 — cos? wt) = w’+/(a? — b?) cos? wt + b>

Then, the velocity has the greatest magnitude [given by wa] where sin wt = +1, i.e., at points B and E
[Fig. 3-11], and the least magnitude [given by wb] where sin wt = 0, i.e., at points A and D.
Similarly, the acceleration has the greatest magnitude [given by w?a] where cos wt = =+1, i.e., at
points A and D, and the least magnitude [given by w’b] where cos wt = 0, i.e., at points B and E.
Theoretically, the planets of our solar system move in elliptical paths with the Sun at one focus. In
practice, there is some deviation from an exact elliptical path.

Gradient, Divergence, Curl, and Laplacian

3.31. Prove the equivalence of the operators:

ad ad d ad 0 ]
I — b)) —=il——= h — 1y, 7 =X — Iy.
(a) 3x_3z+ z ( )By l(az 3Z> where z=x+1y,z=x—1y

Solution

If F is any continuously differentiable function, then

(a) 87F_87F§ a—F%—g—i—a—lpshowin the e uivalencej—g—i—3
o dzax | zax oz & gfhe ox oz 0%

oF 0F 0z OF oz
) o=t

+ aF(')+8F( i) ,<8F 8F> showing the equivalence 9 ,(8 8)
=— =D+ =) =il = W uiv —=il——=).
oy ocoy oy o & gfheed

9z oz dy dz 0z
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5 8 8 . _ 9 9 9
3.32. Show that @) V=— +i0 =22 pyv=2_;0 00
owthat (@) V.= + iy =2 OV =071 T 2%,

Solution

From the equivalences established in Problem 3.31, we have

5 8 9 SR 5

VE '7 —_ —_— 2——— :2—

@ iy Em (32 az) P
9

o
D 00,0 p(8 ) 50
ox dy 9z 0z iz oz 0z

3.33. Suppose F(x, y) = ¢ [where ¢ is a constant and F is continuously differentiable] is a curve in the xy
plane. Show that grad F = VF = (dF /dx) + i(dF'/dy), is a vector normal to the curve.

(b) V=

Solution

We have dF = (dF /dx)dx + (0F /dy)dy = 0. In terms of dot product [see page X], this can be written

oF  oF
—+i— |- (dx+idy) =
dx ay

But dx + idy is a vector tangent to C. Hence VF = (0F /dx) + i(0F /dy) must be perpendicular to C.

oP oB
3.34. Show that — — —Q +i 90 + — ) = 2—= where B(z, z) = P(x, y) +iQ(x, y).
dx  dy ax By 0z

Solution

From Problem 3.32, VB = 2(dB/dz). Hence

(2,0 P00 (0 P\ 0B
VB_<8 +i )(P—}—Q) . 3y+<3x+8y)_282

3.35. Let C be the curve in the xy plane defined by 3x?y — 2y* = 5x*y?> — 6x2. Find a unit vector normal
to C at (1, —1).

Solution

Let F(x, y) = 3x%y — 2y® — 5x*)? 4 6x? = 0. By Problem 3.33, a vector normal to C at (1, —1) is

oF oF
VF = SoTis-= = (6xy — 20x°y? + 12x) + i(3x* — 6y* — 10x*y) = —14 + 7i
X y
—144+7i -2+ 2—1i
Then a unit vector normal to C at (1, —1) is + l. = + l. Another such unit vector is l.
| —14 + 7i] V3 V35

3.36. Suppose A(x, y) = 2xy — ix?y>. Find (a) grad A, (b) div A, (c) |curl A|, (d) Laplacian of A.
Solution
(a) grad A= VA = 3 + i3 (2xy - ix2y3) = 3 (2xy - ix2y3) + i3 (2xy - ix2y3)
ox  dy ox ay

=2y — 2ixy’ + i(2x - 3ix2y3) =2y 4 3x%y* + i(2x - 2xy3)
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a d
= () - — )| = | —207 - 24
ox ay

- PA A P &
(d) Laplacian A = V?A = Re{VVA} = — + — = — 2xy — ix’y’) + — 2xy — ix’y*)
o2 9yr 2 9y?

B) 3
= $(2y —2ixy®) + @(2x —3ix?y?) = —2iy> — 6ix’y

Miscellaneous Problems

3.37. Prove that in polar form the Cauchy—Riemann equations can be written

u_1ov v 1du

o roo’ or  rod
Solution
We have x=rcosf, y=rsinforr=./x2+y2, O=tan"'(y/x). Then

3u_8u3r+8u80_3u X +8u —y —aucose lausine
drox B00x I\ /X242 0\x2+y2) " or raf

e ey N we( x N
dy ordy 909y or\ /X242 0\x2+y2) " or r a0

Similarly,

3v_808r+81)86_800080 1avsin0
o  drax 90ax  or raf
v odvdr dJvdf dv 1dv
—=——+——=—sinf+—-—cosf
dy drdy 06dy or raf

From the Cauchy-Riemann equation du/dx = dv/dy we have, using (1) and (4),

ou 10dv v 1ou\ .
(5—;%>0050—(5+;%>Sm9—0

From the Cauchy—Riemann equation du/dy = —(dv/dx) we have, using (2) and (3),

ou 1av\ . o 1ou
(5—;@>sm9+<5+;%>0036—0

ou 10ov or %_1@
ar rof ar  roe

ov 10du o 10u

o ' roo T T roe

()]

(@)

3

“

&)

(6)
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3.38. Prove that the real and imaginary parts of an analytic function of a complex variable when expressed

3.39.

in polar form satisfy the equation [Laplace’s equation in polar form]

827\If 190 1 P¥

o7 o TR
Solution
From Problem 3.37,

To eliminate v differentiate (1) partially with respect to r and (2) with respect to 6. Then

Po 000\ 0 o\ Fu o 3
aro0 or\ae)  oar\ or) o2 or
Po _ 0 (o) _0( low) __1%u @
a0ar  00\ar) ~ 90\ rae) ra?
But
Pv _ Pv
o0 90or

assuming the second partial derivatives are continuous. Hence, from (3) and (4),

P e 1P Pu 1k 1Py
a2 ar roft a2 ror rrog

Similarly, by elimination of u«, we find

Bzv+lav+ 1
2 ror r2ogt

so that the required result is proved.

Suppose w = f({) where { = g(z). Assuming f and g are analytic in a region R, prove that
dw _dw dg
dz d{ dz

Solution

Let z be given an increment Az # 0 so that z + Az is in R. Then, as a consequence, { and w take on increments
A and Aw, respectively, where

Aw =+ AL — (), Al=g(z+ A7) —g2) (D
Note that as Az — 0, we have Aw — 0 and A — 0.

If AL #0, let us write € = (Aw/Al) — (dw/d{) so that € — 0 as A — 0 and
dw

AW:d{

AL+ €Al @
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If A = Ofor values of Az, then (1) shows that Aw = O for these values of Az.

Complex Differentiation

For such cases, we define € = 0.

It follows that in both cases, A # 0 or A = 0, (2) holds. Then dividing (2) by Az # 0 and taking the limit

as Az — 0, we have

dw Aw dw Al
4z AJ,ToTz - Azl,in0<d7§A7z
_dw AL
b
_dw
=%

N Aw
Plidd
Az

Az—0 AZ
¢ di _ dw di

dz dz_?é.jz

Az—0

. . . Aw
lim — + lim €- lim —
Az—0 AZ

3.40. (a) Suppose u(x, y) = du/0x and u(x, y) = du/dy. Prove that f'(z) = ui(z, 0) — iup(z, 0).

341.

(b) Show how the result in (a) can be used to solve Problems 3.7 and 3.8.

Solution
ou . ou .
(a) From Problem 3.5, we have f'(z) = o 15 =ui(x, y) — iup(x, y).
X
Putting y = 0, this becomes f'(x) = u1(x, 0) — iuz(x, 0).

Then, replacing x by z, we have as required f'(z) = u;(z, 0) — iuy(z, 0).

(b) Since we are given u = e *(xsiny — ycosy), we have
ou —X o3 —X o} —X
ul(x,y)za—:e siny — xe *siny + ye " cosy
X
8” -2 -7 o1 —X
uz(x,y)za—:xe ‘cosy+ye ‘siny —e cosy
'y

so that from part (a),

f@ =ui(z, 0) —iup(z, 0) = 0 — i(ze " — ™) = —i(ze * — ™)

Integrating with respect to z we have, apart from a constant, f(z) = ize™*
imaginary parts, v = e *(ysiny 4 x cosy) apart from a constant.

. By separating this into real and

Suppose A is real or, more generally, suppose Im A is harmonic. Prove that |curl grad A| = 0.

Solution
If A = P+ Qi, we have

P 0

0 0
dA=—+i—|(P+iQ) =
gra ( ti 8y)( +iQ) ox  ay

Then o

9 A\ [oP 80 P
1 grad A I ——1 ———+i|l—+
|cur gra | m|:<a la ){3 ay l(ay

gl

PP Q[P PO (P ¥Q
= |Im| — — +i +—=) - -—=
oxz  Oxdy oxdy  ox? dyax  9y?
_|e, #2
Tl 9y?

Hence if Q =0, i.e., A is real, or if Q is harmonic, |curl grad A| = 0.

+i E)PJF
(2L
ay

Y
)

0

5]

*P
)* (W*
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L . .U PU 5,
3.42. Solve the partial differential equation —- + — = x~ — y“.
oxr  9y?

Solution
Let z =x+iy, Z=x—iy so that x = (z +2)/2,y = (z — 2)/2i. Then x* — y* = {(# + 7% and

82U+82U_V2U_482U
a2 Byr T azoz

Thus, the given partial differential equation becomes 4(3*U/dz 8Z) = %(22 +7) or

(N _1 22
8z(82>_8(z +79) (D

Integrating (1) with respect to z (treating z as constant),

w7z

a—z—ﬂ—i-?wLFl(E) (2)
where F(Z) is an arbitrary function of z. Integrating (2) with respect to z,
P72 i}
Uzﬂ-l-ﬂ-i-F(Z)-i-G(Z) 3)

where F(z) is the function obtained by integrating F(Z), and G(z) is an arbitrary function of z. Replacing z and z
by x + iy and x — iy, respectively, we obtain

1
U:ﬁ(x“—y4)+F(x—iy)+G(x+iy)

SUPPLEMENTARY PROBLEMS

Derivatives

3.43. Using the definition, find the derivative of each function at the indicated points.

@) f)=32+4iz—5+i;z2=2, (b)f) == —i, (©f(@=3z%z=1+i

2z —1i
.+

d ,_ .
3.44. Prove that d—(z 7) does not exist anywhere.

z

3.45. Determine whether |z|? has a derivative anywhere.

3.46. For each of the following functions determine the singular points, i.e., points at which the function is not
Z 3z-2
, (b)) 5————.
z+i ®) 22+2z+5

analytic. Determine the derivatives at all other points. (a)

Cauchy-Riemann Equations

3.47. Verity that the real and imaginary parts of the following functions satisfy the Cauchy—Riemann equations and
thus deduce the analyticity of each function:

@fR)=22+5iz+3—i, (b)fx)=ze% (c)f(z)=sin2z.

3.48. Show that the function x> + iy’ is not analytic anywhere. Reconcile this with the fact that the Cauchy—
Riemann equations are satisfied at x =0,y = 0.

3.49. Prove that if w = f(z) = u + iv is analytic in a region R, then dw/dz = dw/dx = —i(dw/dy).



3.50.

3.51.
3.52.

3.53.

3.54.

3.55.
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(a) Prove that the function u = 2x(1 — y) is harmonic. (b) Find a function v such that f(z) = u + iv is analytic
[i.e., find the conjugate function of u]. (c) Express f(z) in terms of z.

Answer Problem 3.50 for the function u = x> — y> — 2xy — 2x + 3y.
Verify that the Cauchy—Riemann equations are satisfied for the functions (a) ezz, (b) cos 2z, (c) sinh4z.

Determine which of the following functions u are harmonic. For each harmonic function, find the conjugate
harmonic function v and express u + iv as an analytic function of z.

(@) 3x%y +2x* —y* — 2%, (b) 2xy 4+ 3xy?> — 2y, (c) xecosy — yefsiny, (d) e 2 sin(x? — y?).

(a) Prove that ¢ = In[(x — 1)*> + (y — 2)?] is harmonic in every region which does not include the point (1, 2).
(b) Find a function ¢ such that ¢ + i is analytic. (c) Express ¢ + i as a function of z.

Suppose Im{f'(z)} = 6x(2y — 1) and f(0) = 3 — 2i, f(1) = 6 — 5i. Find f(1 + i).

Differentials

3.56.
3.57.

3.58.

3.59.

3.60.

3.61.

Let w = iz> —4z+3i. Find (a) Aw, (b)dw, (c) Aw — dw at the point z = 2i.
Suppose w = (2z 4+ 1)?, z = —i, Az = 1 + i. Find (a) Aw and (b) dw.

Suppose w = 3iz> +2z+ 1 —3i. Find (a) Aw, (b)dw, (c) Aw/Az, (d) dw/dz where z = i.

A in A in? (Az/2
(a) Suppose w = sinz. Show that v =Co0sz R 2sinz sin”(42/2) .
Az Az Az

in A d
(b) Assuming limAZﬁow = 1, prove that aw_ coS Z.
Az dz

(c) Show that dw = (cos z) dz.

(a) Let w = Inz. Show that if Az/z = £, then Aw/Az = (1/2) In{(1 + H)'/%}.
(b) Assuming limg_o (1 + {)'/* = e prove that dw/dz = 1/z.
(¢) Show that d(Inz) = dz/z.

Giving restrictions on f(z) and g(z), prove that

(@) d{f(2)8(2)} = {f(2)¢'(2) + g(2)f "(2)}dz
(b) d{f(2)/2(2)} = {8 (2) — f@g @}dz/{g@))

Differentiation Rules. Derivatives of Elementary Functions

3.62.

3.63.

3.64.

Suppose f(z) and g(z) are analytic in a region R. Then prove that
(a) d/dz{2if (2) — (1 + )g(@)} = 2if'(2) — (1 + g (2), (b) d/dz{f ()}’ = 2 ()f (2),
(©) d/dz{f()} ™ = —{(f}°f (@.

Using differentiation rules, find the derivatives of each of the following functions:
(@) (1 +4)% —3z—2, (b) Qz+3)z—1), () Rz—1i)/(z+2i), () Qiz+1)? (e)iz— 1.

Find the derivatives of each of the following at the indicated points:

@ @+20)(i—2)/Qz—1,z=i, 0) {z+E@+ D, z=1+i
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d d
3.65. Prove that (a) —secz=secztanz, (b) —cotz = —csc’z.
dz dz

d Z d 2742
3.66. Provethat(a) —(ZZ+ DN/ =— ) —In(?+2z+2) =
rove that (a) dz(z +1) EEE ( )dz n(z" +2z+2) Z

———— indicating restrictions if any.
+2z+2

3.67. Find the derivatives of each of the following, indicating restrictions if any.

(a) 3sin’(z/2), (b)tan’(2 —3z+4i), (c)In(secz+tanz), (d)csc{(z2+ D'2}, (e) (22 — 1) cos(z + 2i).

d d 1
3.68. Prove that  (a) (1 + )P =301+, (b)d—z(z+2ﬁ>‘/3 =37 @+ 2V e+ D
d 1 d 1
3.69. Prove that (a) —(tan"!z) = , (b)) —(sec”!z) = ——.
\d ()dz( 2) 71 ()dz( 2) Y
d 1 d -1
3.70. Prove that (a) —sinh™!'z= . (b)—csch™lz=———
()dZ 1422 ()dZ W2 +1

3.71. Find the derivatives of each of the following:
(@) {sin"'(2z—1)}?, (c) cos™!(sinz —cosz), (e) coth™'(zcsc?2z)
(b) Infcot™" 2%}, @ tan~' (z 43072, (f) In(z -3+ V22 =32+ 20)
3.72. Suppose w = cos~'(z — 1), z = sinh(3¢ + 2i) and { = +/¢. Find dw/ad.
3.73. Letw =tsec(r — 3i) and z = sin"' (2t — 1). Find dw/dz.
3.74. Suppose w? — 2w +sin2z =0. Find (a) dw/dz, (b) d*w/dz*.
3.75. Given w = cos {, z = tan({ + mi). Find d’w/dz* at { = 0.
3.76. Find (a) d/dz(z"7), (b) d/dz{[sin(iz — 2)]*" @3},
3.77. Find the second derivatives of each of the following:

(@) 3sin’(2z—144i), (b)Intanz?, (c)sinh(z+ 1)%, (d) cos~!'(Inz), (e) sech™'v/T+z.

L'Hospital’s Rule

2 2o
244 ) z 7 —2iz—1
3.78. Evaluat li , (b) I —e™/3 , lim ———-
valuate  (a) lim Py — ( );2}/3 (z—e )<z3 n 1) (c) lim e
3.79. Evaluate (a) lim>—=, (b) lim (z— mm')( - )
z—0 4 z—>mmi sSin z

—1/.2 2
3.80. Find lim & +1°

— where the branch of the inverse tangent is chosen such that tan~! 0 = 0.
=i sin“(2 + 1)

sinz 1/
3.81. Evaluate lim(—‘) .

fand Z

Singular Points

3.82. For each of the following functions locate and name the singularities in the finite z plane.

2 -3z In(z + 3i) . 5 cosz
@y O 5 @i/, @VEHD ©

3.83. Show that f(z) = (z + 3i)°/(z*> — 2z + 5)* has double poles at z = 1 + 2i and a simple pole at infinity.

3.84. Show that ¢* has an essential singularity at infinity.



3.85.
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Locate and name all the singularities of each of the following functions.

@ @+3)/@E@ =1, (b)esc(l/z), (©) (& + D/

Orthogonal Families

3.86.

3.87.

3.88.

3.89.

Find the orthogonal trajectories of the following families of curves:
@xy—xy =a, (b)e*cosy+xy=a.
Find the orthogonal trajectories of the family of curves 7> cos 26 = a.

By separating f(z) = z + 1/z into real and imaginary parts, show that the families (+> + 1)cos # = ar and
(r> — 1)sin § = Br are orthogonal trajectories and verify this by another method.

Let n be any real constant. Prove that " = asecnf and " = [Bcscnf are orthogonal trajectories.

Applications to Geometry and Mechanics

3.90.

3.91.

3.92.

3.93.

A particle moves along a curve z = e '(2sint +icos ).
(a) Find a unit tangent vector to the curve at the point where t = 7/4.
(b) Determine the magnitudes of velocity and acceleration of the particle at r = 0 and /2.

A particle moves along the curve z = ae’. (a) Show that its speed is always constant and equal to wa.

(b) Show that the magnitude of its acceleration is always constant and equal to w’a.

(c) Show that the acceleration is always directed toward z = 0.

(d) Explain the relationship of this problem to the problem of a stone being twirled at the end of a string in a
horizontal plane.

The position at time ¢ of a particle moving in the z plane is given by z = 3t Find the magnitudes of
(a) the velocity, (b) the acceleration of the particle at t = 0 and t = 7.

A particle P moves along the line x + y = 2 in the z plane with a uniform speed of 34/2 ft/sec from the point
7z=—54+7itoz=10—8i. If w=2z> —3 and P’ is the image of P in the w plane, find the magnitudes of
(a) the velocity and (b) the acceleration of P’ after 3 seconds.

Gradient, Divergence, Curl, and Laplacian

3.94.

3.95.

3.96.

3.97.

3.98.

3.99.

3.100.

Let F = x>y —xy>. Find (a) VF, (b) V?F.
Let B=3z>4+4z. Find (a)grad B, (b)divB, (c)|curl B|, (d)Laplacian B.

Let C be the curve in the xy plane defined by x> — xy + y?> = 7. Find a unit vector normal to C at
(a) the point (—1, 2), (b) any point.

Find an equation for the line normal to the curve x?y = 2xy + 6 at the point (3, 2).
Show that V2| f(z) |> = 4| f'(z) |. Tllustrate by choosing f(z) = 22 + iz.
Prove V?{FG} = FV?G + GV*F +2VF - VG

Prove div grad A = 0 if A is imaginary or, more generally, if Re{A} is harmonic.

Miscellaneous Problems

3.101.

Let f(z) = u(x, y) + iv(x, y). Prove that:

(a) f(z) = 2u(z/2, — iz/2) + constant, (b) f(z) = 2iv(z/2, — iz/2) + constant.
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3.102.

3.103.

3.104.

3.105.

3.106.

3.107.

3.108.

3.109.

3.110.

3.111.

3.112.
3.113.

3.114.

3.115.

3.116.

3.117.

Use Problem 3.101 to find f(z) if (a) u(x, y) = x* — 6x%y* +y*,  (b) v(x, y) = sinhxcos y.

Suppose V is the instantaneous speed of a particle moving along any plane curve C. Prove that the normal com-
ponent of the acceleration at any point of C is given by V?/R where R is the radius of curvature at the point.

Find an analytic function f(z) such that Re{f'(z)} = 3x> — 4y — 3y? and f(1 + i) = 0.

Show that the family of curves
2 2

B G

a+r bPP+A
with —a> < A < —b? is orthogonal to the family with A > —b*> > —a?.
Prove that the equation F(x, y) = constant can be expressed as u(x, y) = constant where u is harmonic if and
only if the following is a function of F:

PF/x? + & F/ay*

(9F /3x)* + (OF /0y)*

[lustrate the result in Problem 3.106 by considering (y 4 2)/(x — 1) = constant.
Let f'(z) = 0 in a region R. Prove that f(z) must be a constant in R.

Suppose w = f(z) is analytic and expressed in polar coordinates (r, 6). Prove that

dw _ig W
A aid
dz or

Suppose u and v are conjugate harmonic functions. Prove that

Given u and v are harmonic in a region R. Prove that the following is analytic in R:
ou Ov 4 du n ov
- _ = il =4+ =
ay ox dx  dy

Prove that f(z) = |z|* is differentiable but not analytic at z = 0.

Given f(z) is analytic in a region R and f(z) f'(z) # 0 in R, prove that ¢ = In| f(z)| is harmonic in R.

Express the Cauchy—Riemann equations in terms of the curvilinear coordinates (& m) where
x=efcoshm, y=efsinhm.

Show that a solution of the differential equation
L—+4+R—+—==Eycos wt

where L, R, C, Ey and w are constants, is given by

Q _ Re Eoeimt
a iw[R + i(wL — 1/wC)]

The equation arises in the theory of alternating currents of electricity.

[Hint. Rewrite the right hand side as Eye’ and then assume a solution of the form Ae’” where A is to be
determined.]

Show that V2{f(2)}" = n?| f(2)|""2| f'(z)|?, stating restrictions on f(z).

*U  FU 8
Solve the partial differential equation el + W =2 g




3.118.

3.119.
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arr _ w2y — U Y @ - ﬂ
Prove that V*U = VA(V?U) = T5 +2 2oy + o 16 PPN
*U rU o'U
Solve the partial differential equation — + 2 ——— + =360 +7).

at Ty | gyt

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43.
3.46.
3.53.

3.54.
3.56.
3.58.
3.63.
3.64.
3.67.

3.71.

3.72.
3.74.
3.76.
3.71.

3.78.
3.82.

3.85.

3.86.
3.90.
3.92.
3.94.
3.96.
3.104.
3.119.

(a) 12 +4i, (b) —5i, (c) 3/2 + 3i/2 3.50. (b) 2y +x2—y%, (0) iz> + 2z
(@) —i, if/(z+ )% (b) =1 +2i, (19 + 4z — 322 /(2> +2z+ 5>  3.51. (b) x> —y* + 2xy — 3x — 2y
(@) v=4xy — x> +3xy° + ¢, f(z) = 2% — iz’ + ic, (b) Not harmonic

(c) ye*cosy + xe*siny + ¢, ze° + ic, (d) —e* cos(x> — y*) + ¢, —ie™ + ic

(b) —2tan"Y(y —2)/(x — D}, (c) 2iln(z — 1 — 2i) 3.55. 643i

(a) —8Az + i(A7)* = —8 dz = i(dz)?, (b) —8 dz, (c) i(dz)* 3.57. (a) 38 —2i, (b) 6 —42i

(a) —4Az + 3i(Az)?, (b) —4 dz, (c) —4 + 3iAz, (d) —4

(a) (2 +8i)z — 3, (b) 4z + i, (c) 5i/(z + 2i)*, (d) 4i — 8z, (e) —3i(iz — 1)~*

(a) —6/5 4 3i/5, (b) —108 — 78i

(@) 3sin(z/2)cos(z/2), (b) 3(2z — 3) tan®(z? — 3z + 4i) sec®(z> — 3z + 4i) (c) secz

(@ Z2esel@ 4+ DR eot(@ + D'
@+
(@) 2sin™! 2z — D/(z = )", (b) =22/(1 + ) cot™! 22, () —(sinz + cos 2)/(sin 22)'/2,

(A —1/2(z+ 143z +3)"2, (e) (csc22)(1 — 2zcot2z)/(1 — 22 esc? 22), (£) 1/8/22 — 3z + 2i
—3[cosh(3¢ + 20)1/2(2z — )22 3.73. sec(r — 3i){1 + rtan(r — 3)}(r — 12)'/?

, (€) (1 — z%)sin(z + 2i) + 2z cos(z + 2i)

() (cos2z2)/(1 — w), (b) {cos?2z — 2(1 —w)?sin2z}/(1 —w)>,  3.75. —cosh* 7

() 22" nz,  (b) {[sin(iz — 2)]*" @3 }itan~! (z + 3i) cot(iz — 2) + [Insin(iz — 2)]/[z> + 6iz — 8]}

(a) 24 cos(4z — 2 + 2i), (b) 4csc 22 — 1622 csc 272 cot 22

(¢) 2cosh(z + 1)> + 4(z 4 1)? sinh(z + 1), (d) (1 — Inz — In? 2)/z2(1 — In? 2)*/?

(e) —i(1 +32)/4(1 +2)*z3

(a) (16 4 12i)/25, (b) (1 —ix/3)/6, () —1/4  3.79. (a) 1/6, (b) e"™/coshmm 3.80. 1 3.81. e '/

(a) z= —1 =+ i; simple poles (d) z =0, +1i; branch points

(b) z = —3i; branch point, z = 0; pole of order 2  (e) z = —i; pole of order 3

(c) z=0; logarithmic branch point

(a) z = +1; simple pole

) z=1//mm, m=+1, +2, +3,...; simple poles, z = 0; essential singularity, z = oo; pole of order 2
(c) z = 0; branch point, z = o0; branch point

(@) x* —6x3y? +y* =B, (b) 2¢*siny+x* —y> =8 3.87. r’sin260=p

(a) +i, (b) Velocity: v/3, v/5e~™2. Acceleration: 4, 2e~"/?

(@) 3, 31 + 1672, (b) 24, 24/1 + 472 3.93. 24./10, (b) 72
(@) (2xy —y?) 4+ i(x® — 2xy), (b) 2y — 2x 3.95. (a) 8, (b) 12x, (c) |12y, (d) 0

(a) (=44 50)/+/41, (b) 2x —y + iy — )}//5x2 — 8xy +5y2  3.97. x=8r+3,y=3r+2
2422 +6-2i, 3.117. U =YInG? +y»)} + 2{tan"' (v/x)}* + F(x + iy) + G(x — iy)
U=5Le? + ) + (& + inFi(x — iy) + Gi(x — iy) + (x — iy)Fa(x + iy) + Ga(x + iy)



CHAPTER 4

Complex Integration
and Cauchy’s Theorem

4.1 Complex Line Integrals

Let f(z) be continuous at all points of a curve C [Fig. 4-1], which we shall assume has a finite length, i.e., C
is a rectifiable curve.

Fig. 4-1

Subdivide C into n parts by means of points z1, z3,. . ., Z,—1, chosen arbitrarily, and call a = zy, b = z,.
On each arc joining zz—; to z; [where k goes from 1 to n], choose a point &,. Form the sum

Sy =FENG1 — @) +f(E) 2 — 1)+ +FEND — 20-1) 4.1)
On writing z; — zx—1 = Az, this becomes
Su=Y_ f&)au—zu-1) =Y f(&Az 4.2)
k=1 k=1

Let the number of subdivisions n increase in such a way that the largest of the chord lengths |Azy|
approaches zero. Then, since f(z) is continuous, the sum S, approaches a limit that does not depend on
the mode of subdivision and we denote this limit by

b
Jf(z) dz or Jf(z) dz 4.3)
a C
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called the complex line integral or simply line integral of f(z) along curve C, or the definite integral of f(z)
from a to b along curve C. In such a case, f(z) is said to be integrable along C. If f(z) is analytic at all points
of a region R and if C is a curve lying in R, then f(z) is continuous and therefore integrable along C.

4.2 Real Line Integrals

Let P(x, y) and Q(x, y) be real functions of x and y continuous at all points of curve C. Then the real line
integral of Pdx+ Qdy along curve C can be defined in a manner similar to that given above and is
denoted by

J [P(x, y)dx + O(x, y)dy] or Jde + Qdy “4.4)
C C

the second notation being used for brevity. If C is smooth and has parametric equations x = ¢(), y = (t)

where t; <t < 1,, it can be shown that the value of (4) is given by
153

J [P{p(1), P} (1) dt + O{(1), Y}/ (1) dt]

n

Suitable modifications can be made if C is piecewise smooth (see Problem 4.1).

4.3 Connection Between Real and Complex Line Integrals

Suppose f(z) = u(x, y) + iv(x, y) = u + iv. Then the complex line integral (3) can be expressed in terms of
real line integrals as follows:

Jf(z) dz = J(u + iv)(dx + i dy)

C

c
:Judx—vdy+ijvdx+udy 4.5)
c c

For this reason, (4.5) is sometimes taken as a definition of a complex line integral.

4.4 Properties of Integrals

Suppose f(z) and g(z) are integrable along C. Then the following hold:

@ |[f@+g}ydz= Jf () dz + Jg(z) dz

C C C

b) |Af(9)dz=A J f(z)dz where A = any constant
c c
b

a

© [f@dz= —Jf(z)dz
b

b b
@ | flrdz= J f@)dz + J f(z)dz  where points a, b, m are on C

J
a

©) J f@)de| < ML
c
where | f(z)] < M, i.e., M is an upper bound of |f(z)| on C, and L is the length of C.
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There are various other ways in which the above properties can be described. For example, if 7, U, and V
are successive points on a curve, property (c) can be written [, f(2)dz = — [, f(2) dz.

Similarly, if C, Cy, and C, represent curves from a to b, a to m, and m to b, respectively, it is natural for us
to consider C = C; + C, and to write property (d) as

J f)dz = Jf(z)dz+ Jf(z)dz

C1+C; C G

4.5 Change of Variables

Let z = g({) be a continuous function of a complex variable { = u + iv. Suppose that curve C in the z plane
corresponds to curve C’ in the { plane and that the derivative g'({) is continuous on C’. Then

jf(z) dz = j FleO)g @) de 6)

c c

These conditions are certainly satisfied if g is analytic in a region containing curve C’.

4.6 Simply and Multiply Connected Regions

A region R is called simply-connected if any simple closed curve [Section 3.13], which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called multiply-
connected.

For example, suppose R is the region defined by |z| < 2 shown shaded in Fig. 4-2. If I is any simple
closed curve lying in R [i.e., whose points are in R], we see that it can be shrunk to a point that lies in
R, and thus does not leave R, so that R is simply-connected. On the other hand, if R is the region
defined by 1 < |z| < 2, shown shaded in Fig. 4-3, then there is a simple closed curve I' lying in R that
cannot possibly be shrunk to a point without leaving R, so that R is multiply-connected.

G -
)

y

<

y

7@

0

\P
y

Fig. 4-2 Fig. 4-3 Fig. 4-4

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a multiply-
connected region is one that does. The multiply-connected regions of Figs. 4-3 and 4-4 have, respectively,
one and three holes in them.
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4.7 Jordan Curve Theorem

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called
a Jordan curve [see Problem 4.30]. An important theorem that, although very difficult to prove, seems intui-
tively obvious is the following.

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve as a
common boundary. That region, which is bounded [i.e., is such that all points of it satisfy |z] <M
where M is some positive constant], is called the interior or inside of the curve, while the other region is
called the exterior or outside of the curve.

Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve is a
simply-connected region whose boundary is the simple closed curve.

4.8 Convention Regarding Traversal of a Closed Path

The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling
in this direction [and perpendicular to the plane] has the region to the left. This convention leads to the
directions indicated by the arrows in Figs. 4-2, 4-3, and 4-4. We use the special symbol

1; f(r)dz

C

to denote integration of f(z) around the boundary C in the positive sense. In the case of a circle [Fig. 4-2], the
positive direction is the counterclockwise direction. The integral around C is often called a contour integral.

4.9 Green’s Theorem in the Plane

Let P(x, y) and Q(x, y) be continuous and have continuous partial derivatives in a region R and on its bound-
ary C. Green’s theorem states that

TFde-l—Qdy:” (8Q_8P) dxdy 4.7
dox  dy
C R

The theorem is valid for both simply- and multiply-connected regions.

4.10 Complex Form of Green’s Theorem

Let F(z, z) be continuous and have continuous partial derivatives in a region R and on its boundary C,
where z = x + iy, z = x — iy are complex conjugate coordinates [see page 7]. Then Green’s theorem can
be written in the complex form

fi; F(z,2)dz=2i H%I_: dA 4.8)
C R ©

where dA represents the element of area dx dy.
For a generalization of (4.8), see Problem 4.56.
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4.11 Cauchy’s Theorem. The Cauchy-Goursat Theorem

Let f(z) be analytic in a region R and on its boundary C. Then

jgf(z) dz=0 (4.9)

C

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is valid for
both simply- and multiply-connected regions. It was first proved by use of Green’s theorem with the added
restriction that f'(z) be continuous in R [see Problem 4.11]. However, Goursat gave a proof which removed
this restriction. For this reason, the theorem is sometimes called the Cauchy—Goursat theorem [see
Problems 4.13-4.16] when one desires to emphasize the removal of this restriction.

4.12 Morera’s Theorem

Let f(z) be continuous in a simply-connected region R and suppose that

fi;f(z) dz=0 (4.10)
c
around every simple closed curve C in R. Then f(z) is analytic in R.
This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be extended to

multiply-connected regions. For a proof, which assumes that f'(z) is continuous in R, see Problem 4.27.
For a proof, which eliminates this restriction, see Problem 5.7, Chapter 5.

4.13 Indefinite Integrals

Suppose f(z) and F(z) are analytic in a region R and such that F'(z) = f(z). Then F(z) is called an indefinite
integral or anti-derivative of f(z) denoted by

F(z) = Jf(z)dz 4.11)

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an arbitrary con-
stant c is often added to the right of (11).

d
EXAMPLE 4.1: Since - (32% — 4sinz) = 6z — 4 cos z, we can write
z

J(Gz—4cosz) dz =372 —4sinz+c

4.14 Integrals of Special Functions

Using results on page 80 [or by direct differentiation], we can arrive at the results in Fig. 4-5 (omitting a
constant of integration).
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Zn-ﬁ-l
'dz = n#—1 18. cothzdz = Insinhz
n+1
dZ 1, .-
—=1Inz 19. |sechzdz =tan™ (sinhz)
Z J
edz=¢e 20. |cschzdz = —coth™!(cosh z)
aZ
ady = — 21. | sech?zdz = tanhz
Ina )
sinzdz = —cosz 22. csch? zdz = —cothz
coszdz = sinz 23. sechztanhzdz = —sechz
tanzdz = Insecz = —Incosz 24. cschzcothzdz = —cschz
. dz
cotzdz = Insinz 25. 7:ln(z+ 2+ az)
V2t a2
d. 1
sec zdz = In(sec z + tan z) 26. 2722 = —tan”! z or —— cot”! z
— Intan(z/2 + 7/4) r+a a  a a a
d. 1 —
csczdz = In(csc z — cot z) 27. 2722 = 2ln<Z a>
= Intan(z/2) v —a a \zta
2 dz . 12 12
sec“zdz =tanz 28. ————=3sin" — or —cos —
J Va2 -7 a a
dz 1 z
2
csc” zdz = —cotz 29. =—In
leva £ 2 a (a+«/cm>
d. 1 1
secztanzdz = secz 30. 7Z:fcos_lg or fsec_IE
JiZE—a? a z a a

z
csczeotzdz = —cscz 31. J\/Zz iaZdzzzsz + a?

a2
+ ?m(z—i— 2+ a2>

2
sinh zdz = coshz 32. |Va? —zzdz:gx/az —zz—k%sin’IE
a

e“(asinbz — bcos bz)

coshzdz = sinhz 33. e™sinbzdz =
a2 + b2

e™(acos bz + bsin bz)

tanh zdz = Incosh z 34. e cosbzdz =
(12 + bZ

Fig. 4-5
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4.15 Some Consequences of Cauchy’s Theorem

Let f(z) be analytic in a simply-connected region R. Then the following theorems hold.

THEOREM 4.1.  Suppose a and z are any two points in R. Then

jf (2)dz

is independent of the path in R joining a and z.

THEOREM 4.2.  Suppose a and z are any two points in R and

G(z) = J f(z2)dz

Then G(z) is analytic in R and G'(2) = f(2).

(4.12)

Occasionally, confusion may arise because the variable of integration z in (4.12) is the same as the upper
limit of integration. Since a definite integral depends only on the curve and limits of integration, any symbol
can be used for the variable of integration and, for this reason, we call it a dummy variable or dummy

symbol. Thus (4.12) can be equivalently written

(o) = jf(g)dz

THEOREM 4.3.  Suppose a and b are any two points in R and F'(z) = f(z). Then
b
Jf(z)dz = F(b) — F(a)
a
This can also be written in the form, familiar from elementary calculus,
b
JF’(z) dz = F(2)

a

b
or [F(2)]2 = F(b) — F(a)

a

1—i
EXAMPLE 4.2: J 4zdz =272

3i

1—i
=2(1 —i)* —2(3i)> = 18 — 4i

3i

(4.13)

(4.14)

(4.15)

THEOREM 4.4.  Let f(z) be analytic in a region bounded by two simple closed curves C and C; [where C|

lies inside C as in Fig. 4-6(a)] and on these curves. Then

%f(z)dz = %f(z)dz

c C

(4.16)

where C and C; are both traversed in the positive sense relative to their interiors [counter-

clockwise in Fig. 4-6(a)].

The result shows that if we wish to integrate f(z) along curve C, we can equivalently replace C by any

curve C; so long as f(z) is analytic in the region between C and C; as in Fig. 4-6(a).
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(a) (b)
Fig. 4-6

THEOREM 4.5.  Let f(z) be analytic in a region bounded by the non-overlapping simple closed curves
C, Cy, Cy, Cs,...,C, where Cy, Cy, ..., C, are inside C [as in Fig. 4-6(b)] and on
these curves. Then

%f(z)dz = f{;f(z)dz—l- %f(z)dz—# -+ J)f(z)dz 4.17)

Ci Cy

This is a generalization of Theorem 4.4.

SOLVED PROBLEMS

Line Integrals

4.1. Evaluate ( % D (2y 4 x2) dx + (3x — y) dy along: (a) the parabola x = 2¢, y = 2 + 3; (b) straight lines
from (0, 3) to (2, 3) and then from (2, 3) to (2, 4); (c) a straight line from (0, 3) to (2, 4).

Solution
(a) The points (0, 3) and (2, 4) on the parabola correspond to t = 0 and ¢ = 1, respectively. Then, the given
integral equals
1 1
I [2( +3) + 20 12dt + [3(20) — (£ + 3)]2t dt = [(24:2 +12-28 —6ndr ==
t=0 0

(b) Along the straight line from (0, 3) to (2, 3), y = 3, dy = 0 and the line integral equals
2 2

J (6+xH)dx+(3x—3)0 = J (6 +x)dx = %
x=0 x=0
Along the straight line from (2, 3) to (2, 4), x = 2, dx = 0 and the line integral equals
4
J 2y +4H0+(6—-y)dy =

y=3 Y

Then, the required value = 44/3 +5/2 = 103/6.

5
(6—y)dy—§
3

|| ey
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(c) An equation for the line joining (0, 3) and (2, 4) is 2y — x = 6. Solving for x, we have x = 2y — 6. Then,
the line integral equals

4

97

[2+ 2y = 67 ]2y + 1325 = 6 = y1dy = [ 8 =39y + S4ydy =
3

|| ey

y=3

The result can also be obtained by using y = %(x + 6).

4.2. Evaluate [.Zdz from z =0 to z = 4 + 2i along the curve C given by: (a) z = £ +it,

(b) the line from z = 0 to z = 2i and then the line from z = 2i to z = 4 + 2i.

Solution

(a) The points z =0 and z = 4 + 2i on C correspond to t = 0 and ¢ = 2, respectively. Then, the line integral
equals

2 2 2
J B +ind@* +it) = J(ﬂ —iNQt+i)dt = J(zﬁ —i? +10dr=10 —%
0 0

t=0
Another Method. The given integral equals

J(x — iy)dx + idy) = dex Fydy+ indy —ydx
o C C
The parametric equations of C are x = 2, y =t from ¢ = 0 to ¢ = 2. Then, the line integral equals

2

2
J ()2t dr) + (O dD) + i J )(dr) — ()2t dp)
=0 t=0

2 2
o
- J(zﬁ +t)dt+iJ(—t2)dt: 10—§’
0 0

(b) The given line integral equals

J(x— iy)(dx +idy) = dex—i—ydy—i—ijxdy —ydx
c c c

The line from z = 0 to z = 2i is the same as the line from (0, 0) to (0, 2) for which x = 0, dx = 0 and the
line integral equals

ydy =2

|| Sy 02

2
0)(0) +ydy+i J (0)(dy) — ¥(0) =

y=0 y=0 y=0

The line from z = 2i to z = 4 4 2i is the same as the line from (0, 2) to (4, 2) for whichy =2, dy =0
and the line integral equals
4

4 4
dex—l—Z-O—l—i J x~0—2dx:[xdx+i[—2dx:8—8i
0 0

4

x=0 x:

Then, the required value =2 + (8 — 8i) = 10 — 8i.
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4.3. Suppose f(z) is integrable along a curve C having finite length L and suppose there exists a positive
number M such that | f(z)| < M on C. Prove that

Jf (2)dz| <ML
C
Solution

By definition, we have on using the notation of page 111,

Jf(z) dz = lim ) f(&)Az (M
D fEAL] < Y 1fE ] 1Az
k=1 k=1
- (2)
<M Z [ Azl
k=1
<ML
where we have used the facts that | f(z)| < M for all points z on C and that ZZZI |Az; | represents the sum of all the
chord lengths joining points z;_; and zz, where k = 1, 2, ..., n, and that this sum is not greater than the length
of C.

Taking the limit of both sides of (2), using (1), the required result follows. It is possible to show, more
generally, that

Jf(z)dz < Jlf(z)l dz)
C

C
Green’s Theorem in the Plane

4.4. Prove Green’s theorem in the plane if C is a simple closed curve which has the property that any
straight line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves EGF and EHF (see Fig. 4-7) be y = Y;(x) and y = Y»(x), respectively. If R is
the region bounded by C, we have

P " ap

”—dxdy: J J —dy |dx

J dy ay

R x=e | y=Y|(x)

s s
Y2(x)
- J Pay| ) = J[P(x, ¥s) — P(x, Y1)l dx

y=r(x

f e
=— JP(x, Yi)dx — J P(x, V2)dx = — cj; Pdx
e f C
Then

%de:—ﬂgdxdy Y]
c R
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Similarly, let the equations of curves GEH and GFH be x = X;(y) and x = X,(y), respectively. Then

5 h Xa(y) 5 h

[[5axas= [ | | 2ar|d=[1000 0 - 0ti idy
X ox

R y=g | x=X,(») 8

g h
= JQ(Xl’y)dy + JQ(Xz,y)dy = % Qdy
Then h g c

il
ﬂ;Qdyzﬂa%dxdy @

C R

Adding (1) and (2),

SFde—i— Qdy = “(%—%) dxdy
c

R

y
h . c (L

Fig. 4-7 Fig. 4-8

4.5. Verify Green’s theorem in the plane for

§<2xy — ) dx+ (x4 yP) dy
C

where C is the closed curve of the region bounded by y = x? and y* = x.

Solution

The plane curves y = x* and y*> = x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as
shown in Fig. 4-8.
Along y = x?, the line integral equals
1 1 .
J {(2x)(x2) — x2} dx + {x + (x2)2} d(x?) = J(2x3 +x2 4+ 20)dx = 13

x=0 0

Along y*> = x, the line integral equals
0 0 7
J 2020 = G + {3+ dy = [(4y4 — 2+ 2N dy =2
y=1 1
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Then the required integral = 7/6 — 17/15 = 1/30. On the other hand,

90 oP 9 9
” (?g_?y) dxdy = ﬂ {a(ﬁyz) ~ @ —xz)} dxdy
R R

1 VX
:”(1 —2x)dxdy = J J (1 —2x)dydx
R x=0 y—y2
1 VX 1
= J (y —2xy) dx:J(x1/2—2x3/2—x2+2x3)dx=3]—0
x=0 y=x? 0

Hence, Green’s theorem is verified.

4.6. Extend the proof of Green’s theorem in the plane given in Problem 4.4 to curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a simple closed curve C such as shown in Fig. 4-9 in which lines parallel to the axes may meet C in
more than two points. By constructing line S7, the region is divided into two regions R and R, which are of
the type considered in Problem 4.4 and for which Green’s theorem applies, i.e.,

Pdx+Qdy = %—% dxdy (1)
ox  dy
STUS R
Pdx+ Qdy = o _op dx dy 2)
ox dy
SVTS R

Adding the left-hand sides of (1) and (2), we have, omitting the integrand P dx + Q dy in each case,
[« ]=]]]+]-]+]- ]
STUS  SVIS ST TUS SVI TS TUS SVI  TUSVT

using the fact that [, = — [
Adding the right-hand sides of (1) and (2), omitting the integrand,
<[]
Ri R: R

Then

0 oP
Pdx+Qdy = ”(8—5—@) dxdy
R

TUSVT

and the theorem is proved. We have proved Green’s theorem for the simply-connected region of Fig. 4-9
bounded by the simple closed curve C. For more complicated regions, it may be necessary to construct
more lines, such as S7, to establish the theorem.

Green’s theorem is also true for multiply-connected regions, as shown in Problem 4.7.
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Fig. 4-9 Fig. 4-10

4.7. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as

4.8

shown shaded in Fig. 4-10.

Solution

The boundary of R, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is to
be traversed in the positive direction so that a person traveling in this direction always has the region on his/her
left. It is seen that the positive directions are as indicated in the figure.

In order to establish the theorem, construct a line, such as AD, called a cross-out, connecting the exterior and
interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is

valid. Then
a oP
Pdx+ Qdy = ﬂ 90 Y geay
ox  dy
R

But the integral on the left, leaving out the integrand, is equal to

ADEFGDALKJHA

BRI
AD  DEFGD DA  ALKJHA DEFGD  ALKJHA

since IAD = _L)A- Thus, if C is the curve ALKJHA, C; is the curve DEFGD and C is the boundary of R con-
sisting of C; and C, (traversed in the positive directions with respect to R), then JCI + J“G = §C and so

%de—i—Qdy = ” <@—8—P) dxdy
ox  dy
c R

Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point of a
simply-connected region R. Prove that a necessary and sufficient condition that fﬁc Pdx+Qdy=0
around every closed path C in R is that dP/dy = dQ/ax identically in R.

Solution

Sufficiency. Suppose dP/dy = dQ/dx. Then, by Green’s theorem,

4; de+Qdy:JJ<%2—a£>dxdy:0
c Ay
R

where R is the region bounded by C.
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Necessity. Suppose §C P dx + Qdy = 0 around every closed path C in R and that dP/dy # dQ/dx at some point
of R. In particular, suppose dP/dy — 0Q/dx > 0 at the point (xo, yo).

By hypothesis, dP/dy and dQ/dx are continuous in R so that there must be some region T containing (xo, yo)
as an interior point for which dP/dy — 9Q/ax > 0. If I is the boundary of 7, then by Green’s theorem

EFde—i—Qdy: ”(%—%)dxdy>0
J J

T

contradicting the hypothesis that fﬁc Pdx+ Qdy = 0 for all closed curves in R. Thus, dQ/dx — dP/dy cannot
be positive.

Similarly, we can show that dQ/dx — dP/dy cannot be negative and it follows that it must be identically
zero, i.e., 0P/dy = 0Q/dx identically in R.

The results can be extended to multiply-connected regions.

4.9. Let P and Q be defined as in Problem 4.8. Prove
that a necessary and sufficient condition that y
Jdex + Qdy be independent of the path in R
joining points A and B is that 0P/dy = dQ/dx G
identically in R. D 3
Solution A < c,
Sufficiency. If 9P/dy = 9Q/dx, then by Problem 4.8 "
Pdx+Qdy=0 x
ADBEA
Fig. 411

[see Fig. 4-11]. From this, omitting for brevity the
integrand P dx + Q dy, we have

[« ] =0 =n]=] mw =]
ADB  BEA ADB BEA AEB C C

i.e., the integral is independent of the path.
Necessity. If the integral is independent of the path, then for all paths C; and C; in R, we have

NN

C Cy ADB AEB ADBEA

From this, it follows that the line integral around any closed path in R is zero and hence, by Problem 4.8, that
aP/dy = 0Q/dx.
The results can be extended to multiply-connected regions.

Complex Form of Green’s Theorem
4.10. Suppose B(z, z) is continuous and has continuous partial derivatives in a region R and on its

boundary C, where z = x+ iy and 7z = x — iy. Prove that Green’s theorem can be written in
complex form as

oB

fi; B(z,2)dz = 2i ” — dxdy
0z

C R
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Solution

Let B(z, 7) = P(x, y) + iQ(x, y). Then, using Green’s theorem, we have

S{SB(Z, Z)dZ:fi;(P+iQ)(dx+idy) :%de—Qdy—i—i%de—i—de
c c c o

3 3Q P [ (2P dQ
_—JJ<§+@>dxdy+lﬂ(a—g>dﬂiy
R
. P 00 (OP 00
”ﬂ[(@‘@)*’(@*aﬂd"”
R

from Problem 3.34, page 101. The result can also be written in terms of curl B [see page 85].

Cauchy’s Theorem and the Cauchy-Goursat Theorem

4.11. Prove Cauchy’s theorem §C f(z) dz = 0if f(2) is analytic with derivative f'(z) which is continuous at
all points inside and on a simple closed curve C.
Solution

Since f(z) = u + iv is analytic and has a continuous derivative
ou . 0v v du

it follows that the partial derivatives

ou v
== )
x  dy
av ou
== )
ax ay

are continuous inside and on C. Thus, Green’s theorem can be applied and we have

j;f(z)dz=§(u+iv)(dx+idy) :f“)udx—vdy+if£vdx+udy
C C C C

w9 u 3
:” o dxdy—}-i” =) axdy=0
ox  dy ox dy
R R

using the Cauchy—Riemann equations (1) and (2).

By using the fact that Green’s theorem is applicable to multiply-connected regions, we can extend the result
to multiply-connected regions under the given conditions on f(z).

The Cauchy—Goursat theorem [see Problems 4.13—4.16] removes the restriction that f'(z) be continuous.

Another Method.
The result can be obtained from the complex form of Green’s theorem [Problem 4.10] by noting that if
B(z, z7) = f(2) is independent of z, then dB/dz = 0 and so f[;c f(@dz=0.
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4.12. Prove (a) §.dz =0, (b) §.zdz =0, (¢c) § (z — z0) dz = 0 where C is any simple closed curve and zg
is a constant.

Solution

These follow at once from Cauchy’s theorem since the functions 1, z, and z — zo are analytic inside C and have
continuous derivatives.
The results can also be established directly from the definition of an integral (see Problem 4.90).

4.13. Prove the Cauchy—Goursat theorem for the case of a triangle.

Fig. 4-12 Fig. 4-13

Solution

Consider any triangle in the z plane such as ABC, denoted briefly by A, in Fig. 4-12. Join the midpoints D, E,
and F of sides AB, AC, and BC, respectively, to form four triangles (A;, Ay, Apy, and Apy).
If f(2) is analytic inside and on triangle ABC, we have, omitting the integrand on the right,

§ rad= [+ [+ |

ABCA DAE  EBF  FCD
SN IR IR R IR
DAE ED EBF  FE FCD DF DE EF FD

SRR
DAED EBFE FCDF  DEFD
= j@f(z)dz—l— %f(z)dz—l— ﬂ;f(z)dz—l- ij(z)dz
A| A][ A][] A]V

where, in the second line, we have made use of the fact that

e e

ED DE FE EF DF
Then
fi;f(z)dz < %f(z)dz + fi;f(z)dz + fi;f(z)dz + fi;f(z)dz e))
A Ar Ay Amn Ary

Let A, be the triangle corresponding to that term on the right of (1) having largest value (if there are two or
more such terms, then A; is any of the associated triangles). Then

ﬂ;f(z)dz <4 f{;f(z)dz 2)

A Ay
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4.14.

By joining midpoints of the sides of triangle A, we obtain similarly a triangle A, such that

%f(z)dz <4 ﬂ@f(z)dz 3)
A A

so that
fi; f@dz| < 4 % fdz )
A Ay

After n steps, we obtain a triangle A, such that

%f(z) dz| <4" %f(z) dz 5)

A A,

Now A, Ay, Ay, As, ... is a sequence of triangles, each of which is contained in the preceding (i.e., a sequence
of nested triangles), and there exists a point zo which lies in every triangle of the sequence.

Since zy lies inside or on the boundary of A, it follows that f(z) is analytic at zy. Then, by Problem 3.21,
page 95,

f@) =1(z0) +f'(z0)(z — z0) + Mz — 20) (6)

where, for any € > 0, we can find 6 such that |1 | < € whenever |z — 79| < 6.
Thus, by integration of both sides of (6) and using Problem 4.12,

%f(z) dz = E{D n(z —20)dz @)
A, A,

Now, if P is the perimeter of A, then the perimeter of A, is P, = P/2".If z is any point on A, then as seen
from Fig. 4-13, we must have |z — zo| < P/2" < 8. Hence, from (7) and Property e, page 112, we have

P P e
fl;f(z)dz = fﬁn(z—z())dz < € m =
A, A,
Then (5) becomes
P2
jﬁf(z) dz| <4". 647 = eP?
A

Since € can be made arbitrarily small, it follows that, as required,

%f(z)dz =0

A

Prove the Cauchy—Goursat theorem for any closed polygon.

Solution

Consider, for example, a closed polygon ABCDEFA such as indicated in Fig. 4-14. By constructing the
lines BF, CF, and DF, the polygon is subdivided into triangles. Then, by Cauchy’s theorem for triangles
[Problem 4.13] and the fact that the integrals along BF and FB, CF and FC, and DF and FD cancel, we
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find as required

f()dz = Jf(z)dz+ Jf(z)dz-l— J f(@dz+ J f(@dz=0

ABCDEFA ABFA BCFB CDFC DEFD

where we suppose that f(z) is analytic inside and on the polygon.
It should be noted that we have proved the result for simple polygons whose sides do not cross. A proof can
also be given for any polygon that intersects itself (see Problem 4.66).

Fig. 4-14 Fig. 4-15

4.15. Prove the Cauchy—Goursat theorem for any simple closed curve.

Solution

Let us assume that C is contained in a region R in which f(z) is analytic.

Choose n points of subdivision zj, z2, . . ., z, on curve C [Fig. 4-15] where, for convenience of notation, we
consider zyp = z,. Construct polygon P by joining these points.

Let us define the sum

Sy =Y f@Az
k=1

where Az, = zx — zx—1. Since

hmsn = %f(Z) dz

C

where the limit on the left means that n — oo in such a way that the largest of |Az;| — 0. It follows that, given
any € > 0, we can choose N so that for n > N

i;f(z)dz—Sn <§ )

C

Consider now the integral along polygon P. Since this is zero by Problem 4.14, we have

?i;f(z)dz:0: f@Qdz+ | f@Qdz+---+ Jf(z)dz
P 20 z1 Zn—1

— r@ sy +reordz -+ j (@) = flen) +f )} dz

— r@ -t + J Q) — @) de+ S,

20 Zn—1
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so that
21 Zn
5= [t — @z +-+ [ ) - rend:
20 Zn—1
Let us now choose N so large that on the lines joining zo and z;, z; and 2z, ...,2,—1 and z,,

€ € €

— < — — <—, ..., n) — <

[fz1) —f@)] oL [f(z2) —f(@) | oL [f(zn) — f(2) oL

where L is the length of C. Then, from (2) and (3), we have

21 2

1S,] < [{f(zl) —f@de| + J{f(zz) —f@Yde| + -+ J [z —F)} dz
or 20 21 Zn—1
IS0l = 5 llan =20l + lo2 = a1l 4+ 2 = 2t} = 5
From
f()dz = %f(z)dz - S+ S,

we have, using (1) and (4), ¢ ¢

fi;f(z)dz < jﬁﬂz)dz — S| 18] < §+§ =

C C

Thus, since € is arbitrary, it follows that §. f(z) dz = 0 as required.

4.16. Prove the Cauchy—Goursat theorem for multiply-connected regions.

Solution

(@)

3

“

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C; and C,
as indicated in Fig. 4-16. Extensions to other multiply-connected regions are easily made (see Problem 4.67).

Fig. 4-16

Construct cross-cut AH. Then the region bounded by ABDEFGAHJIHA is simply-connected so that by

Problem 4.15,

f@dz=0
ABDEFGAHJIHA

Hence

f(@dz + Jf(z)dz+ J f(@dz + Jf(z)dzzo

ABDEFGA AH HIJIH HA
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Since [, f(z)dz = — |, f(2) dz, this becomes

f()dz + Jf(z)dz:O

ABDEFGA HJIH

This, however, amounts to saying that

%f(z)dz =0

C

where C is the complete boundary of R (consisting of ABDEFGA and HJIH) traversed in the sense that an
observer walking on the boundary always has the region R on his/her left.

Consequences of Cauchy’s Theorem

4.17. Suppose f(z) is analytic in a simply-connected region R. Prove that j: f(z) dz is independent of the
path in R joining any two points a and b in R [as in Fig. 4-17].

Solution

By Cauchy’s theorem,

f(2)dz=0
ADBEA
or
J f(@dz+ J f(2)dz=0
ADB BEA
Hence
J fl)dz = — J f(@dz = J f(2)dz

Thus ADB BEA AEB

b

Jf(z) dz = Jf(z)dz = }f(z) dz

Cy C, a

which yields the required result.

Fig. 4-17 Fig. 4-18
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4.18.

4.19.

4.20.

Let f(z) be analytic in a simply-connected region R and let @ and z be points in R. Prove that
(a) F(z) = [ f(u)du is analytic in R and (b) F'(z) = f(2).

Solution

We have

+Az z
F Az) — F 1
FerP9=TE0 _po) = AI [ s~ [ du} 1@
Z Z

a

&)

z+Az

:Aiz j (F) — () du

2~

By Cauchy’s theorem, the last integral is independent of the path joining z and z + Az so long as the path is in
‘R. In particular, we can choose as a path the straight line segment joining z and z + Az (see Fig. 4-18) provided
we choose |Az| small enough so that this path lies in R.

Now, by the continuity of f(z), we have for all points u on this straight line path | f(u) — f(z)| < € whenever
|u — z| < 8, which will certainly be true if |Az| < &.

Furthermore, we have

z+Az

J {fw) —f@}du

z

< €|Az] 2)

so that from (1)

z+Az

J [f(u) — ()] du

‘F(z—l—Az)—F(z) <e

1
Az _f(Z)’ :m

for |Az| < 8. This, however, amounts to saying that

jim FEHADZF@ _ o)
Az

Az—0

i.e., F(z) is analytic and F'(z) = f(2).

A function F(z) such that F’'(z) = f(z) is called an indefinite integral of f(z) and is denoted by
| f(z) dz. Show that (a) [sinzdz = —cosz + ¢, (b) [ dz/z = Inz + ¢ where c is an arbitrary constant.
Solution

(a) Since d/dz(—cosz + ¢) = sinz, we have jsinzdz = —cosz+c.
(b) Since d/dz(Inz + c) = 1/z, we have fdz/z =Inz+c.

Let f(z) be analytic in a region R bounded by two simple closed curves C; and C, [shaded in
Fig. 4-19] and also on C; and C,. Prove that ffc] fl)dz = §C7 f(z) dz, where C; and C, are both tra-
versed in the positive sense relative to their interiors [counterclockwise in Fig. 4-19].

Solution

Construct cross-cut DE. Then, since f(z) is analytic in the region R, we have by Cauchy’s theorem

f@dz=0

or DEFGEDHJKLD

Jf(z)dz—f- [f(z)dz+Jf(z)dz+ [ f(@)dz=0

DE EFGE ED DHJKLD
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Hence since [, f(2)dz = — [, f(2) dz,

f@dz=— Jf(z)dZZ Jf(z)dz or *f(z)dz=§f(z)dz

DHJKLD EFGE EGFE C, C

J

Fig. 4-19 Fig. 4-20

4.21. Evaluate fﬁc dz/z — a where C is any simple closed curve C and z = a is (a) outside C, (b) inside C.
Solution

(a) If a is outside C, then f(z) = 1/(z — a) is analytic everywhere inside and on C. Hence, by Cauchy’s
theorem, §.dx/z —a =0.
(b) Suppose a is inside C and let I be a circle of radius € with center at z = a so that I is inside C (this can be
done since z = a is an interior point).
By Problem 4.20,

dz =El; dz o

Z—a Z—a
r

O ——

Now on T, |z—al=€or z—a=ee? ie, z=a+ €% 0 < § <2a. Thus, since dz = iee'?df, the
right side of (1) becomes

2 . i9d6 2

J e &7_; J do = 2mi
Eet@

6=0

which is the required value.

4.22. Evaluate i;(— n=2,3,4,... where z = a is inside the simple closed curve C.

z—a)"’
c
Solution

As in Problem 4.21,

{) dz _i; dz
c—a)  Jrz-a"

2 ﬂd 2
iee'’do i ;
_ o T (1—n)i6
- J elpind — gn—1 Je do
0 0
i e(l—ﬂ)i9 o 1 [ 2(1—n)mi 1] 0
= —_— = e —_ =
e~ (1 —n)i|, 1—n)e"!

where n # 1.
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4.23. Let C be the curve y = x* — 3x*> 4+ 4x — 1 joining points (1, 1) and (2, 3). Find the value of
Jo(122% — 4iz) d.

Solution

Method 1. By Problem 4.17, the integral is independent of the path joining (1, 1) and (2, 3). Hence, any path can
be chosen. In particular, let us choose the straight line paths from (1, 1) to (2, 1) and then from (2, 1) to (2, 3).
Case 1. Along the path from (1, 1) to (2, 1), y=1,dy =0 so that z =x + iy = x + i, dz = dx. Then, the

integral equals

2
=20+ 30i

2
J {12(x +i)* = 4ix + i)} dx = {4(x +i)® — 2i(x + i)’}
1

x=1

Case 2. Along the path from (2, 1) to (2, 3), x =2, dx = 0 so that z =x + iy = 2 + iy,dz = idy. Then, the
integral equals

3
=—176 + 8i

3
J {122 + iy)* — 4i2 + iy)}idy = {42 + iy)* — 2i(2 + iy)*}
1

y=I1

Then, adding the required value = (20 + 30i) + (—176 + 8i) = —156 + 38i.
Method 2. The given integral equals

2430 243i
J (122% — 4iz) dz = (425 — 2i7%) = —156 +38i
1+i
1+i

It is clear that Method 2 is easier.
Integrals of Special Functions

4.24. Determine (a) fsin 3zcos 3z dz, (b) fcot(Zz +5)dz.

Solution
(a) Method 1. Let sin3z = u. Then, du = 3 cos 3z dz or cos 3z dz = du/3. Then
@ 1

. 1u?
sin3zcos3z dz = u3 =3 udi=—-——4c¢

1 1
:gu2+c:gsin23z+c
Method 2.

1 1
J sin3zcos 3z dz = gj sin 3z d(sin3z) = A sin?3z+ ¢
Method 3. Let cos 3z = u. Then, du = —3sin3zdz or sin3zdz = —du/3. Then

1 1 1
Jsin3zcos3z dz = —gjudu = —guz +c = —gcos2 324+ ¢

Note that the results of Methods 1 and 3 differ by a constant.

(b) Method 1.

cos(2z + 5)

Jcot(Zx +5)dz = J SN2z +5)
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Let u = sin(2z 4+ 5). Then du = 2 cos(2z + 5) dz and cos(2z 4+ 5) dz = du/2. Thus

cos(2z+5)dz 1 (du 1 1.
S B =-1 2z+5
J S22 1 5) ZJ 2nu+c 2nsm(z~|— )+c

Method 2.

1
=—Insin(2z+5) + ¢

cos(2z+5) . 1 (d{sin(2z + 5)}
[ sin(2z + 5) 2

(27 +Sydg = |2 2
JCO(” )dz Jsin(2z+5) ‘T3

4.25. (a) Prove that [ F(z)G'(z)dz = F(2)G(z) — [ F'(2)G(z) dz.
(b) Find [ze*dz and fOI ze% dz.
(c) Find [2?sindzdz and [;” 2? sin4z dz.
(d) Evaluate [.(z+ 2)e” dz along the parabola C defined by 7%y = x* from (0, 0) to (r, 1).

Solution
(a) We have

d{F(2)G(2)} = F(2)G'(2) dz + F'(2)G(2) dz
Integrating both sides yields

Jd{F(Z)G(Z)} = F(2)G(z) = JF(z)G/(z) dz + JF/(z)G(z) dz

Then

JF(z)G/(z) dz = FQG(E) — JF/(z)G(z) d:

The method is often called integration by parts.
(b) Let F(z) =z, G'(z) = ¢*. Then F'(z) = | and G(z) = 4¢*, omitting the constant of integration. Thus, by

part (a),
Jzezz dz = JF (2)G'(2) dz = F(2)G(z) — JF "(2)G(2) dz
_ 121 _ .12z _l 2z_121
—(Z)(ze ) Jl 26’ dz—zze 46 +c
Hence

1
1, 1, 1 1,
= — —— —=— 1
J2¢ Tav s AR

1
1 1
JO Zezde — <§Z€2Z _1621 +C>
(c) Integrating by parts choosing F(z) = 7>, G'(z) =sindz, we have

Jzz sindzdz = (%) <— %cos 4z> — J (2z)<— %COS 4z> dz

1 1
= _ZZZ cos4z+§chos4zdz

Integrating this last integral by parts, this time choosing F(z) = z and G'(z) = cos 4z, we find

1 1 1 1
chos4zdz = (z)(zsin4z) - J(l)(zsin4z) dz = Zzsin4z+ﬁcos4z
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Hence
2 sindzd ——l 2 cos4 —+—1 sin4 —|—icos4 +c
Z-sindzdz = 4z‘z8z 132 4
and
2T
% sindzd ——ﬂ2+i—i——
¢ smRd= N
0

The double integration by parts can be indicated in a suggestive manner by writing

1 1 1
2 1 —_— 2 —_—— — —_—— 1 JE—
Jz sin4zdz = (2 )( cos 4z) (22)( 16 sin 4z> +(2) (6 cos 4z) +c

1, 1 . 1
= _ZZ cosdz + gzs1n4z+3—zcos4z

where the first parentheses in each term (after the first) is obtained by differentiating z> successively, the
second parentheses is obtained by integrating sin 4z successively, and the terms alternate in sign.

(d) The points (0, 0) and (7, 1) correspond to z = 0 and z = 7+ i. Since (z + 2)e” is analytic, we see by
Problem 4.17 that the integral is independent of the path and is equal to

T+

l 0

14 )
[ (z+2)edz = {(z +2) <e—) - (1)(—eiz)}
0

i)

s 2
:(77+i+2)< , )—i—e’(”’)—f—l
l l

=2¢'—14i@+m ! +2¢7h
dz

1 1 —ai
4.26. Show that JH = —tan~! ad +c = .ln(z m.) + cs.
> +4a a a 2ai Z+ ai

Solution

Let z = atanu. Then

dz asec® u du 1 d ltan’l z "
= i u—=— —_— C
2 +a? a?(tanu+1) a a' !

Also,

1 _ 1 _ 1 1 1
24+a® (z—ai)z+ai) 2ai\z—ai z+ai

J‘ dz IJ dz IJ dz
24a* 2ai)z—ai 2ai)z+ai

L iz — ai) — 2 In(z +ai) + 2 = - 1n (224 4
=—In(z — ai) — —In ai) +c; = =—1In c
2ai ¢ 2ai < 27 2ai z+ ai 2

and so
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Miscellaneous Problems
4.27. Prove Morera’s theorem [page 115] under the assumption that f(z) has a continuous derivative in R.

Solution

If f(z) has a continuous derivative in R, then we can apply Green’s theorem to obtain

E{)f(z)dz:(ﬁudx—udy—i—i%vdx—l—udy

C C C
o Ju du v
| E - axay+i || (Z-Z) axa
”( o ay) ! y*’ﬂ(@x ay) g
R R

Then, if SGC f(z)dz = 0 around every closed path C in R, we must have

(J)udx—vdy:O, %vdx—i—udy:O
c c
around every closed path C in R. Hence, from Problem 4.8, the Cauchy—Riemann equations
u_io oo
ax dy’ x dy
are satisfied and thus (since these partial derivatives are continuous) it follows [Problem 3.5] that

u+iv = f(z) is analytic.

4.28. A force field is given by F' = 3z + 5. Find the work done in moving an object in this force field along
the parabola z = 1> + it from z = 0 to z = 4 + 2i.

Solution

I
)
[¢]
w
O —
N
&
+
(9]
O —
&
I
el
l¢]
e e,
w
/N
—_
o
|
|
N——
_|_
(9
~~
~
+
[\]
=
——
I
()1
[e)

using the result of Problem 4.2.
4.29. Find: (a) Je‘”‘ sinbx dx, (b) Je“" cos bx dx.

Solution

Omitting the constant of integration, we have
e(a+ib)x

a—+ib

Je(a+ih)x dx =

which can be written

ax b i sin b ax b i sin b —ib
Je“x(cos bx + isinbx)dx = ¢ (Cosaj-tbl sinbx) _ e*(cos bx ;Tzz x)(a — ib)
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4.30.

4.31.

Then equating real and imaginary parts,

[ e*(acos bx 4 bsin bx)
e cosbx dx =
a* + b?
o e“(asinbx — b cos bx)
e sinbx dx =
a* + b?

Give an example of a continuous, closed, non-intersecting curve that lies in a bounded region R but
which has an infinite length.

Solution

Consider equilateral triangle ABC [Fig. 4-21] with sides of unit length. By trisecting each side, construct equi-
lateral triangles DEF, GHJ, and KLM. Then omitting sides DF, GJ, and KM, we obtain the closed
non-intersecting curve ADEFBGHJCKLMA of Fig. 4-22.

A
/\ > <
A c v

Fig. 4-21 Fig. 4-22 Fig. 4-23

The process can now be continued by trisecting sides DE, EF, FB, BG, GH, etc., and constructing equilat-
eral triangles as before. By repeating the process indefinitely [see Fig. 4-23], we obtain a continuous closed
non-intersecting curve that is the boundary of a region with finite area equal to

1 1\*v3 1\*v3 1\*V3
ZJ§+(3)<§> T+(9)(§> T+(27)(ﬁ> R

V3 (L0 V31 33
_7< 3 §+"'>_71—1/3_T

4 3

or 1.5 times the area of triangle ABC, and which has infinite length (see Problem 4.91).

Let F(x, y) and G(x, y) be continuous and have continuous first and second partial derivatives in a
simply-connected region R bounded by a simple closed curve C. Prove that

G G *G G oF 0G  oF 0G
Fl—di——dy|=—|||F\—5+-— )+ | = +—7) | dxdy
dy ax a2 9y? ax ox  3dy dy
c R

Solution

oG oG
Let P = Fg, Q = —F — in Green’s theorem so

ox
%de—i—Qdy = ” <@—8—P>dxdy
ox  dy
R

C
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Then as required

3G 8G 3 aG] 8 [ .9G
FlZdx— = | (=1-F=\ ™2
ﬂg (3y o ox dy) JJ(ax{ 3x} 8y{ 8y})dxdy
R

- axZz  9y? ax ax Ay dy ray
R

SUPPLEMENTARY PROBLEMS

Line Integrals

4.32.

4.33.

4.34.

4.35.
4.36.

4.37.

4.38.

4.39.
4.40.

4.41.

4.42.

4.43.

4.44.

Evaluate () (3x +y)dx + (2y — x)dyalong (a)thecurvey = x>+ 1, (b) the straight line joining (0, 1) and

(2,5), (c)thestraightlines from (0, 1) to (0, 5) and then from (0,5) to (2,5), (d) the straight lines from (0, 1) to
(2, 1) and then from (2, 1) to (2, 5).

(a) Evaluate 3§C (x 4+ 2y) dx + (y — 2x) dy around the ellipse C defined by x =4 cos 6,y =3sin6, 0 < 6 <27
if C is described in a counterclockwise direction.
(b) What is the answer to (a) if C is described in a clockwise direction?

Evaluate jc (x> — iy?)dz along (a) the parabola y = 2x? from (1, 2) to (2, 8), (b) the straight lines from (1, 1)
to (1, 8) and then from (1, 8) to (2, 8), (c) the straight line from (1, 1) to (2, 8).

Evaluate j;c |z|% dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

Evaluate fc (2% + 3z) dz along (a) the circle |z| = 2 from (2, 0) to (0, 2) in a counterclockwise direction, (b) the
straight line from (2, 0) to (0, 2), (c) the straight lines from (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

Suppose f(z) and g(z) are integrable. Prove that

b

(a) Jf(z) dz = — Jf(z) dz, (b) [{Zf(z) —3ig(z)}dz = ZJf(z) dz — 3iJg(z) dz.

a b C C c

Evaluate (]‘2_" (3xy + iy*) dz (a) along the straight line joining z =i and z =2 — i,

i

(b) along the curve x =2t — 2,y = 1 + ¢ — 1.
Evaluate 390 72 dz around the circles (a) |z] = 1, (b) |z — 1] = 1.

Evaluate §C (5% — 2% 4+ 2) dz around (a) the circle |z| = 1, (b) the square with vertices at (0, 0), (1, 0), (1, 1),
and (0, 1), (c) the curve consisting of the parabolas y = x? from (0, 0) to (1, 1) and y> = x from (1, 1) to (0, 0).

Evaluate fC (2% 4 1)? dz along the arc of the cycloid x = a( — sin ), y = a(1 — cos 6) from the point where
0 = 0 to the point where 6 = 2.

Evaluate [.z*dz + 7% dZ along the curve C defined by z* + 222 + 2> = (2 — 2i)z + (2 + 2i)Z from the point
z=1toz=2+42i.

Evaluate §.dz/z — 2 around
(a) the circle |z —2| =4, (b) the circle |z — 1| =5, (c) the square with vertices at 3 + 3i, —3 + 3i.

Evaluate §C (x2 4 iy?) ds around the circle |z| = 2 where s is the arc length.

Green’s Theorem in the Plane

4.45.

Verify Green’s theorem in the plane for ch (2 — 2xy) dx + (y* — x’y) dy where C is a square with vertices at
(0,0, (2, 0), (2, 2), and (0, 2).
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4.46.

447.

4.48.

4.49.

4.50.

4.51.

4.52.

Evaluate §C (5x + 6y — 3)dx 4+ (3x — 4y + 2) dy around a triangle in the xy plane with vertices at (0, 0), (4, 0),
and (4, 3).

Let C be any simple closed curve bounding a region having area A. Prove that

1
Aziffxdy—ydx
c

Use the result of Problem 4.47 to find the area bounded by the ellipse x = acos 6, y = bsin 6, 0 < 0 < 2.

Find the area bounded by the hypocycloid x*/3 + y*/3 =
a*?3 shown shaded in Fig. 4-24. [Hint. Parametric y
equations are x = acos’ 6, y= asin’ 0,0 <0<2m]

Verify Green’s theorem in the plane for §C xydx +
(y* —xy»)dy where C is the boundary of the region
enclosed by the circles x> + y?> = 4, x> +y? = 16. \ X

(a) Prove that §c (y* cosx — 2¢”) dx + (2y sinx — 2xe)
dy = 0 around any simple closed curve C.

(b) Evaluate the integral in (a) along the parabola y = x?
from (0, 0) to (1, 7).

Fig. 4-24

(a) Show that jglz)) (2xy® — 2y* — 6y) dx + (3x*y* — 4xy — 6x) dy is independent of the path joining points (2, 1)
and (3, 2). (b) Evaluate the integral in (a).

Complex Form of Green’s Theorem

4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.

If C is a simple closed curve enclosing a region of area A, prove that A = 2% %Zdz.

c
Evaluate SQCZdz around (a) the circle [z —2| =3, (b) the square with vertices at z =0, 2, 2i, and 2 + 2i,
(c) the ellipse |z — 3| + |z + 3| = 10.

Evaluate §.(8Z + 3z) dz around the hypocycloid x*/? + y*? = a/3.
Let P(z, z) and Q(z, 7) be continuous and have continuous partial derivatives in a region R and on its boundary
C. Prove that
_ o . oP 9
%P(z, Bdz + 0z, D dE = 2,” LA PN
0z 0z
c R

1
Show that the area in Problem 4.53 can be written in the form A = 4—% zdz — zdz.
i
c
Show that the centroid of the region of Problem 4.53 is given in conjugate coordinates by (Z, 2) where

A T T Y
Z__4Ai+z dz, z—4Ai{>z dz
C C

Find the centroid of the region bounded above by |z| = a > 0 and below by Im z = 0.

Cauchy’s Theorem and the Cauchy-Goursat Theorem

4.60.

Verify Cauchy’s theorem for the functions (a) 3z> + iz —4, (b) 5Ssin2z, (c) 3 cosh(z + 2)
where C is the square with vertices at 1 + i, —1 + i.



4.61.

4.62.

4.63.

4.64.

4.65.

4.66.

4.67.

4.68.

4.69.

4.70.

4.71.
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Verify Cauchy’s theorem for the function z3 — iz — 5z + 2i if Cis
(a) the circle |z] = 1, (b) the circle |z — 1| =2, (c) the ellipse |z — 3i| + |z + 3i] = 20.

d
Let C be the circle |z — 2| = 5. (a) Determine whether 4;—13 = 0. (b) Does your answer to (a) contradict
Cauchy’s theorem? C

For any simple closed curve C, explain clearly the relationship between the observations

ff;(xz — v} +2y)dx+ (2x — 2xy)dy =0 and jg(zz —2iz7)dz=0
C C

By evaluating §. e? dz around the circle |z| = 1, show that
2@ 27.7
J €% cos(0 + sin 0) d6 = J €9 5in(0 + sin 6) d6 = 0
0 0

State and prove Cauchy’s theorem for multiply-connected regions.

Prove the Cauchy—Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-25, which may inter-
sect itself.

Prove the Cauchy—Goursat theorem for the multiply-connected region R shown shaded in Fig. 4-26.

E CQQRO

Fig. 4-25 Fig. 4-26

A

(a) Prove the Cauchy—Goursat theorem for a rectangle and (b) show how the result of (a) can be used to prove
the theorem for any simple closed curve C.

Let P and Q be continuous and have continuous first partial derivatives in a region R. Let C be any simple
closed curve in R and suppose that for any such curve

i; Pdx+Qdy=0
C
(a) Prove that there exists an analytic function f(z) such that Re{f(z) dz} = P dx + Q dy is an exact differential.

(b) Determine p and ¢ in terms of P and Q such that Im{f(z)dz} = pdx+ gdy and verify that
§C pdx+qdy =0.

(c) Discuss the connection between (a) and (b) and Cauchy’s theorem.
Tllustrate the results of Problem 4.69 if P = 2x +y — 2xy, Q = x — 2y — x> +y* by finding p, ¢, and f(2).

Let P and Q be continuous and have continuous partial derivatives in a region R. Suppose that for any
simple closed curve C in R, we have §. Pdx+ Qdy = 0.
(a) Prove that §c Qdx — Pdy = 0. (b) Discuss the relationship of (a) with Cauchy’s theorem.
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Consequences of Cauchy’s Theorem
4.72. Show directly that f;:ff (627 + 8iz) dz has the same value along the following paths C joining the points 3 + 4i

and 4 — 3i: (a) a straight line, (b) the straight lines from 3 + 4i to 4 + 4i and then from 4 + 4i to 4 — 3i,
(c) the circle |z| = 5. Determine this value.

4.73. Show that fc e~ dzis independent of the path C joining the points 1 — 7ri and 2 + 31 and determine its value.

4.74. Given G(z) = f;m. cos3{d{. (a)Prove that G(z) is independent of the path joining 77 — i and the arbitrary
point z.  (b) Determine G(mi). (c) Prove that G'(z) = cos 3z.

4.75. Given G(z) = Jl i sin & d{. (a) Prove that G(z) is an analytic function of z. (b) Prove that G'(z) = sinz%.

4.76. For the real line integral ch P dx + Qdy, state and prove a theorem corresponding to:
(a) Problem 4.17, (b) Problem 4.18, (c) Problem 4.20.

4.77. Prove Theorem 4.5, page 118 for the region of Fig. 4-26.

ﬂ; Z+27-5

dz=0
C+aH2+2+2%
C

(b) Use the result of (a) to deduce that if C; is the circle |z — 2| = 5, then

ﬂ; 2+27-5 . —0
@+HR2+22+2)

G

(c) Is the result in (b) true if C; is the circle |z + 1| = 2? Explain.

4.78. (a) If C is the circle |z] = R, show thatRlim

— 00

Integrals of Special Functions

4.79. Find each of the following integrals:

Z+1

—2z in 72 31 12- 1.1
(a) Je dz, (b) JZSH‘Z dz, () JZ3+3Z+2

dz, () Jsin4 2zcos2zdz, (e) Jf tanh(4z%) dz

4.80. Find each of the following integrals:

(a) Jz cos2zdz, (b) J e i dz, (©) Jz Inzdz, (d) J Z sinh zdz.

i T+
4.81. Evaluate each of the following: (a) J e dz, (b) J sinh 5z dz, (c) J zcos 2zdz.

i

4.82. Show that foﬂ/z sin? zdz = foﬂ/z cos? zdz = /4.

2

d 1 - 1
4.83. Show that Jiz — (=2 +¢; = ~coth™! z +co.
2—a®> 2a \z+a a a

4.84. Show that if we restrict ourselves to the same branch of the square root,

1 5
szzz +5dz=550 4+ 5)°/% — sz 5P +¢
4.85. Evaluate [/1+ +/z+ I dz, stating conditions under which your result is valid.

Miscellaneous Problems

4.86. Use the definition of an integral to prove that along any arbitrary path joining points a and b,
b

() szzb—a, (b) J.z dz:%(hz—az).

a a



4.87.

4.88.

4.89.

4.90.

4.91.

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

4.100.
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Prove the theorem concerning change of variable on page XX. [Hint. Express each side as two real line
integrals and use the Cauchy—Riemann equations.]

Let u(x, y) be harmonic and have continuous derivatives, of order two at least, in a region R.

(a) Show that the following integral is independent of the path in R joining (a, b) to (x, y):
(x.) 3 P
v(x, y) = J ——udx+—udy
ay ox
(a,b)

(b) Prove that u + iv is an analytic function of z =x + iy in R.
(c) Prove that v is harmonic in R.

Work Problem 4.88 for the special cases (a) u = 3x%y 4+ 2x% — y> — 2y?, (b) u = xe*cosy — ye*siny. [See
Problem 4.53(a) and (c), page XX.]

Using the definition of an integral, verify directly that when C is a simple closed curve and z is any constant.

(a) fi;dzzo, (b) f{)zdz:O, (c) i;(z—Zo)dZZO

C C c

Find the length of the closed curve of Problem 4.30 after n steps and verify that as n — oo, the length of the
curve becomes infinite.

Evaluate ‘[ﬁ along the line x + y = 1 in the direction of increasing x.
c

Show that [;° xe™ sinx dx = 1.
—24+2/3i

Evaluate J z!/? dz along a straight line path if we choose that branch of z!/2 such that z'/2 = 1 for z = 1.
—2-2/3i

Does Cauchy’s theorem hold for the function f(z) = z!/> where C is the circle |z| = 1? Explain.

Does Cauchy’s theorem hold for a curve, such as
EFGHFJE in Fig. 4-27, which intersects itself? Justify y E
your answers.

If n is the direction of the outward drawn normal to a
simple closed curve C, s is the arc length parameter and
U is any continuously differentiable function, prove that

W _Uds | oUdy

an_axds+8yds )
Fig. 4-27

Prove Green'’s first identity,

aUav  aU VvV av
” UV*V dxdy + JJ ———+———|dxdy= %U—ds

ox ax  dy dy on
R c

where R is the region bounded by the simple closed curve C, V? = (8*/x?) + (8%/dy?), while n and s are as in
Problem 4.97.

Use Problem 4.98 to prove Green’s second identity

JJ(UVZV —VVAU)dA = #(Uaiv _ v8£>ds

on on
R C

where dA is an element of area of R.

Write the result of Problem 4.31 in terms of the operator V.
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dz
4.101. Evaluate fi; —————around the unit circle |z| = 1 starting with z = 1, assuming the integrand positive for
) V242742

this value.

4.102. Let n be a positive integer. Show that

2 2w
J "% cos(0 — cosnf) do = J ™" sin(6 — cos n) df = 0
0 0

ANSWERS TO SUPPLEMENTARY PROBLEMS

4.32. (a) 88/3, (b) 32, (c) 40, (d) 24 4.54. (a) 187, (b) 8i, (¢c) 407
4.33. (a) —48m, (b) 487 4.55. 6mia®
511 49 518 518 [ ~  —2ai
434, @ — i ()57, () 20— 8 459, z=—2 F-—4
3 5 3 3 T T
435, —1+i 4.70. One possibility is p = x> — y> + 2y — x,
q=2x+y—2xy,f(x) =iz +(2 — i)
4.36. —2—4 — gi in all cases 4.72. 338 — 266i
4 8. 1 79, | -
4.38. (a) §+§l, (b) g—i-%t 4.73. je™ (1 —e™)
4.39. (a) 0, (b) 4 4.74. (b) 0
1 1
4.40. O in all cases 4.79. (a) — Ee_zz +c, (b) — ECOS Z+e,
4.41. (967 + 807 + 30ma)/15 1 1
O6ma’ + 80 + 30ma)/ ©-In@ 43242 +c, () —sin® 22+ ¢,
4.42 248 3 10
o' . — 1
15 (e) ﬁln cosh(4z®) + ¢
4.43. 27 in all cases | |
444, 87(1+0) 4.80. (a)5zsin2z+7cos2z+c, (b) —e (P +22+2) +oc,
4.45. Common value = —8 © 1 2 1
)=z Inz—-+¢,
4.46. —18 2 4
448, mab (d) (;3 + 62) coshz — 31(22 +2) Sil;h z+c 1
440, 3 4.81. (a) 3 (b) — 5 () Zcosh 2— 3 sinh2 + 3 ri sinh 2
8 4 52 4
= / _ / 3/2
4.50. Common value = 1207 4.85. 5 (1 TVt 1) 3 (1 tVet )T 4
4.51. (b) —2me™ 4.92.

4.52. (b) 24
4.94.

w| B el



Cauchy’s Integral Formulas
and Related Theorems

5.1 Cauchy’s Integral Formulas

Let f(z) be analytic inside and on a simple closed curve C and let a be any point inside C [Fig. 5-1]. Then

=g § 10

T2

C

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f(z) at z = a is given by

W®=m+'m)@n:u@m

i (Z _ a)n+l
C

The result (5.1) can be considered a special case of (5.2) with n = 0 if we define 0! = 1.

y

dz

Fig. 51

5.1

(5.2)

The results (5.1) and (5.2) are called Cauchy’s integral formulas and are quite remarkable because they
show that if a function f(z) is known on the simple closed curve C, then the values of the function and all its
derivatives can be found at all points inside C. Thus, if a function of a complex variable has a first
derivative, i.e., is analytic, in a simply-connected region R, all its higher derivatives exist in R. This is

not necessarily true for functions of real variables.
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5.2 Some Important Theorems

The following is a list of some important theorems that are consequences of Cauchy’s integral formulas.

1.

10.

Morera’s theorem (converse of Cauchy’s theorem)
If f(2) is continuous in a simply-connected region R and if §. f(z) dz = 0 around every simple
closed curve C in R, then f(z) is analytic in R.

Cauchy’s inequality
Suppose f(z) is analytic inside and on a circle C of radius r and center at z = a. Then

M - n!
) <=2 n=0,1,2... (5.3)
rn

where M is a constant such that |f(z)] < M on C, i.e., M is an upper bound of |f(z)| on C.

Liouville’s theorem
Suppose that for all z in the entire complex plane, (i) f(z) is analytic and (ii) f(z) is bounded, i.e.,
| f(z)] < M for some constant M. Then f(z) must be a constant.

Fundamental theorem of algebra
Every polynomial equation P(z) = ag + a1z + a»z*> + - - - + a,2" = 0 with degreen > landa, #0
has at least one root.

From this it follows that P(z) = 0 has exactly n roots, due attention being paid to multiplicities
of roots.

Gauss’ mean value theorem
Suppose f(z) is analytic inside and on a circle C with center at a and radius r. Then f(a) is the mean
of the values of f(z) on C, i.e.,

2m

_ 1 it
f(a)—zwjf(a—i-re )dG (5.4)

(=]

Maximum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal to a
constant. Then the maximum value of | f(z)| occurs on C.

Minimum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and f(z) # 0 inside C. Then | f(2)|
assumes its minimum value on C.

The argument theorem
Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles
inside C. Then

! jEf/(Z)dz=N—P (5.5)

2mi | f(2)

277
c

where N and P are, respectively, the number of zeros and poles of f(z) inside C.
For a generalization of this theorem, see Problem 5.90.

Rouché’s theorem
Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose
lg(z)] < |f(2)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

Poisson’s integral formulas for a circle _
Let f(z) be analytic inside and on the circle C defined by |z| = R. Then, if z = re'’ is any point
inside C, we have

1 T (R* — ) f(Re'?)

oy _ L
flrey = 27 ) R? — 2Rrcos(0 — ¢) + r?
0

dé (5.6)
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If u(r, 6) and v(r, 6) are the real and imaginary parts of f(re'?) while u(R, ¢) and v(R, ¢) are
the real and imaginary parts of f(Re'?), then

2
1 (R> — P)u(R, ¢)
ulr, 0) = 27 J R? — 2Rrcos(0 — ¢) + 12 a¢ 57
0
1T ®=PuR B
oir, 6) = 27 J R? — 2Rrcos(0 — ¢) + 12 dé (5-8)
0

These results are called Poisson’s integral formulas for a circle. They express the values of a
harmonic function inside a circle in terms of its values on the boundary.

11. Poisson’s integral formulas for a half plane
Let f(z) be analytic in the upper half y > 0 of the z plane and let { = £+ in be any point in this
upper half plane. Then

00

1 nf(x)
= 5.9
£ WJ i (5.9)
In terms of the real and imaginary parts of f({), this can be written

1] mut, 0)
u(g, m) = WJ G_E 17 (5.10)

_ l R nu(x, 0)
u(g m) = W_J G EP+ o (5.11)

These are called Poisson’s integral formulas for a half plane. They express the values of a
harmonic function in the upper half plane in terms of the values on the x axis [the boundary]
of the half plane.

SOLVED PROBLEMS

Cauchy’s Integral Formulas

5.1. Letf(z) be analytic inside and on the boundary C of a simply-connected region R. Prove Cauchy’s

integral formula
fla) L ﬂ; Zfiz) dz

- 2ari a
c
Solution

Method 1. The function f(z)/(z — a) is analytic inside and on C except at the point z = a (see Fig. 5-2). By
Theorem 4.4, page 117, we have

Z—a Z—a
C r

§ 19D [ SO, o

where we can choose I" as a circle of radius € with center at a. Then an equation for I' is |z —a| = € or
7 —a = ee'¥ where 0 < 6 < 2. Substituting z = a + ee'?, dz = iee'?, the integral on the right of (1) becomes
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27 2
i0Y; 2,0
ﬂ;f(Z)dZ:J‘f(a—i_ee_G)lee de:l Jf(a+€€i0)d0
z—a ee'
r 0 0
Thus we have from (1),
27
jﬁﬁdz =i Jf(a + ee'%)do )
7—a

c 0

Taking the limit of both sides of (2) and making use of the continuity of f(z), we have

2
ﬁ;&dz = limi Jf(a + ee'%) do
Z—a e—~0
c 0
27 2
=i J 1irr(1)f(a+eei9)d0:i J fla)d6 = 2mi f(a) 3)
0 0
so that we have, as required,
1
o= 12
2m J z—a

o

Method 2. The right side of equation (1) of Method 1 can be written as
ff; f@ dz:%f(Z)_f(a)der% fl@ iz
z—a z—a z—a

@) —f(a)
Z—a

dz + 2 f(a)

———

using Problem 4.21. The required result will follow if we can show that

ﬂ; fO-f@, _,
z—a
r

But by Problem 3.21,

%wdz zi;f/(a)der%n dz = ffndz
T T

r r

Then choosing I" so small that for all points on I' we have n| < 6/2, we find

i‘;n dz| < <£)(27TE) =€
27

r

Thus Sﬁrn dz = 0 and the proof is complete.
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Fig. 52 Fig. 5-3

5.2. Let f(z) be analytic inside and on the boundary C of a simply-connected region R. Prove that

277

o [ f®@)

Solution

From Problem 5.1, if a and a + & lie in R, we have

f(a+h)—f(a)_iﬂ@1 IR ) PO _Lﬂ@ f()dz
h 2w S hlimat+h z—al’ P T 2w S a—a—hiz—a)
C C

1 i#f(z)dz N h + f@)dz

“2mi (z — a)? 2 m
C C

The result follows on taking the limit as # — 0 if we can show that the last term approaches zero.
To show this we use the fact that if I' is a circle of radius € and center a which lies entirely in R
(see Fig. 5-3), then

h ?i; f(2) dz _h i; f(2) dz
( (

2w J c—a-Me—a? 27 ] @—a—hi-a)
c r
Choosing & so small in absolute value that a 4+ & lies in I" and |h| < €/2, we have by Problem 1.7(c), and the
fact that I" has equation |z — a| = €,
lz—a—h|>|z—a|l—|h| > €e—€/2=¢€/2

Also since f(z) is analytic in R, we can find a positive number M such that | f(z)| < M.
Then, since the length of T" is 27r€, we have

h jﬁ f(z)dz _ |n M2me) _ 2iiM

Je—a-mGe—ar| " 2m2E@) @

2mi

and it follows that the left side approaches zero as 7 — 0, thus completing the proof.
It is of interest to observe that the result is equivalent to

4y d Lfi;f(z)dz _Lﬂ;ﬁ{f(z)}dz

da :% 2@ J z—a T 2mi | dalz—a
c c

which is an extension to contour integrals of Leibnitz’s rule for differentiating under the integral sign.
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5.3. Prove that under the conditions of Problem 5.2,

@) = 'ﬂ;(z f(z))mdz n=01,273,...

Solution

The cases where n = 0 and 1 follow from Problems 5.1 and 5.2, respectively, provided we define £ (a) = f(a)

and 0! = 1.
To establish the case where n = 2, we use Problem 5.2 where a and a + h lie in R to obtain
fllath) —fl@ 1 f'; 1 1 1
g 0 7 J T = — d
I i S lema-np  e—ap]/@%

_i!f{) A dz+ij£ D2 ey
_ 2 _ =
C

27 | (z—a)’ 27 | (z—a—h)(z
c

The result follows on taking the limit as # — O if we can show that the last term approaches zero. The proof
is similar to that of Problem 5.2, for using the fact that the integral around C equals the integral around T,
we have

2mi

h % 3(z—a) — F2)de |h| M27e) 4|h|M
P (z—a—h>2< )3 S 2m(e2@) e

Since M exists such that |{3(z — a) — 24} f(z)| < M.

In a similar manner, we can establish the result for n = 3, 4, ... (see Problems 5.36 and 5.37).
The result is equivalent to (see last paragraph of Problem 5.2)

SR RN IR S L
Tda |27 ] (z—a) T 2w | dat |z—a
c C

5.4. Suppose f(z) is analytic in a region R. Prove that f'(z), f”(z), . . . are analytic in R.

Solution
This follows from Problems 5.2 and 5.3.

5.5. Evaluate:

. 2 2 2z
(a) jﬁwdz, (b) %(i—l)ﬂzz where C is the circle |z| = 3.
Z

(z—1D(z—-2)
Solution
1 1
Si = — h
(a) Since G-De—2 -2 i-T we have
i; sin 7z + cos 7z? E{) sin 722 + cos 7z d i; sin 7z + cos 7Z? d
= z — 74
(z—D(z—-2) z—2 z—1

c
By Cauchy’s integral formula with @ = 2 and a = 1, respectively, we have

ff sin 722 + cos 7z

5 dz = 2mifsin m(2)* + cos m(2)*} = 2mi
i

c
4; sin 77> + cos 7z dz = 2mi{sin m(1)* + cos m(1)*} = —2mi
c

z—1
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since z = 1 and z = 2 are inside C and sin 7z> + cos 77> is analytic inside C. Then, the required integral
has the value 2mi — (—2mi) = 4.
(b) Letf(z) = ¢* and a = —1 in the Cauchy integral formula

(n) _L‘ f(Z)
[y =-— jgi(z_a)nﬂ dz (1)
C

If n = 3, then f”(z) = 8¢% and f”'(—1) = 8¢~2. Hence (1) becomes

| 2z
8¢ 2 = 3— fﬁ%dz
2@ ] (z+ 1)

C

from which we see that the required integral has the value 8ie=2/3.

5.6. Prove Cauchy’s integral formula for multiply-connected regions.

Solution

We present a proof for the multiply-connected region R G
bounded by the simple closed curves C; and C; as indi-
cated in Fig. 5-4. Extensions to other multiply-connected
regions are easily made (see Problem 5.40).
Construct a circle I" having center at any point a in R so
that I" lies entirely in R. Let R’ consist of the set of points
in R that are exterior to I'. Then, the function f(z)/(z — a)
is analytic inside and on the boundary of R’. Hence, by
Cauchy’s theorem for multiply-connected regions
(Problem 4.16),

Jﬁ%ﬂ@&_Ji§ﬂ@&_J,§ﬁQﬂ:0m

2@ | z—a 2@ Jz—a 2@ ) z—a Fig. 5-4
C C r

But, by Cauchy’s integral formula for simply-connected regions, we have

1
m>—§m& )

T 2miJz—a
r

so that from (1),

1 fj;f(Z) 1 jEJ‘(Z) &z 3)

f@ 2@ Jz—a ¢ 2@ Jz—a
C] CZ

Then, if C represents the entire boundary of R (suitably traversed so that an observer moving around C always
has R lying to his left), we can write (3) as

mwi&“&
2771 a
c

In a similar manner, we can show that the other Cauchy integral formulas

f(n)(a) — 2’17' % f(Z)

dz n=1,2,3,...
T (z_a)n+1
C

hold for multiply-connected regions (see Problem 5.40).
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Morera’s Theorem

5.7. Prove Morera’s theorem (the converse of Cauchy’s theorem): Suppose f(z) is continuous in a
simply-connected region R and suppose

i;f(z)dz =0

c
around every simple closed curve C in R. Then f(z) is analytic in R.
Solution

If §C f(2) dz = 0 independent of C, it follows by Problem 4.17, that F((z) = ja f(2) dzis independent of the path
joining a and z, so long as this path is in k.

Then, by reasoning identical with that used in Problem 4.18, it follows that F(z) is analytic in R and
F'(z) = f(z). However, by Problem 5.2, it follows that F'(z) is also analytic if F(z) is. Hence, f(z) is analytic in R.

Cauchy’s Inequality

5.8. Let f(z) be analytic inside and on a circle C of radius r and center at z = a. Prove Cauchy’s
inequality

M -n!
|f(”)(a)| S—nn n=0,1,2,3,...
r

where M is a constant such that | f(z)| < M.
Solution

We have by Cauchy’s integral formulas,

(n) _L‘ f(Z) _
f (a)—zm.ﬁ;i(z_a)mdz n=0,1,23,...
C

Then, by Problem 4.3, since |z — a| = r on C and the length of C is 27,

2 rh

(Z _ a)n+1
Cc

Liouville’s Theorem

5.9. Prove Liouville’s theorem: Suppose for all z in the entire complex plane, (i) f(z) is analytic and (ii)
f(2) is bounded [i.e., we can find a constant M such that | f(z)| < M]. Then f(z) must be a constant.

Solution
Let a and b be any two points in the z plane. Suppose that C is a y
circle of radius r having center at a and enclosing point b (see
Fig. 5-5). €
From Cauchy’s integral formula, we have
10 1
10 ~f@ =5 TG e O
2m@i J z—b 2@ Jz—a
c c N
_b—a ?i; fl2)dz
2mi (z—=>b)z—a)
C

Fig. 5-5
Now we have

z—a|l=r, |z—bl=|z—a+a—bl>|z—a|l—|la—bl=r—|a—b|>r/2
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if we choose r so large that |a — b| < r/2. Then, since |f(z)| < M and the length of C is 27rr, we have by
Problem 4.3,

) — fla)| = |b—al % f(z) dz ' - |b—alMQar)  2|b—alM

20 J (z—b)(z — a)’ = 2ar/2r r

Letting r — oo, we see that | f(b) — f(a)| = 0 or f(b) = f(a), which shows that f(z) must be a constant.

Another Method. Letting n = 1 in Problem 5.8 and replacing a by z we have,
If'@l <M/r

Letting r — oo, we deduce that |f'(z)] = 0 and so f'(z) = 0. Hence, f(z) = constant, as required.

Fundamental Theorem of Algebra

5.10.

5.11.

Gauss’
5.12.

Prove the fundamental theorem of algebra: Every polynomial equation P(z) = ap+ a;z+
w? + -+ a,7" =0, where the degree n > 1 and a, #0, has at least one root.

Solution

If P(z) = 0 has no root, then f(z) = 1/P(z) is analytic for all z. Also, | f(z)| = 1/|P(z)| is bounded (and in fact
approaches zero) as |z] — .

Then by Liouville’s theorem (Problem 5.9), it follows that f(z) and thus P(z) must be a constant. Thus, we
are led to a contradiction and conclude that P(z) = 0 must have at least one root or, as is sometimes said, P(z)
has at least one zero.

Prove that every polynomial equation P(z) = ag + a1z + a2z + - - - + a,2" = 0, where the degree
n > 1 and a, # 0, has exactly n roots.

Solution

By the fundamental theorem of algebra (Problem 5.10), P(z) has at least one root. Denote this root by . Then
P(a) = 0. Hence

P@) —P(@) =ay+a1z+ @z + -+ a,d" — (ag + aya+ axa’ + - - + a,a)

=ai(z— @) +a(F —a®) + -+ a2 — o)
=(@zZ—- o0

where Q(z) is a polynomial of degree (n — 1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero, which we can
denote by B [which may equal «], and so P(z) = (z — a)(z — B)R(z). Continuing in this manner, we see that
P(z) has exactly n zeros.

Mean Value Theorem

Let f(z) be analytic inside and on a circle C with center at a. Prove Gauss’ mean value theorem that
the mean of the values of f(z) on C is f(a).

Solution

By Cauchy’s integral formula,

27

1
flay =~ fjﬁ @) 4 (1)
Z a
C
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If C has radius r, the equation of C is |z — a| = r or z = a + re'?. Thus, (1) becomes

2

J fla + re'%ire'

fla) = do=

(=]

which is the required result.

Maximum Modulus Theorem

ret? 2m

2

L Jf(a +re®de

0

5.13. Prove the maximum modulus theorem: Suppose f(z) is analytic inside and on a simple closed curve
C. Then the maximum value of | f(z)| occurs on C, unless f(z) is a constant.

Solution

Method 1

Since f(z) is analytic and hence continuous inside and on C, it
follows that | f(z)| does have a maximum value M for at least
one value of z inside or on C. Suppose this maximum value is
not attained on the boundary of C but is attained at an interior
point a, i.e., |f(a)l=M. Let C; be a circle inside C with
center at a (see Fig. 5-6). If we exclude f(z) from being a constant
inside C;, then there must be a point inside C;, say b, such that
| f(b)] < M or, what is the same thing, |f(b)] = M — € where
€> 0.

Now, by the continuity of | f(z)| at b, we see that for any € > 0
we can find & > 0 such that

IIf @I = 1fD)I] < %6 whenever |z —b| < 8 (1)

ie.,

1 1 1
If@QI<IfO)+7e=M-et e=M-ze  (2)

Fig. 56

for all points interior to a circle C, with center at b and radius 6, as shown shaded in the figure.
Construct a circle C; with a center at a that passes through b (dashed in Fig. 5-6). On part of this circle

[namely that part PQ included in C,], we have from (2), |f(z)| <M —

circle, we have |f(z)| < M.

e On the remaining part of the

If we measure 6 counterclockwise from OP and let ZPOQ = «, it follows from Problem 5.12 that if

r=|b—a,

2T

fl@ :ijf(a-l-l’e’i(’))ah‘)—i-L Jf(a+ re'yde
2 2
0

o

Then

lf(@)] = %TJ
0

a 2
1 1
—(Mm== —
27TJ< 6) d0+277
0

o

2
. 1 .
If(a+ re'®)| do+ o= J If(a + re'®)| do

o

JMdH

o' 1 M
2W(M—§ >+ZT(27T_C()
£ M-
4w

ie., |f(a)| =M < M — (ae/4m), an impossible situation. By virtue of this contradiction, we conclude that
| f(2)| cannot attain its maximum at any interior point of C and so must attain its maximum on C.
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Method 2

From Problem 5.12, we have

2

1 .
(@) < EJ |f(a+re'®) do 3)

0

Let us suppose that | f(a)| is a maximum so that | f(a + re'®)| < |f(a)|. If |f(a + re'?)| < |f(a)| for one
value of 6 then, by continuity of f, it would hold for a finite arc, say 6; < 6 < 6,. But, in such case, the
mean value of |f(a + re'?)| is less than | f(a)|, which would contradict (3). It follows, therefore, that in any
6 neighborhood of a, i.e., for |z — a| < §, f(z) must be a constant. If f(z) is not a constant, the maximum
value of | f(z)| must occur on C.

For another method, see Problem 5.57.

Minimum Modulus Theorem

5.14. Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple closed curve C.
Prove that if f(z) #0 inside C, then | f(z)| must assume its minimum value on C.

Solution

Since f(z) is analytic inside and on C and since f(z) #0 inside C, it follows that 1/f(z) is analytic inside C.
By the maximum modulus theorem, it follows that 1/|f(z)| cannot assume its maximum value inside C and
so |f(z)| cannot assume its minimum value inside C. Then, since |f(z)| has a minimum, this minimum
must be attained on C.

5.15. Give an example to show that if f(z) is analytic inside and on a simple closed curve C and f(z) = 0
at some point inside C, then | f(z)| need not assume its minimum value on C.

Solution

Letf(z) = zfor |z|] < 1, so that C is a circle with center at the origin and radius 1. We have f(z) = 0 atz = 0.
If z = re'?, then | f(z)| = r and it is clear that the minimum value of | f(z)| does not occur on C but occurs inside
C where r =0, i.e., at z = 0.

The Argument Theorem

5.16. Let f(z) be analytic inside and on a simple closed curve C except for a pole z = a of order (multi-
plicity) p inside C. Suppose also that inside C, f(z) has only one zero z = 3 of order (multiplicity)
n and no zeros on C. Prove that

B Sy
2mi ] fz) P

C

Solution

Let C; and I'; be non-overlapping circles lying inside C and enclosing z = « and z = 3, respectively. [See
Fig. 5-7.] Then

L (f@, 1 [f@, 1 [f©
2mi # 70 % 2w ﬁL 0% 2m ﬂ; o~ M

Cc Ci T
Since f(z) has a pole of order p at z = «, we have

F(z)
(z—a)?

f@) = 2
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where F(z) is analytic and different from zero inside and on C;. Then, taking logarithms in (2) and differen-
tiating, we find

@ _F@ __»p 3)
f@ F@ z—a
so that
1 f/(z) 1 %F/(z) p ﬂ; dz
— dz — — =0—p=— 4
2771%]‘(2) = 2mi | F(2) ¢ 2m Jz—« P P @
C C C
Since f(z) has a zero of order n at z = 3, we have
f@) =(@-Pp) "G Q)
where G(z) is analytic and different from zero inside and on I';.
Then, by logarithmic differentiation, we have
1@ n G
= + 6
f@ z—B G@ ©
so that
L [f@, _n f{’ dz 1 ﬁ;G’(z)
- — dz = 7
2mfff(z) == g 2wl e =" ™
r

Hence, from (1), (4), and (7), we have the required result

1 ﬂ;f@ 1 ﬂ;f@ +L§f’(Z)dZ:
f@7 7 2m | fR m'r f@

Fig. 57 Fig. 5-8

5.17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside
C. Suppose that f(z) # 0 on C. If N and P are, respectively, the number of zeros and poles of f(z)
inside C, counting multiplicities, prove that

1 fi; f’(z)

2 f(z) =N-=-P

Solution

Let oy, ap,..., a5 and B, B,,..., By be the respective poles and zeros of f(z) lying inside C [Fig. 5-8] and
suppose their multiplicities are py, ps, ..., pj and ny, na, ..., m.
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Enclose each pole and zero by non-overlapping circles Cy, C», ..., Cijand 'y, I', ..., T'x. This can always
be done since the poles and zeros are isolated.
Then, we have, using the results of Problem 5.16,

L[ @, I HOp S HOP
2m'i;f(z) Zﬁ%(z) +me+f<z>

r=1 r=1

J k
= an - Zpr
r=1 r=1

Rouché’s Theorem

5.18. Prove Rouché’s theorem: Suppose f(z) and g(z) are analytic inside and on a simple closed curve C
and suppose [g(z)| < |f(z)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

Solution

Let F(z) = g(z)/f(z) so that g(z) = f(2)F(z) or briefly g = fF. Then, if N; and N, are the number of zeros
inside C of f 4 g and f, respectively, we have by Problem 5.17, using the fact that these functions have no
poles inside C,

1 / / 1 4
Nl:iﬂ;f—i_g dZ, N2 f’;fdz

2mi | f+ 2mi J f
C
Then
_Lj@f—i—fF—i—fF’ iﬂ;i lf’;f(l+F)+fF/d_L4;L’d
2 f+fF 2mi | F T 2w fa+Fp ST om
C C
1 f F f 1 F'
ﬁﬂﬁ F} jg? %f];l+FdZ
C
LJF’(l—F+F2—F3+-..)dz=0
2771
C

using the given fact that |F| < 1 on C so that the series is uniformly convergent on C and term by term
integration yields the value zero. Thus, Ny = N, as required.

5.19. Use Rouché’s theorem (Problem 5.18) to prove that every polynomial of degree n has exactly n
zeros (fundamental theorem of algebra).

Solution

Suppose the polynomial to be ag+ aiz+ axz* + -+ ap", where a, #0. Choose f(z) =a,z" and
gD =a)taztam?+- +a,_2 L
If C is a circle having center at the origin and radius r > 1, then on C we have

8@ lao+aiz4+am? 4 +a, 12" _ laol +lai|r + las|r* + -+ + lap |

f@ lanz"| - lan|r"
- laolr"™" + lay|[r"™" + |aa| ™ + -+ lap [P aol + lai| + laz| 4 - - - + |an—i]
- lan|r" lanlr

Then, by choosing r large enough, we can make ’g(z)/f(z)’ <1, i.e., |g(@)| < |f(z)|. Hence, by Rouché’s
theorem, the given polynomial f(z) + g(z) has the same number of zeros as f(z) = a,z". But, since this last
function has n zeros all located at z = 0, f(z) + g(z) also has n zeros and the proof is complete.
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5.20. Prove that all the roots of z” — 573 + 12 = 0 lie between the circles |z| = 1 and |z] = 2.
Solution

Consider the circle Ci: |z] = 1. Let f(z) = 12, g(z) = z/ — 5z°. On C; we have

lg@@)| =2/ = 52| < 12| +152'] <6 < 12 = | f(2)|

Hence, by Rouché’s theorem, f(z) + g(z) = z/ — 5z° + 12 has the same number of zeros inside |z] = 1 as
f(z) = 12, i.e., there are no zeros inside Cj.
Consider the circle Cy: |z] = 2. Let f(z) = 7, g(z) = 12 — 5z°. On C, we have

lg@| = 12 = 52| < [12] 4152 <60 <27 = | f(2)|

Hence, by Rouché’s theorem, f(z) + g(z) = 2z’ — 5z° + 12 has the same number of zeros inside |z] =2 as
f(2) =7/, i.e., all the zeros are inside C,.
Hence, all the roots lie inside |z| = 2 but outside |z| = 1, as required.

Poisson’s Integral Formulas for a Circle

5.21. (a) Let f(z) be analytic inside and on the circle C defined by |z| = R, and let z = re’? be any point
inside C (see Fig. 5-9). Prove that

2

o 1 R — 2 Rei®) 4
Jre )_ETJRZ—ZRVCOS(O—Q'))-FVZJC( e de
0

(b) Let u(r, 6) and v(r, 6) be the real and imaginary parts of f(re'®). Prove that

2

o L[ _R=rHuR $dp
u(r, 0) = 2’7TJ R% — 2Rrcos(6 — ¢) + r2
0

1
v(r, ) = —

TR =) uR, ¢dd
277J

R%? — 2Rrcos(0 — ¢) + r?
0

The results are called Poisson’s integral formulas for the circle.

Solution

(a) Since z = re'? is any point inside C, we have by Cauchy’s integral formula

: 1 )
f@ =f(re) = 5 } S 4, )
rl w—2z
c
The inverse of the point z with respect to C lies outside C and is given by

R?/7. Hence, by Cauchy’s theorem,

_ 1 S(w)
T 2mi fi; w— Rz/zdw @ Fig. 5-9

C
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If we subtract (2) from (1), we find

1
= ﬁ“ - R2/ }f(w)dw
C
1 7—R%*/Z
mf( oy sy AU ©)

Now, let z = re’® and w = Re'®. Then, since z = re™?, (3) yields

0, _ 1 Tl — R/ fReDiRP dd 1 [ (2 — RO DFRe®) dp
fre®) = 2mi J (Re'® — rel®}{Rei® — (R2/r)ei®} ~— 2 J (Rei® — rei®)(rei® — Rei?)
0 0

T ®PAr®ehag 1T R =R dd
- [ J 2Rr cos(f — ) + 12

7 ) (Rel® — rei®)(Re—i¢ — re=i%) ~ 211 | R2 —
0 0
(b) Since f(re'®) = u(r, 6) + iv(r, ) and f(Re'?) = u(R, ¢) + iv(R, ¢), we have from part (a),

u(r, 6) 4+ iv(r, 0) =

J(R2 ){u(R, ¢) + iv(R, $)}dd
— 2Rrcos(6 — ) + 12

0
0 R Pu®R ddd i [ R PR ) deb
_ZTJRz—2ch0s(6’—<15)—i—r2 ZTJRz—ZRFCOS(G—¢)+r2
0 0

Then the required result follows on equating real and imaginary parts.

Poisson’s Integral Formulas for a Half Plane
5.22. Derive Poisson’s formulas for the half plane [see page 146].

Solution

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing { as an interior point. Since C
encloses ¢ but does not enclose ¢, we have by Cauchy’s integral formula,

_ L [/@ _ 1 [ /@
f(g)_Zﬂ'iﬂ;z—édZ’ 0= ZWZE';Z_g
C C

Then, by subtraction,

1 1 [ (- DfR)dz
_ L —— == =
&) %f(z){ y _g}z Zﬂii(z—g)(z—ﬁ

Letting { = €+ i, Z: & — im, this can be written

1 nf(x) dx lJ M f(2) dZ_
1o WJR(X—§)2+772 WF(Z—Z)(Z—D
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where I is the semicircular arc of C. As R — oo, this last integral approaches zero [see Problem 5.76] and
we have

L[ af@x
16 = Lo“f)z*”z

m

Writing  f({) =f(E+in) =u(é n) +iv(€ n), fx)=u(x, 0)+ iv(x, 0), we obtain as required,

u€, n) =—

o

Gt v(& m=—

1 ]o nu(x, 0) dx l T nu(x, 0) dx

x—9* +n

Fig. 5-10 Fig. 511

Miscellaneous Problems

5.23. Letf(z) be analytic in a region R bounded by two concentric circles C; and C, and on the boundary
[Fig. 5-11]. Prove that, if z¢ is any point in R, then

1 1
Fzo) = — f(@) dz __$ f(@)
m ) z—20 2@ ) 72— 20

Cy C

dz

Solution

Method 1. Construct cross-cut EH connecting circles C; and C,. Then f(z) is analytic in the region bounded by
EFGEHKJHE. Hence, by Cauchy’s integral formula,

1 Z
fzo) = T &dZ
l Z—20
EFGEHKJHE
1 1 1 1
=— % /@ dz 4+ — J 1@ dz 4+ — § f@ dz + — J /@ dz
2771 z—20 2w ) 7— 20 2771 7—20 2w ) 72— 2
EFGE EH HKJH HE
1
_ % f(@ d — 1.4; f@ dz
2 ) z— 20 2 ) z— 20

Cy G

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f(z).
Method 2. The result also follows from equation (3) of Problem 5.6 if we replace the simple closed curves C;
and C; by the circles of Fig. 5-11.

5.24. Prove that, forn=1,2,3,...,

2
J cos”'0d6 =
0

1:3:5-Qn—1),
2-4-6---(2n)
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Solution

Letz =¢. Then,dz =ie' d0=izd6 or dO=dz/iz and cos 0= + ¢ ") =1z + 1/z). Hence,

if C is the unit circle |z] = 1, we have

i 1 2"dz
Jcosz”edﬂ— = ( )}

2
0

1 -1y 2n\ g lk lzn
22,114;1{ <> <)+ —l—(k)(z () ++(5) fe
c
-1 n-3 2n\ oy okt —2n
fj;{z ( ) +<k)z +- 4z }dz
c
1 (2n 1 [2n

zzz—ni-2m<n>_ﬁ(n>2'n'

1 @n) Cn)2n— 121 —=2)--(m)n—1)---1
22 i - 221p1n!
_l~3~5-~(2n—1)2
T 2.4.6---2n

5.25. Suppose f(z) = u(x, y) + iv(x, y) is analytic in a region R. Prove that u and v are harmonic in R.

Solution

In Problem 3.6, we proved that u and v are harmonic in R, i.e., satisfy the equation (8 ¢/dx*) + (8*$/dy*) = 0,
under the assumption of existence of the second partial derivatives of u and v, i.e., the existence of ”(z).

This assumption is no longer necessary since we have in fact proved in Problem 5.4 that, if f(z) is analytic
in R, then all the derivatives of f(z) exist.

5.26. Prove Schwarz’s theorem: Let f(z) be analytic for |z] < R, f(0) = 0, and |f(z)] < M. Then

M|z|

If @I = —%=

Solution

The function f(z)/z is analytic in |z| < R. Hence, on |z| = R, we have by the maximum modulus theorem,

fQ| _M
z |~ R

However, since this inequality must also hold for points inside |z| = R, we have for |z| < R, |f(2)| < M|z|/R
as required.

5.27. Let
x“sin(1/x) x#0
feo = { 7

where x is real. Show that the function f(x) (a) has a first derivative at all values of x for which
0 < x <1 but (b) does not have a second derivative in 0 < x < 1. (¢) Reconcile these conclusions
with the result of Problem 5.4.
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5.28.

Solution

(a) The only place where there is any question as to existence of the first derivative is at x = 0. But, atx = 0,

the derivative is

_ fO+A0) —f0) . (Ax)*sin(1/Ax) — 0
AIXITO Ax - Al)glo Ax

= Aligo Axsin(1/Ax) =0

and so exists.
At all other values of x in 0 < x < 1, the derivative is given (using elementary differentiation rules) by

x2 cos(1/x){—1/x*} + (2x) sin(1/x) = 2xsin(1/x) — cos(1/x)

(b) From part (a), we have

2xsin(1/x) —cos(1/x) x#0

f/(x):{o x=0

The second derivative exists for all x such that 0 < x < 1. At x = 0, the second derivative is given by

. f[(0+ Ax) — f(0) . 2Axsin(1/Ax) — cos(1/Ax) — 0
lim —————~———~ = lim
Ax—0 Ax Ax—0 Ax
{2 sin(1/Ax) — (1/Ax) cos(1/Ax)}

= lim
Ax—0
which does not exist.
It follows that the second derivative of f(x) does not exist in 0 < x < 1.
(¢) According to Problem 5.4, if f(z) is analytic in a region R, then all higher derivatives exist and are ana-

lytic in R. The above results do not conflict with this, since the function f(z) = z? sin(1/z) is not analytic
in any region which includes z = 0.

(a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at 7 = a
inside C. Prove that

1 m—1

1 fi; F(2)dz = lim {2 — a)"F(2))

2 a (m— 1) dzm!
c

(b) How would you modify the result in (a) if more than one pole were inside C?
Solution

(a) If F(2) has a pole of order m at z = a, then F(z) = f(z)/(z — a)™ where f(z) is analytic inside and on C, and
f(a)#0. Then, by Cauchy’s integral formula,

1 L[ f@ V@ 1 ] ,
2 fj;F(Z)dZ " 2mi f'; oo BT o T D (€T @)
C C

(b) Suppose there are two poles at z = a; and z = a, inside C, of orders m; and m,, respectively. Let I'; and
I'; be circles inside C having radii €; and €, and centers at a; and ay, respectively (see Fig. 5-12). Then

1 1 1
ﬁ%F(Z)dzzﬁ%F(Z)dzﬁ-ﬁE’;F(z)dz ¢))
C T I
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Fig. 512

If F(z) has a pole of order m; at z = ay, then

F(z) = % where fi(z) is analytic and fi(a;) #0
Z—a
If F(z) has a pole of order m, at z = ay, then
F(z) = fzi(@m where f>(z) is analytic and f>(a>) # 0
(z—a)™

Then, by (1) and part (a),

1 1 f1@) 1 £
7 | PO = 5 P e 5

C Iy I

1 dml
= lim —— 4" F
zial (my — D'dzm — {(Z ar) (@)}

. 1 ar—1 .
i i (@~ @) F Q)

If the limits on the right are denoted by R; and R,, we can write

%F(z) dz =2mi(Ry + Ry)
c

where R; and R, are called the residues of F(z) at the poles z = a; and z = a,.

In general, if F(z) has a number of poles inside C with residues R;, R», ..., then fﬁc F(2)dz =2mi
times the sum of the residues. This result is called the residue theorem. Applications of this theorem,
together with generalization to singularities other than poles, are treated in Chapter 7.

¥4

5.29. Evaluate Ei; dz where C is the circle |z] = 4.

(22 + m)?
C
Solution
Z Z
The poles of ¢ > = - f — are at z = +mi inside C and are both of order two.
Z+ 7)) (z— m)(z+ m)
. ... 1d e T+
Residue at z = 7 is lim —— { (z — mi)? = .
—mi 1ldz {( ) (z— 7Ti)2(z + 7Ti)2} 473
1d et T—1
Residue at z = —7i is 11m —— 1 (z+ = .
mi 1ldz {( m™* (z —7Ti)2(z+7Ti)2} 4

Then {)wfiﬂz)zdz = 2 (sum of residues) = Zﬂi(z;l + Z;l> = 7%_
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SUPPLEMENTARY PROBLEMS

Cauchy’s Integral Formulas

1
5.30. Evaluate i fi; dz if Cis: (a) the circle |z] =3, (b) the circle |z] = 1.

z—2

5.31. Evaluate dz if C is the circle |z| = 5.

5.32. Evaluate

dz if Cis: (a) thecircle |z— 1| =4, (b) the ellipse |z — 2| + |z + 2| = 6.
-

feve
=

cos m2

5.33. Evaluate <l; dz around a rectangle with vertices at: (a) 2 + i, —2 + i;(b) —i, 2 — i, 2+, i.

C

1 eZI
5.34. Show that — oy %

dz = sint if t > 0 and C is the circle |z| = 3.
2+1
c

5.35. Evaluate i#e—;dz where C is the circle |z| = 2.
z
c

5.36. Suppose C is a simple closed curve enclosing z =a and f(z) is analytic inside and on C. Prove that

m f@dz
fay= 2771%(1—61)4

5.37. Prove Cauchy’s integral formulas for all positive integral values of n. [Hint: Use mathematical induction.]

- 6 . 6
5.38. Given C is the circle |z| = 1. Find the value of (a) ﬁ; Sz dz, (b) i;&d
z— b4
C

76 -6y
1 eZI
5.39. Evaluate — E’; ————dz when t > 0 and C is the circle |z] = 3.
2mi ) (224 1)

5.40. Prove Cauchy’s integral formulas for the multiply-connected region of Fig. 4-26, page 140.

Morera’s Theorem
5.41. (a) Determine whether G(z) = LZ d{/{ is independent of the path joining 1 and z.
(b) Discuss the relationship of your answer to part (a) with Morera’s theorem.
5.42. Does Morera’s theorem apply in a multiply-connected region? Justify your answer.

5.43. (a) Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed curve. Prove that
$coPdx+ Qdy =0.

(b) Suppose for all simple closed curves C in a region R, SQCde + Qdy =0. Is it true that P and Q are
conjugate harmonic functions, i.e., is the converse of (a) true? Justify your conclusion.

Cauchy’s Inequality

5.44. (a) Use Cauchy’s inequality to obtain estimates for the derivatives of sin z at z = 0 and (b) determine how
good these estimates are.

5.45. (a) Show that if f(z) = 1/(1 — z), then f*(z) = n!/(1 — z)"*1.

(b) Use (a) to show that the Cauchy inequality is “best possible”, i.e., the estimate of growth of the nth deriva-
tive cannot be improved for all functions.
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5.46. Prove that the equality in Cauchy’s inequality (5.3), page 145, holds in the case n = m if and only if
f@ =kM(z—a)"/r™, where |k| = 1.

5.47. Discuss Cauchy’s inequality for the function f(z) = e~/ < in the neighborhood of z = 0.

Liouville’s Theorem

5.48. The function of a real variable defined by f(x) = sinx is (a) analytic everywhere and (b) bounded, i.e.,
[sinx| <1 for all x but it is certainly not a constant. Does this contradict Liouville’s theorem? Explain.

5.49. Suppose a > 0 and b > 0 are constants and a non-constant function F(z) is such that F(z + a) = F(z), and
F(z + bi) = F(z). Prove that F(z) cannot be analytic in the rectangle 0 <x <a, 0 <y <b.

Fundamental Theorem of Algebra

5.50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular function
f(z) = 2 — 2% — 2z + 2 has exactly four zeros. (b) Determine the zeros of f(z).

5.51. Determine all the roots of the equations: (a)z> —3z4+4i=0, (b)z*+2+1=0.

Gauss’ Mean Value Theorem

2
1 ;
5.52. Evaluate o J sin?(7r/6 + 2¢'%) d 6.
T
0

5.53. Show that the mean value of any harmonic function over a circle is equal to the value of the function at the
center.

5.54. Find the mean value of x> — y> 4 2y over the circle |z — 5 + 2i| = 3.
5.55. Prove that fow Insin 6d6 = —rIn 2. [Hint. Consider f(z) = In(1 + z).]

Maximum Modulus Theorem

5.56. Find the maximum of |f(z)| in |z] < 1 for the functions f(z) given by: (a) 2> —3z4+2, (b) * +2>+1,
(¢)cos 3z, (d) 2z+1)/(2z—1).

5.57. (a) Let f(z) be analytic inside and on the simple closed curve C enclosing z = a, prove that

F@y = —— ﬂi IFAC) A
27l z—a
C

(b) Use (a) to prove that | f(a)|" < M"/27D where D is the minimum distance from a to the curve C and M is
the maximum value of |f(z)| on C.

(c) By taking the nth root of both sides of the inequality in (b) and letting n — oo, prove the maximum
modulus theorem.

5.58. Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and (b) minimum
values of U(x, y) are attained on C. Are there other restrictions on U(x, y)?

5.59. Given C is the circle |z| = 1. Verify Problem 5.58 for the functions (a) x> —y> and (b) x* — 3xy?.

5.60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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The Argument Theorem
1@
f@

5.61. Letf(z) =2z —3iz%> +2z— 1 +i. Evaluate i# dz where C encloses all the zeros of f(z).

5.62. Letf(z) =

2 1 2 1 /
L)g. Evaluate — ﬁ; r@ dz where C is the circle |z| = 4.
(2 +2z+2) 2 2 f@)

5.63. Evaluate 5';1;((;) dz if C is the circle |z| = m and (a) f(z) = sin 7z, (b) f(z) = cos 71z, (¢) f(z) = tan 7z

dz.

5.64. Let f(z) =z* — 22> + 22 — 122+ 20 and C is the circle |z| = 5. Evaluate % Zj:((i)
z
c

Rouché’s Theorem
5.65. If a > e, prove that the equation az" = ¢° has n roots inside |z| = 1.
5.66. Prove that ze* = a where a #0 is real has infinitely many roots.

5.67. Prove that tanz = az, a > 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if 0 < a < 1,
(c) all real roots if a > 1.

5.68. Prove that ztanz = a, a > 0 has infinitely many real roots but no imaginary roots.

Poisson’s Integral Formulas for a Circle
2

R2 _ r2
5.69. Show that
ow tha JR2 — 2Rrcos(0 — ¢) +
0

" d¢ =2

(a) with, (b) without Poisson’s integral formula for a circle.

5.70. Show that:

2
COSP o} : 2
% cos(sin 6), (b) J Md(ﬁ = 2T jeost sin(sin 6).

2
€% cos(sin ¢) 2w
@ J dé =5 5_4cos@— &) 3

5—4 cos(6— @) 3
0 0

5.71. (a) Prove that the function
2rsin 6

2
u(r, 0):7tan_1<172>, 0<r<1,0<6<2w
T —-r

is harmonic inside the circle |z| = 1.

. 1 o<o<m
(b) Show that rlirlni U, 0) = [_1 T<0<2m

(c) Can you derive the expression for U(r, 6) from Poisson’s integral formula for a circle?

5.72. Suppose f(z) is analytic inside and on the circle C defined by |z] = R and suppose z = re'’

Show that

is any point inside C.

/ iO_iT
f(re)—%

0

R(R* — r)f(Re'®) sin(6 — o)
[R2 — 2Rrcos(0 — ¢) + r2]?

dé

5.73. Verify that the functions u and v of equations (5.7) and (5.8), page 146, satisfy Laplace’s equation.
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Poisson’s Integral Formulas for a Half Plane

5.74.

5.75.
5.76.
5.71.

5.78.

Find a function that is harmonic in the upper half plane y > 0 and that on the x axis takes the values —1 if
x<Oand1ifx>0.

Work Problem 5.74 if the function takes the values —1 if x < —1,0if —1 <x < 1,and 1 if x > 1.
Prove the statement made in Problem 5.22 that the integral over I" approaches zero as R — oo.

Prove that under suitable restrictions on f(x),

(<]

1 e
171413)1+7T J (x — 5)2 + nzdx —f(é:)

and state these restrictions.

Verify that the functions u and v of equations (5.10) and (5.11), page 146, satisfy Laplace’s equation.

Miscellaneous Problems

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

5.85.
5.86.
5.87.
5.88.

5.89.

1 2d
Evaluate — i{> L& where C is the square with vertices at +2, +2 + 4i.
2mi | 2 +4
c

21z

Evaluate i» cos dz where C is the circle |z| = 1 and # > 0.

2
c
(a) Show that ﬂ;

c
(b) Use (a) to show that

d
& 2miif Cis the circle |z] = 2.
z+1

(x+ Ddx+ydy (x+ Ddy—ydx
— 5 =0 3 5 =27
(x+ 1) +y? (x+ 1 +y?

and verify these results directly.

Find all functions f(z) that are analytic everywhere in the entire complex plane and that satisfy the conditions
(@) f(2 —i) = 4i and (b) | f(z) | < €* for all z.
Let f(z) be analytic inside and on a simple closed curve C. Prove that
27
@ f'(@) = %T J efla+e)do  (b)

0

2
(n)
f (a) _ L J e—niﬁf(a + ei(?) do
0

n! 2
Prove that 8z* — 6z 4+ 5 = 0 has one root in each quadrant.

Show that (a) [02 e 0 cos(sin ) d0 =0, (b) jg T ¢ 9 sin(sin 0) dO = 2.

Extend the result of Problem 5.23 so as to obtain formulas for the derivatives of f(z) at any point in R.

Prove that z3¢!~* = 1 has exactly two roots inside the circle |z| = 1.
Suppose ¢ > 0 and C is any simple closed curve enclosing z = —1. Prove that
1 Zezt t2
— ¢ ————dz=(t—= )"
2 % z+1)° < 2
c

Find all functions f(z) that are analytic in |z| < 1 and that satisfy the conditions (a) f(0) = 1 and (b) | f(z)| > 1
for |z] < 1.
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5.90.

5.91.

5.92.

5.93.

5.94.
5.95.

5.96.

5.97.
5.98.

5.99.

5.100.
5.101.

5.102.
5.103.

Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at a;, as, ..., a,
and poles at by, by, ..., b, of orders (multiplicities) py, p2, ..., pmand g1, g2, ..., g, respectively. Prove that

1 "/ m n
3§ o0 5= > pistan = Y- st
C f( ) k=1 k=1

Suppose f(z) = ap?" + a7 + a2 4+ --- +a, where ay #0, ai, ..., a, are complex constants and C
encloses all the zeros of f(z). Evaluate

1 [z2f ) 1 i;zz '@
—_— d: —_— d:
@3 jl;f() Ot e ©

and mterpret the results.

Find all functions f(z) that are analytic in the region |z| < 1 and are such that (a) f(0) = 3 and (b) | f(z)| < 3 for
all z such that |z| < 1.

Prove that z° 4 192z 4+ 640 = 0 has one root in the first and fourth quadrants and two roots in the second and
third quadrants.

Prove that the function xy(x> — y?) cannot have an absolute maximum or minimum inside the circle |z] = 1.

(a) If a function is analytic in a region R, is it bounded in R? (b) In view of your answer to (a), is it necessary to
state that f(z) is bounded in Liouville’s theorem?

Find all functions f(z) that are analytic everywhere, have a zero of order two at z = 0, satisfy the condition
|f'(2)| < 6|z| for all z, and are such that f(i) = —2.

Prove that all the roots of z° + z — 16i = 0 lie between the circles |z| = 1 and |z] = 2.

Let U be harmonic inside and on a simple closed curve C. Prove that

ou
—ds=0
ﬁ;an s

C

where n is a unit normal to C in the z plane and s is the arc length parameter.

A theorem of Cauchy states that all the roots of the equation " 4+ a;2"~' + a2 2 + - - - + a, = 0, where
ai, a, ..., a, are real, lie inside the circle |z| = 1 + max{ay, as, ..., a,}, i.e., |z| = 1 plus the maximum of
the values aj, ay, ..., a,. Verify this theorem for the special cases:

@2 —2+z—-1=0, O)F+2+1=0, (©)z*—722—2z4+2=0, (d)z*+3z2—6z+10=0.

Prove the theorem of Cauchy stated in Problem 5.99.
Let P(z) be any polynomial. If m is any positive integer and w = ¢>™/™, prove that

P(1) +P((1))+P((1)2) 4+ ... +P(wm—l)
m

= P(0)

and give a geometric interpretation.
Is the result of Problem 5.101 valid for any function f(z)? Justify your answer.

Prove Jensen’s theorem: Suppose f(z) is analytic inside and on the circle |z| = R except for zeros at
ai, a, ..., a, of multiplicities py, p»,..., p, and poles at by, b, ..., b, of multiplicities qi, 2, ..., gn,
respectively, and suppose f(0) is finite and different from zero. Then

2w

1
Jlnlf(Re"’)IdG 1n|f(0>|+Zpk1n< ) qu (|b |)
0

[Hint. Consider §c Inz{f'(2)/f(2)} dz where C is the circle |z| = R.]
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ANSWERS TO SUPPLEMENTARY PROBLEMS

5.30. (a)e?, (b) 0 554. 17
531. 2mi 5.61. 10mi
5.32. (a) —2i, (b) 0 5.62. —2
5.33. (a)0, (b) -1 5.63. (a) 14, (b) 12, (c) 2
5.35. —mi 5.64. 4mi
5.38. (a) mi/32, (b) 217i/16 574. 1—(2/mtan"'(y/x)
5.33. %(sint—tcost) 5.75. 1—717tan71<#) —%tanfl(xil)
5.50. (b)1,1, -1 +i .
5.51. Eazi Y—i + V/15) 7
P ’ 5.80.

—i
) J(=1 + V/30), 1(1 £ V3i) 2t
o B 591. —a,/ap, (b) (& —2apa)/a}

5.52. 1/4



CHAPTER 6

Infinite Series
Taylor’s and Laurent’s Series

6.1 Sequences of Functions

The ideas of Chapter 2, pages 48 and 49, for sequences and series of constants are easily extended to
sequences and series of functions.

Let u1(z), u2(2), .. .,un(2), ..., denoted briefly by {u,(z)}, be a sequence of functions of z defined and
single-valued in some region of the z plane. We call U(z) the limit of u,(z) as n — oo, and write
lim,,—, o u,(z) = U(2), if given any positive number €, we can find a number N [depending in general on
both € and z] such that

luy(z) —U(z)] < € foralln >N

In such a case, we say that the sequence converges or is convergent to U(z).

If a sequence converges for all values of z (points) in a region R, we call R the region of convergence of
the sequence. A sequence that is not convergent at some value (point) z is called divergent at z.

The theorems on limits given on page 49 can be extended to sequences of functions.

6.2 Series of Functions

From the sequence of functions {u,(z)}, let us form a new sequence {S,(z)} defined by

$1(2) = u1(2)
82(2) = u1(z) + ux(2)

Sn(@) = u1(2) + ua(2) + - - + uu(2)
where S,(z), called the nth partial sum, is the sum of the first n terms of the sequence {u,(z)}.

The sequence S;(z), S2(z), ... or {S,(z)} is symbolized by

[o0]

W@+ 1@+ =Y () (6.1)

n=1

called an infinite series. If lim,_, « S,,(z) = S(z), the series is called convergent and S(z) is its sum; otherwise,
the series is called divergent. We sometimes write Zzo:l un(z) as Y uy(z) or Y u, for brevity.
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As we have already seen, a necessary condition that the series (1) converges is lim,,_, » 1,(z) = 0, but this
is not sufficient. See, for example, Problem 2.150, and also Problems 6.67(c), 6.67(d), and 6.111(a).

If a series converges for all values of z (points) in a region R, we call R the region of convergence of the
series.

6.3 Absolute Convergence

A series Y o u,(z) is called absolutely convergent if the series of absolute values, i.e., Y . |u,(2)|,
converges.

If > %, u,(z) converges but > - |u,(z)| does not converge, we call > - u,(z) conditionally
convergent.

6.4 Uniform Convergence of Sequences and Series

In the definition of limit of a sequence of functions, it was pointed out that the number N depends in
general on € and the particular value of z. It may happen, however, that we can find a number N such
that |u,(z) — U(2)| < € for all n > N, where the same number N holds for all z in a region R [i.e., N
depends only on € and not on the particular value of z (point) in the region]. In such a case, we say that
u,(z) converges uniformly, or is uniformly convergent, to U(z) for all z in R.

Similarly, if the sequence of partial sums {S,(z)} converges uniformly to S(z) in a region, we say that the
infinite series (6.1) converges uniformly, or is uniformly convergent, to S(z) in the region.

We call R,(2) = upy1(2) + upya2(2) + - - - = S(z) — Su(z) the remainder of the infinite series (6.1)
after n terms. Then, we can equivalently say that the series is uniformly convergent to S(z) in R if,
given any € > 0, we can find a number N such that for all z in R,

IR.(2)| = |S(z) — S,(z)| < € foralln>N

6.5 Power Series

A series having the form

(o]

a+az—a)+taiz—a+- =) aiz—a) 6.2)
n=0

is called a power series in z — a. We shall sometimes shorten (6.2) to Y a,(z — a)".

Clearly the power series (6.2) converges for z = a, and this may indeed be the only point for which it
converges [see Problem 6.13(b)]. In general, however, the series converges for other points as well. In
such cases, we can show that there exists a positive number R such that (6.2) converges for [z —a| < R
and diverges for |z — a| > R, while for |z — a| = R, it may or may not converge.

Geometrically, if I' is a circle of radius R with center at z = a, then the series (6.2) converges at all points
inside I" and diverges at all points outside I', while it may or may not converge on the circle I'. We
can consider the special cases R = 0 and R = oo, respectively, to be the cases where (6.2) converges
only at z = a or converges for all (finite) values of z. Because of this geometrical interpretation, R is
often called the radius of convergence of (6.2) and the corresponding circle is called the circle of
convergence.
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6.6 Some Important Theorems

For reference purposes, we list here some important theorems involving sequences and series. Many of
these will be familiar from their analogs for real variables.

A. General Theorems

THEOREM 6.1.

THEOREM 6.2.

THEOREM 6.3.

THEOREM 6.4.

THEOREM 6.5.

THEOREM 6.6.

THEOREM 6.7.

If a sequence has a limit, the limit is unique [i.e., it is the only one].

Let u, =a, +ib,, n=1, 2, 3,..., where a, and b, are real. Then, a necessary and
sufficient condition that {u,} converge is that {a,} and {b,} converge.

Let {a,} be a real sequence with the property that

(1) Ap+1 2 ay or an+1 S an
(i1) |a,| < M (a constant)

Then {a,} converges.

If the first condition in Property (i) holds, the sequence is called monotonic increasing;
if the second condition holds, it is called monotonic decreasing. If Property (ii) holds, the
sequence is said to be bounded. Thus, the theorem states that every bounded monotonic
(increasing or decreasing) sequence has a limit.

A necessary and sufficient condition that {u,} converges is that given any € > 0, we can
find a number N such that |u, —u,| < eforallp > N, g > N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy’s convergence criterion.

A necessary condition that Y u, converge is that lim,,_, o 1, = 0. However, the condition
is not sufficient.

Multiplication of each term of a series by a constant different from zero does not affect
the convergence or divergence. Removal (or addition) of a finite number of terms from
(or to) a series does not affect the convergence or divergence.

A necessary and sufficient condition that Zf;l (a, + ib,) converges, where a, and b, are
real, is that } -, a, and Y ., b, converge.

B. Theorems on Absolute Convergence

THEOREM 6.8.

THEOREM 6.9.

If Y | |uy| converges, then Y o u, converges. In words, an absolutely convergent
series is convergent.

The terms of an absolutely convergent series can be rearranged in any order and all such
rearranged series converge to the same sum. Also, the sum, difference, and product of
absolutely convergent series is absolutely convergent.

These are not so for conditionally convergent series (see Problem 6.127).

C. Special Tests for Convergence

THEOREM 6.10. (Comparison tests)

(a) If > |v,| converges and |u,| < |v,|, then > u, converges absolutely.

(b) If > |v,| diverges and |u,| > |v,|, then ) |u,| diverges but ) u, may or may not
converge.
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THEOREM 6.11. (Ratio test) Letlim,_ ]u,H_] / u”‘ = L. Then Y_ u, converges (absolutely) if L < 1 and
diverges if L > 1. If L = 1, the test fails.

THEOREM 6.12. (nth Root test)  Let lim, . ~/|tty] = L. Then ) u, converges (absolutely) if L < 1 and
diverges if L > 1. If L = 1, the test fails.

THEOREM 6.13. (Integral test) If f(x) > 0 for x > a, then )_ f(n) converges or diverges according as
limp;— o f:’ f(x)dx converges or diverges.

THEOREM 6.14. (Raabe’s test)  Let lim,_, n(l — |u,,Jr 1/ un|) = L. Then ) u, converges (absolutely) if
L > 1 and diverges or converges conditionally if L < 1. If L =1, the
test fails.

THEOREM 6.15. (Gauss’ test)  Suppose \un+1/u,,| =1—-(L/n)+ (cn/nz) where |c,| < M for all n > N.
Then ) u, converges (absolutely) if L > 1 and diverges or converges
conditionally if L < 1.

THEOREM 6.16. (Alternating series test)y If a, >0, a,41 <a, forn=1,2,3,... and lim, . a, =0,
thena; —ay+az —--- =) (—1)”‘1an converges.

D. Theorems on Uniform Convergence

THEOREM 6.17. (Weierstrass M test)  |u,(z)] < M,, where M,, is independent of z in a region R and
> M, converges, then ) u,(z) is uniformly convergent in R.

THEOREM 6.18.  The sum of a uniformly convergent series of continuous functions is continuous, i.e., if
un(2) is continuous in R and S(z) = > u,(z) is uniformly convergent in R, then S(z) is
continuous in R.

THEOREM 6.19.  Suppose {u,(z)} are continuous in R, S(z) = > u,(z) is uniformly convergent in R and
Cis a curve in R. Then

JS(z)dz = Jul(z)dz—l—Juz(z)dz—l—---
C C C

or

J [Y @)=Y J 1n(2) dz

C C

In words, a uniformly convergent series of continuous functions can be integrated
term by term.

THEOREM 6.20. Suppose u,(z) = (d/d2)u,(z) exists in R, ) u/(z) converges uniformly in R and
> uy(z) converges in R. Then (d/dz) Y un(z) = > u,(2).

THEOREM 6.21. Suppose {u,(z)} are analytic and ) u,(z) is uniformly convergent in R. Then
S(z) = Y u,(z) is analytic in R.
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E. Theorems on Power Series

THEOREM 6.22. A power series converges uniformly and absolutely in any region that lies entirely inside
its circle of convergence.

THEOREM 6.23. (a) A power series can be differentiated term by term in any region that lies entirely
inside its circle of convergence.
(b) A power series can be integrated term by term along any curve C that lies entirely
inside its circle of convergence.
(c) The sum of a power series is continuous in any region that lies entirely inside its
circle of convergence.

These follow from Theorems 6.17—-6.19 and 6.21.
THEOREM 6.24.  (Abel’s theorem)  Let Y a,7z" have radius of convergence R and suppose that zj is a
point on the circle of convergence such that ) _ a,z(} converges. Then, lim,_, ,, > a,7" =

Y anz} where z — zo from within the circle of convergence. Extensions to other power
series are easily made.

THEOREM 6.25.  Suppose Y _ a,z" converges to zero for all z such that |z| < R where R > 0. Then a,, = 0.
Equivalently, if Y a,z" = )_ b,z" for all z such that |z| < R, then a, = b,,.

6.7 Taylor’'s Theorem

Let f(z) be analytic inside and on a simple closed curve C. Let a and a + h be two points inside C. Then

2 n
fla+h) = f(@) + hf'(@) + %f”(a) T %f“’)(a) . 6.3)
orwritingz=a+h, h=z—a,
/7 (n)
f@) = f(a)+f(a)(z—a)+f()( @ttt ] ”( —a)y 4 (6.4)

This is called Taylor’s theorem and the series (6.3) or (6.4) is called a Taylor series or expansion for
fla+ h) or f(2).

The region of convergence of the series (6.4) is given by |z — a| < R, where the radius of convergence R
is the distance from a to the nearest singularity of the function f(z). On |z — a| = R, the series may or may
not converge. For |z — a| > R, the series diverges.

If the nearest singularity of f(z) is at infinity, the radius of convergence is infinite, i.e., the series con-
verges for all z.

If a =01in (6.3) or (6.4), the resulting series is often called a Maclaurin series.

6.8 Some Special Series

The following list shows some special series together with their regions of convergence. In the case of
multiple-valued functions, the principal branch is used.

2 2 2
Z
e BEAEAETRS Rl R j2] < oo
3005 n—1
2. sinz —Z_Z__|___ (=1 1 <

_— <
3l =1 2] < o0
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2 P2
3. cosz :1—54—1—---(—1) m+ 2] < o0
4. In(1+72) zz_é+i_...(_1)"—1i+... Izl < 1
2 3 n
5. tan”'z =z—§+§—~%4f”§2%+~- 2l <1
6. (1+2F :1+pz+p7(p27l)zz+~-+p(p_1)"’;'(p_n+l)z"+--- |zl <1

From the list above, note that the last is the binomial theorem or formula. If (1 + z)” is multiple-valued,
the result is valid for that branch of the function which has the value 1 when z = 0.

6.9 Laurent’s Theorem

Let C; and C; be concentric circles of radii R; and R;, respect-
ively, and center at a [Fig. 6-1]. Suppose that f(z) is single-
valued and analytic on C; and C, and, in the ring-shaped
region R [also called the annulus or annular region] between

y
C; and C,, is shown shaded in Fig. 6-1. Let a + & be any point <
in R. Then we have
. 2 a_q a_on a_s
flath) =ag+ah+al’ + + =54 42 (6.5) ’
where
1 /@)
== ¢ ——7d =0,1,2,... x
“ 2m+@—mﬁlz "
C
| (6.6) _
aﬂ=—f+&—mWV@ﬁ n=1,273... Flg. &1
217i

C

C; and G, being traversed in the positive direction with respect to
their interiors.

In the above integrations, we can replace C; and C, by any concentric circle C between C; and C, [see
Problem 6.100]. Then, the coefficients (6.6) can be written in a single formula,

1 f@)
hn=m—0——"d =0, +1, £2,... 6.7
2 ﬂ; (z—a)yt! © (©.7)
C
With an appropriate change of notation, we can write the above as

a_q a_n

fQ=a+az—a)+aiz—a)’+ -+ + st 6.8)
Z_a (Z—a)
where
_ -
”_mfi;(g_aymdi n=0, +1, £2,... 6.9)
C

This is called Laurent’s theorem and (6.5) or (6.8) with coefficients (6.6), (6.7), or (6.9) is called a Laurent
series Or expansion.

The part ag + a1(z — a) + ax(z — a)> + - - - is called the analytic part of the Laurent series, while the
remainder of the series, which consists of inverse powers of z — a, is called the principal part. If the prin-
cipal part is zero, the Laurent series reduces to a Taylor series.
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6.10 Classification of Singularities

It is possible to classify the singularities of a function f(z) by examination of its Laurent series. For this
purpose, we assume that in Fig. 6-1, R, = 0, so that f(z) is analytic inside and on C; except at 7z = a,
which is an isolated singularity [see page 81]. In the following, all singularities are assumed isolated
unless otherwise indicated.

1. Poles. If f(z) has the form (6.8) in which the principal part has only a finite number of terms
given by
a_y a_n a_p,
z—a (z—a) (z—a)

where a_, # 0, then z = a is called a pole of order n. If n = 1, it is called a simple pole.
If f(z) has a pole at z = a, then lim,_,, f(z) = o [see Problem 6.32].

2. Removable singularities. If a single-valued function f(z) is not defined at z = a but lim,_,, f(2)
exists, then z = a is called a removable singularity. In a such case, we define f(z) at z =a as
equal to lim,_,, f(z), and f(z) will then be analytic at a.

EXAMPLE 6.1: If f(z) =sinz/z, then z=0 is a removable singularity since f(0) is not defined
but lim,_,g sinz/z = 1. We define f(0) = lim,_,¢ sinz/z = 1. Note that in this case

3. Essential singularities. If f(z) is single-valued, then any singularity that is not a pole or removable
singularity is called an essential singularity. If z = a is an essential singularity of f(z), the principal
part of the Laurent expansion has infinitely many terms.

111
. i 1/z —
EXAMPLE 6.2: Since ¢'/* = 1 totoatas

The following two related theorems are of interest (see Problems 6.153-6.155):

+ -+, z=01s an essential singularity.

Casorati—Weierstrass theorem. In any neighborhood of an isolated essential singularity a,
an otherwise analytic function f(z) comes arbitrarily close to any complex number an infinite
number of times. In symbols, given any positive numbers 0 and € and any complex number A,
there exists a value of z inside the circle |z — a| = & for which | f(z) — A| < e.

Picard’s theorem. In the neighborhood of an isolated essential singularity a, an otherwise analytic
function f(z) takes on every complex value with perhaps one exception.

4. Branch points. A point 7 = 7 is called a branch point of a multiple-valued function f(z) if the
branches of f(z) are interchanged when z describes a closed path about zp [see page 45]. A
branch point is a non-isolated singularity. Since each of the branches of a multiple-valued function
is analytic, all of the theorems for analytic functions, in particular Taylor’s theorem, apply.

EXAMPLE 6.3: The branch of f(z) = z'/2, which has the value 1 for z =1, has a Taylor series of the
form ag + a1(z — 1) + ax(z — 1)> + - - - with radius of convergence R = 1 [the distance from z = 1 to the
nearest singularity, namely the branch point z = 0].

5. Singularities at infinity. By letting z = 1/w in f(z), we obtain the function f(1/w) = F(w). Then
the nature of the singularity for f(z) at z = oo [the point at infinity] is defined to be the same as that
of F(w) at w = 0.

EXAMPLE 6.4: f(z) = 7> has a pole of order 3 at z = o0, since F(w) = f(1/w) = 1/w? has a pole of order 3 at
w = 0. Similarly, f(z) = ¢ has an essential singularity at z = oo, since F(w) = f(1/w) = e'/* has an essential
singularity at w = 0.
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6.11 Entire Functions

A function that is analytic everywhere in the finite plane [i.e., everywhere except at o] is called an entire
function or integral function. The functions e?, sin z, cos z are entire functions.

An entire function can be represented by a Taylor series that has an infinite radius of convergence.
Conversely, if a power series has an infinite radius of convergence, it represents an entire function.

Note that by Liouville’s theorem [Chapter 5, page 145], a function which is analytic everywhere includ-
ing o0 must be a constant.

6.12 Meromorphic Functions

A function that is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

EXAMPLE 6.5: z/(z — 1)(z 4+ 3)?, which is analytic everywhere in the finite plane except at the poles z = 1 (simple
pole) and z = —3 (pole of order 2), is a meromorphic function.

6.13 Lagrange’s Expansion

Let z be that root of z = a + {¢(z) which has the value z = a when { = 0. Then, if ¢(z) is analytic inside and
on a circle C containing z = a, we have

0 n gn—1
z=a+ Zg— L pa@ry (6.10)
n=1

n! da"~!
More generally, if F(z) is analytic inside and on C, then

é«n dnfl
n! da*—1

F(z) = F(a) + Z {F'(@)[$(@)]"} (6.11)
n=1

The expansion (6.11) and the special case (6.10) are often referred to as Lagrange’s expansions.

6.14 Analytic Continuation

Suppose that we do not know the precise form of an analytic
function f(z) but only know that inside some circle of conver-
gence C; with center at a [Fig. 6-2], f(z) is represented by a
Taylor series

a+az—a)+az—a)’+--- (6.12)

Choosing a point b inside Cj, we can find the value of f(z) and
its derivatives at b from (6.13) and thus arrive at a new series

bo+biz—b)+byz—b) +--- (6.13)

having circle of convergence C,. If C, extends beyond C,
then the values of f(z) and its derivatives can be obtained in
this extended portion and so we have achieved more infor-
mation concerning f(z).

We say, in this case, that f(z) has been extended analytically beyond C; and call the process analytic
continuation or analytic extension.

The process can, of course, be repeated indefinitely. Thus, choosing point ¢ inside C,, we arrive at a new
series having circle of convergence C3 which may extend beyond C; and C;, etc.

The collection of all such power series representations, i.e., all possible analytic continuations, is defined
as the analytic function f(z) and each power series is sometimes called an element of f(z).
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In performing analytic continuations, we must avoid singularities. For example, there cannot be any singu-
larity in Fig. 6-2 that is both inside C, and on the boundary of Cy, otherwise (6.13) would diverge at this point.
In some cases, the singularities on a circle of convergence are so numerous that analytic continuation is
impossible. In these cases the boundary of the circle is called a natural boundary or barrier [see Problem
6.30]. The function represented by a series having a natural boundary is called a lacunary function.

In going from circle C; to circle C, [Fig. 6-2], we have chosen the path of centers a, b, c, . .. , p, which we
represent by path P,. Many other paths are also possible, e.g., a, ¥, ¢/, ..., p represented briefly by path P,.
A question arises as to whether one obtains the same series representation valid inside C,, when one chooses
different paths. The answer is yes, so long as the region bounded by paths P; and P, has no singularity.

For a further discussion of analytic continuation, see Chapter 10.

SOLVED PROBLEMS

Sequences and Series of Functions

6.1. Using the definition, prove that lim,,_m(l + E) =1 for all z.
n

Solution

Given any number € > 0, we must find N such that |1 + z/n — 1| < eforn > N. Then |z/n| < €,i.e., |z]/n < €
if n > |z|/e = N.

6.2. (a) Prove that the series z(1 —z) +7°(1 —z)+2°(1 —z)+--- converges for |z <1, and
(b) find its sum.
Solution
The sum of the first n terms of the series is
Si@=z1-2+ZA =)+ +7"(1—2)
=z—2+7 -2+ -+ - ="

Now [S,(2) —z| = |-z =zZ""' <e for (m+Dlnjzl <Ine ie, n+1>Ine/ln|z] or
n>(Ine/lnjzl) — 1.

If z=0, S,(0) =0 and |S,(0) — 0] < € for all n.

Hence lim,_, « S,(z) = z, the required sum for all z such that |z] < 1.

Another Method. Since S,(z) = z — "', we have [by Problem 2.41, in which we showed that lim,_, . 2" = 0
if 2] < 1]

Required sum = S(z) = lim S,(z) = lim (z — ") =z

Absolute and Uniform Convergence
6.3. (a) Prove that the series in Problem 6.2 converges uniformly to the sum z for |z] < %

(b) Does the series converge uniformly for |z| < 1? Explain.

Solution

(2) InProblem 6.2, we have shown that |S,(z) — z| < eforalln > (In €/In|z|) — 1, i.e., the series converges to
the sum z for |z| < 1 and thus for |z| < 1.
Now if |z| <1, the largest value of (Ine/ln|z]) —1 occurs where |z| = % and is given by
(In€/In(1/2)) — 1 = N. It follows that |S,(z) — z| < € for all n > N where N depends only on € and not
on the particular z in |z| < % Thus, the series converges uniformly to z for |z] < %
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(b) The same argument given in part (a) serves to show that the series converges uniformly to sum z for
|z] < .9 or|z] <.99 by using N = (In€/In(.9)) — 1 and N = (In €/In(.99)) — 1, respectively.

However, it is clear that we cannot extend the argument to |z| < 1 since this would require
N = (In€/In1) — 1, which is infinite, i.e., there is no finite value of N that can be used in this case.
Thus, the series does not converge uniformly for |z| < 1.

6.4. (a) Prove that the sequence {1 /1+ nz} is uniformly convergent to zero for all z such that |z| > 2.

(b) Can the region of uniform convergence in (a) be extended? Explain.

Solution

(a) Wehave |(1/1 +nz) — 0| < ewhen 1/|1 +nz| < eor |1 +nz| > 1/e.Now, |1 +nz| < |1| + |nz| = 1 + nlz]
and 1 +n|z| > |1 +nz| > 1/efor n > (1/e — 1/|z]). Thus, the sequence converges to zero for |z| > 2.

To determine whether it converges uniformly to zero, note that the largest value of (1/e—1/|z|)
in |z| > 2 occurs for |z| =2 and is given by %{(l/e) — 1} = N. It follows that |(1/1 +nz) —0| < € for all
n> N where N depends only on € and not on the particular z in |z| > 2. Thus, the sequence is
uniformly convergent to zero in this region.

(b) If &is any positive number, the largest value of ((1/€) — 1)/|z] in |z| > & occurs for |z| = 6 and is given by
((1/e) — 1)/4. As in part (a), it follows that the sequence converges uniformly to zero for all z such that
|z] > &, i.e., in any region that excludes all points in a neighborhood of z = 0.

Since & can be chosen arbitrarily close to zero, it follows that the region of (a) can be extended

considerably.

6.5. Show that (a) the sum function in Problem 6.2 is discontinuous at z = 1, (b) the limit in Problem 6.4
is discontinuous at z = 0.
Solution

(a) From Problem 6.2, S,(z) = z — """, 8(z) = limy—so0 Su(2). If 2] < 1, 8(2) = limyso0 Su(z) = 2. If 2 =1,
Su(z) = S,(1) =0 and lim,_, «» S,(1) = 0. Hence, S(z) is discontinuous at z = 1.

(b) From Problem 6.4, if we write u,(z) = 1/1 + nzand U(z) = lim,— » u,(z), we have U(z) = 0ifz # 0 and 1
if z = 0. Thus, U(z) is discontinuous at z = 0.

These are consequences of the fact [see Problem 6.16] that if a series of continuous functions is uniformly
convergent in a region R, then the sum function must be continuous in R. Hence, if the sum function is not
continuous, the series cannot be uniformly convergent. A similar result holds for sequences.

6.6. Prove that the series of Problem 6.2 is absolutely convergent for |z] < 1.
Solution
Let 7,(2) = |z(1 = )| + 122(1 = )| + -+ + "1 = )l = [T — 2lflel + [zl + |2 + - - + [2I")

1=z
= l—
| Z||Z|{]—|z|}

If |z| < 1, then lim,_,  |z|" = 0 and lim,_,« T, () exists so that the series converges absolutely.

Note that the series of absolute values converges in this case to |1 — z||z|/1 — |z].

Special Convergence Tests

6.7. Suppose Y |v,| converges and |u,| < |v,l,n=1,2,3,.... Prove that ) |u,| also converges
(i.e., establish the comparison test for convergence).
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6.8.

6.9.

6.10.

Solution
Let Sy = [ur| + luz| + - -+ + [un|, Ty = 01| + [v2] + - - + |vnl.
Since Y |v,| converges, lim,_,« T, exists and equals 7, say. Also since |v,| >0, T, < T.

Then S, = |ui| + lua| + -+ + |u| < 01| + 02| +- -+ |vu| =T 0or 0= S, <T.
Thus, S, is a bounded monotonic increasing sequence and must have a limit [Theorem 6.3, page 171],
i.e., > |u,| converges.

1 1 1 1
Prove that I + > + 3 4= ZJ converges for any constant p > 1.
Solution
We have
11
I
1 1 1 1 1

1 1 1 1<1 1 1 1_1
R R R TR A TR TR T

etc., where we consider 1, 2, 4, 8, . .. terms of the series. It follows that the sum of any finite number of terms of
the given series is less than the geometric series

1 1 1 1 1

T T R T R e Y T

which converges for p > 1. Thus the given series, sometimes called the p series, converges.
By using a method analogous to that used here together with the comparison test for divergence [Theorem
6.10(b), page 171], we can show that Zf;l 1/n? diverges for p < 1.

Prove that an absolutely convergent series is convergent.

Solution

Given that ) |u,| converges, we must show that )  u, converges. Let

Su=u+uy+---+uy and Ty = |u| + luz| +--- + |upyl

Then
S+ Ty = (ur + [u]) + (uz + uz]) + - - - + (uy + luml)
< 2ur| + 2|ual + -+ - + 2[uml
Since ) |u,| converges and u, + |u,| >0 for n =1, 2, 3,..., it follows that Sy + Ty is a bounded

monotonic increasing sequence and so limy_, o (Sps + Tar) exists.
Also since limy_, Tjs exists [because, by hypothesis, the series is absolutely convergent],

A}I_EHOO Su = A}l_{noo Su+Ty —Ty) = A}I—I>noo Sy +Tu) — A}I_IPOQ Ty

must also exist and the result is proved.

n

ad Z
Prove that ———— converges (absolutely) for |z| < 1.
X converzes ( y) for || =

Solution
| Zn | z | n 1 1
< <

If |zl < 1, th = .
2l = L then D T an D) = F 1) =2

Taking u, = 7"/n(n+ 1), v, = 1 /n* in the comparison test and recognizing that Y 1 /n? converges by
Problem 6.8 with p = 2, we see that ) |u,| converges, i.e., > u, converges absolutely.



6.11.

6.12.

6.13.
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Establish the ratio test for convergence.

Solution

We must show that if lim,_ ‘u,,+1/un‘ =L <1, then Y_ |u,| converges or, by Problem 6.9, Y u, is
(absolutely) convergent.

By hypothesis, we can choose an integer N so large that for all n > N,
constant such that L < r < 1. Then

Mn+1/u,1| < r where r is some

luny1] < rluy]

lunyal < rluysr| < rluy]

lunss] < rluysal < 7 luyl
etc. By addition,

|+l o] 4+ < ]+ 77 + 77 4

and so Y |u,| converges by the comparison test since 0 < r < 1.

: : & @+
Find the region of convergence of the series ) ———5—.
n=1(n+ 1)°4"

Solution

2 n—1 2)"
_@+2) (z+2) Hence, excluding

If u, =—->5—, then upy) = ———
(n+ 14 T 2P v
7z = —2 for which the given series converges, we have

z+2)(n+1)
4 (m+2)]

Up+1
uVl

_lz+2

1m 4

n— oo

lim

n— 0o

Then the series converges (absolutely) for |z 4 2|/4 <1, i.e., X

|z4+2| < 4. The point z = —2 is included in |z 42| < 4. -2
If |z 4+ 2|/4 = 1, i.e., |z + 2| = 4, the ratio test fails. However,

it is seen that in this case

(Z+ Z)n—l
(n+ D34

1 1
= < —
4n+17° —n

and since )_ 1 /n’ converges [p series with p = 3], the given Fig. 6-3
series converges (absolutely).
It follows that the given series converges (absolutely) for
|z+ 2| < 4. Geometrically, this is the set of all points inside and on the circle of radius 4 with center at
7z = —2, called the circle of convergence [shown shaded in Fig. 6-3]. The radius of convergence is equal to 4.

o (_l)nleZn—l

Find the region of convergence of the series (a) ), ", D)
n—1)!

. (b)Y nlZ"
Solution
(@) Ifu, =(=1)""'22""1/@2n — 1), then u,y; = (—1)"72""'/(2n + 1). Hence, excluding z = 0 for which the

given series converges, we have

i 1“4 iy _Z@n-DY im (2n — D!z
n>o| u, | n-w|  Qu4+ D! | e 2n+ 12n)2n — 1)
|zI?

"% (20 + D)2n)
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for all finite z. Thus the series converges (absolutely) for all z, and we say that the series converges for
|z] < 0. We can equivalently say that the circle of convergence is infinite or that the radius of convergence
is infinite.

(b) If u, = n'z", u,y; = (n+ 1)!Iz""'. Then excluding z = 0 for which the given series converges, we have

! n+1
lim ot | = lim (n+ DY = lim (n+ )|z| = o
n—>o0| U, n— oo nlz" n—oo
Thus, the series converges only for z = 0.
Theorems on Uniform Convergence
6.14. Prove the Weierstrass M test, i.e., if in a region R, |u,(z)| <M,,n=1,2,3,..., where M,
are positive constants such that Y M, converges, then Y u,(z) is uniformly (and absolutely)
convergent in R.
Solution
The remainder of the series Y u,(z) after n terms is R, (2) = up+1(2) + Up12(z) + - - - . Now
[Ra()| = [un11(2) + ttn42(2) + - - - | < [un1 (D] + ltp42(2) + - - -
< Mn+1 +Mn+2 + -
But M,+1 + M, + - - - can be made less than € by choosing n > N, since ) . M,, converges. Since N is clearly
independent of z, we have |R,(z)| < e for n > N, and the series is uniformly convergent. The absolute conver-
gence follows at once from the comparison test.
6.15. Test for uniform convergence in the indicated region:

0o Zn © cosnz
a — |zl <1; (b 1<zl <25 (¢ 7l < 1.
(),,;nWH ()Z2+2 4 ()Z
Solution
(a) If un(z):rh/ziﬁ, then |u,(2)| _JL__ 31/2 if |z] < 1. Calling M, = 1/n*/?, we see that 3 M,

converges (p series with p = 3/2). Hence, by the Weierstrass M test, the given series converges uniformly

(and absolutely) for |z|] < 1.

1 1 1
(b) The given series is TE + ¥z + P12 + - - - . The first two terms can be omitted without affecting

the uniform convergence of the series. For n > 3 and 1 < |z| < 2, we have

1 2
o
Since Y o 52/ n? converges, it follows from the Weierstrass M test (with M,, = 2/n?) that the given series
converges uniformly (and absolutely) for 1 < |z] < 2.
Note that the convergence, and thus uniform convergence, breaks down if |z| = 1 or |z| = 2 [namely at
z = +i and z = +2i]. Hence, the series cannot converge uniformly for 1 < |z| < 2.
(c) If z=x+ iy, we have

1
In* + 22 > P — || = n* —4 > Enz or

cos nzg einz + e*inz einxfny + e*inerny
n3 2n3 2n3
e (cos nx + i sin nx) n " (cos nx — isin nx)

2n3 2n3

The series

i ”y(cos nx — isinnx) d =, e (cos nx + i sin nx)
wi 3

2n3
n=1



6.16.

6.17.
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cannot converge for y > 0 and y < 0, respectively [since, in these cases, the nth term does not approach
zero]. Hence, the series does not converge for all z such that |z| < 1, and so cannot possibly be uniformly
convergent in this region.

The series does converge for y =0, i.e., if z is real. In this case, z = x and the series becomes
>, cos nx/n’. Then, since |cos nx/n’| < 1/n’ and >l /n® converges, it follows from the Weier-
strass M test (with M, = 1/n’) that the given series converges uniformly in any interval on the real axis.

Prove Theorem 6.18, page 172, i.e., if u,(z), n = 1, 2, 3, ..., are continuous in R and Zle u,(z) is
uniformly convergent to S(z) in R, then S(z) is continuous in R.

Solution

If S,(z) = u1(2) + ua(z) + - - - + u,(2), and R, (2) = up41(2) + upi2(2) + - - - is the remainder after n terms, it is
clear that

8(z) = Su(2) + Ry(z) and  S(z+h) =Su(z+h) +Ru(z+h)

and so

S(z+ h) —8(2) = Su(z+ h) —8,(2) + Ru(z + h) —R,(2) (1)

where z and z + & are in ‘K.
Since S,,(z) is the sum of a finite number of continuous functions, it must also be continuous. Then, given
€ > 0, we can find 6 so that

[Su(z+ h) — Su(z)| < €/3 whenever |h| < & 2
Since the series, by hypothesis, is uniformly convergent, we can choose N so that for all z in R,
Ry(z)] < €/3 and |R,(z+h)| <e€/3 forn>N 3)
Then, from (1), (2), and (3),
ISz +h) = S@)| < ISulz+ h) — S, + IRz + )| + [R,(2)] < €
for |h| < 6 and all z in R, and so the continuity is established.

Prove Theorem 6.19, page 172, i.e., suppose {u,(z)}, n =1, 2, 3,..., are continuous in R,
S(z) = Z:’:l u,(z) is uniformly convergent in R and C'is a curve in R. Then

JS(Z) dz = J (Z un(Z)) dz = Zjun(z) dz

C o n=1 n=1 C

Solution

As in Problem 6.16, we have S(z) = S,,(z) + R,(z) and, since these are continuous in R [by Problem 6.16], their
integrals exist, i.e.,

JS<z>dz _ jsn(n d:+ JRn(z) dz — jm(z) iz + jm(z) dodooo Jun(n dz + J&(z) -
C C C C C C C

By hypothesis, the series is uniformly convergent, so that, given any € > 0, we can find a number N
independent of z in R such that |R,(z)| < € when n > N. Denoting by L the length of C, we have [using
Property (e), page 112]

JR,I(z) dz| < eL
c

Then UC S(z) dz — fc S,(2) dz’ can be made as small as we like by choosing n large enough, and the result is
proved.
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Theorems on Power Series

6.18.

6.19.

6.20.

6.21.

Suppose a power series Y a,z" converges for z = zy #0. Prove that it converges:
(a) absolutely for |z] < |zg|, (b) uniformly for |z| < |z;| where |z;] < |zo].

Solution

(a) Since ) a,zj converges, lim,_, « a,z; = 0 and so we can make |a,zj| < 1 by choosing n large enough, i.e.,
lan| < 1/|z0|" for n > N. Then

ey

00 o0 00
D land' = lallal" <>

|z|"
|n
N+1 N+1 Nt1 <0

|z

But the last series in (1) converges for |z| < |zp| and so, by the comparison test, the first series converges,
i.e., the given series is absolutely convergent.

(b) Let M, = |z1]"/|z0|". Then Y_ M, converges, since |z1| < |zo|. As in part (a), |a,z"| < M, for |z| < |z1| so
that, by the Weierstrass M test, Y a,z" is uniformly convergent.
It follows that a power series is uniformly convergent in any region that lies entirely inside its circle of
convergence.

Prove that both the power series Y .. a,z" and the corresponding series of derivatives

> o na,?"" have the same radius of convergence.

Solution

Let R > 0 be the radius of convergence of Y a,z". Let 0 < |z9| < R. Then, as in Problem 6.18, we can choose
N so that |a,| < 1/|zo|" for n > N.

Thus the terms of the series ) |na, 7"~ = > nlay||z|"~! can for n > N be made less than corresponding
terms of the series Y n(|z"~!/|z0|"), which converges, by the ratio test, for |z] < |zo] < R.

Hence, Y na,z"~! converges absolutely for all points such that |z| < |z9| (no matter how close |z is to R),
i.e., for |z] < R.

If, however, |z] > R, 1im,_« a,2" #0 and thus lim,_, e na,z"~' # 0, so that }_ na,z*~' does not converge.

Thus, R is the radius of convergence of ) na,z"~'. This is also true if R = 0.

Note that the series of derivatives may or may not converge for values of z such that |z| = R.

Prove that in any region, which lies entirely within its circle of convergence, a power series (a) rep-
resents a continuous function, say f(z), (b) can be integrated term by term to yield the integral of f(z),
(c) can be differentiated term by term to yield the derivative of f(z).

Solution
We consider the power series Y a,z", although analogous results hold for > a,(z — a)".

(a) This follows from Problem 6.16 and the fact that each term «,z" of the series is continuous.

(b) This follows from Problem 6.17 and the fact that each term a,z" of the series is continuous and thus
integrable.

(c) From Problem 6.19, the derivative of a power series converges within the circle of convergence of the
original power series and therefore is uniformly convergent in any region entirely within the circle of con-
vergence. Thus, the required result follows from Theorem 6.20, page 172.

Prove that the series Y | 7"/ n” has a finite value at all points inside and on its circle of convergence
but that is not true for the series of derivatives.

Solution

By the ratio test, the series converges for |z| < 1 and diverges for |z| > 1. If |z| = 1, then |"/n?| = 1/n? and
the series is convergent (absolutely). Thus, the series converges for |z] < 1 and so has a finite value inside and
on its circle of convergence.
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The series of derivatives is ) ... 1z”_1 /n. By the ratio test, the series converges for |z| < 1. However, the
series does not converge for all z such that |z| = 1, for example, if z = 1, the series diverges.

Taylor’s Theorem

6.22. Prove Taylor’s theorem: If f(z) is analytic inside a circle C with center at a, then for all z inside C,

/ ”( ) S ”’( )
f@=f@+f(@z-a)+—~@—a)’+ z—ay +--
Solution
Let z be any point inside C. Construct a circle C; with center at a and enclosing z C
(see Fig. 6-4). Then, by Cauchy’s integral formula,
1 (w)
10 =547 M
| w— z
Cy
We have Flg 6-4
I 1 1 { 1 }
w—z_(w—a)—(z—a)_w—a 1—(z—a)/w—a)
1 z—a z—a\? z—a\n!
_w—a=1+<w—a>+(w—a) +'“+<w—a>
z—a\" 1
+(w—a> 1 —(z—a)/(w—a)}
or
1 1 z—a (z — a)? (z—a)y"! z—a\n 1
= > REE . ( ) 2)
w—z w—a Ww-—a) W-—a) w—a) —a -z
Multiplying both sides of (2) by f(w) and using (1), we have
L[ fw) z—a [ fw @—ay § fw)
f(z)—sz#;w_adw+ i %(w—a)z aw +-- -+ i w—ay aw + U, 3)
Ci Cy C
where
1 z—a\" f(w)
n—A__. - d
v 2770 f{;(w — a) w—z
C
Using Cauchy’s integral formulas
!
(1) — n ﬂ d =0.1,.2.3
(@ 277'i§;(w—a)"+1 w n=0,1,23,...
C
(3) becomes
% (n—1)
10 =@ +f@e -0+ 506 - ap 41 LD ar 4,
If we can now show that lim,,_, U, = 0, we will have proved the required result. To do this, we note that since
w is on Cj,
‘Z —a ‘ =y<l1
w—a

where v is a constant. Also, we have |f(w)| < M where M is a constant, and

w—zl=lw-a—-G-—alzr—lz—d
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where r is the radius of C;. Hence, from Property (e), Page 112, we have

1 —a\" j(w
v, =1 ﬂ;(z ) Jw) dw
2ar w—a/ w—z
C
1 y'M v'Mr,
<—— 271 =——
27 r — |z — 4 r —|z—al

and we see that lim,_,» U, = 0, completing the proof.

6.23. Let f(z) = In(1 + z), where we consider the branch that has the zero value when z = 0. (a) Expand
f(2) in a Taylor series about z = 0. (b) Determine the region of convergence for the series in (a).
(c) Expand In(1 + z/1 — z) in a Taylor series about z = 0.

Solution
() f@) =1In(1 +2), f(0)=0
/ _ L _ —1 / _
f(z)—1+z—(l+z) s fo=1
ff@Q=-1+27 f'0) =—1

@ = (=D)(=2)1 +2)72, 17(0) = 2!

fU0@) = (=)'l + 970, R 0) = (1))

Then
1! 0 g 0
f@ =1In(1 +2) =£(0) +£'(0)z +%z2 +%z3 +oe-
2.2
T2 3 7,
Another Method. 1f |z] < 1,
1
——=1-z+Z -2+
I+z
Then integrating from O to z yields
2 3 4
=z
In(1 —_ 4t L
n(l +z)=z 5 + 372 +
(b) The nth term is u, = (—1)"~'z"/n. Using the ratio test,
lim |2 = i |22 ‘ =zl
n—>oo| U, n—o|n 4 1
and the series converges for |z| < 1. The series can be shown to converge for |z| = 1 except for z = —1.

This result also follows from the fact that the series converges in a circle that extends to the nearest
singularity (i.e., z = —1) of f(z).
(c) From the result in (a) we have, on replacing z by —z,

2 3 4
7z
In(1 s s
n(l+z) =z 2+3 4+
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both series convergent for |z| < 1. By subtraction, we have

1+z 3 5 © 2Z2n+1
1 =2
n(l—z) <+3+5+ ) Z2n—i—1

which converges for |z| < 1. We can also show that this series converges for |z| = 1 except for z = +1.

6.24. (a) Expand f(z) = sinz in a Taylor series about z = /4
(b) Determine the region of convergence of this series.

Solution
@ f(z) =sinz f(2) = cosz, f'(2) = —sinz, f"(z) = —cosz, f¥(z) = sinz, ...
f(m/4) =N2/2, f(7m/4) = V2/2, ' (w/4) = —V2/2, " (7/4) = —V2/2, N (7/4) = V2/2, . ..
Then, since a = /4,

(@G —ay n @)z —a)

f@) =f@) +f(@)z—a) + 5 3 4
V2 V2 V2 V2
7"*'7( - /4)_ﬁ( — m/4) _ﬁ(Z—W/4) +-
V2 @— /4 (@ —m/4)’

:7{l+(z—77/4)— 3 - 3 +}

Another Method. Let u = 7z — /4 or z = u + /4. Then, we have,

sinz = sin(u 4+ m/4) = sinu cos(/4) + cos u sin(/4)

= f(smu + cosu)

I PR P (RN
:g 1+u ; Z—j—i—ﬁ-ﬁ- }

=§ 1+ — m/4) (2_5/4)2—(2_37:/4)3+---}

(b) Since the singularity of sin z nearest to 77/4 is at infinity, the series converges for all finite values of z, i.e.,
|z] < oo. This can also be established by the ratio test.

Laurent’s Theorem

6.25. Prove Laurent’s theorem: Suppose f(z) is analytic inside and on the boundary of the ring-shaped
region R bounded by two concentric circles C; and C, with center at a and respective radii r;
and r, (r; > rp) (see Fig. 6-5). Then for all zin R,

f@ = Zan(z—a) +Z —

where
1 J(w)
= — —d :0,1,2,...
" 271'1'51;(w—a)'”rl v
C
1
a_nz—.fff(—w),ldw n=1,2,3,...
2mi | (w—a)™t

C
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Solution

By Cauchy’s integral formula [see Problem 5.23, page 159], we have
1 1
) :7% fm . 7% fw . )

27 Jw—z 2w fw—z ?
Cy G '

Consider the first integral in (1). As in Problem 6.22, equation (2), we have

G

1 1
w—z w—afl —(z—a)/(w—a)} Fig. 6-5
_ 1 z—a —a'' jz—ay 1
Tw—a (w—a?  (w—a) (w—a)w—z @
so that
L [ fw) _ 1 [ fw) z—a [ f(w)
ﬁﬂ;w—zdw_%ri§w—adw+ 270 f{;(w—a)2 dw
G Ci C
z—a)" [ f(w)
+--+ i i)(w—a)” w+ U,
C
=apt+az—a)+--+a,_1z—a)"' + U,
where
SRS O X T (0 PP B
"Tomifw—a " T 2mfw—a? 7 ' T 2m f(w—a)
C C G
and

U, :L%(Z—a)nf(w) dw
2@ J\w—a/ w—2z
G
Let us now consider the second integral in (1). We have on interchanging w and z in (2),
I 1
w—z (@—afl—Ww-a)/iz—a)

1 w—a (w—a)"! (w—a)" 1
z-a (z—a) @-a "\z—a)z-w
so that
1 fw) 1 fw) lﬁ;w—a
__ dw = dw+— ¢
27Ti§;W—Z v 2771‘?1;2—61 Ry (Z_a)zf(w)dw
C; G (&)
1 _ -1
+---+—.§i;%f(w)dw+v,,
271 (z—a)
(&}
a_ a_p a_p
— +V,
i—a (z—a) (z—a)
where

an =5 jﬁ Fonydw, as=-— % (0 — @) fO0) dw, . ay = 43 (0 — @) fow) dw
Ly 271 2770
Cy G G

and

3

“
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From (1), (3), and (4), we have
f@={a+aGz—a)+ - +a,_1cz—a)""}

+{a“+ PR }+U +V,
z—a (z—ay (z—a) e

(&)

The required result follows if we can show that (a) lim,—.« U, = 0 and (b) lim,_, V,, = 0. The proof of (a)
follows from Problem 6.22. To prove (b), we first note that since w is on Cy,

w—a
=k<1

z—a
where « is a constant. Also, we have |f(w)| < M where M is a constant and
lz—wl=lz—a)-w—-a)l=|z—al—n
Hence, from Property (e), page 112, we have
1 _ n
W= L %(W a) fw) J
21 z—a) z—w
G

1 K'M K'"Mr,
<——2m =
2w |z—al—r lz—al —r

Then, lim,_, « V,, = 0 and the proof is complete.

6.26. Find Laurent series about the indicated singularity for each of the following functions:

e . B z—sinz . 1 _
(a)m’ e=1 © =5+ =0 (€) 2@-3)7 e=3
(b) (z— 3)sin L d —= . =2

¢ +2° T G+ Dhe+t2)’ -7

Name the singularity in each case and give the region of convergence of each series.

Solution

(@) Letz—1=wu. Thenz=1+4 u and

2z eZ+2u 2 2

)
:E.eu u3{1+2 “r‘

e j—
(Z _ ])3 - I/l3
e? + 2¢? + 2¢2 +4e +2€( Dt
= —_— —_— Z —_—
=1 @-1* z—1 3
z=11s a pole of order 3, or triple pole.
The series converges for all values of z#1.

2uy? <2u)3 uy*
2! TR +}

(b) Letz+2 =wuorz=u—2. Then

o1 1 1
(z—3’)smz+2 (u—S)smf (u—S){u W—i—ﬁ—}
_ 5 1 " 5 n 1
- u 3u? 3w Syt
5 1 5 1
== - 7T 3t i~
Z+2 6(z+2) 6(z+2) 120(z + 2)
7= —2 18 an essential singularity.
The series converges for all values of z# —2.
z—sinz 1 2 2 7
© R . B
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z =0 1is a removable singularity.
The series converges for all values of z.
(d) Letz+ 2 = u. Then

Z u—2 2—u 1 2—u(1+ I B T
= = . = u u u
z4+1)(z+2) m—1u u 1—u u

2 2
=Sl Ut = I @D+ @2+
u z+2

z = —21s a pole of order 1, or simple pole.
The series converges for all values of z such that 0 < [z 42| < 1.

(e) Let z—3 = u. Then, by the binomial theorem,

1 1 1
2@ =37 WG +u’ 91 +u/3)?

{1 )+ B R

9u?

L2 1 4
02 27u 27 243"
1 2 1 4z—3

(z )+___

Toz—37 27(z-3) 27 243

z =13 1s a pole of order 2 or double pole.
The series converges for all values of z such that 0 < |z — 3| < 3.

1
6.27. Expand f(z) = ———— in a Laurent series valid for:
pand f(z) (z+D+3)

@1<zl<3, ®Mz]>3, ©0<|z4+1<2, @)zl <1

Solution

(a) Resolving into partial fractions,

crv=a(e) ()
G+ DEz+3) 2\z+1) 2\z+3

If |z > 1,

I _1( 1 1+) LR N T
24+ 1) 2z(14+1/2) 2z z 2 2 2z 272 273 24

If |z] <3,

Lot a2 2 N_1_ =z 2 2
2z+3) 6(1+z/3) 6 39 27 6 18 54 162

Then, the required Laurent expansion valid for both |z] > 1 and |z] < 3,1i.e., 1 < |z] <3, 1is

1 1 1 1 1 z £ 7

P I R P T R VRN TS

(b) If |z] > 1, we have as in part (a),
1 1 1 1 1

2t 2z 22 2 2T
If |z] > 3,
1 1 1 3 9 27 1 3 9 27
— = ——t 55t ) = tsEs o5t
2(z+3) 2z(14+3/z) 2z Z z 2z 2z% 22 2z
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Then the required Laurent expansion valid for both |z| > 1 and |z| > 3, i.e., |z| > 3, is by subtraction

1 4 13 40
2 2 F 7
(¢) Letz+ 1 =u. Then
1 1 1 1 u W o
@+ DE+3) u@+2) " 2u(l4+u/2)  2u 2 4 8
S ) (+1)2
2@+ 48 ¢
valid for |u] <2, u#0or 0 < |z4+ 1] <2.
@ If|z < 1,
1 1 1 1 1 1 1
- = _(1— 2_ 34y =—___ 22234,
R R T R ARl S LR LI R

If |z] < 3, we have by part (a),

L1z, 2 2
2z+3) 6 18 54 162

Then the required Laurent expansion, valid for both |z] < 1 and |z] < 3, i.e., |z] < 1, is by subtraction

L4 13, 405,
3797 Tt

This is a Taylor series.
Lagrange’s Expansion
6.28. Prove Lagrange’s expansion (6.11) on page 176.

Solution

Let us assume that C is taken so that there is only one simple zero of z = a + {¢(z) inside C. Then, from
Problem 5.90, page 167, with g(z) = z and f(z) = z — a — {¢(z), we have

! W{ 1= o) }dw

CTom P w—a—Zm)

:zlm'cww R e K
=2lm_cw (1= L) {io ¢>”<w>/<w—a)>

e e T
:“_gz;f:i{(jn(a)"} +Z2ﬂ:n+ d)n(vjz))" v

0 n dnfl
=a+ Zﬁ @)

Analytic Continuation
and (b) Z —

2n+1 = (2 )n+1

6.29. Show that the series (a) Z are analytic continuations of each other.
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Solution

(a) By the ratio test, the series converges for |z| < 2 (shaded in Fig. 6-6). In this circle, the series, which is a
geometric series with first term % and ratio z/2 can be summed and represents the function

[V
1—z/2 2-z2
y
(b) By the ratio test, the series converges for
|z —i)/2—i)| <1, ie., |z—i] <+/5 (see Fig. 6-6). In lz—il= 5
this circle, the series, which is a geometric series with \s5
first term 1/(2 —i) and ratio (z—1i)/(2—1i), can be )
summed and represents the function ! 2 N
1/(2—1) 1
1-@-0/CQ-0) 2-z =2
Since the power series represent, the same function in
the regions common to the interiors of the circles |z| = 2 Fig. 6-6
and |z — i| = /5, it follows that they are analytic continu-
ations of each other.
6.30. Prove that the series 1 +z+z*+z* +2*+.-- =1+ Y"1 z* cannot be continued analytically
beyond |z| = 1.
Solution
Let F(z) =1+z+22+2*+28+--- . Then,
F)=z+F@), F@Q=z+2+F&), F@Q=z+2++FH+---.
From these, it is clear that the values of z givenby z =1, 22 =1, z* = 1, 28 = 1, ... are all singularities of

F(2). These singularities all lie on the circle |z| = 1. Given any small arc of this circle, there will be infinitely
many such singularities. These represent an impassable barrier and analytic continuation beyond |z] =1 is
therefore impossible. The circle |z| = 1 constitutes a natural boundary.

Miscellaneous Problems

6.31. Let {fi(2)}, k=1, 2, 3,... be a sequence of functions analytic in a region R. Suppose that

FQ =) A
k=1

is uniformly convergent in R. Prove that F(z) is analytic in R.

Solution

Let S,(z) = Y _;_; fk(z). By definition of uniform convergence, given any € > 0, we can find a positive integer
N depending on € and not on z such that for all z in R,

|F(z) — Su(z)] <€ foralln>N 1

Now suppose that C is any simple closed curve lying entirely in R and denote its length by L. Then, by
Problem 6.16, since fi(z), k =1, 2, 3,... are continuous, F(z) is also continuous so that fj;c F(z) dz exists.
Also, using (1), we see that for n > N,

ﬁ; F(z)dz — Z i;fk(z) dz| = i;{F(z) - S.(2)} dz
o

C k=1 &



6.32.

6.33.
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Because € can be made as small as we please, we can see that

jﬁp(z) dz=>" jﬁﬂ(z) dz

c k=1¢

But, by Cauchy’s theorem, §c Jx(z)dz = 0. Hence

fi;F(Z)dZZO

o

and so by Morera’s theorem (page 145, Chapter 5), F(z) must be analytic.

Prove that an analytic function cannot be bounded in the neighborhood of an isolated singularity.

Solution
Let f(z) be analytic inside and on a circle C of radius r, except at the isolated singularity z = a taken to be the
center of C. Then, by Laurent’s theorem, f(z) has a Laurent expansion

00

f@=Y az-af (1)

k=—0o0
where the coefficients a; are given by equation (6.7), page 174. In particular,
1
= %Ldz n=1,2,3,... 2)

a., = —
n 2 (z— a)fn+l
C

Now, if |f(z)] < M for a constant M, i.e., if f(z) is bounded, then from (2),

1 1
la_p| = =— % (z— a)"flf(z)dz <— VM 20 = MF"
2 2
c
Hence, since r can be made arbitrarily small, we have a_, =0, n=1,2,3,...,1ie, a1 =a_=a_3 =
--- =0, and the Laurent series reduces to a Taylor series about z = a. This shows that f(z) is analytic at
Z = a so that z = a is not a singularity, contrary to hypothesis. This contradiction shows that f(z) cannot be
bounded in the neighborhood of an isolated singularity.

Prove that if z # 0, then

ol/2aG=1/2) _ Z J ()"

where
! 2
J(a) = — J cos(nf — asinf)dd n=0,1,2,...
2
0
Solution

The point z = 0 is the only finite singularity of the function e!/2*@~1/2 and it follows that the function must
have a Laurent series expansion of the form

ol/2a=1/2) _ Z J()7" M

which holds for |z| > 0. By equation (6.7), page 174, the coefficients J,(«) are given by

@) =5 b de @)

1 el/2az=1/z2)
2171 f';
C

where C is any simple closed curve having z = 0 inside.
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Let us, in particular, choose C to be a circle of radius 1 having center at the origin; that is, the equation of C
is |z] = 1 or z = €. Then (2) becomes
1 Zﬂel/Zoz(e"e—e’m) " 1 x4 sin ind
D Y _ iasin 6—in
Ju(a) = i J prCTE ie'”df = 27TJ e do
0

2 27 2T
1 ; 1
— | cos(asin @ —n0)do+—— | sin(asin 0 —n6)do = — | cos(nd— asin 6)do
2T 2ar 2
0 0 0

using the fact that / = foz Tsin(asin  — nf) dO = 0. This last result follows since, on letting 0 =27 — ¢,
we find

2m

2m
I= J sin(—asin g — 27 +nep)dep = — J sin(asin ¢ — np)ddp = —
0

0

so that / = —I and I = 0. The required result is thus established.
The function J,(«) is called a Bessel function of the first kind of order n.
For further discussion of Bessel functions, see Chapter 10.

6.34. The Legendre polynomials P,(t), n =0, 1, 2, 3, ... are defined by Rodrigues’ formula

Py(t) = ( - D"

2"n! dt"
(a) Prove that if C is any simple closed curve enclosing the point z = ¢, then

L1 [ E@=
P (t) % m (Z t)n—H

This is called Schlaefli’s representation for P,(t), or Schlaefli’s formula.

(b) Prove that
21

P(t)_—J(t—}-\/ —1cos0)"do

(=}

Solution

(a) By Cauchy’s integral formulas, if C encloses point ¢,

y
n! f@
ey — & c
10 =2 g =2 51; Lo
Then, taking f(f) = (> — 1)" so that f(z) = (z — 1)", we have
the required result
1 2 n
Pu() =~ 'W( 1) x
_ 11 jL(Z -1 Fig. 6-7
My n+1 d
2" (z—1)
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(b) Choose C as a circle with center at # and radius /|#2 — 1| as shown in Fig. 6-7. Then, an equation for C is
lz—tl =2 =1lorz=1t+ 1 —1€% 0 < 6 < 27. Using this in part (a), we have

2 . .
L J (t + VP2 — 19 — 1)'Vi2 — 1ie?
T 2 (V12 = Teit)yrt!
0

do

2 . . .
(22— 1)+ 20V — 1€ + (2 — 1)e?®)"e= ™0

11
_ . d
2" 27 @ -2 ’
0
2T . .
1 1 [({(®=De ¥ +2t/12 — 1+ (2 — Det)"
_ .t de
2n 2 ™ —1y?
0
2
11 ({22 — 1+ 2(2 — 1) cos 6} 46
Ton o @ = ?
0
! 2T
:—J (t+ 1> —1cos 0)"do
2ar
0

For further discussion of Legendre polynomials, see Chapter 10.

SUPPLEMENTARY PROBLEMS

Sequences and Series of Functions

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

-2z . nz

(a) lim =

Using the definition, prove:
n—o n—4z

Let lim, o u,(z) = U(z) and lim,_. e v,(2) = V(). Prove that (a) lim, . e{u,(2) £ v,(2)} = U(z) + V(2),
(b) limy_ 0 {1, (2)00(2)} = URQV(2), (C) lim,_, 0 () /04(2) = UR)/V(2) if V() # 0.
i anl

2n

n=1

1z 22

P that th i
(a) Prove thai eserles2 2t

converges for |z| < 2 and (b) find its sum.

(a) Determine the set of values of z for which the series Zf;o (=1)"(Z" 4+ 2"*1) converges and (b) find its sum.
(a) For what values of z does the series Z:’:] 1 /(z2 + 1)" converge and (b) what is its sum?

Suppose lim,,_,  |u,(z)| = 0. Prove that lim,_, » u,(z) = 0. Is the converse true? Justify your answer.

Prove that for all finite z, lim, . z"/n! = 0.

Let {a,}, n =1, 2, 3,... be a sequence of positive numbers having zero as a limit. Suppose that |u,(z)| < a, for
n=1,2,3,.... Prove that lim,_, « u,(z) = 0.

Prove that the convergence or divergence of a series is not affected by adding (or removing) a finite number of
terms.

Let S, =z+222+32 +---+n", Ty, =z+22+22+---+ 7" (a) Show that S, = (T, — nz"*!)/(1 — 2). (b) Use

(a) to find the sum of the series Y .| nz" and determine the set of values for which the series converges.

Find the sum of the series Y o, (n + 1)/2".
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Absolute and Uniform Convergence

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

6.54.

6.55.

(a) Prove that u,,(z) = 3z +47%/n, n =1, 2, 3,. .., converges uniformly to 3z for all z inside or on the circle |z| = 1.
(b) Can the circle of part (a) be enlarged? Explain.

(a) Determine whether the sequence u,(z) = nz/(n> + z%) [Problem 6.35(b)] converges uniformly to zero for all z
inside |z| = 3. (b) Does the result of (a) hold for all finite values of z?

Prove that the series 1 4 az 4+ a?z> + - - - converges uniformly to 1/(1 — az) inside or on the circle |z| = R where
R < 1/]al.

Investigate the (a) absolute and (b) uniform convergence of the series

z 283-2 283—-2° z23-27°
3ttt T

Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.38.
Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.39.

Let {a,} be a sequence of positive constants having limit zero; and suppose that for all z in a region
R, |un(z)| <ay,n=1,2,3,.... Prove that lim,_, » u,(z) = 0 uniformly in R.

(a) Prove that the sequence u,(z) = nze "% converges to zero for all finite z such that Re{z?} > 0, and represent this
region geometrically. (b) Discuss the uniform convergence of the sequence in (a).

Suppose Y ooy and Y o b, converge absolutely. Prove that Y ., ¢,, Where ¢, = aob, + aib,—1 + - - - + aybo,
converges absolutely.

Suppose each of two series is absolutely and uniformly convergent in R. Prove that their product is absolutely and
uniformly convergent in R.

Special Convergence Tests

6.56.

6.57.

6.58.

6.59.

6.60.

6.61.

6.62.

6.63.
6.64.

Test for convergence:

> 1 > n > n+3 2, (=1 > 2n—1
<a);2n+1’ (b);:«;n_r <c>;3n2_n+2, <d>;4n+3, ("’); ——

Investigate the convergence of:

o0 1 0 (—1)" 00 1 o 1
(a)nX:I:n+|Z|’ (b)"X:l:n_F'Z" (C);"2+|Z|’ (d)nX:l:n2+Z

nen'n’i/4

en—1°

00
Investigate the convergence of Z
n=0

Find the region of convergence of:

= @t =1 (241! N
@ 2 r Dt (b);nz.3n<z—1>’ (C); T

n=0

n(—1)"z—i)"

Investigate the region of absolute convergence of _
; 4n(n2 4 1)3/?

o 2ming
e
Find the region of convergence of E —.
porc (n+ 1)3/2

Prove that the series Y ., (+/n + 1 — /n) diverges although the nth term approaches zero.

Let N be a positive integer and suppose that for all n > N, |u,| > 1/(nInn). Prove that Y - | u, diverges.

Establish the validity of the (a) nth root test [Theorem 6.12], (b) integral test [Theorem 6.13], on page 141.
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6.65. Find the interval of convergence of 1 + 2z + 72 +2723 +z* +22° + - -.

6.66. Prove Raabe’s test (Theorem 6.14) on page 172.

1 1 1 1-4 1-4.7
6.67. Test for convergence: (a) 21n22+3ln23+41n24+”.’ (b) 7+ﬁ+5 T 11+.. ,
()2+2~7+2-7'12+ @ 1n2+ln3+1n4+
?575 051015 2 "3 s

Theorems on Uniform Convergence and Power Series

6.68. Determine the regions in which each of the following series is uniformly convergent:

ol Zn o (Z_i)Zn
(a);3n+1, (b); — ,<)Z(+1)n ()Zn2+|Z|2

n=1

6.69. Prove Theorem 6.20, page 172.
6.70. State and prove theorems for sequences analogous to Theorems 6.18, 6.19, and 6.20, page 172, for series.

6.71. (a) By differentiating both sides of the identity

1
—1_Z:1+z+z2+z3+-~ 2l <1

find the sum of the series Y .., nz" for |z| < 1. Justify all steps.

(b) Find the sum of the series Y o n7" for |z] < L.

6.72. Let z be real and such that 0 < z < 1, and let u,(z) = nze ™%
1 1

(2) Find lim J uy(2)dz,  (b) Find J [ lim un(z)] dz
0 0
(c) Explain why the answers to (a) and (b) are not equal [see Problem 6.53].

6.73. Prove Abel’s theorem [Theorem 6.24, page 173].

6.74. (a) Prove that 1/(1+7) =1—2>+z* =0 +.. for |z < 1.

(b) If we choose that branch of f(z) = tan™! z such that £(0) = 0, use (a) to prove that

[ dz 2 2 7
-1
t _ L
an -z J1+z2 ity ts g
0

(c) Prove thatg: 1 —%4—%—%-}---. .
6.75. Prove Theorem 6.25, page 173.
6.76. (a) Determine Y(z) = Zf;o a,Z" such that for all zin |z] < 1, Y'(z) = Y(2), Y(0) = 1. State all theorems used and
verify that the result obtained is a solution.
(b) Is the result obtained in (a) valid outside of |z| < 1? Justify your answer.
(c) Show that Y(z) = ¢ satisfies the differential equation and conditions in (a).

(d) Can we identify the series in (a) with ¢*? Explain.

6.77. (a) Use series methods on the differential equation Y”(z) + ¥Y(z) =0, Y(0) = 0, Y'(0) = 1 to obtain the series
expansion

(b) How could you obtain a corresponding series for cos z?
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Taylor’s Theorem

6.78. Expand each of the following functions in a Taylor series about the indicated point and determine the region of
convergence in each case.
(@) e z=0 (© 1/A+2;z=1 (e) ze¥;z=—1
(b) cosziz=m/2 (d) 22 =37 +4z—2;z=2

6.79. Suppose each of the following functions were expanded into a Taylor series about the indicated points. What would
be the region of convergence? Do not perform the expansion.

(a) sinz/(22+4);2=0, (©) @+3)/@—DE—4;z=2, () €/zz—1);z=4i, (2 secmz;z=1
(b) z/(e*+1); z=0, (d) e~ sinh(z +2); z=0, (f) zcoth2z; z =0,

6.80. Verify the expansions 1, 2, 3 for ¢°, sinz, and cos z on page 173.

, 0 M
6.81. Show that sinz> =z BETITERE TR lz| < oo.
| 350
6.82. Prove that tan™ z:z—§+g—7+--~, lz] < 1.
72 27
6.83. Show that: (a) tanz:z—i-?—i-ﬁ—i--", |z| < /2,
(b) secz=1+i+5—z4+-~-, Iz| < 7/2, (c) cscz:l—l—g—}—ﬁ—i—-n, o<zl <m
2 24 z 6 360

6.84. By replacing z by iz in the expansion of Problem 6.82, obtain the result in Problem 6.23(c) on page 185.
6.85. How would you obtain series for (a) tanh z, (b) sech z, (c) csch z from the series in Problem 6.83?

6.86. Prove the uniqueness of the Taylor series expansion of f(z) about z = a.

[Hint. Assume f(z) = Y v gcn(z —a)' =Y oo du(z — @)" and show that ¢, = d,, n =0, 1,2, 3,... ]
6.87. Prove the binomial Theorem 6.6 on page 174.

6.88. Suppose we choose that branch of +/1 + z3 having the value 1 for z = 0. Show that

z 4 270 <1

6.89. (a) Choosing that branch of sin™' z having the value zero for z = 0, show that

3 5 7
z 1-3z 1-3-5¢2
3 5 7+ |z]

t2 45246

8]

(b) Prove that the result in (a) is valid for z = i.

6.90. (a) Expand f(z) = In(3 — iz) in powers of z — 2i, choosing that branch of the logarithm for which f(0) = In 3, and
(b) determine the region of convergence.

Laurent’s Theorem

6.91. Expand f(z) = 1/(z — 3) in a Laurent series valid for (a) |z| < 3, (b) |z| > 3.

6.92. Expand f(z) = in a Laurent series valid for:

-z
z—-D2 -2
@ |zl <1, b)) 1 <|z1<2, (@ |z1>2, @ |z—=1]>1, (¢) 0<|z=2| <.
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6.93. Expand f(z) = 1/z(z — 2) in a Laurent series valid for (a) 0 < |z] <2, (b) |z| > 2.

6.94. Find an expansion of f(z) = z/(z> + 1) valid for |z — 3] > 2.

6.95. Expand f(z) = 1/(z — 2)? in a Laurent series valid for (a) |z] <2, (b) |z| > 2.

6.96. Expand each of the following functions in a Laurent series about z = 0, naming the type of singularity in each case.
(@ (1 —cosz)/z, (b) €¢/z%, (c) z 'coshz™!, (d) 2e 7

6.97. Suppose tan z is expanded into a Laurent series about z = /2. Show that: (a) the principal part is —1/(z — 7/2),
(b) the series converges for 0 < |z — 7/2| < /2, (c) z = m/2 is a simple pole.

6.98. Determine and classify all the singularities of the functions:
(@) 1/@2sinz— 1% (b) z/(e"F=1), (c) cos(z +z72), (d) tan""(2+2z+2), () z/(¢* —1).

6.99. (a) Expand f(z) = ¢““~? in a Laurent series about z = 2 and (b) determine the region of convergence of this series.
(c) Classify the singularities of f(z).

6.100. Establish the result (6.7), page 174, for the coefficients in a Laurent series.
6.101. Prove that the only singularities of a rational function are poles.

6.102. Prove the converse of Problem 6.101, i.e., if the only singularities of a function are poles, the function must be
rational.

Lagrange’s Expansion
6.103. Show that the root of the equation z = 1 4 {z¥, which is equal to 1 when { = 0, is given by

Bp)3p—1) (4p)4p — 1)(4p — 2)
3! 4!

2,
e=1+i+ 0+ £+ SREr
6.104. Calculate the root in Problem 6.103 if p = 1/2 and { = 1, (a) by series and (b) exactly. Compare the two answers.

6.105. By considering the equation z = o + %{(zz — 1), show that

f‘l dl‘l 5
_ 1 n
"n! da® (@ )

1 00
V1=2al+ 2 ;2

6.106. Show how Lagrange’s expansion can be used to solve Kepler’s problem of determining the root of z = a + {sinz
for which z = a when { = 0.

6.107. Prove the Lagrange expansion (6.11) on page 176.

Analytic Continuation

6.108. (a) Prove that

1 00 Z+i n
F =
2(2) l+in2:(;(l+i)

is an analytic continuation of Fi(z) = Y .., 2", showing graphically the regions of convergence of the series.

(b) Determine the function represented by all analytic continuations of F(z).
R _n+l

6.109. Let Fi(d) =) "
n=0

(a) Find an analytic continuation of F(z), which converges for z = 3 — 4i.

(b) Determine the value of the analytic continuation in (a) for z = 3 — 4i.

6.110. Prove that the series z!' 4+ 7% +z* 4 - - - has the natural boundary |z| = 1.
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Miscellaneous Problems

6.111. (a) Prove that > - | 1/n” diverges if the constant p < 1.
(b) Prove that if p is complex, the series in (a) converges if Re{p} > 1.
(c) Investigate the convergence or divergence of the series in (a) if Re{p} < 1.

6.112. Test for convergence or divergence:

1 3 -1
a c sin” (1 e coth
<>Zn+l © 2 nsin”l(A/w) (@) ) coth”n
n+sinn 2 @) 2,
d f "
(b) Zle”-l-(Z @ ;nlnn ® ;ne
6.113. Euler presented the following argument to show that Y =, 7" = 0:
L_Z+ZZ+ZS+"'_§:Z” L _ 1 _1+l+i+...—§z”
11—z Tt -1 -1z Tz 2 B

Then adding, % " = 0. Explain the fallacy.

=1 =1 =D

. . — < =(z— —
6.114. Show that for [z —1| <1, zlnz=(z—-1)+ 2 73 3

6.115. Expand sin’ z in a Maclaurin series.

2 Z2 Z2

- + +
1+22 (1+22? A+22)°
(a) Show that the sum of the first n terms is S,(z) = 1 + 2% — 1/(1 + 22"\

6.116. Given the series 72 +

(b) Show that the sum of the series is 1 4 z2 for z#0, and 0 for z = 0; and hence that z =0 is a point of
discontinuity.

(c) Show that the series is not uniformly convergent in the region |z| < & where & > 0.

3z-3
6.117. If F(z) = 27, find a Laurent series of F(z) about z = 1 convergent for % <|lz—1|<1.
Q2z—1D(z—2)

6.118. Let G(z) = (tan~! z)/z*. (a) Expand G(z) in a Laurent series. (b) Determine the region of convergence of the series
in (a). (c) Evaluate fﬁc G(z) dz where C is a square with vertices at 2 + 2i, —2 + 2i.

6.119. Consider each of the functions ze!/ (sm 2)/z, 1/z(4 — z) which have singularities at z = 0:
(a) give a Laurent expansion about z = 0 and determine the region of convergence;
(b) state in each case whether z = 0 is a removable singularity, essential singularity or a pole;
(c) evaluate the integral of the function about the circle |z| = 2.

[

6.120. (a) Investigate the convergence of Zm (b) Does your answer to (a) contradict Problem 6.8.
n

n=1
6.121. (a) Show that the following series, where z = x + iy, converges absolutely in the region bounded by
sin?x 4 sinh®y = 1:
sinz sinfz  sin’z
1241 2241 32+1

(b) Graph the region of (a).

6.122. If |z| > 0, prove that cosh(z + 1/z) = co + c1(z + 1/2) + c2(z%> + 1/2%) + - - - where

2

1
Cn=— J cos n¢cosh(2 cos ¢p) do
2
0



6.123.

6.124.

6.125.

6.126.

6.127.

6.128.

6.129.

6.130.

6.131.

6.132.

6.133.

6.134.
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If f(z) has simple zeros at 1 — i and 1 + i, double poles at —1 4 i and —1 — i, but no other finite singularities, prove
that the function must be given by

2?2 —27+2

f(2) = Ki(zz T2t 27

where « is an arbitrary constant.

22 sin(nr/ 4)

Prove that for all z, e*sinz = '
n!

n=1

Show thatIn2 =1 —%+1—1+... justifying all steps. [Hint. Use Problem 6.23.]

0o

z
Investigate the uniform convergence of the series Z

[1+(n— Dzl +nz]

[Hznt. Resolve the nth term into partial fractions and show that the nth partial sum is S,(z) =1 — (1/1 + nz).]

Given 1 — % + % - % + - - - converges to S. Prove that the rearranged series

1+111
3 2

5

1

1 1
7 4

1
e __4...=Z¢§.
+ +-Et

+o-5+

BN W

1
9
Explain.

[Hint. Take % of the first series and write it as 0 + % + 0 —% + 0+ %—|— -+~ ; then add term by term to the first
series. Note that S = In 2, as shown in Problem 6.125.]

Prove that the hypergeometric series

1_*_7 +a(a+1)b(b+1) » cata+1D(a+2)b(b+ 1)b+2) 4
LT 12 cerD) © 1-2:3-clc+ Dct+2) ©

(a) converges absolutely if |z] <1,

(b) diverges for |z| > 1,

(c) converges absolutely for z = 1 if Refa + b — ¢} <0,

(d) satisfies the differential equation z(1 — 2)Y” + {¢ — (@ + b + 1)z}Y’ — abY = 0.

Prove that for |z] < 1,

(sin-12)? +2z+2~4 z6+246zs+
i — A L

JTET3 T35 3357
Prove that Y o, 1/n'" diverges.
Show that : : + : : + 2In2 -1

owthat — — —+————+.--=2In2 — 1.
l- 2-3 3.4 4.5
541 2
Locate and name all the singularities of ‘ 3+ 5 sin( & )
(z—=17Bz+2) z—3

By using only properties of infinite series, prove that

2 3 b2 b3 (+b)2
(@) {1+a+ S+ }{1+b+2—!+§+-~} {1+( b+ }

& o & 2 &S & d 2
Suppose f(z) = Y o anz" converges for |z| < R and 0 < r < R. Prove that

2m

1 i0y2 _ S 2.2n
;ij(re a6 =3 lanl’r

0
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6.135. Use Problem 6.134 to prove Cauchy’s inequality (page 145), namely

M- nl
20 <% n=012...
rn

6.136. Suppose a function has six zeros of order 4, and four poles of orders 3, 4, 7, and 8, but no other singularities in the
finite plane. Prove that it has a pole of order 2 at z = .

6.137. State whether each of the following functions are entire, meromorphic or neither:

(a) €%, (©) (1 —cosz)/z, (e) zsin(1/2), (g) siny/z//z
(b) cot 2z, (d) cosh 22, ) z+1/z, (h) +/sinz
1 1 1
6.138. Let —7r < 6 < 7. Prove that In(2 cos 6/2) = cos 0 — icos 20+ gcos 360 — Zcos46 + -

6.139. (a) Expand 1/In(1 4 z) in a Laurent series about z = 0 and (b) determine the region of convergence.

6.140. Let SG2) =ap+ajz+axz> + . Giving restrictions if any, prove that

S(z
1(_)z200+(00+a1)2+(a0+01+Clz)22+"-

6.141. Show that the following series (a) is not absolutely convergent but (b) is uniformly convergent for all values of z.

1 1 n 1 1 +
T4z 2410z 341zl 4+1z

6.142. Prove that ) . | 7"/n converges at all points of |z| < 1 except z = 1.

6.143. Prove that the solution of z = a + {e°, which has the value a when { = 0, is given by

e nn—lenagn
i=a+y ——=—
n!
n=1

if | < |e~@+D],
cos26 cos30
2! + 3!
6.145. Let F(z) be analytic in the finite plane and suppose that F(z) has period 2, i.e., F(z 4+ 2) = F(z). Prove that

6.144. Find the sum of the series 1 + cos 6 +

27

0o ) 1 .
F(2) = Z aye’™ where a, = o J F(2)e™"™ dz
0

n=—oo
The series is called the Fourier series for F(z).
6.146. Prove that the following series is equal to 77/4 if 0 < 6 < 77, and to —7/4 if —m < 6 < O:
sin 0+%sin30+ésin50+ e
6.147. Prove that |z| = 1 is a natural boundary for the series Y . 27"z%.

6.148. Suppose f(z) is analytic and not identically zero in the region 0 < |z — z9| < R, and suppose lim,_,,, f(z) = 0.
Prove that there exists a positive integer n such that f(z) = (z — z9)"g(z) where g(2) is analytic at zo and different

from zero.
6.149. Suppose f(z) is analytic in a deleted neighborhood of zy and lim,_, ,, | f(z)| = 0. Prove that z = zy is a pole of f(2).

6.150. Explain why Problem 6.149 does not hold for f(x) = e!/*" where x is real.



6.151.

6.152.

6.153.

6.154.

6.155.

6.156.

6.157.

6.158.

6.159.

6.160.

6.161.

6.162.

6.163.

CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

(a) Show that the function f(z) = e!/* can assume any value except zero.
(b) Discuss the relationship of the result of (a) to the Casorati—Weierstrass theorem and Picard’s theorem.

(a) Determine whether the function g(z) = z2 — 3z 4+ 2 can assume any complex value.
(b) Is there any relationship of the result in (a) to the theorems of Casorati—Weierstrass and Picard? Explain.

Prove the Casorati—Weierstrass theorem stated on page 175. [Hint. Use the fact that if z =a is an essential
singularity of f(z), then it is also an essential singularity of 1/{f(z) — A}.]

(a) Prove that along any ray through z = 0, |z + €°| — 0.

(b) Does the result in (a) contradict the Casorati—Weierstrass theorem?

(a) Prove that an entire function f(z) can assume any value whatsoever, with perhaps one exception.
(b) Illustrate the result of (a) by considering f(z) = ¢° and stating the exception in this case.

(c) What is the relationship of the result to the Casorati—Weierstrass and Picard theorems?

Prove that every entire function has a singularity at infinity. What type of singularity must this be? Justify your
answer.

In(1 + 2) 1, 1 1\,
P that: — C=7z—1 — 1 — -z -, <1
rove that:  (a) 1. ¢ ( +2)z +\I+5+5)2 |z]
(b) fn(1+ 2P =2 — (142 EJF I+l 2 lz] <1
pTor = 2) 73 273) % -

Find the sum of the following series if |a| < 1:
(@) Yo na"sinnb, (b) Y.° n*a"sinnd
2

2

i Z
h tht smzzl — - < .
Show that e tzts-g-5t s i <o

(a) Show that Z:o:l 7" /n* converges for |z < 1.

(b) Show that the function F(z), defined as the collection of all possible analytic continuations of the series in (a),
has a singular point at z = 1.

(c) Reconcile the results of (a) and (b).

Let Y 2, a,z" converge inside a circle of convergence of radius R. There is a theorem which states that the function
F(z) defined by the collection of all possible continuations of this series, has at least one singular point on the circle
of convergence. (a) Illustrate the theorem by several examples. (b) Can you prove the theorem?

Show that
R U dd ©
o Tr _% AN :
i JRZ “2ReosO- 177 2 ;(R) {an cosnf + by sinné}
) —
where
| 21 i 27
n =7J U(d)cosnddd, b, =7J U sinnddeb
a v
0 0
Let
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6.164.

6.165.

(a) Show that the numbers B,,, called the Bernoulli numbers, satisfy the recursion formula (B 4 1)" = B" where B* is
formally replaced by By after expanding. (b) Using (a) or otherwise, determine By, . .., Bg.

z
(a) Prove that — 1 =5 (cothi — 1).
(b) Use Problem 6.163 and part (a) to show that By =0ifk=1,2,3,....

Derive the series expansions:

(a) cothz-l—l—g—%—k ~+%2;fn+m, |zl <
() corz=! S Eh )"Bz("z%f” o <
(c) tanz =z + 33 +%+ (=t 2% = Bi;;n(zz)z"*l , |z| < /2
(d) cscz —1—1— 6 +%+ (=1t 27 &;;FZ’ZZ%_I ooy ld<mw

[Hint. For (a), use Problem 6.164; for (b) replace z by iz in (a); for (c) use tanz = cotz — 2 cot 2z; for (d) use
cscz = cotz 4 tanz/2.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.37.
6.38.
6.44.
6.49.

6.50.
6.51.
6.53.
6.56.
6.57.

6.58.
6.59.
6.60.
6.68.
6.71.
6.72.
6.79.

6.90.

6.91.

(@) Su(2) = {1 —(2/2)"}/(2 — 2) and lim, . S,(2) exists if |z] < 2, (b) S(z) = 1/(2 —2)
@ |zZ1<1,()1 6.39. (a) All z such that |22 + 1| > 1, (b) 1/2°
(b) z/(1—2% |zl < 1 6.45. 4

(a) Converges absolutely if |z —3| <3 or z=0. (b) Converges uniformly for |z —3| < R where 0 <R < 3;
does not converge uniformly in any neighborhood that includes z = 0.

(a) Converges absolutely if |z| < 1. (b) Converges uniformly if |z| < R where R < 1.

(a) Converges absolutely if |72 + 1| > 1. (b) Converges uniformly if |z 4+ 1| > R where R > 1.
(b) Not uniformly convergent in any region that includes z = 0.

(a) conv., (b) conv., (c) div., (d) conv., (e) div.

(a) Diverges for all finite z. (b) Converges for all z. (c) Converges for all z.

(d) Converges for all z except z = —nn=1,2,3,....

Conv. 6.61. Converges if Imz > 0.

@ [z+i <L, ®) |+ 1D/z=DI<3,() lz| <o 6.65. |z] < 1.

Conv. Abs. for |z —i| < 4. 6.67. (a) conv., (b) conv., (c) div., (d) div.
(a) |zl <R where R <3, (b)|z—i| <1, (c)|z] = Rwhere R > 1, (d) all z.

(@) z/(1 —z)* [compare Problem 6.44], (b) z(1 +z2)/(1 — 2)*

2 3

@ 1/2,(®) 0 6.76. (a) Y(z)—1+z+2,+3,+

@ Iz <2,0) |zl < (©) lz—2| < 1, (d) |z] < oo, (e) |z —4i| <4, (D) |z| <7/2,(g) lz— 11 < 1/2
iz — 2l)+(z—2i)2 i(z =20  (z—2i*
5 2.52 3.5 4.5%
11 1 1,

_____ 2 = 3. -1 -2 3 4 97,4
(a) 3 9z 27z 81Z ®)z7 +3z27"+927° + 27777 +

(a) In5 —

(b) |z —2i| <5



6.92.

6.96.

6.98.

6.99.

6.104.
6.108.

6.115.

6.117.

6.118.

6.119.

6.120.

6.126.

6.137.

6.139.

6.163.

(a) e{l +2z=-2)"'+

1
(b)B1=—7,B

CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

1 3, 7, 15, 11 11, 1,
22 LA A )b Iz
(@) 227 2% 75% T 16¢ (b) +z2+z+ Titge +8z+
T @ e 22
2 2 2 7 ¢ ‘ ¢

©1-2-2"-@-D+E@-2" -2 +@-2" -

ZS 5 Z10 Z]4

(a) 2— - + a ; removable singularity  (d) z2> — z° +§ —3r + - ; ordinary point
1 2 7 512 12 N2
+ + —|— 3 + + 5 +...; pole of order 3 (e) z°/2 + 3 + ?_‘_7 + - - -; branch point
1 1 1 ) ial sineulari
T + TR essential singularity

(@) m/6+2mm, Cm+ 1)m— w/6, m =0, +1, +2, ...; poles of order 2
(b) i/2mm, m = +1, 42, ...; simple poles, z = 0; essential singularity, z = oo; pole of order 2

(c) z =0, oo; essential singularities
(d) z=—1 =+ i; branch points

(e) z=2mmi, m = +1, £2,...; simple poles, z = 0; removable singularity, z = o0; essential singularity

22(2 _ 2)72 23(Z _ 2)73
TR T +}

(b) lz—2[>0

(c) z = 2; essential singularity, z = 00; removable singularity
2.62 to two decimal accuracy. 6.109. (b) —3 — (9/4)i
() 1/ —=2) 6.112. (a) div., (b)conv., (c)conv., (d)conv., (e)div., (f)conv.

3 3211 1) 2n—1
4(2n T 42n—1)

~~—§(z— e R T L N R N

1 1 z 2

a 2—3——+f——+~- ®)12>0 (© —1/3

3z 5 7
27 47 1 2

(a)z+z—1+—+—+ Sl2l>0,22——+———-- 1zl =0 + b 0< <4

3! 3 45 16 64 256

(b) essential singularity, removable singularity, pole, (¢) 2, 0,7i/2
(a) diverges.

Not uniformly convergent in any region that includes z = 0; uniformly convergent in a region |z| > 6 where & is any
positive number.

(a) entire, (b) meromorphic, (c) entire, (d) entire, (e) neither, (f) meromorphic, (g) entire, (h) neither

1 8973
(a)7+5——+Z 425 L ) 0<|g <1  6.144. &0 cos(sinf)
Z

2 12 24 720

1
2 g B3 0, B4 30" 55 0, Bg )



The Residue Theorem
Evaluation of Integrals
and Series

7.1 Residues

Let f(z) be single-valued and analytic inside and on a circle C except at the point z = a chosen as the center
of C. Then, as we have seen in Chapter 6, f(z) has a Laurent series about z = a given by

(o]

f@ =Y az—a)
n=—o 7.1)

a— a_
=00+a1(Z—a)+a2(z—a)2+...+ 1 2

+ “ e
z—a (z—a)’

where
1 f(@)
n==— o ———d =0, +1, +2,... 7.2
= i jg (z—a)"™! © (72)
C
In the special case n = —1, we have from (7.2)

fl;f(z) dz = 2mia_, (7.3)

c

Formally, we can obtain (7.3) from (7.1) by integrating term by term and using the results (Problems 4.21

and 4.22)
dz  [2m p=1
jg (z—ay { 0 p = integer # 1 7.4

Because of the fact that (7.3) involves only the coefficient a_; in (7.1), we call a_; the residue of f(z) at
7 =a.

7.2 Calculation of Residues

To obtain the residue of a function f(z) at z = a, it may appear from (7.1) that the Laurent expansion of f(z)
about z = a must be obtained. However, in the case where z = a is a pole of order k, there is a simple
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formula for a_; given by

1 k—1

{z—a)f(2)} (1.5)

a-1 = lmo—s 7=

If kK = 1 (simple pole), then the result is especially simple and is given by

a_y = }1_1)1; (z—a) f(2) (7.6)

which is a special case of (7.5) with k = 1 if we define 0! = 1.

EXAMPLE 7.1: Iff(z) = z/(z — )(z+ 1)%, then z = 1 and z = —1 are poles of orders one and two, respectively.

We have, using (7.6) and (7.5) with k = 2,

Z 1
Residue at z=11is lim(z — 1){—— ¢ =-
ﬁl( ){(z—l)(z+1)2} 4
1d Z 1
Residue at z = —11is lim ——{ G+ D) (————— |} =—=
: Z—H“dZ{(Z ) ((z— 1)(z+1)2)] 4

If z=a is an essential singularity, the residue can sometimes be found by using known series
expansions.
EXAMPLE 7.2: Let f(z) = e~ /2. Then, z = 0 is an essential singularity and from the known expansion for ¢
with u = —1/z, we find
1 1 1
S T T
e T T

from which we see that the residue at z = 0 is the coefficient of 1/z and equals —1.

7.3 The Residue Theorem

Let f(z) be single-valued and analytic inside and on a simple closed curve C except at the singularities
a, b, c,... inside C, which have residues given by a_;, b_j, c_y,... [see Fig. 7-1]. Then, the residue
theorem states that

fl;f(Z) dz =2mi(a_1 +b_1+c_1+---) (7.7
c
i.e., the integral of f(z) around C is 2 times the sum of the residues of f(z) at the singularities enclosed by

C. Note that (7.7) is a generalization of (7.3). Cauchy’s theorem and integral formulas are special cases of
this theorem (see Problem 7.75).

Fig. 7-1
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7.4 Evaluation of Definite Integrals

The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable
function f(z) and a suitable closed path or contour C, the choice of which may require great ingenuity. The
following types are most common in practice.

1. fjooo F(x) dx, where F(x) is a rational function.

Consider §C F(2) dz along a contour C consisting of the line along the x axis from —R to +R and
the semicircle I" above the x axis having this line as diameter [Fig. 7-2]. Then, let R — oo. If F(x) is
an even function, this can be used to evaluate fgo F(x)dx. See Problems 7.7-7.10.

y y
r c
1
X
R | R
Fig. 7-2 Fig. 7-3

2. 02 " G(sin 6, cos 0) d6, where G(sin 6, cos 6) is a rational function of sin 6 and cos 6.

Let 7= ¢'’. Then sin @ = (z — z7')/2i, cos § = (z 4+ 7z ')/2 and dz = ie'” d6 or dO = dz/iz. The
given integral is equivalent to 39(: F(z)dz where C is the unit circle with center at the origin
[Fig. 7-3]. See Problems 7.11-7.14.

(o]

3. J F (x){ C9S e } dx, where F(x) is a rational function.
sin mx
Here, we consider 5§C F(z)e™: dz where C is the same contour as that in Type 1. See Problems
7.15-7.17 and 7.37.

4. Miscellaneous integrals involving particular contours. See Problems 7.18-7.23.

7.5 Special Theorems Used in Evaluating Integrals

In evaluating integrals such as those of Types 1 and 3 above, it is often necessary to show that fr F(z)dz and
fr €™ F(z) dz approach zero as R — o0. The following theorems are fundamental.

THEOREM 7.1. If |F(z)] < M/R* for z = Re'®, where k > 1 and M are constants, then if T is the
semicircle of Fig. 7-2,
Rlim JF(z)dz =0
r
See Problem 7.7.
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THEOREM 7.2. If |F(z)] < M/R* for z = Re'®, where k >0 and M are constants, then if I" is the
semicircle of Fig. 7-2,
I%im Jeisz (2)dz=0
r
See Problem 7.15.

7.6 The Cauchy Principal Value of Integrals

If F(x) is continuous in @ < x < b except at a point xq such that a < xy < b, then if €, and ¢, are positive,
we define

b X0—€] b
J F(x)dx = lirnO J F(x)dx + J F(x)dx
a 6;—>0 a Xo+€

In some cases, the above limit does not exist for €; # €, but does exist if we take €, = €, = €. In such a case,
we call

b Xo—€ b
JF(x)dx:liI% J F(x)dx + J F(x)dx
a a Xot+€

the Cauchy principal value of the integral on the left.

EXAMPLE 7.3:

does not exist. However, the Cauchy principal value with €, = €, = € does exist and equals zero.

7.7 Differentiation Under the Integral Sign. Leibnitz’s Rule

A useful method for evaluating integrals employs Leibnitz’s rule for differentiation under the integral sign.
This rule states that

b b
d oF
d—aJF(x, a)dx = Ja—a dx

The rule is valid if @ and b are constants, « is a real parameter such that «; < o < a; where «; and «;, are
constants, and F(x, o) is continuous and has a continuous partial derivative with respect to a for
a<x<b, a <a< . ltcan be extended to cases where the limits a and b are infinite or dependent on «.
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7.8 Summation of Series

The residue theorem can often be used to sum various types of series. The following results are valid under
very mild restrictions on f(z) that are generally satisfied whenever the series converge. See Problems 7.24,
7.32 and 7.38.

1. Z f(n) = —{sum of residues of 7rcot wzf(z) at all the poles of f(z)}

2. Z (=1)"f(n) = —{sum of residues of mcsc wzf(z) at all the poles of f(z)}

>\ (2n+1
3. Zf( n;— > = {sum of residues of mrtan wzf(z) at all the poles of f(z)}

d 2 1
4, Z(—l)”f( n; > = {sum of residues of msec wzf(z) at all the poles of f(z)}

7.9 Mittag-Leffler's Expansion Theorem

1. Suppose that the only singularities of f(z) in the finite z plane are the simple poles a;, a, a3, . ..
arranged in order of increasing absolute value.

2. Let the residues of f(z) at a;, az, as,... be by, by, bs, . ...

3. Let Cy be circles of radius Ry that do not pass through any poles and on which | f(z)| < M, where
M is independent of N and Ry — o0 as N — o0,

Then Mittag—Leffler’s expansion theorem states that

= 1 1
f@4w+2m{ +}
n=1

z—a, a

7.10 Some Special Expansions

1. csc _! 2 ! ! + !
' R Ve e ey P

1 3 5
2'“”:”wa—ﬁ_aww—f+6ww—ﬁ_”>

1 1 1
=2t e A )

1 1 1 1
4. tz=—-42
o=t Z(zz—wz+zz—4772+z2—9772+ )

1 1 1 1
5. cschz:—ZZ( + )
b4

24w ZAAm 249w

1 3 5
R R a2 rr R

1 1 1
7. tanhz =2z + + + ...
<z2 + (/2 2+ G2 2+ (5m/2) )

1 1 1 1
8. thz=-+2
comz=2+ Z(Z2+772+22+4772+12+9772+ )
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SOLVED PROBLEMS

Residues and the Residue Theorem

7.1.

7.2

Let f(z) be analytic inside and on a simple closed curve C except at point a inside C.
(a) Prove that

ﬁ (Z _ a)rl+l

n=—oo

fl2) = Z a,(z—a)" where a, = ! %ﬁdz,nz(), +1, +2,...
C

i.e., f(z) can be expanded into a converging Laurent series about z = a.
(b) Prove that

%f(z) dz = 2mia_,

c

Solution

(a) This follows from Problem 6.25 of Chapter 6.
(b) If we let n = —1 in the result of (a), we find

a_, = ﬁ ffyf(z) dz, i.e., ﬁ;f(z) dz = 2mia_;

C C

We call a_; the residue of f(z) at z = a.

Prove the residue theorem. If f(z) is analytic
inside and on a simple closed curve C except at
a finite number of points a, b, c, ... inside C at
which the residues are a_;, b_1, c_q, .. .,
respectively, then

%f(Z)dZ =2mila_1+b_1+c_1+--)
C

i.e., 27 times the sum of the residues at all
singularities enclosed by C.

Solution
With centers at a, b, c,..., respectively, construct Fig. 7-4
circles Ci, C,, C3,... that lie entirely inside C as

shown in Fig. 7-4. This can be done since a, b, c, . ..
are interior points. By Theorem 4.5, page 118, we have

%f(Z)dZ: ﬁ;f(z)dz—i— f{;f(z)dz_k Eﬁf(z)dz—i—--. W
But, by Problem 7.1, ¢ G G G
ﬂ;f(Z) dz = 2mia_y, fff(Z) dz = 2mib_y, f{)f(z) dz = 2mic_y, ... )
G e !

Then, from (1) and (2), we have, as required,

%f(z) dz =2mi(a_y +b_y +c_1 +---) = 2i (sum of residues)
c
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The proof given here establishes the residue theorem for simply-connected regions containing a finite
number of singularities of f(z). It can be extended to regions with infinitely many isolated singularities and
to multiply-connected regions (see Problems 7.96 and 7.97).

7.3. Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m inside C.
Prove that the residue of f(z) at a is given by

1 dm—l

{z—a)"f(2)}

= lim—
= = 1) dgm

Solution

Method 1. Suppose f(z) has a pole a of order m. Then the Laurent series of f(2) is

a_m a_m, a_
m +n1171+“'+ 1 +ap+ai(z—a) +axz—a) +--- (1)
@—a)"  (z—-a) Z—a

f@) =

Then multiplying both sides by (z — a)™, we have

G-a"f@=an+anG—a)+ - +aiz—a)" " +afz—a)" +--- @
This represents the Taylor series about z = a of the analytic function on the left. Differentiating both sides
m — 1 times with respect to z, we have

m—1

%{(z —a)"f@} = (m—Dla_y +mm—1)---2ap(z —a) + - -

Thus, on letting z — a,

m—1

lim
7—a dszl

{z—a)"f@}=m—-Dla,

from which the required result follows.
Method 2. The required result also follows directly from Taylor’s theorem on noting that the coefficient of
(z—a)™ ! in the expansion (2) is

1 m—1

= WF {z—a)"f(2)}

z=a

a—

Method 3. See Problem 5.28, page 161.

-2z

7.4. Find the residues of (a) f(z) = ——————
@ @+ D@2+ 4)

plane.

and (b) f(z) = % csc? z at all its poles in the finite

Solution

(a) f(2) has a double pole at z = —1 and simple poles at z = +2i.
Method 1. Residue at z = —1 is

; {( Ve } = lim @+ -2) - -2 __14

1
im —— S [ —
1 1ldz @+ D@ +4 (2 +4) 25

Residue at z = 2i is

) —4 —4i T+
}irgl,{(z—zi)- T } A

G+ D2z-20G+20)] Qi+ DX4) 25
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Residue at z = —2i is

2_ _ . _.
hm {(Z+21) -2z }_ 4 4 4i 1=

G+ D2z =20)Gz+2D)  (=2i+ 1)*(—4)) 25
Method 2. Residue at z = 2i is
(@ =2)(E - 22) =2z . oz2—2i
lim{-———>——=1 = { lim - 11 lim
=2l 2+ D2 +4) =2z + 1)?) |22 + 4
—4—4i 1 —4—-4i 1 T+i
= l1im_—= =
Qi+ 1)? =22z Qi+1)? 4 25

using L’Hospital’s rule. In a similar manner, or by replacing i by —i in the result, we can obtain the residue

at z = —2i.
®) f :ezcsczz:ez/sinzz has double poles at z =0, +m, +2m, ..., ie., z=mm where m =0,
+1, +2,....

Method 1. Residue at 7 = mar is

3

1d , € . €[z = mm)?sinz + 2(z — m@) sinz — 2(z — mar)? cos Z]
lim (z—mm)" —5—} = lim -
z—>mm sim" z

coma 11dz sin” z

Letting z — m7 = u or z = u + mr, this limit can be written

lim e
u—0

3 lim 3

- u? sinu + 2usinu — 2u® cos u e u? sinu + 2usinu — 2u? cos u
sin” u u—0 sin” u

The limit in braces can be obtained using L’Hospital’s rule. However, it is easier to first note that

oW . 3
lim——=Ilim(—) =
u—0sIn” u u—0\SIn u

and thus write the limit as

W sinu +2usinu — 2u’cosu  u’ mw u? sinu + 2u sinu — 2u* cos u
. =¢""lim
u? sin’ u 3

"™ lim emnm

u—0 u—0 u

using L’Hospital’s rule several times. In evaluating this limit, we can instead use the series expansions
sinu=u—u’/3 4+, cosu=1—u?/2'+--..

Method 2 (using Laurent’s series).

In this method, we expand f(z) = ¢ csc? z in a Laurent series about z = mr and obtain the coefficient of
1/(z — mr) as the required residue. To make the calculation easier, let z = u 4+ mar. Then, the function to
be expanded in a Laurent series about u = 0 is "™ csc>(mm + u) = €"™e" csc? u. Using the Maclaurin
expansions for ¢ and sin u, we find using long division

l/l2 M3 M2
(1+u~|— + = + ) e"‘"<1~|—u+—+-~-)

e"Te" csctu = 5 5
l/l3 + MS ) 1 M2 + u4
51 " 6 120

w2
1
e ..
u

o u? 2u
21242 4
u( 3+45+ )

and so the residue is ¢™".
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cotzcothz
—F at

7.5. Find the residue of F(z) = 3 z=0.
Z

Solution
We have, as in Method 2 of Problem 7.4(b),

2 4 2 4
7 7z
| L | [ LTI
coszcoshz ( 2!+4! )( +2!+4!+ >
Fz) = = 35 35

z3sinzsinhz_z Fal+ oz
z Z—a"i‘ﬁ—"' Z+§+§+"'

and so the residue (coefficient of 1/z) is —7/45.
Another Method. The result can also be obtained by finding

.1 d* [ 5 coszcoshz
lim — — {7 ———mF—
=0 4! d#* |7 Zsinzsinhz

but this method is much more laborious than that given above.

1 el

7.6. Evaluate — ¢ ——————— dz around the circle C with equation |z| = 3.
2mffz2(z2+2z+2) a &

C

Solution

The integrand ¥/ {zz(z2 +2z+ 2)} has a double pole at z = 0 and two simple poles at z = —1 + i [roots of
72> 4+ 2z + 2 = 0]. All these poles are inside C.
Residue at z =0 is

.14 { 5 e } . (@ H 224+ 2)e) — ()22 +2) t—1
lim — d—z z = =

—_— ¢ = lim
>0 1! 22 +2z+2)) =0 (2 +2z+2)7 2

Residue at z = —1 +1i is

fim Lz — 14 0] e i e i z+1—i

i —(=14+)]————t = lim {— lim {———

| 2(2+2z4+2) ol | 22| o1 |2+ 22+ 2
(=14t 1 (14t

Tl 2 4

Residue at z=—1—1i1is

o e(—lfi)r
li —(=1—i =
z»ljlllfi{ [z = Dl ZZ(ZZ + 2z 4 2)} 4

Then, by the residue theorem

e tr—1 e(—1+i)z e(—l—i)t
{)mdz = 277 (sum of residues) = 2771'{ 3 + ) + 1 }
c

P L2 B
= 21 2 26 COoS
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that is,

1 ﬂ; o P U U
D = e COS
2mi | 2@ +2:+2) 7 2

C

Definite Integrals of the Type f:o F(x)dx

7.7. Let |F(z)] < M/R* for z = Re'® where k > 1 and M are
constants. Prove that limg_, o fr F(z)dz = 0 where I' is y
the semi-circular arc of radius R shown in Fig. 7-5.

Tr
Solution
By Property (e), page 112, we have _ x
R | R
M ™ .
JF(z)dz <o 7TR=F Fig. 7-5
r
since the length of arc L = @wR. Then
lim JF(z)a’z =0 andso lim JF(z)dz =0
R— R—o0
r r
7.8. Show that for z = Re'®, | f(z)] < M/R*, k > 1if f(z) = 1/(Z6 +1).
Solution
Suppose z = Re'®. Then
| 1 1 1 2
= < = < —
/(@I |R666i9+ 1| ~ |R6eS — 1 RS — 1~ RS
where R is large enough (say R > 2, for example), so that M = 2, k = 6. A
Note that we have made use of the inequality |z; + 22| > |z1] — |z2]| with z; = RO and 7, = 1.

d
7.9. Evaluate Jix
x0 4+ 1
0

Solution
Consider §C dz/(z% + 1), where C is the closed contour of Fig. 7-5 consisting of the line from —R to R and the
semicircle I', traversed in the positive (counterclockwise) sense.

Since z% + 1 = 0 when z = ™6, ¢3™/6 37/6 T7/6 Oi/6 117/6 these are simple poles of 1/(z° + 1).
Only the poles e™/% &3m/6 and &™/6 lie within C. Then, using L’Hospital’s rule,

1 1 i
} = lim = 66757”/6

2 emi/6 670 -

Residue at ¢™® = lim {(z — ¢™/®
z—>e™ ( )26 +1

1 .
lim —=—¢7 "/
7—> €3mi/6 6Z5 6

Residue at 3™/ = lim {(z — &3™/6)———
2> £37/6 ( )16 F1

i i 1 1 1 )
Resid t Smf6 li _eom/oy__ | _ li " 25m/6
esidue at e ng‘-/s (z—e )26 1 ng,-/a 5 =6°
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Thus
dz I s 1 . 1 2T
—2mil= wi/6 4 _ ,=5m/2 4 — ,—25mij6 | _ =1
%ZGH m{6e T e 3
c
that is,
T d d 2
x 4 T
= =7 1
Jx6+1+Jz6+1 3 M
—R r

Taking the limit of both sides of (1) as R — o and using Problems 7.7 and 7.8, we have

R 00
dx dx 2
li = =— 2
i | 2= A= @
—R —o0

Since
T dx 2]0 dx
o417 T x4
— 00 0
the required integral has the value /3.
T x*dx ki
7.10. Show that J 5 =—
2+ 1)*(x2+2x+2) 50

—00

Solution

The poles of 22 /(z* 4+ 1)*(z> + 2z + 2) enclosed by the contour C of Fig. 7-5 are z = i of order 2and z = —1 + i
of order 1.
Residue at z =i is

im 4 { (= ip 2 } 9i — 12
2l _
—idz @+ )z — D)2 +2z2+2) 100
Residue at z = —1+1iis

2 3 —4

lim (z+4+1-1) - S =
>l @+ D@+ 1—dez+1+i) 25

Then
2 dz [9i—12 3—4i] Tw
7 = 2771 _— —‘r —_— = —
@+ DX +27+2) 100 25 50
C
or
R
J X2 dx n J 2 dz B 7;7'
@+ 1D?@2+2x+2) )@+ D2 +2:4+2) 50

—R r

Taking the limit as R — oo and noting that the second integral approaches zero by Problem 7.7, we obtain
the required result.
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Definite Integrals of the Type foz " G(sin 0, cos 0)dO

2 J
0
7.11. Evaluate .
J 3—2cos@+sinf
0
Solution
Let z=¢" Then sinf= (" — e /2i=(z—2z"1/2i, cosO= (" +e/2=0+27"/2, dz=izd
so that
21

J do _f‘; dz/iz _4; 2.dz
3—2cosf+sinf  [J3-20c+zD/2+@—zDH/2i JA-20)2+6iz—1—2i
0 C C

where C is the circle of unit radius with center at the origin (Fig. 7-6).
The poles of 2/{(1 — 202 +6iz—1— 21'} are the simple poles

bt V6iy —4(1 = 2i)(—1 — 2i)

2(1 —2i)
—6i + 4i . .
:m_2—l, 2-0/5
Only (2 —7)/5 lies inside C.
Residue at
2-0/5 lim {z—(2—19)/5} 2
_ — lim —_(_
' >(@2-0)/5 ¢ ! (1 =202 +6iz—1—2i
. 2 1
= lim —mM———=—
—2-/52(1 —2i)z+6i  2i y

C
by L’Hospital’s rule. / ) x
Then \J

+ 2dz o 1y
A—202+6iz—1-2i "\2i)= ™
C
Fig. 7-6

the required value.

2
7.12. Given a > |b|, show that J
0

de 27
a+bsind /2 _p2

Solution
Let z = €. Then, sinf= (" —e ) /2i=(z—2z"Y/2i, dz=ie®df=izd0 so that

2m

J do _% dz/iz _i; 2dz
a+bsin®  Ja+biz—z"Y/2i | bz +2aiz—b
0 C C

where C is the circle of unit radius with center at the origin, as shown in Fig. 7-6.
The poles of 2/(bz* + 2aiz — b) are obtained by solving bz + 2aiz — b = 0 and are given by

_ —2ai + vV—4a> +4b>  —ai + Va? — b%i
= 2b - b
i—a-i-vaz —bz}, [—a—Va2 —b2}_
= i, i

b b
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Only [(—a +Va? - b2> /b}i lies inside C, since

‘—a-i-«/az—bzi_«/aZ—bZ—a.«/az—b2+a_| b ’<l
| b B b Vi —p+a |V —1 +a)
when a > |b|.
Residue at
—a—l—\/ —b? 2
S L s Ty

2 1 1
bz 42ai butai Ja b2

by L’Hospital’s rule.
Then

j£ 2d (1 o
b2 +2aiz— b \JZ ) VR

C

the required value.

2
cos 36 T
7.13. Show that | ——— d6=—.
ow tha JS—4C050 12
0
Solution
Let z = ¢®. Then cos 0 = (z+21)/2, cos360= (¥ + 3% /2 = (2 +773)/2, dz=izd8 so that

21

J cos 36 d0—§ @+z27/2 dr _l% L+1 &
5—4cos@  J5—-4@+zH/2iz 2Q2z—1)(z-2)

0 C

where C is the contour of Fig. 7-6.
The integrand has a pole of order 3 at z = 0 and a simple pole z = % inside C.
Residue at z =0 is

lim 1 &2 L+1
lm Sz PQRz—-Dz-2)

Residue at z =1 is

i (). fr ) e
e \F 72 Pz—-Dz—-2)f 24

Then
1 P+1 1 21 65
T = ——m|e=—2l = L d.
2ifl;z3(2z—1)(z—2) “= gt m){s 24} 1o 3 require
C
21
do Sar

7.14. Show that | — = —.
J (5—3sinh)? 32

0

Solution

Letting z = ¢, we have sin 0 = (z — z7")/2i, dz = i’ d§ = izdf and so
27

J do _ﬂ; dz/iz _ _iﬂ; zdz
) (5—3sin6)? J (5-3z—zH2i> i J (322 — 10iz — 3)?

where C is the contour of Fig. 7-6.
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The integrand has poles of order 2 at z = (10i + +/—100 +36)/6 = (10i & 8i)/6 = 3i, i/3. Only the
pole i/3 lies inside C.

Residue at
2=i/3= lim d%{(z —i/3)" m}
Then

4%; zdz 4(2 ) -5 S5
—_— _— = —— T = —
i ez —10z—32  i-"™N\2s6) T 32

C

Another Method. From Problem 7.12, we have for a > |b|,

27
J 9  2m
a+bsind /g2 _p2

0

Then, by differentiating both sides with respect to a (considering b as constant) using Leibnitz’s rule,

we have
2 2 2
iJL_JE #d(,__JL
da)a+bsind ) da\a+bsing) (a + bsin 6)?
0 0 0

_i 2ar _ —27a
“da\Jaz—p2) " @—b)"
that is,

2
J do 2ma

(a+bsin6)? (@ — b2y~

0

Letting @ = 5 and b = —3, we have

T de 2m(5) S

(5—3sinf? (2—32y7 32
0

Definite Integrals of the Type J F(x){cs(i)z :ch } dx

7.15. Let |F(z)] < M/R* for z = Re'® where k > 0 and M are constants. Prove that

Jim Je"mZF(z) dz=0
r

where I is the semicircular arc of Fig. 7-5 and m is a positive constant.
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Solution
Let z = Re®. Then [ ™ F(z)dz = [] ¢"R¢"F(Re!®)iRe' df. Then

le"R" F(Re'®)iRe™®| B

IA

J "R F(Re'®)iRe' d B
0

|€imR cos 6—mR sin GF(Reie)iReW' 4o

Il
Oty OY——y O——y

e—mRsin 9|F(Rei9)|R 4o

T /2
RIZI Je—mRSinOde — M j e—mRsinﬁde
0 0

IA

Rk-1

Now sin 0 > 26/ for 0 < 6 < w/2, as can be seen geometrically from Fig. 7-7 or analytically from
Problem 7.99.
Then, the last integral is less than or equal to

/2
M ~2mRé/ ™ —mR
Wje Ao = e (1)
0 . 9
. . /2 T
As R — oo, this approaches zero, since m and k are
positive, and the required result is proved. Fig. 7-7

7.16. Show that JM dx="Z¢ m>0.
x2 41 2
0

Solution

Consider §C {™ /(> 4+ 1)} dz where C is the contour of Fig. 7-5. The integrand has simple poles at z = +1,
but only z =i lies inside C.
Residue at z =i is

) ) eimz _d
lzlg}{(z_l)(z—i)(z—i-i)} =7

Then

eimz e ™ .
C

or

X241 2+ 1
—R r

R
imz imz
J ¢ dx—l—J ¢ dz = e ™
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that is,
R R .
COS mx sin mx e
d. ] d dz =me™
sz—i-l x+1jx2+1 x+Jzz+l 7 = me
R R r
and so
R imz
COS mx e
2 d dz = we™™
sz—i—l x+Jzz+l 7 = e
0 r

Taking the limit as R — oo and using Problem 7.15 to show that the integral around I" approaches zero, we
obtain the required result.

Evaluate J _ XS dx.
xX24+2x4+5
Solution

Consider ﬁc{zei”Z /(2 427+ 5)} dz where C is the contour of Fig. 7-5. The integrand has simple poles at
z=—1 + 2i, but only z = —1 + 2i lies inside C.
Residue at z = —1 4 2i is

iz —im—21r
. ze'™
1 1-2))———} =(—1+4+2i
Hlfﬂzi{(ZjL ) 22+2z+5} T
Then
% ZeiaTz p 5 ( 1+2) e—iar—27r ﬂ_(l 2) o
———————dz = 2mi(— D———) == —2e
2H2ts5" 4 2
c
or
R . i
xelﬂx Zel T . s
— i+ | ———dz=—(1 =2 4
Jx2+2x+5 +Jz2+2z+5 ¢ 2( e
—R T
that is,
R R ) -
X COS TTX . X sin 77X ze' T N —om
i | dz=—01-2
Jx2+2x+5 x+ljx2+2x+5 o Jz2+2z+5 ‘ 2( e
_R —R r

Taking the limit as R — oo and using Problem 7.15 to show that the integral around I" approaches zero, this
becomes

o] o]

X COS X X sin 7mx T
" 4 . e - . 27 _ . 27
Jx2+2x+5 x+le2+2x+5x 2°¢ 1me
Equating real and imaginary parts,
J xcosm . _ T, m J x sin mmx dr = — o7
2+2x+57 20 2+2x+5

Thus, we have obtained the value of another integral in addition to the required one.
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Miscellaneous Definite Integrals

7.18. Show that Jydx -
X

0

7
2

Solution

The method of Problem 7.16 leads us to consider the integral of e’/z around the contour of Fig. 7-5. However,

since z = 0 lies on this path of integration and since we cannot integrate through a singularity, we modify that

contour by indenting the path at z = 0, as shown in Fig. 7-8, which we call contour C’ or ABDEFGHIJA.
Since z = 0 is outside C’, we have

iz
i[) e—dz =0
Z
&
or
= X 1Z R X 1Z
J ¢ dvt J —a’z+Je—dx+ J Cdz=0
“R HIA € BDEFG
Replacing x by —x in the first integral and combining with the third integral, we find
R ix —ix iz iz
Jldx—k J Car+ J Caz=0
X Z Z
€ HIA BDEFG
or
R iz iz
2;’Jﬁdx =- J - J Sy
X Z Z
€ HIA BDEFG

Let € — 0 and R — 0. By Problem 7.15, the second integral on the right approaches zero. Letting z = ee’?
in the first integral on the right, we see that it approaches

0

e’ icoi®
—lim | —iee'’d0 = — lim | i d§ = mi
e—0 | eel? e—~>0
w w
since the limit can be taken under the integral sign.
Then we have
R . o .
sinx sinx T
lim ZIJ—dx:m or J—d ==
R—00 X X 2
e—0 € 0
y
Y B
R C
g /4
o X
o R A

Fig. 7-8 Fig. 7-9



CHAPTER 7 The Residue Theorem Evaluation

7.19. Prove that

sinx® dx =

1 |

2
dx=—-_|—=
cos x“ dx 2\/g

Let C be the contour indicated in Fig. 7-9, where AB is the arc of a circle with center at O and radius R. By
Cauchy’s theorem,

o3
c—3

Solution

{) eizzdz — 0

c

or
J ¢Cdz+ J ¢ dz + J ¢z =0 (D
oA AB 5o

Now on OA, 7z = x (from x = O tox = R); on AB, z = Re'® (from § = 0to § = 7/4); on BO, 7 = re™/* (from
r = R to r = 0). Hence from (1),

R /4 0
Jei"zdx + J ¢®"iRe® d6 + Je"’zeﬂ/zem/“ dr=0 (2)
0 0 R
that is,
R R /4
J(cos x +isinx?)dx = ™ Je”zdr - J iR cos20-R*sin20; b6 3)
0 0 0

We consider the limit of (3) as R — . The first integral on the right becomes [see Problem 10.14]

74| o= g :ﬁ 7'"'/4:1\/? i\/ZT 4
¢ ,[e = V2 T2y @
0

The absolute value of the second integral on the right of (3) is

/4 /4 /2
Jeichos26—R2sin26l~Reied0 < Je_RZSi“ZHRdGZB J e—R2sin¢>d¢
- 2
0 0 0
/2
R —2R2d>/7r T _R?
<5 [ emras=Za-e)
0

where we have used the transformation 26 = ¢ and the inequality sin ¢ > 2¢/m, 0 < ¢ < 7/2 (see Problem
7.15). This shows that as R — oo, the second integral on the right of (3) approaches zero. Then (3) becomes

T 1 |7 i |m

2 s 2 L L
J(COSX +zs1nx)dx—2\/;+2\/;
0

and so, equating real and imaginary parts, we have as required,

0 00

1 |7
2 .2
d = dx =— |—
Jcosx x Jsmx X 2\/;
0 0
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Peat T
7.20. Show that J dx = — ,0<p <l
1+x sinpm

0

Solution

Consider 39C (z"7'/1 + z)dz. Since z = 0 is a branch point, choose C as the contour of Fig. 7-10 where the
positive real axis is the branch line and where AB and GH are actually coincident with the x axis but are
shown separated for visual purposes.
The integrand has the simple pole z = —1 inside C.
Residue at z = —1 = e™ is
P!

— em' p—1 — e(pfl)m'
1+z €™

lim (z+1)

Then

Zp— 1

dz = 2mie® D™
14z

a—e—

or, omitting the integrand,

J+ J + J + J = 2mie?~ ™
AB  BDEFG GH HJA

We thus have

R 27 X T € L 0 . L

pr—l det J (Rel0)17 llRlelOde J(xezﬂ[)]) ldx J (eezﬁ)p 1l€?lod9 _ 27Tl-e(p7|)77i
1+x 1 + Re'? 1 + xe?m 1+ eet®

€ 0 R 27

where we have used z = xe>™ for the integral along GH, since the argument of z is increased by 27 in going

around the circle BDEFG.
Taking the limit as € — 0 and R — oo and nothing that the second and fourth integrals approach zero,

we find
s 1 P i(p—1) .p—1
xP~ e PP~ :
dx + dx = 2meP~Dm
14+x 1+x
0 [
or
s 1
. xP~ )
(1 — ™Dy Jidx = 2rieP— D
1+x
0
so that
s .
xP1 2 e D7 277 T
T+ 2™ T 1 e2mo—D ~ gpmi _gpmi sinpr
0
y
D
R
- € A B
X
-l J\ H G Y
& 37
—R+ i 2 R+ri
oL A
2 x
F -R o T R

Fig. 7-10 Fig. 7-11
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(o]
cosh ax

T
coshx = 2 cos(ma/2)

where |a| < 1.

0

Solution

Consider j;c (e*/cosh z) dz where C is a rectangle having vertices at —R, R, R + i, —R + i (see Fig. 7-11).

The poles of ¢*/ coshz are simple and occur where coshz =0, i.e., 2= (n+3)mi, n =0, £1, +2,....
The only pole enclosed by C is /2.
Residue of ¢*“/coshz at z = mi/2 is

az eam'/Z emTi/Z

e .
li — /2 — — — _jpami/2
Mm@ mi/2) e T sinh(aiy2)  isin(az) - ¢
Then, by the residue theorem,
ellZ . .
fi; dz = 2mi(—ie"™?) = 2met™/?
coshz
c
This can be written
R T . —R
ax d ea(R-H)) d a(x—ri) d
J coshx A Jcosh(R—i—iy)l v J cosh(x + i) o
-R 0 R
0
a(—R-H)) a2 !
idy =2
+Jcosh( R+ )l Y e M

As R — oo, the second and fourth integrals on the left approach zero. To show this, let us consider the
second integral. Since

R+iy —R—iy 1 y . 1 1
| cosh(R + in)] = (2| = {1 — e R = (R e Ry 2 Sk

2
we have
w m
e(FH) e® (a=DR
_ < dy = 4me
Jcosh(R—l—ly) J Ra Y =
0 0

and the result follows on noting that the right side approaches zero as R — oo since |a| < 1. In a similar
manner, we can show that the fourth integral on the left of (1) approaches zero as R — 0. Hence, (1) becomes

R e(L’C . R eax )
lim J dx—l—e‘”"J dx} = 2me™/?

R—00 coshx coshx
“R “R
since cosh(x + i) = — cosh x. Thus
R 0 X
e e 2 7re®™i/2 27 T
lim dx = dx = _— . =
R—>o | coshx coshx 1+ ™ eami/2 4 g=ami/2 — cos(7a/2)

—R —00
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Now

0 o

—00

eax eax T
dx =
J coshx +Jcoshx o cos(ma/2)
0

Then, replacing x by —x in the first integral, we have

[ [ (<]

J e de+ J @ d Jcosh ax T
X X = X =
coshx coshx coshx cos(ma/2)

0 0 0

from which the required result follows.

TInG? + 1
7.22. Prove that J%dx = 7In2.
x> +1
0

Solution

Consider 3§C{ln(z +i)/7 + 1} dz around the contour C consisting of the real axis from —R to R and the

semicircle I' of radius R (see Fig. 7-12).

The only pole of In(z + i)/(z> + 1) inside C is the simple pole z = i, and the residue is

lim (z — i) In(z+i)  In(2)
T TG+ 2

Hence, by the residue theorem,

In(z +§) [In(2i)
=2
4; 211 dz m{ %

C

1
} = 7ln(2i) = wln2 + 3 i

e))

on writing In(2i) = In2 +Ini =In2 + Ine™? = 1n2 + mi/2 using principal values of the logarithm. The
iting In(2i)) =In2+Ini=In2+1Ine™? =1n2 /2 gp pal val f the logarithm. Th

result can be written

R
J In(x + 7) i Jln(z + 1)
x

x2+1 241
“R r

1
dz:wan—i—Eﬂ'zi

or

0 R
J1n(x+1)dx+Jln(x+z)dx+Jln(z+1)

x24+1 x24+1 241
—R 0 T

Replacing x by —x in the first integral, this can be written

R R
In(i — In(i ] ' 1

J n@ x)dx—i-J n(l+x)dx+J NCHD 2t L
X2 +1 x2 41 2 +1 2

0 0

or, since In(i — x) + In(i +x) = In(® — x%) = In(x*> + 1) + i,

R

x2 41 x24+1 2 +1

0 0 r

1
dz = 7Tln2+§772i

R
In(2 + 1 ] 1 ] 1
dex—i—J m dx+Jn(Z+l)dz:7rln2+§ﬂ2i

2
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As R — oo, we can show that the integral around I" approaches zero (see Problem 7.101). Hence, on taking real
parts, we find as required,

R 0
In(x% + 1 In(x% + 1
nmJ“(x + )dx:J D e 72
RS0 | x2 41 x2+1
/2 /2

1
Prove that J Insinxdx = J Incosxdx = —§7Tln2.
0 0

Solution

Letting x = tan 0 in the result of Problem 7.22, we find

/2 /2
In(tan? 1
J Msecz 0do= -2 J Incos 0 df = wIn2
tan? 0+ 1
0
from which
/2
1
J 1ncost9d0:—§ﬂ'ln2 (D

0
which establishes part of the required result. Letting 8 = /2 — ¢ in (1), we find
/2
1
J Insing dep = —§7T1n2
0

y
(N+3) (~1+i) Cy (N+DH(+)

-

N+1

e
=

N2 -

x (N+3) (1) (N+3) (1-i)

Fig. 7-12 Fig. 7-13

Summation of Series

7.24. Let Cy be a square with vertices at

1 , 1 . 1 , 1 .
(N+2)(1+l), <N+2)(—1+z), <N+2>(—1—l), <N+2)(1—z)

as shown in Fig. 7-13. Prove that on Cy, |cot 7rz] < A where A is a constant.
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Solution
We consider the parts of Cy which lie in the regions y > 1, — % <y< % and y < —%.

Case 1: y > 1. In this case, if z = x + iy,

‘em'z + e—m’z’ ea'rix—ﬂ'y + e—m‘x+77y
|cot mz| = =

- |em'z — iz eTIX—TY _ p—mix+my

o™ 4+ [T D] _ e 4 e™ 1 4e™ 14"

— |e—mx+ﬂ'y| _ |emx—77'y| emw — =™ 1— e—27r_v s Pt 1
Case 2: y < —1. Here, as in Case 1,
cotm < [T pe™ b 1bem
cotmz| = |em'x—ﬂy| _ Ie*ﬂ'ix+77y| T —e™m 1 —e2™ 1 —e T 1

Case 3: —] <y <1 Consider z = N 4§+ iy. Then
|cot 7rz| = |cot (N +%+ iy)| = |cot(m/2 + miy)| = |[tanh wy| < tanh(7/2) = A,
Ifz=-N—- % + iy, we have similarly
|cot 77| = |cot T (—N —%—i— iy)| = [tanh y| < tanh(7/2) = A,

Thus, if we choose A as a number greater than the larger of A; and A,, we have |cot 7rz| < A on Cy where A
is independent of N. It is of interest to note that we actually have |cot mz| < A; = coth(7/2) since A, < A;.

7.25. Let f(z) be such that along the path Cy of Fig. 7-13, | f(2)| < M/|z|" where k > 1 and M are con-
stants independent of N. Prove that

Z f(n) = —{sum of residues of 7rcot wzf(z) at the poles of f(z)}

Solution

Case 1: f(2) has a finite number of poles.

In this case, we can choose N so large that the path Cy of Fig. 7-13 encloses all poles of f(z). The poles of
cot 7rz are simple and occur at z =0, +1, +2,....

Residue of wcotmz f(z) atz=n,n=0, +1, +2,...,1s

. . z—n
lim (z — n)mrcot wzf(z) = lim ’7T< - ) cos m7f(z) = f(n)
z—n —n  \Sin 7z
using L’Hospital’s rule. We have assumed here that f(z) has no poles at z = n, since otherwise the given series
diverges.

By the residue theorem,

N
ﬂ; meot wzf(z) dz = Z fn)+ S (n

Cy n=—N

where S is the sum of the residues of 7rcot 7z f(z) at the poles of f(z). By Problem 7.24 and our assumption on
f(2), we have

TAM
Nk

=<

(8N +4)

ﬁ; meot wzf(2)dz
Cn
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since the length of path Cy is 8N + 4. Then, taking the limit as N — oo, we see that

A}im SF meotmzf(z)dz =0 )
Cn
Thus, from (1) we have as required,
> fy=-s 3)

Case 2: f(z) has infinitely many poles.
If f(z) has an infinite number of poles, we can obtain the required result by an appropriate limiting pro-
cedure. See Problem 7.103.

1

7.26. P that -
rove that o

T
5= —coth 7ra where a > 0.
a a

Nn—=—00
Solution

Let f(z) = 1/(z> + a%), which has simple poles at z = +ai.
Residue of 7rcot 71'z/(z2 +ad¥)atz=aiis

fim ( ) mcot 7z T cot mai T coth
—ail = = — — Ta
i (z — ai)(z + ai) 2ai 2a
Similarly, the residue at z = —ai is (—/2a) coth ma, and the sum of the residues is —(7/a) coth 7ra. Then, by
Problem 7.25,
i # = —(sum of residues) = T coth ma
n+a T a

n=-—0o

il 1
7.27. Prove that ngl g = %th ma — o) where a > 0.

Solution

The result of Problem 7.26 can be written in the form

—1 00
1 1 1 7
> Tt aT ’;f 5= cothma

n=—o0

or

= 1 1 =
ZZI: m—i—;:ECOth’ﬁa

which gives the required result.
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1 1 1 >
7.28. P that — + —+—+ ... = —.
rove thal ]2—|—22—|—32+ G
Solution
We have
< 22t )
R SR e BN
mTcotmz  TWCOS ML 2! 4!
F(Z): Z2 :Zzsinfn-z: 7722 "l
z3(1_7z ' _)
3! 5!

1 7 7 1 7
:Z—3<1_7+...><1+T+...>:g(l_T+...>

so that the residue at z = 0 is —72/3.
Then, as in Problems 7.26 and 7.27,

—1 N N
Trcot mz 1 1 7 1 7
j£ g k=l atl a2y

Cy

Taking the limit as N — oo, we have, since the left side approaches zero,

<1 7 21 P
DD B D D

n=1
Another Method. Take the limit as a — 0 in the result of Problem 7.27. Then, using L’Hospital’s rule,

lim

—_— m -———=—
a0~ n? 4+ a?

d 1 il_l, wacothmz—l_ﬂz
n2 " a=0 2a? 6

n=1

7.29. Suppose f(z) satisfies the same conditions given in Problem 7.25. Prove that

Z(—l)”f(n) = —{sum of residues of 7 csc 7zf(z) at the poles of f(z)}

Solution

We proceed in a manner similar to that in Problem 7.25. The poles of csc mz are simple and occur at
z=0, +1, £2,....
Residue of wesc mz f(z) atz=n, n =0, +1, £2,...,1is

lim (z — n)wese 7z f(z) = lim 7T<Z._7n>f(z) = (—=1)"f(n)
—n —n SIN7Z

1mn

By the residue theorem,

N
%WCSC’TTZf(Z)dZ: Z =D+ S Q)

Cy n=—N

where S is the sum of the residues of mcsc mzf(z) at the poles of f(2).
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Letting N — oo, the integral on the left of (1) approaches zero (Problem 7.106) so that, as required, (1)

becomes
D (=) = - (©)
fo]

-1 72 cos ma . .

Prove that Z =D 5= where a is real and different from 0, +1, +2,....
it (n+a) sin“7a
Solution
Let f(z) = 1/(z + a)* which has a double pole at z = —a.
Residue of mcsc wz/(z + a)Y atz = —alis
lim i (z+a)*- mesemel _ — 77 ¢sc 7ra cot ma
>—ady 2 ( + )2 - :
Then, by Problem 7.29,
[o] _1 n 77-2

Z ) > = —(sum of residues) = 7 ¢sc ma cot ma = y

we—h (n+a) sin“ma
Suppose a # 0, +1, +£2,.... Prove that

A+ 1 at+4 n at+9 1 72 cos ma
@—-1? (@®—4? (a®—-9) ~2a*  2sin’ma
Solution
The result of Problem 7.30 can be written in the form
i_{ L. }+[ 1L 1 }+ % cos Ta
@ |a+1? (@—17? (a+27° (a—2)7 "~ sin’ma
or
i_Z(az—l— 1) 2(a2+4)_2(a2+9) _ 72 oS T
@ (@-17 (@—-4? (@-9) T sin’ma

from which the required result follows. Note that the grouping of terms in the infinite series is permissible since

the series is absolutely convergent.

Prove that — ! ! += ! ! :i.
3 3" 7 32
Solution
We have
F(z) = WSE; == 3 C:; o B — ,Tz;zT/z! +-)
<1 +ﬂ2—z+ ) —+f+
-3 2 2z

so that the residue at z = 0 is 7 /2.
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The residue of F(z) at z=n + %, n=0, +1, +£2,... [which are the simple poles of sec 77], is

— 1 —(—=1)"
lim {z—(n+1)}5——=—"— lim (n+3)  —D

2ntl/2 73 cos 7z (n + ) ontl/2 cosmz (n+ %)3

If Cy is a square with vertices at N(1 + i), N(1 — i), N(—1 + i), N(—1 — i), then
N N 3

msec 77 (G DA =" 7
d = — — = -8 _— _
1; 73 < Z 13+2 Z(2n+1)3+2

Cn n=—N (I’l + §) n=—N

and since the integral on the left approaches zero as N — oo, we have

= (-1 o1 3
I A LS R S g
Liont1)y B3 TS 16

(=]

from which the required result follows.

Mittag-Leffler's Expansion Theorem

7.33. Prove Mittag—Leffler’s expansion theorem (see page 209).

Solution

Let f(z) have poles at z = a,, n =1, 2,..., and suppose that z = { is not a pole of f(z). Then, the function
f(@/z—{¢haspolesatz=a,,n=1,2,3,...and {.
Residue of f(z)/z— {atz=a,,n=1,2,3,...,is

f(Z) b,
lim (z — a,,)—
> an z2—=¢ ay—¢
Residue of f(z)/z — {atz = {is
(2)
tim(z - 09, —1(¢)
Then, by the residue theorem, y
CN
1 4; f(Z) d — (1) [ ] od,
& N
N [ 123] X
where the last summation is taken over all poles ° ot
inside circle Cy of radius Ry (Fig. 7-14). ’
Suppose that f(z) is analytic at z = 0. Then, G| G
putting { = 0 in (1), we have
1 [ f .
dz=f(0 — 2 Fig. 7-14
P } L da=10)+ Z @) g
Cn

Subtraction of (2) from (1) yields
1 1 1 1
f(é/)_f(o)‘f‘;bn(an_g—an) T%f(z){ig—g}dz
Cy

¢ ﬂ; @, )
2
Cn

wz—0
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Now since |z — ¢| = [z — [{] = Ry — |{] for z on Cy, we have, if | f(2)| < M,

ﬂ; f@ - M - 27Ry

) = Re@Ry — 12D

As N — oo and therefore Ry — oo, it follows that the integral on the left approaches zero, i.e.,

limi; TAC) dz=0

N— oo Z(Z — g)
Cn

Hence from (3), letting N — oo, we have as required

1 1
(O =f(0)+ ;bn (m+a)

the result on page 209 being obtained on replacing { by z.

1 1 1
7.34. Prove that cotz = —+ Z( + —) where the summation extends overn = +1, +2,....
z Z—nmT N

n
Solution
Consider the function

1 zcosz—sinz
f@=cotz——=——"——
z zsinz

Then f(z) has simple poles at z = nm, n = +1, +2, +3,..., and the residue at these poles is

. zcosz —sing . z—nm\ .. ZC0SZ — Sing
lim (z — nm)|—— ) = lim - Iim|———— ) =1
z—>nm zZsmzg z—>nm\ SINZ ) z—>nm z

At 7 =0, f(z) has a removable singularity since

. 1 . [zcosz—singz
lim{cotz——) =lim|——— ) =0
z—0 Z z—0 zZsmzg

by L’Hospital’s rule. Hence, we can define f(0) = 0.
By Problem 7.110, it follows that f(z) is bounded on circles Cy having center at the origin and radius
Ry = (N + %)77. Hence, by Problem 7.33,

1 1 1
tz——= —
cotz | Z(z_mﬁm)

n

from which the required result follows.
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1 1 1
7.35. Prove that cotz = E+ 2Z{Z2 — -|-Z2 —i + .. }

Solution

We can write the result of Problem 7.34 in the form

1 - 1 1 ul 1 1

cotz =+ iim, n_ZN<z_m+m)+§(z—m+m>}
L <1 + 1>+( L, 1 >+--~+< L, 1 )}
z Noowl\z4+7 z-—m z+2m z-27 z+Nm z—Nm
LT S S }
7 Now|ZZ—m 2 —47? 2 —N*7?
z P?—m -4

Miscellaneous Problems

a+ioo

1 e .
7.36. Evaluate i J ——— dz where a and t are any positive constants.

7L Jz+1
a—ioo
Solution
The integrand has a branch point at z = —1. We shall take as a branch line that part of the real axis to the left of
z = —1. Since we cannot cross this branch line, let us consider
eZI
ﬁ; —dz
2 Vz+1

where C is the contour ABDEFGHJKA shown in Fig. 7-15. In this figure, EF and HJ actually lie on the real axis
but have been shown separated for visual purposes. Also, FGH is a circle of radius € while BDE and JKA
represent arcs of a circle of radius R.

Since €% /+/z + 1 is analytic inside and on C, we have by Cauchy’s theorem

eZt
imdz =0 (1)

Omitting the integrand, this can be written

[+J+J+J+J+J=0 @

AB BDE EF FGH HJ JKA

Now, on BDE and JKA, z = Re'® where 6 goes from 6 to 7 and 7 to 2 — 6, respectively.

On EF, z+ 1 =ue™, 7+ 1 = Jue™? = i/u; whereas on HJ, z+ 1 =ue ™™, /7+ 1 = Jue ™? =
—iﬁ. In both cases, z= —u — 1, dz = —du, where u varies from R —1 to € along EF and e to R —1
along HJ.
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On FGH, 7+ 1 = ee'® where ¢ goes from —ar to 7. Thus, (2) can be written

a+iT

T . €
ezt eRE'et . e—(u+1)t(_du)
e | iretan |
J Vz+1 /Re'? + 1 ivu
a—iT 6o R—1
i e . R e~y
+ J +i66l¢ dd)"l‘ J - . =
Veet + 1 ) —iJu
2m—6o il Y

T

Let us now take the limit as R — oo (and T = v/ R? — a2 — o0) and € — 0. We can show (see Problem 7.111)
that the second, fourth, and sixth integrals approach zero. Hence, we have

a+ioo R—1 o
o4 e—(n+l)t p 5 e—(u+1)t J
dz = lim 2i u = 2i u
j Vit 1 0 J Vu J Vu
a—ioo R— 00 € 0

or letting u = 02,

Tnu? o

du = —

7.37. P that .
rove tha Juz 1 3

0
Solution

Let C be the closed curve of Fig. 7-16 where I'; and I'; are semicircles of radii € and R, respectively, and center
at the origin. Consider
(Inz)?
d
Si;zz 1%

C
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Since the integrand has a simple pole z = i inside C and since the residue at this pole is

. . (In2)? (ni?  (mi/2? -
lim (z — 7) - — == =
i (z—=i(z4+1) 2i 2i 8i

we have by the residue theorem

(ngy> ~—  (—7\ -7
fshean() -7
C

Now
o (no? . [an?  [an? [ (no?
nzg nz nz nzg nz
dz = d. d: d.
%Zz—i-lz JZZ+1 Z+Jz2+1Z+Jzz+1Z+Jzz+l
C —R I € I,

dz

ey

2

Let z = —u in the first integral on the right so that Inz = In(—«) = Inu + In(—1) = Inu + 7 and dz = —du.
Also, let z = u (so that dz = du and Inz = Inu) in the third integral on the right. Then, using (1), we have

R R

u? + 1 Z2+1 u> +1 Z2+1

€ T € Iy

Now, let € — 0 and R — oo. Since the integrals around I'; and I"; approach zero, we have

—r

4

j(lnu~|—m’)2 J(lnu)2 -
———F du du =——
u? +1 u? +1 4
0
or
(In u)® J Inu J du -7
2 du+2 du — =
Ju2+1 R o 117 4
0 0
Using the fact thatjuzj_l:tan’]uozg
0

8

0

In u)? 1

2J(n”) dthzm'JﬂduzI
u? +1 u? +

0

0

Equating real and imaginary parts, we find

0

J(lnu)zd _ -

Inu
u? +1

u? +1 =g
0

O3

the second integral being a by-product of the evaluation.

3

N2 2 2 2
J(lnu—l—m) du—i—J(an) dZ+J(lnu) du—i—J(an) dr=_"
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7.38. Prove that

coth 7T+coth27'r+coth37r+ s
13 23 33 180 N
(N +3)(-1+) s(v+1)i  (N+3)(1+)
Solution N
Consider s
®2i A
ﬁ; arcot 7z coth 7z ®i
——dz
Z ala o o o o ol a X
Cn N-1|-N 2 -1 [01 2 N[N+
® —
taken around the square Cy shown in Fig. 7-17. l_
The poles of the integrand are located at: 7 =0 ! ?-2
(pole of order 5); z= +1, £2,... (simple ®_Ni
poles); z = +i, +2i,... (simple poles). ] - > ! .
By Problem 7.5 (replacing z by 7z), we see that: (N+3)(-1-0) $-(N+Di - (V+3) (1)
) L
Residue at z =0 is 15 Fig. 7-17

Residue at z=n(n = +1, £2,...)1s

) {(z —n) arcos mzcoth 7TZ} coth nar
lim . =

sin 71z 2 n3

z—n

Residue at z=ni (n= +1, +2,...)is

. {(z — ni) wcot wzcosh ’7TZ} cothnm
lim . =

sinh 7z 2 n3

z—>ni

Hence, by the residue theorem,

7rcot 71z coth 77 77 N cothnw
dz = 4
fi; ‘=5 T ; 3

z n
Cn

Taking the limit as N — oo, we find as in Problem 7.25 that the integral on the left approaches zero and the
required result follows.

SUPPLEMENTARY PROBLEMS

Residues and the Residue Theorem

7.39. For each of the following functions, determine the poles and the residues at the poles:

2241 1\’ i
@1 (b <i> . ©55 (@sechz, (o) cotz,
2—z—2 z—1 Z

cosh z
23

7.40. Prove that Tf dz = i if C is the square with vertices at +2 + 2i.
c

7.41. Show that the residue of (cscz cschz)/z* at z =0 is —1/60.

“d.
7.42. Evaluate % ¢ & around the circle C defined by [z| = 5.
cosh z
c

2
4
7.43. Find the zeros and poles of f(z) = ‘

B +22+22
7.44. Evaluate %eil/z sin(1/z) dz where C is the circle |z| = 1.
C

and determine the residues at the poles.
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inh3
7.45. Let C be a square bounded by x = +2, y = +2. Evaluate %LZS Z
2 (z — mi/4)

22245
7.46. Evaluate %—dz where C is (a) |z — 2i| =6, (b) the square with vertices at 1+, 2+,
Jc+2'@+42 a
2+2i, 14 2i.
[ 2 + 3sin 7z

7.47. Evaluate 1) dz where C is a square having vertices at 3 43, 3 —3i, —3 4 3i, —3 — 3i.

2z — 1)?

1 s
7.48. Evaluate %ﬁdz, t > 0 around the square with vertices at 2 + 2i, —2 +2i, —2 —2i, 2 — 2i.
2(Z?
C
Definite Integrals
o0 2
d 36
7.49. Prove that J T i. 7.52. Evaluate J _C0897
*+1 22 5+4cosf
0 0
T d 236 3
7.50. Evaluate J—xz 7.53. Prove that JL ==
02+ D2 +4) 5 —4cos26 8
0 0
2 in30 0 -
7.51. Evaluate JL 7.54. Prove that if m > 0, J cosm_ e e " m)
5—3cosf x+1) 4
0 0
7.55. (a) Find the residue of ——— at z = i. (b) Evaluate JL’“S X
Z+1) . J (2 +1)
do 2

7.56. Given a® > b? + ¢. Prove that J = )
a+bcosO+csind /g2 —p2 — 2

2@

cos 36 1357
7.57. Prove that = .
rove ta J (5—3cos0) " 16,384
0

7.59. Evaluate J P Ea—
(x2 +4x+5)

7.58. Evaluate JL 7.60. Prove that J
*4+x24+1
0

x2

7.61. Discuss the validity of the following solution to Problem 7.19. Let u = (1 4 i)x/+/2 in the result fooo e du =
L/ to obtain [;° e~ dx = }(1 — i)/7/2 from which [;° cosx?dx = [;° sinx® dx = 1/7/2 on equating real
and imaginary parts.

)

cos 27x —
7.62. Show that | ———=""_ gx eV,
ow thal J)ﬁ‘—i—xz—i-l Zf
0

Summation of Series

Gl 1 T w 1
7.63. Prove that " ——— = —coth 7+ —csch’7 — =.
rove thal ’; T coth 7+ 1 csch™mr 3

T e

7.64. Prove that (a) ;E =50 (b) ;5 =915
2 (=1 'nsinn® rsinh ad

7.65. P that =— ,

rove tha ; n? + o? 2 sinh a7

1111 T
7.66. Prove that — B 22+32 E—i_“':ﬁ'

—mT<O0<m
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= 1 7 ( sinh27ma + sin 27ma
7.67. P that _ = .
rove ta n;oo n* +4a*  4d® {COSh 27a — cos 27m}
I e 1 7
7.68. Prove that Z Z m = ?Coth 7ra coth 7b.
e ——— m ac)n a.

Mittag-Leffler's Expansion Theorem

1 1 1 1
7.69. Provethatcsczz;—2z<zz_ﬂ_2—Z2_47T2+Z2_9ﬂ2_...>,
1 3 5
7.70. Prove that sechz = 7 5 — 5 + 5 — ).
(m/2y +22 Gm/2)" +22 (57/2)° + 2
7.71. (a) Prove that tan 2 ( ! + ! + ! + >
J1. \% =2z ).
(w2 =22 GBm/2} =2 (57/2)° -2
(b) Use th It in (a) to sh thtl+l+l+l+ —ﬁ
se the result in (a) to show that -7 + 27 + 5 + o5 =3

7.72. Prove the expansions (a)2, (b)4, (c)5, (d)7, (e) 8 on page 209.

i 1 11 1 1 1 1 1 774
7.73. Provethat;mzz—z E_E—i_ez—l . 7.74. Provethatﬁ+37+57+7—4+~~:%.
=1

Miscellaneous Problems

7.75. Prove that Cauchy’s theorem and integral formulas can be obtained as special cases of the residue theorem.

. .22 —472+5 .
7.76. Prove that the sum of the residues of the function ——————— at all the poles is 2/3.
326 —8z+10

7.77. Let n be a positive integer. Prove that fozw €% cos(nf — sin ) dO = 27/n!.
7.78. Evaluate §c Ze!/? dz around the circle C with equation |z — 1| = 4.

7.79. Prove that under suitably stated conditions on the function:

@ [g7f(€)df = 2af(0), (b) [;"f(e")cos 6d0 = —mf (0).

7.80. Show that: (a) fozw cos(cos ) cosh(sin ) d6 = 27 (b) fozw e“* 9 cos(sin ) cos 6 d6 = .

[

7.81. Prove that J

0

sinax 1 a 1
dx = ;coth 5 — .
am 17 T3 T 24

[Hint. Integrate e“/(e*™ — 1) around a rectangle with vertices at 0, R, R + i, i and let R — 00.]

[

7.82. Prove that J st ax ! 7T

e +1 ¥ =22 2sinhma

a+ioco
. . e sin pt
7.83. Given a, p, and t are positive constants. Prove that S ——dz= .
2 +p? p
0 a—ioo
Inx mlna
7.84. Prove that | ———dx = ——.
x2 4 a2 2a
0
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7.85.

7.86.

7.87.

7.88.

7.89.

7.90.

7.91.

7.92.

7.93.

7.94.

7.95.

7.96.
7.97.

7.98.

(o]
i Sinhax sina

- X = L
sinh 7mx cosa + cosh A

Suppose —7 < a < . Prove that J e

—o00
[

Prove that J dx In2
\¢ _— =
(4x%2 + m)coshx 2
0
T Inx -2 i (In x)? 372
Prove that (a)Jx‘*—f—ldx_ T (b)JX4+1dx_ a
0 0

1 2

Hint. Consider (In2) dz around a semicircle properly indented at z = 0.
4+ 1

c

Z
©

Inx
Evaluate | ————dx.
24+
0

Prove that if |a| < 1 and b > 0, J
0

sinh ax
sinh x 2

cos am + cosh b

(<)

Prove that if —1 <p <1, J
0

cos px T
X = .
coshx 2 cosh(pm/2)

[

Prove that J
0
Suppose a > 0 and —7/2 < 8 < /2. Prove that

In(1 + x) 7In2
dx = .
1+ x2 2

() Je_""‘z <P cos(ax” sin B) dx = 1 \/m/a cos(B/2).
0
(b) Je—wfz <P sin(ax” sin B) dx = 1 /m/asin(B/2).
0
= 1
2, _
Prove that csc”z = n;m P——

Suppose a and p are real and such that 0 < |p| < 1 and 0 < |a| < z. Prove that

J xPdx _ T sinpa

¥ 4+2xcosa+1  \sinpw/\ sina
0

1

Prove J
0

dx _2m
NN

Prove the residue theorem for multiply-connected regions.

[Consider contour of Fig. 7-18.]

Find sufficient conditions under which the residue theorem

cosbxdx = 7—7(%)
T

(Problem 7.2) is valid if C encloses infinitely many iso-
lated singularities.

Let C be a circle with equation |z| = 4. Determine the value
of the integral

1

ﬂ; Zesc—dz
z

C

if it exists.

/E

Fig. 7-18



7.99.

7.100.

7.101.

7.102.

7.103.

7.104.

7.105.

7.106.

7.107.

7.108.

7.109.

7.110.
7.111.

7.112.

7.113.

7.114.

7.115.

7.116.

7.117.
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Give an analytical proof that sin § > 260/ for 0 < 0 < 7/2.

[Hint. Consider the derivative of (sin 6)/6, showing that it is a decreasing function.]
X 1
Prove that | — dx = —.

sinh 7mx 4
0

Verify that the integral around I" in equation (2) of Problem 7.22 goes to zero as R — oo.

@ S is real. Prove that | In(1 — 2rcos 6+ ) do = | ° it =1
a) Suppose r is real. Prove that | In r cos r =\Vawnr? if | =1
/2
(b) Use the result in (a) to evaluate J In sin 6 d6 (see Problem 7.23).
0

Complete the proof of Case 2 in Problem 7.25.

-p
Let 0 < p < 1. Prove that J al 1dx = mrcotpar in the Cauchy principal value sense.

Show that Y prar 5

| (7),

Verify that as N — oo, the integral on the left of (1) in Problem 7.29 goes to zero.

Prove that ! ! +— ! ! + = S
5 35 7 T 1536

Prove the results given on page 209 for (a) Z f (27—’_> and (b) Z( 1)”f<2n + 1)

(=1)"sin n9 0(m — 0)(m+ 0)
n3 12 ’

Given —7 < 6 < . Prove that Z

n=1
Prove that the function cotz — 1/z of Problem 7.34 is bounded on the circles Cy.

Show that the second, fourth, and sixth integrals in equation (3) of Problem 7.36 approach zero as € — 0 and
R — oo,

1 1 1 T
P that — =1
rove that C h(m/2) ~ 3cosh(3m/2) | 5 cosh(57/2) 8
a+ioo
1 J ez’ b d
Prove that where a and ¢ are any positive constants.
. f «/—
coth nw 1977
P that .
rove tha Z =36.700
dx 4 —a
P that = .
rove tha J(xz + 1) cosh mx 2
0
P that ! + ! s
rove tha — — =
Bsinh7 23sinh27  33sinh37 360

Prove that if a and ¢ are any positive constants,

a+ioo .
1 sint
— e cot™ zdz = -

a—ioo
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ANSWERS TO SUPPLEMENTARY PROBLEMS

7.39. (a) z=-1,2;1/3,5/3, (b) z=1;4, (¢) z=0; 1
(d) z=1Qk + Dri; (—1)}*'i where k =0, £1, £2,..., (e) z=kmi; 0 where k =0, £1, +2,...
7.42. 8
7.43. Zeros: z = +2i,Res: at z=01is 2, Res: at za = —1 4+ i is —%(1 —3i),Res:atz=—1—1iis —%(1 + 3i)
7.44. 2mi
7.45. —97y2/2
7.47. —6mi
7.48. 1 —cost
7.50. 57/288
7.51. 0
7.58. m/3/6
7.59. 7/2
7.78. 1/24
7.88. —7/4
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Conformal Mapping

8.1 Transformations or Mappings

The set of equations

u=ux,y)

b= oz y) 8.1)

defines, in general, a transformation or mapping, which establishes a correspondence between points in the
uv and xy planes. The equations (8.1) are called transformation equations. If to each point of the uv plane,
there corresponds one and only one point of the xy plane, and conversely, we speak of a one-to-one trans-
formation or mapping. In such a case, a set of points in the xy plane (such as a curve or region) is mapped
into a set of points in the uv plane (curve or region) and conversely. The corresponding sets of points in the
two planes are often called images of each other.

8.2 Jacobian of a Transformation

Under the transformation (8.1), a region R of the xy plane is, in general, mapped into a region R’ of the uv
plane. Then, if AA,, and AA,, denote, respectively, the areas of these regions, we can show that if u and v are
continuously differentiable,

lim i‘zy = ‘gz ;’; (8.2)
where lim denotes the limit as AA,, (or AA,,) approaches zero and where the determinant
ou
ou, v) |dx dy udv  oudv 8.3)

dx,y) |90 vl axady dyodx
ox dy
is called the Jacobian of the transformation (8.1).

If we solve (1) for x and y in terms of u and v, we obtain the transformation x = x(u, v), y = y(u, v), often
called the inverse transformation corresponding to (8.1). If x and y are single-valued and continuously dif-
ferentiable, the Jacobian of this transformation is d(x, y)/d(u, v) and can be shown equal to the reciprocal of
a(u, v)/9d(x, y) (see Problem 8.7). Thus, if one Jacobian is different from zero in a region, so also is the other.

Conversely, we can show that if # and v are continuously differentiable in a region R and if the Jacobian
a(u, v)/d(x, y) does not vanish in R, then the transformation (8.1) is one-to-one.
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8.3 Complex Mapping Functions

A case of special interest occurs when u and v are real and imaginary parts of an analytic function of a
complex variable z = x + iy, i.e., w = u + iv = f(z) = f(x + iy). In such a case, the Jacobian of the trans-
formation is given by
a(u, v)
a(x, y)
(see Problem 8.5). It follows that the transformation is one-to-one in regions where f'(z) # 0. Points where
f(z) = 0 are called critical points.

=1f@P (8.4)

8.4 Conformal Mapping

Suppose that under transformation (8.1), point (xg, yg) of the xy plane is mapped into point (ug, vy) of the uv
plane (Figs. 8-1 and 8-2) while curves C; and C, [intersecting at (xp, yo)] are mapped, respectively, into
curves C; and C) [intersecting at (ug, vo)]. Then, if the transformation is such that the angle at (xo, yo)
between C; and C; is equal to the angle at (ug, vp) between C| and C} both in magnitude and sense, the
transformation or mapping is said to be conformal at (xo, yp). A mapping that preserves the magnitudes
of angles but not necessarily the sense is called isogonal.

y v
(ug, Vp)

(0, Yo)

Fig. 81 Fig. 82

The following theorem is fundamental.

THEOREM. 8.1:  If f(z) is analytic and f'(z) # 0 in a region R, then the mapping w = f(z) is conformal at
all points of R.

For conformal mappings or transformations, small figures in the neighborhood of a point zj in the z plane
map into similar small figures in the w plane and are magnified (or reduced) by an amount given approxi-
mately by | f'(z0)|?, called the area magnification factor or simply magnification factor. Short distances in
the z plane in the neighborhood of z are magnified (or reduced) in the w plane by an amount given approxi-
mately by |f'(zo)|, called the linear magnification factor. Large figures in the z plane usually map into
figures in the w plane that are far from similar.

8.5 Riemann’s Mapping Theorem

Let C (Fig. 8-3) be a simple closed curve in the z plane forming the boundary of a simply connected region
R. Let C’ (Fig. 8-4) be a circle of radius one and center at the origin [the unit circle] forming the boundary
of region R’ in the w plane. The region R’ is sometimes called the unit disk. Then Riemann’s mapping
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theorem states that there exists a function w = f(z), analytic in R, which maps each point of R into a
corresponding point of R’ and each point of C into a corresponding point of C’, the correspondence
being one-to-one and onto, i.e., every point of R’ is the image of exactly one point of R.

z plane w plane

Fig. 83 Fig. 8-4

This function f(z) contains three arbitrary real constants that can be determined by making the center of
C’ correspond to some given point in R, while some point on C’ corresponds to a given point on C. It should
be noted that while Riemann’s mapping theorem demonstrates the existence of a mapping function, it does
not actually produce this function.

It is possible to extend Riemann’s mapping theorem to the case where a region bounded by two simple
closed curves, one inside the other, is mapped onto a region bounded by two concentric circles. Also, any
simply connected region that is not the whole x-y plane can be mapped conformally onto the unit disk. For
example, the upper half plane can be mapped conformally onto the unit disk (see Section 8.11).

8.6 Fixed or Invariant Points of a Transformation

Suppose that we superimpose the w plane on the z plane so that the coordinate axes coincide and there is
essentially only one plane. Then we can think of the transformation w = f(z) as taking certain points of the
plane into other points. Points for which z =f(z) are called the fixed or invariant points of the
transformation.

EXAMPLE 8.1: The fixed or invariant points of the transformation w = 7% are solutions of 72 = z,i.e., 7 =0, 1.

8.7 Some General Transformations

In the following, «, B are given complex constants while a, 6y are real constants.

1. Translation. w =z+
By this transformation, figures in the z plane are displaced or translated in the direction of
vector 3.

2. Rotation. w = /%7
By this transformation, figures in the z plane are rotated through an angle 6y. If 6y > 0, the
rotation is counterclockwise while, if 6y < 0, the rotation is clockwise.
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3. Stretching. w = az
By this transformation, figures in the z plane are stretched (or contracted) in the direction z if
a>1 (or 0 <a < 1). We consider contraction as a special case of stretching.
4. Inversion.w =1/z

8.8 Successive Transformations

If w = f1({) maps region R, of the { plane into region R,, of the w plane while { = f>(z) maps region R, of
the z plane into region Ry, then w = fi[f2(z)] maps R; into R,,. The functions f; and f> define successive
transformations from one plane to another, which are equivalent to a single transformation. These ideas
are easily generalized.

8.9 The Linear Transformation

The transformation

w=az+f (8.5)
where o and 3 are given complex constants, is called a linear transformation. Letting a = ae'®, we see that

a general linear transformation is a combination of the transformations of translation, rotation, and
stretching.

8.10 The Bilinear or Fractional Transformation

The transformation

wetB s Byz0 (8.6)
vz + 8

is called a bilinear or fractional transformation. This transformation can be considered as a combination of
the transformations of translation, rotation, stretching, and inversion.

The transformation (8.6) has the property that circles in the z plane are mapped into circles in the w plane,
where by circles we include circles of infinite radius that are straight lines. See Problems 8.14 and 8.15.

The transformation maps any three distinct points of the z plane into three distinct points of the w plane,
one of which may be at infinity.

If z1, 22, z3, 24 are distinct, then the quantity

(z4 —21)(z2 — 23)

(22 —21)(z4 — 23) @7

is called the cross ratio of zy, 22, 73, z4. This ratio is invariant under the bilinear transformation, and this
property can be used in obtaining specific bilinear transformations mapping three points into three other
points.
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8.11 Mapping of a Half Plane onto a Circle

Let zo be any point P in the upper half of the z plane denoted by R in Fig. 8-5. Then, the transformation

— (Z - Z") (8.8)

Z—20

maps this upper half plane in a one-to-one manner onto the interior R’ of the unit circle |w| = 1. Each point
of the x axis is mapped to the boundary of the circle. The constant 6y can be determined by making one
particular point of the x axis correspond to a given point on the circle.

In the above figures, we have used the convention that unprimed points such as A, B, C, etc., in the z plane
correspond to primed points A’, B’, C’, etc., in the w plane. Also, in the case where points are at infinity, we
indicate this by an arrow such as at A and F in Fig. 8-5, which correspond, respectively, to A’ and F’ (the
same point) in Fig. 8-6. As point z moves on the boundary of R [i.e., the real axis] from —oo (point A) to 4-c0
(point F), w moves counterclockwise along the unit circle from A’ back to A’.

z plane w plane

Fig. 8-5

8.12 The Schwarz-Christoffel Transformation

Consider a polygon [Fig. 8-7] in the w plane having vertices at wy, wy, ..., w, with corresponding interior
angles aj, ao, ..., a,, respectively. Let the points wy, wy, ..., w, be the images, respectively, of the points
X1, X2, .. .,X, on the real axis of the z plane [Fig. 8-8].

v w plane y| Zplane

Fig. 87 Fig. 8-8
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A transformation that maps the upper half R of the z plane onto the interior R’ of the polygon of the w
plane and the real axis onto the boundary of the polygon is given by

dw _ a» | T— a,/m—
i Gt N Gl N R ®3.9)

or
w=A J (z—x) ™ Nz —x)® ™ (= x) ™ Az + B (8.10)

where A and B are complex constants.
The following facts should be noted:

1. Any three of the points xj, X, ...,x, can be chosen at will.
. The constants A and B determine the size, orientation, and position of the polygon.
3. It is convenient to choose one point, say x,, at infinity in which case the last factor of (8.9) and
(8.10) involving x, is not present.
4. Infinite open polygons can be considered as limiting cases of closed polygons.

8.13 Transformations of Boundaries in Parametric Form

Suppose that in the z plane a curve C [Fig. 8-9], which may or may not be closed, has parametric equations
given by

x=F@), y=G@) (8.11)
where we assume that F and G are continuously differentiable. Then, the transformation

z2=FWw)+iG(w) (8.12)
maps the real axis C’ [Fig. 8-10] of the w plane onto C.

: 1
z plane p| v Plane

Fig. 89 Fig. 810

8.14 Some Special Mappings

For reference purposes, we list here some special mappings that are useful in practice. For convenience, that
we have listed separately the mapping functions that map the given region R of the w or z plane onto the
upper half of the z or w plane or the unit circle in the z or w plane, depending on which mapping function is
simpler. As we have already seen, there exists a transformation [equation (8.8)] that maps the upper half
plane onto the unit circle.
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A. Mappings onto/on the Upper Half Plane
A-1 Infinite sector of angle 7/m w=7"m>1/2

z plane

w plane

Fig. 8-11 Fig. 8-12
A-2 Infinite strip of width a W= e™/a
Z plane w plane

Fig. 813 Fig. 814
R . . . Tz
A-3 Semi-infinite strip of width a w = sin—
a
(a)
z plane

w plane

Fig. 8-15 Fig. 8-16
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(b) w= cosE
a

z plane
w plane

Fig. 817 Fig. 8-18

(© w = coshE
a

z plane w plane

Fig. 819 Fig. 820
1
A-4 Half plane with semicircle removed w= ; (Z + —)
b4
z plane w plane

Fig. 8-21 Fig. 8-22
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2
A-5 Semicircle w= (#)
—z

w plane

Fig. 823 Fig. 824
1 ? 1
A-6 Sector of a circle w= 7 m>—=
1—z" 2

z plane w plane

y
C
B
D A X
1
Fig. 8-25 Fig. 8-26
- n"
A-7 Lens-shaped region of angle 7/m w = o'y (H—l) ,m=>2
[ABC and CDA are circular arcs.] <7
z plane w plane
y
B
m
P
C A ¥
-1 1

Fig. 8-27 Fig. 8-28
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A-8 Half plane with circle removed w = coth(7/z)

z plane w plane

Fig. 829 Fig. 830
A-9 Exterior of parabola y> = 4p(p — x) w=i(/z— \/P)
z plane w plane

Fig. 831 Fig. 832
A-10 Interior of the parabola y*> = 4p(p — x) w = emVP
z plane w plane

Fig. 8-33 Fig. 8-34
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A-11 Plane with two semi-infinite parallel cuts w=—mi+2lnz— 7

w plane z plane

Fig. 8-35 Fig. 8-36
2
A-12 Channel with right angle bend w=={tanh~! p\/z — ptan~' /z}
T
w plane z plane

v

-1 —1/p?
Fig. 8-37 Fig. 8-38
Z
A-13 Interior of triangle w= J /T — BT gy
w plane z plane 0

Fig. 8-39 Fig. 8-40
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Z
A-14 Interior of rectangle w= J dr ,0<k<1
VA =21 = k22)
w plane z plane
v

R V/ S | 1 1/k
Fig. 8-41 Fig. 842

B. Mappings on/onto the Unit Circle

1
B-1 Exterior of unit circle W=
z

w plane z plane

" x
Fig. 843 Fig. 8-44
. . 1

B-2 Exterior of ellipse w= E(ze_"‘ +77'e%)

w plane z plane

Fig. 8-45 Fig. 8-46



@@ — CHAPTER 8 Conformal Mapping

B-3 Exterior of parabola y* = 4p(p — x)

z plane

Fig. 847 Fig. 848
B-4 Interior of parabola y> = 4p(p — x) w= tanzg ;
z plane w plane
Fig. 849 Fig. 850
C. Miscellaneous Mappings
C-1 Semi-infinite strip of width a onto quarter plane w= sin2E
a

z plane w plane

Fig. 8-51 Fig. 8-52
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C-2 Interior of circle onto cardioid w=7z

w plane

p=2a*1 + cos ¢)

B
Fig. 8-53 Fig. 8-54
C-3 Annulus onto rectangle w=Inz
z plane w plane
ol’ v

Fig. 8-55 Fig. 8-56
C-4 Semi-infinite strip onto infinite strip w = In coth <£>
z plane w plane

Fig. 857 Fig. 858
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C-5 Infinite strip onto plane with two semi-infinite cuts

w=z+e
w plane z plane
v y
1
A A B C
B’ -
™ ™
c
- u x
E’ " D' 4
1 E D C
Fig. 8-59 Fig. 8-60

SOLVED PROBLEMS

Transformations

8.1. Let the rectangular region R [Fig. 8-61] in the z plane be bounded by x =0,y =0,x =2,y = 1.
Determine the region R’ of the w plane into which R is mapped under the transformations:

@w=z+0=20), (b)w=+2e"z, (c)w=~2e™*7+ (1 —2i).
Solution
(@ Givenw=z+({1—-2i). Thenu+iv=x+iy+1—-2i=x+1)+iy—2)andu=x+1,v=y—2.

Line x = 0ismapped intou = 1;y =0 intov = —2;x = 2 intou = 3; y = 1 into v = —1 [Fig. 8-62].
Similarly, we can show that each point of R is mapped into one and only one point of R’ and conversely.

z plane w plane
y v
y=1
u
x=0 R x=2 v=-1
X
y=0 u=1 R u=3
v=-2
Fig. 8-61 Fig. 8-62

The transformation or mapping accomplishes a translation of the rectangle. In general, w =z + 3
accomplishes a translation of any region.
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(b) Givenw = +2e™*z. Thenu+iv=1+)x+iy)=x—y+ix+y)andu=x—y, v=x+y.
Line x =0 is mapped into u = —y, v=yoru=—v;,y=0intou =x, v=x or u = v; x = 2 into
u=2—-yv=2+4+yoru+v=4y=1lintou=x—1,v=x+1orv—u=2[Fig. 8-64].

zplane w plane
y
v Z
2
N
t4
V-—u=2
y=1 R
N
4
x=0 R x=2 ‘9 v
~ u
X
y=0
Fig. 8-63 Fig. 8-64

The mapping accomplishes a rotation of R (through angle 7/4 or 45°) and a stretching of lengths
(of magnitude +/2). In general, the transformation w = az accomplishes a rotation and stretching of a
region.

(¢) Given w=+2e"*74+(1—2i). Then u+iv=0+dx+i)+1—-2i and u=x—y+1,
v=x+y—2.
The lines x =0, y=0, x=2, y=1 are mapped, respectively, into u4+v=—1, u—v =23,
u+v=3, u—v=1 [Fig. 8-66].

z plane w plane
y
y=1 i
x=0 R x=2
X
y=0
Fig. 865 Fig. 866

The mapping accomplishes a rotation and stretching as in (b) and a subsequent translation. In general,
the transformation w = az + 8 accomplishes a rotation, stretching, and translation. This can be con-
sidered as two successive mappings w = agz; (rotation and stretching) and z; = z 4+ B/« (translation).

8.2. Determine the region of the w plane into which each of the following is mapped by the transformation
w = z%. (a) First quadrant of the z plane. (b) Region boundedby x =1,y =1,and x +y = 1.

Solution

(@) Let z = re'®, w = pe'®. Then if w = 22, pe’® = r?¢*? and p = r?, ¢ = 26. Thus points in the z plane at
(r, 6) are rotated through angle 26. Since all points in the first quadrant [Fig. 8-67] of the z plane

occupy the region 0 < 0 < /2, they map into 0 < ¢ < 7 or the upper half of the w plane [Fig. 8-68].
z plane w plane

y v

Fig. 867 Fig. 868
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(b) Since w = 72 is equivalent to u + iv = (x + iy)* = x> — y* + 2ixy, we see that u = x> — y?, v = 2xy. Then
line x=1 maps into u=1—y% v=2y or u=1—0>/4; line y=1 into u=x>—1, v=2x or
u=v*/4—1;linex+y=lory=1—xintou=x>—(1—x>=2x—1, v=2x(1 —x) =2x — 2x% or

v= %(1 — u?) on eliminating x.

The regions appear shaded in Figs. 8-69 and 8-70 where points A, B, C map into A’, B, C’. Note that the
angles of triangle ABC are equal, respectively, to the angles of curvilinear triangle A’B’'C’. This is a conse-
quence of the fact that the mapping is conformal.

z plane w plane
y v
/2 ¢
y=1 2 2
Shwraneh u= -1 wsl-g
) ) P
z x=1 .
XJ,\\ o A B u
N
X N,
B "\O\
“J
Fig. 8-69 Fig. 870

Conformal Transformations

8.3. Consider the transformation w = f(z) where f(2) is analytic at zy and f”(z) # 0. Prove that under this
transformation, the tangent at zp to any curve C in the z plane passing through zo [Fig. 8-71] is
rotated through the angle a = arg f'(zo) [Fig. 8-8].

w plane

z plane
y
ot 2 B
//
¢/~
ar
- -
X
Fig. 871
Solution

Fig. 872

As a point moves from zy to zo + Az along C, the image point moves along C’ in the w plane from wy to
wo + Aw. If the parameter used to describe the curve is ¢, then corresponding to the path z = z(¢) [or
x = x(t), y = y(t)] in the z plane, we have the path w = w(¢) [or u = u(t), v = v(¢)] in the w plane.

The derivatives dz/dt and dw/dt represent tangent vectors to corresponding points on C and C'.

Now

and, in particular at zy and wy,

dw dw dz ,, .dz

@ aa O

dw dz

- =f"(z0) = (D
dt W= dt|._
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provided f(z) is analytic at z = zo. Writing
dw
dt

w=wo =20

we have from (1)
poe® = Rroel @+
so that, as required,

o = 00+ = O + argf'(z0)

Note that if f'(z9) = 0, then « is indeterminate. Points where f'(z) = 0 are called critical points.

. . 7 .
=pe'®,  f@=Re — =ree™

@

3

8.4. Prove that the angle between two curves C| and C, passing through the point z; in the z plane [see
Figs. 8-1 and 8-2, page 243] is preserved [in magnitude and sense] under the transformation

w = f(z), i.e., the mapping is conformal, if f(z) is analytic at zo and f'(zg) #0.

Solution

By Problem 8.3, each curve is rotated through the angle arg f'(zo). Hence, the angle between the curves must be

preserved, both in magnitude and sense, in the mapping.
Jacobian of a Transformation

8.5. Let w = f(z) = u + iv be analytic in a region R. Prove that
u, v)
ax, y)

=1/ @

Solution

If f(z) is analytic in R, then the Cauchy—Riemann equations

w_ e
oy’ ox  dy
are satisfied in R. Hence

=@

ou Ju ou Ju
du,v)  |ax dy| | ax dy _(au)2+<au>2
ax,y) |ov dv| | du du|  \ax Ay
o dyl | ay ax
_|ou oul?
= a—}—la—y

using Problem 3.5.

8.6. Find the Jacobian of the transformation in (a) Problem 8.1(c), (b) Problem 8.2, and interpret

geometrically.

Solution

(@) Given w = f(z) = v/2¢™/*z 4+ (1 — 2i). Then, by Problem 8.5, the Jacobian is

X0 | @ = Ve P =2
ax, )

Geometrically, this shows that any region in the z plane [in particular, rectangular region R of
Fig. 8-65, page 257] is mapped into a region of twice the area. The factor |f'(z)|> =2 is called the

magnification factor.
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Another Method. The transformation is equivalent to u = x —y, v = x + y and so

ou ou
du, v) _|ax ay| |1 -1
ax,y) |dv dv _'

ax dy

(b) Given w = f(z) = z>. Then

a(u, v)
ax, y)

= 1f @F = 1227 = [2x + 2iy* = 47 +7)

Geometrically, a small region in the z plane having area A and at approximate distance r from the
origin would be mapped into a region of the w plane having area 4r°A. Thus regions far from the
origin would be mapped into regions of greater area than similar regions near the origin.

Note that, at the critical point z = 0, the Jacobian is zero. At this point, the transformation is not
conformal.

o v) e y)
o, y) aw, v)

8.7. Prove that

Solution

Corresponding to the transformation

u = u(x, y), v =v(x, y) (D

with Jacobian d(u, v)/d(x, y), we have the inverse transformation

x=x(u,v), y=yu,v) (2)
with Jacobian d(x, y)/d(u, v). From (1),
ou ou av av
du=—dx+—dy, dv=—dx+—d
U= T T @ =ty
From (2),
_Ox ax _ Oy ay
dx—audu+avdv, dy—audu+avdv
Hence,

ou [0 a. ou (0 0 ouox oud uox dud
du = u{—xdu—f-—xdv}—i-—u{—ydu—i-—ydv} {—u—x—i- u—y}du—i-{fufx-l- u—y}dv

~ax |ou v ay | ou v axdu |y ou axdv  dy v
from which
duds bty | iwdx dudy )
oxou dydu oxdv  dy v
Similarly, we find
av@ av@_l av% @al_ @)

v dydv  Oxou  dydu
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Using (3) and (4) and the rule for products of determinants (see Problem 8.94), we have

87u 81 ox Ox

ou, v) 0x,y) _|dx 3y| |ou v

o, y) o, v)  |dv dv| |dy dy

ox dy ou v

ouox Oudy Oudx Oudy
dxdu  dydu I ayav| |1 O
o avdy dvdc dvdy |~
oxou dyou Oxov 3dyadv

8.8. Discuss Problem 8.7 if u and v are real and imaginary parts of an analytic function f(z).

Solution

In this case d(u, v)/3(x, ¥) = |f'(z)|* by Problem 8.5. If the inverse to w = f(z) is z = g(w) assumed single-
valued and analytic, then a(x, y)/d(u, v) = |g’'(w)|*. The result of Problem 8.7 is a consequence of the fact that

2 2

dz

dw

, , dw
[/ @PIg I = ’7
Z
since dw/dz = 1/(dz/dw).
Bilinear or Fractional Transformations

8.9. Find a bilinear transformation that maps points z;, 25, z3 of the z plane into points wy, w;, ws of the
w plane, respectively.

Solution
If wy corresponds to 7, k = 1, 2, 3, we have

_x+ B ag+ B (ad— By —u)
Ty +d yu+8  (yz+ vz + )

W — Wy

Then

_(ad—By)(z—1z1) _ (ad = By)(z—12) )

M T e+ P T (et o) + 0)

Replacing w by w,, and z by z5,

Wy — = (@O = BYG —21) e = (@B BV — ) @)
P T (i +8 T (rm+ (v + )
By division of (1) and (2), assuming ad — By # 0,
w—=w)w, —w3)  (z—z1)(22 —23) 3)

w—w3)wr —wi)  (z—23)(z2 — 21)

Solving for w in terms of z gives the required transformation. The right hand side of (3) is called the cross ratio
of z1, 22, z3, and z.



8.10. Find a bilinear transformation that maps points z = 0, —i, —1 into w = i, 1, 0, respectively.

8.11.

CHAPTER 8 Conformal Mapping

Solution

Method 1. Since w = (az + B)/(yz + ), we have

;_2O+B
¥0)+ 8
oD +p
y(=i) + 8
0 2=D+B
y=1)+38

From (3), B = a. From (1), 6 = B/i = —ia. From (2), y = ia. Then

o az +a _1 z+1 — z+1
Tdaz—ia i\z—1)" z—1

Method 2. Use Problem 8.9. Then

w—0D1-0) (—0)(—i+1)
w—=0)(1—1 (z+ (=i —0)

Solving,

Let zo be in the upper half of the z plane. Show that the

bilinear transformation w = /% {(z — z0)/(z — Zo)} maps y

the upper half of the z plane into the interior of the unit
circle in the w plane, i.e., |w| < 1.

Solution

We have

Z—20

e))

@

3

lw| =

ei@() < _fo
Z—20

From Fig. 8-73, if z is in the wupper half plane,
|z — 20| < |z — Zol, the equality holding if and only if z is on
the x axis. Hence, |w| < 1, as required.

The transformation can also be derived directly (see Problem
8.61).

Z—20

Fig. 873
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8.12.

8.13.

8.14.

8.15.

Find a bilinear transformation that maps the upper half of the z plane into the unit circle in the w
plane in such a way that z =i is mapped into w = 0 while the point at infinity is mapped into
w=—1.
Solution

We have w = 0 corresponding to z = i, and w = —1 corresponding to z = oo. Then, from w = e%{(z — z9)/
(z—172)), we have 0=¢%(— 20)/(i —Z0)} so that zp =i. Corresponding to z=o00, we have
w = % = —1. Hence, the required transformation is

z—1 i—z
= —1 =
w=( )<z—|—i> i+z

The situation is described graphically in Figs. 8-74 and 8-75.

z plane w plane
U
y D’
Pei
1
E
u
A’ P’ C’
> > x
A B C D E B
Fig. 874 Fig. 875

Find the fixed or invariant points of the transformation w = (2z — 5)/(z + 4).

Solution

The fixed points are solutions to z = (2z — 5)/(z +4) or 2> +2z+5 =0, i.e,, z = —1 +2i.

Prove that the bilinear transformation can be considered as a combination of the transformations of
translation, rotation, stretching, and inversion.

Solution

By division,

az+B a PBy—ad I
W= —

T+ v v+ it

where A = a/y, u = (By — ad)/y* and v = §/y are constants. The transformation is equivalent to { = z + v,
7=1/{, and w = A 4+ p7, which are combinations of the transformations of translation, rotation, stretching,
and inversion.

Prove that the bilinear transformation transforms circles of the z plane into circles of the w plane
where, by circles, we include circles of infinite radius, which are straight lines.

Solution

The general equation of a circle in the z plane is, by Problem 1.44, Azz + Bz + B7+ C = 0whereA >0,C >0
and B is complex. If A = 0, the circle reduces to a straight line.
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Under the transformation of inversion, w = 1/z or z=1/w, we have that this equation becomes
Cww + Bw + Bw+ A = 0, a circle in the w plane.

Under the transformation of rotation and stretching, w =az or z= w/a, this equation becomes
Aww + (Ba)w + (Ba)w + Caa = 0, also a circle.

Similarly, we can show either analytically or geometrically that under the transformation of translation,
circles are transformed into circles.

Since, by Problem 8.14, a bilinear transformation can be considered as a combination of translation,
rotation, stretching, and inversion, the required result follows.

Special Mapping Functions
8.16. Verify the entries (a) A-2, page 248, (b) A-4, page 249, (c) B-1, page 253.

Solution

(a) Refer to Figs. 8-13 and 8-14, page 248.
If z = x + iy, then

mx+iy)/a

wz/a

w=u+iv=e™"=e = e™/(cos my/a + i sin wy/a)

m/a mx/a

or u=e™cosmy/a, v=e sin y/a.

The line y = 0 [the real axis in the z plane; DEF in Fig. 8-13] maps into u = ¢™/4, v = 0 [the positive
real axis in the w plane; D'E’'F’ in Fig. 8-14]. The origin E [z = 0] maps into E' [w = 1] while
D [x=—0,y=0]and F [x = 400, y = 0] map into D’ [w = 0] and F’ [w = o], respectively.

The line y = a [ABC in Fig. 8-13] maps into u = —e™/“, v = 0 [the negative real axis in the w plane;
A’B'C’ in Fig. 8-14]. The points A [x = 400, y = a] and C [x = —c0, y = a] map into A’ [w = —oco] and
C' [w = 0], respectively.

Any point for which 0 < y < g, —o0 < x < 0o maps uniquely into one point in the uv plane for which
v>0.

(b) Refer to Figs. 8-21 and 8-22, page 249.

If z = re'®, then
1 : 1 _. 1 ] 1
2h=-) =2 (re? +-e ) =2 (r+-)cos O+ (r—=-)sin6
z 2 r 2 r 2 r

w=u-+iv=

NSNS

and

Semicircle BCD [r = 1, 0 < 0 < 7] maps into line segment B'C'D’ [u = acosf, v=0,0 < 0 < m,
ie., —a <u<al.

The line DE [6 = 0, r > 1] maps into line D'E’ [u = (a/2){r + (1/r)}, v = 0]; line AB [0 = 7, r > 1]
maps into line A’B’ [u = —(a/2){r + (1/r)}, v = 0].

Any point of the z plane for which r > 1 and 0 < 6 < 7 maps uniquely into one point of the uv plane
for which v > 0.

(c) Refer to Figs. 8-43 and 8-44, page 253.

If z=re!’ and w = pe'®, then w = 1/z becomes pe'® = 1/re’ = (1/r)e™" from which p = 1/r,
¢ =—6.

The circle ABCD [r = 1] in the z plane maps into the circle A’B'C'D’ [p = 1] of the w plane. Note that
if ABCD is described counterclockwise, A’B'C’'D’ is described clockwise.

Any point interior to the circle ABCD [r < 1] is mapped uniquely into a point exterior to the circle
A'B'C'D [p>1].
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The Schwarz-Christoffel Transformation

8.17.

8.18.

Establish the validity of the Schwarz—Christoffel transformation.

Solution

We must show that the mapping function obtained from

d
= A=) @ = )T g ) )
dz
maps the real axis of the z plane onto a given polygon of the w plane [Figs. 8-76 and 8-77].
To show this, observe that from (1) we have
aq [2%]
argdw =argdz + argA + (— — 1) arg(z —x;) + (— — 1) arg(z —xp) + - -
T T @

+ (a—; — 1) arg(z — xp)

As zmoves along the real axis from the left toward x;, let us assume that w moves along a side of the polygon
toward wy. When z crosses from the left of x; to the right of x1, 6; = arg(z — x;) changes from 7 to O while all
other terms in (2) stay constant. Hence arg dw decreases by (o) /7 — 1)arg(z —x;) = (g /m— Dmr =0y — 7
or, what is the same thing, increases by 7 — «; [an increase being in the counterclockwise direction].

w plane z plane
v y
-~z
7
////
Prete
-~
A
/// ¢
P -
> -///Sel .///\62 ® ° > X
X Xy X3 X4
u
Fig. 876 Fig. 877

It follows from this that the direction through w, turns through the angle 7 — «, and thus w now moves
along the side w;w, of the polygon.

When z moves through x,, 8; = arg(z — x;) and 6, = arg(z — x,) change from 7 to 0 while all other terms
stay constant. Hence, another turn through angle 7 — a, in the w plane is made. By continuing the process, we
see that as z traverses the x axis, w traverses the polygon, and conversely.

We can actually prove that the upper half plane is mapped onto the interior of the polygon (if it is closed)
by (1) [see Problem 8.26].

Prove that for closed polygons, the sum of the exponents (a;/m7) — 1, (aa/m) — 1, ..., (an/m) — 1

in the Schwarz—Christoffel transformation (8.9) or (8.10), page 247, is equal to —2.

Solution
The sum of the exterior angles of any closed polygon is 27r. Then
(m—a)+(T—a)+ -+ (m— ) =27

and dividing by —ar, we obtain as required,

(S ()G -
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8.19. Suppose in the Schwarz—Christoffel transformation (8.9) or (8.10), page 247, one point, say x,, is
chosen at infinity. Show that the last factor is not present.

Solution
In (8.9), page 247, let A = K /(—x,)%/™! where K is a constant. Then, the right side of (9) can be written
X, — 2 o, /m—1
Kz —x)™/ ™ e —x)®/ ™ (g = o) T ("7)
‘xﬂ
As x,, — oo, this last factor approaches 1; this is equivalent to removal of the factor.

8.20. Determine a function that maps the upper half of the z plane onto each of the indicated regions in the

w plane.
Solution
(@)
w plane z plane
v y
P T
0’ N " P Q0 M A
b b -1 T
Fig. 878 Fig. 8-79

Let points P, Q, S, and T [Fig. 8-79] map, respectively, into P’, Q', ', and T’ [Fig. 8-78]. We can consider
P'Q'S'T’ as a limiting case of a polygon (a triangle) with two vertices at Q" and " and the third vertex P’ or
T’ at infinity.

By the Schwarz—Christoffel transformation, since the angles at Q' and S’ are equal to /2, we have

dw = Az 4 D=1 _ i/t A ___ K

dz 2-1 J1-2

Integrating,

When z =1, w = b. Hence
b=Ksin"'(1)+B=Km/2+B 1
When z = —1, w = —b. Hence,
—b=Ksin"'(~1)+B=—-Km/2+B )
Solving (1) and (2) simultaneously, we find B = 0, K = 2b/. Then

2 .,
w=—S8In 2
a

The result is equivalent to entry A-3(a) on page 248 if we interchange w and z, and let b = a/2.
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(b)

w plane z plane

Fig. 8-80 Fig. 8-81

Let points P, O, Q [z = 1] and S map into P', O', Q' [w = bi] and §', respectively. Note that P, S, P', S’ are
at infinity (as indicated by the arrows) while O and O’ are the origins [z = 0] and [w = 0] of the z and w planes.
Since the interior angles at O" and Q' are 7/2 and 37/2, respectively, we have by the Schwarz—Christoffel

transformation,
d_W — Az — 0)[(T/ =1 _ yGmA/m-1 g jz—1 _x -z
dz b4 z
n—
w= KJ —Zdz
Z

Then

To integrate this, let z = sin? 6 and obtain

1
w= 2chos2 0d0:KJ(1 + cos260)do = K<0+§sin20) +B

= K(0+sinfcos 0) + B = K(sin_1ﬁ+ V(1 —z)) +B

Whenz =0, w=0sothat B=0. Whenz = 1, w = bi so that bi = K/2 or K = 2bi/ . Then the required
transformation is

w= 2—:_1 (sin_lﬁ +/z(1 — z))

8.21. Find a transformation that maps the unit circle in the { plane onto a polygon in the w plane.

Solution

The x axis in the z plane can be mapped onto a polygon of the w plane by the Schwarz—Christoffel transform-
ation

w=A J(Z _ xl)m/w—l(Z _ x2)az/7r—1 . (Z _ xn)an/ﬂ'—ldz +B (1)

and the upper half of the z plane maps onto the interior of the polygon.
A transformation that maps the upper half of the z plane onto the unit circle in the { plane is

i—z
-—_= 2
¢ i+z @
on replacing w by { and taking 6 = , zp = i in equation (8.8), page 246. Hence, z = i{(1 — {)/(1 + {)} maps
the unit circle in the { plane onto the upper half of the z plane.
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If we let xy, x5,...,x, map into ¢}, {,,...,{,, respectively, on the unit circle, then we have for

k=1,2,...,n.
z—xk:i<1_£) _i<1—§k> _ =2i({ — &)
1+ 1+ & I+ + &)

Also, dz = —2id{/(1 + {)*. Substituting into (1) and simplifying using the fact that the sum of the exponents
(ay/m) — 1, (p/m) — 1,...,(ay/7) — 1 is —2, we find the required transformation

" :A/J(z— LT = LT (= )™ T AL+ B

where A’ is a new arbitrary constant.

Transformations of Boundaries in Parametric Form

8.22.

8.23.

Let C be a curve in the z plane with parametric equations x = F(¢), y = G(¢). Show that the trans-
formation

z=F(w)+iG(w)

maps the real axis of the w plane onto C.

Solution
Suppose z = x + iy, w = u + iv. Then the transformation can be written
x+iy=F(u+iv) 4+ iGu + iv)

Then v = 0 [the real axis of the w plane] corresponds to x + iy = F(u) + iG(u), i.e., x = F(u), y = G(u), which
represents the curve C.

Find a transformation that maps the real axis in the w plane onto the ellipse (x*>/a®) + (y*/b*) = 1 in
the z plane.

Solution

A set of parametric equations for the ellipse is given by x = acost, y = bsint where a > 0, b > 0. Then, by
Problem 8.22, the required transformation is z = acos w + ibsinw.

Miscellaneous Problems

8.24. Find a function that maps the upper half of the z plane onto the interior of a triangle in the w plane

[Fig. 8-82].

Solution

Consider the upper half of the z plane shaded in Fig 8-83. Let P [z = 0] and Q [z = 1] of the x axis map into
P'[w=0] and Q' [w = 1] of the triangle, while the third point R [z = o] maps into R'.

w plane z plane
v y
R’
' o .
P B 0 ; R P 0 R B
0 1 0 1

Fig. 8-82 Fig. 8-83
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By the Schwarz—Christoffel transformation,

d
d_w =AZ0[/7T—1(Z _ l)B/ﬂ—l — Kza/ﬂ—l(l _ Z)ﬁ/w—l
74

Then, by integration,

z

w= KJZ“/”‘I(I - OP'™a;+B
0

Since w = 0 when z = 0, we have B = 0. Also, since w = 1 when z = 1, we have

1
V= [grmtr - gt ap = PTED

0 ()

using properties of the beta and gamma functions [see Chapter 10]. Hence

-2

K=— "7
I'(a/mI(B/m)

(")

" T(a/mL(B/m

and the required transformation is

w

rﬂFM—nwﬂa

0

Note that this agrees with entry A-13 on page 252, since the length of side A’B’ in Fig. 8-39 is

1

Jg"/”‘l(l _ gt gg = L@/ ™UB/™
(a + B)
0 I——-
o
8.25. (a) Find a function which maps the upper half of the z plane of Fig. 8-85 onto the shaded region in
the w plane of Fig. 8-84.

(b) Discuss the case where b — 0.

w plane z plane

Fig. 8-84 Fig. 8-85

Solution

(a) The interior angles at Q and T are each 7 — «, while the angle at S in 277 — (7 — 2a) = 7+ 2a. Then, by
the Schwarz—Christoffel transformation, we have

d Az2el/™ K72/ ™
_W — A(Z + 1)(7‘{—0{)/‘#—1Z(7'r+20¢)/71'—1(Z _ 1)(77—&)/17—1 _ < _ <

dz - (12 _ l)a/‘lT - (1 _ 22)11/77
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Hence, by integration

: 4«20(/77
W—Kl -ttt

When z = 0, w = ai; then B = ai and

: é«Za/ﬂ'
KJ e ta (1)
0

The value of K can be expressed in terms of the gamma function using the fact that w = b when z = 1
[Problem 8.102]. We find

(__ (b—apym ®

(29

(b) Asb — 0, a — /2 and the result in (a) reduces to

w plane

. [ ddg .

w:az—azJ =aivl—2=ayz* -1 ai| S’
/ )

o VI—¢

In this case, Fig. 8-84 reduces to Fig. 8-86. The result
for this case can be found directly from the
Schwarz—Christoffel transformation by considering
P'Q'S'T'U’ as a polygon with interior angles at (', P onr U
S, and T’ equal to 7/2, 27, and 77/2, respectively.

Fig. 8-86

8.26. Prove that the Schwarz—Christoffel transformation of Problem 8.17 maps the upper half plane onto
the interior of the polygon.

Solution

It suffices to prove that the transformation maps the unit circle onto the interior of the polygon, since we already
know [Problem 8.11] that the upper half plane can be mapped onto the unit circle.

Suppose that the function mapping the unit circle C in the z plane onto polygon P in the w plane is given by
w = f(z) where f(z) is analytic inside C.

We must now show that to each point a inside P, there corresponds one and only one point, say zo, such that
f(zo) = a.

Now, by Cauchy’s integral formula, since a is inside P,

I
2mi fw—a

P

Then, since w — a = f(z) — a,

i(ﬁ @ d
Zﬂi,cf(z)—a

But f(z) — a is analytic inside C. Hence, from Problem 5.17, we have shown that there is only one zero (say z)
of f(z) — a inside C, i.e., f(z9) = a, as required.
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8.27. Let C be a circle in the z plane having its center on the real axis, and suppose further that it passes

8.28.

through z = 1 and has z = —1 as an interior point. [See Fig. 8-87.] Determine the image of C in the
w plane under the transformation w = f(z) = %(z + 1/2).
Solution

We have dw/dz = %(1 —1/7). Since dw/dz = 0 at z = 1, it follows that z = 1 is a critical point. From the
Taylor series of f(z) = %(z + 1/z) about z = 1, we have
w—1=1G-1D—G-D+Gc—-D" =]

By Problem 8.100, we see that angles with vertices at z = 1 are doubled under the transformation. In particular,
since the angle at z = 1 exterior to C is 7, the angle at w = 1 exterior to the image C’ is 27. Hence, C’ has a
sharp tail at w = 1 (see Fig. 8-88). Other points of C’ can be found directly.

z plane w plane
y v

[y

Leo
~
=
Mﬁ
A
<

Fig. 8-87 Fig. 8-88

It is of interest to note that in this case, C encloses the circle |z] = 1, which under the transformation is
mapped into the slit from w = —1 to w = 1. Thus, as C approaches |z| = 1, C’ approaches the straight line
joiningw = —1tow = 1.

Suppose the circle C of Problem 8.27 is moved so that its center is in the upper half plane but that it

still passes through z = 1 and encloses z = —1. Determine the image of C under the transformation
_1

w = 3 (Z +1 / Z).

Solution

As in Problem 8.27, since z = 1 is a critical point, we will obtain the sharp tail at w = 1 [Fig. 8-90]. If C does
not entirely enclose the circle |z| = 1 [as shown in Fig. 8-89], the image C’ will not entirely enclose the image
of |z] = 1 [which is the slit from w = —1 to w = 1]. Instead, C" will only enclose that portion of the slit which
corresponds to the part of |z| = 1 inside C. The appearance of C’ is therefore as shown in Fig. 8-90. By chan-
ging C appropriately, other shapes similar to C’ can be obtained.

z plane w plane
y v

P o’ P

% o

Fig. 8-89 Fig. 8-90

The fact that C" resembles the cross-section of the wing of an airplane, sometimes called an airfoil, is
important in aerodynamic theory (see Chapter 9) and was first used by Joukowski. For this reason, shapes
such as C’ are called Joukowski airfoils or profiles and w = %(z + 1/z) is called a Joukowski transformation.
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SUPPLEMENTARY PROBLEMS

Transformations

8.29.

8.30.

8.31.

8.32.

8.33.

8.34.

8.35.

8.36.

8.37.

Given triangle 7 in the z plane with vertices ati, 1 — i, 1 + i, determine the triangle 7" into which 7 is mapped
under the transformations (a) w=3z+4 —2i, (b) w=iz+2—1i, (c) w=5¢"37—2+4i. What is the
relationship between 7 and 7" in each case?

Sketch the region of the w plane into which the interior of triangle 7 of Problem 8.29 is mapped under the trans-
formations (@) w=2z>, G)w=iZ2+Q2 -z, C)w=z+1/z

(a) Show that by means of the transformation w = 1/z, the circle C given by |z — 3| = 5 is mapped into the
circle [w+3/16] = 5/16. (b) Into what region is the interior of C mapped?

(a) Prove that under the transformation w = (z — i)/(iz — 1), the region Im{z} > 0 is mapped into the region
[w| < 1. (b) Into what region is Im{z} < 0 mapped under the transformation?

(a) Show that the transformation w = %(ze‘“ + z7le®) where « is real, maps the interior of the circle |z| = 1
onto the exterior of an ellipse [see entry B-2 on page 253].

(b) Find the lengths of the major and minor axes of the ellipse in (a) and construct the ellipse.

Determine the equation of the curve in the w plane into which the straight line x + y = 1 is mapped under the
transformations (a) w =22, (b)w = 1/z

Show that w = {(1 4+ 2)/(1 — 2)}** maps the unit circle onto a wedge-shaped region and illustrate graphically.
(a) Show that the transformation w = 2z — 3iz + 5 — 4i is equivalent to u = 2x + 3y + 5, v =2y — 3x — 4.

(b) Determine the triangle in the uv plane into which triangle 7 of Problem 8.29 is mapped under the transform-
ation in (a). Are the triangles similar?

Express the transformations (a) u = 4x> — 8y, v = 8x —4y? and (b) u = x> —3xy?, v = 3x*y —y’ in the
form w = F(z, 2).

Conformal Transformations

8.38.

8.39.
8.40.

8.41.

8.42.

8.43.

8.44.

The straight lines y = 2x, x + y = 6 in the xy plane are mapped onto the w plane by means of the transformation
w = z°. (a) Show graphically the images of the straight lines in the w plane.

(b) Show analytically that the angle of intersection of the straight lines is the same as the angle of intersection of
their images and explain why this is so.

Work Problem 8.38 if the transformation is (@) w=1/z, (b)w={(z—1)/(z+ 1)}.

The interior of the square S with vertices at 1, 2, 1 + i, 2 + i is mapped into a region S’ by means of the trans-
formations (a) w=2z+5—3i, (b) w=2%, (c)w =sinaz. In each case, sketch the regions and verify
directly that the interior angles of S’ are right angles.

(a) Sketch the images of the circle (x — 3)2 +y> =2 and the line 2x 4 3y = 7 under the transformation
w = 1/z. (b) Determine whether the images of the circle and line of (a) intersect at the same angles as the
circle and line. Explain.

Work Problem 8.41 for the case of the circle (x — 3)> + y* = 5 and the line 2x + 3y = 14.
(a) Work Problem 8.38 if the transformation is w = 3z — 2iz.
(b) Is your answer to part (b) the same? Explain.

Prove that a necessary and sufficient condition for the transformation w = F(z, 7) to be conformal in a region R
is that 0F/0z = 0 and 0F/0z#0 in R and explain the significance of this.
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Jacobians
8.45. (a) For each part of Problem 8.29, determine the ratio of the areas 7 and 7.
(b) Compare your findings in part (a) with the magnification factor |dw/dz|* and explain the significance.
8.46. Find the Jacobian of the transformations (a) w =272 — iz +3 — i, (b) u = x> —xy + %, v = x> + xy + )~
8.47. Prove that a polygon in the z plane is mapped into a similar polygon in the w plane by means of the transform-
ation w = F(z) if and only if F’(z) is a constant different from zero.
8.48. The analytic function F(z) maps the interior R of a circle C defined by |z| = 1 into a region R’ bounded by a
simple closed curve C'. Prove that (a) the length of C’ is §,. |F'(z)||dz|, (b) the area of R’ is [[,|F'(z)|* dxdy.
8.49. Prove the result (8.2) on page 242.
8.50. Find the ratio of areas of the triangles in Problem 8.36(b) and compare with the magnification factor as obtained
from the Jacobian.
ou, v)  Iu, v) Ix,y)
8.51. Let u = u(x, y), v =10v(x, y), and x = x(&, 1), y = y(&, m). (a) Prove that = . .
& A, y) A& m)
(b) Interpret the result of (a) geometrically. (c) Generalize the result in (a).
8.52. Show that if w=u+4+iv=F(), z=x+iy=G() and (= &+ in, the result in Problem 8.51(a) is
equivalent to the relation
dw| |dw||dz
e~ |dz||d¢
Bilinear or Fractional Transformations
8.53. Find a bilinear transformation that maps the points i, —i, 1 of the z plane into 0, 1, o of the w plane,
respectively.
8.54. (a) Find a bilinear transformation that maps the vertices 1 + i, —i, 2 — i of a triangle 7 of the z plane into the
points 0, 1, i of the w plane.
(b) Sketch the region into which the interior of triangle 7 is mapped under the transformation obtained in (a).
8.55. Prove that the folowing is also a bilinear transformation:
(a) two successive bilinear transformations, (b) any number of successive bilinear transformations.
8.56. Suppose a # b are the two fixed points of a bilinear transformation. Show that it can be written in the form
w—a_(i—a
w—b z—b
where K is a constant.
8.57. Suppose a = b in Problem 8.56. Show that the transformation can be written in the form
1 1
w—a z—a
where k is a constant
8.58. Prove that the most general bilinear transformation that maps |z| = 1 onto |w| =1 is

_ e[ L—P
—¢ (i)z—1>

where p is a constant.
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8.59.

8.60.
8.61.

8.62.

Show that the transformation of Problem 8.58 maps |z] < 1 onto (a) [w| < 1if |p] <1 and
(b) |w| > 1if |p| > 1.

Discuss Problem 8.58 if |p| = 1.
Work Problem 8.11 directly.
(a) Suppose zj, 22, 23, 24 are any four different points of a circle. Prove that the cross ratio is real.

(b) Is the converse of part (a) true?

The Schwarz - Christoffel Transformation

8.63.

Use the Schwarz—Christoffel transformation to determine a function that maps each of the indicated regions in
the z plane onto the upper half of the w plane.

()
z plane w plane
Fig. 891 Fig. 892
(b)
z plane w plane

Fig. 8-93 Fig. 8-94

©

z plane w plane

Fig. 8-95 Fig. 8-96
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(d)

z plane w plane

Fig. 897 Fig. 898

8.64. Verify entry A-14 on page 253 by using the Schwarz—Christoffel transformation.

8.65. Find a function that maps the infinite shaded region of Fig. 8-99 onto the upper half of the z plane
[Fig. 8-100] so that P, Q, R map into P, Q', R/, respectively [where P, R, P, R’ are at infinity as indicated
by the arrows].

w plane z plane

Fig. 899 Fig. 8100

8.66. Verify entry A-12 on page 252 by using the Schwarz—Christoffel transformation.

8.67. Find a function that maps each of the indicated shaded regions in the w plane onto the upper half of the
z plane.

(@)

w plane z plane

Fig. 8-101 Fig. 8-102
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(b)
w plane z plane
v y
R
P 0 o S T P’ Q' R’ s’ T
> u > L 4 > X
1
Fig. 8-103 Fig. 8-104

(a) Verify entry A-11 of the table on page 252 by using the Schwarz—Christoffel transformation.

(b) Use the result of (a) together with entry A-2 on page 248 to arrive at the entry C-5 on page 256.

Transformations of Boundaries in Parametric Form

8.69.

8.70.

8.71.

8.72.

8.73.

(a) Find a transformation that maps the parabola y> = 4p(p — x) into a straight line.

(b) Discuss the relationship of your answer to entry A-9 on page 251.

Find a transformation that maps the hyperbola x = acosht, y = asinh¢ into a straight line.

Find a transformation that maps the cycloid x = a(t — sin¢), y = a(1 — cos?) into a straight line.

(a) Find a transformation that maps the hypocycloid x*3 4+ y*3 = 4?3 into a straight line.

(b) Into what region is the interior of the hypocycloid mapped under the transformation? Justify your answer.
[Hint. Parametric equations for the hypocycloid are x = acos> 1, y = asin’ 1, 0 < t < 27r.]

Two sets of parametric equations for the parabola y = x? are (a) x =, y = ¢> and (b) x = +¢', y = €*. Use
these parametric equations to arrive at two possible transformations mapping the parabola into a straight line
and determine whether there is any advantage in using one rather than the other.

Miscellaneous Problems

8.74.

8.75.

8.76.

8.77.

(a) Show that the transformation w = 1/z maps the circle |z — a| = a, where a > 0, into a straight line. [llus-
trate graphically, showing the region into which the interior of the circle is mapped, as well as various points of
the circle.

(b) Show how the result in (a) can be used to derive the transformation for the upper half plane into the unit
circle.

Prove that the function w = (z>/a*) — 1 maps one loop of the lemniscate > = 2a® cos 26 onto the unit circle.

Prove that the function w = z> maps the circle |z — a| = a, a > 0, onto the cardioid p = 2a*(1 + cos ¢) [see
entry C-2 on page 252].

Show that the Joukowsky transformation w = z + k% /z can be written as

w—2k (z—k\’
w+2k \z+k
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8.78.

8.79.

8.80.
8.81.

8.82.

8.83.
8.84.

8.85.

8.86.

8.87.

8.88.

(a) Let w = F(z) be a bilinear transformation. Show that the most general linear transformation for which
F{F(z)} = z is given by the following where k*> = I:

(b) What is the result in (a) if F{F[F(2)]} = z?
(c) Generalize the results in (a) and (b).

(a) Determine a transformation that rotates the ellipse x> + xy + y*> = 5 so that the major and minor axes are
parallel to the coordinate axes. (b) What are the lengths of the major and minor axes?

Find a bilinear transformation that maps the circle |z — 1| = 2 onto the line x +y = 1.
Verify the transformations (a) A-6, (b) A-7, (c) A-8, on pages 250 and 251.

Consider the stereographic projection of the complex plane onto a unit sphere tangent to it [see page X]. Let an
XYZ rectangular coordinate system be constructed so that the Z axis coincides with NS while the X and Y axes
coincide with the x and y axes of Fig. 1-6, page X. Prove that the point (X, Y, Z) of the sphere corresponding to
(x, y) on the plane is such that

v x Cye y , _ x4+ y?
24yt 41 x4y 41 ¥+yr+1

Prove that a mapping by means of stereographic projection is conformal.

(a) Prove that by means of a stereographic projection, arc lengths of the sphere are magnified in the ratio
P +y+1:1.

(b) Discuss what happens to regions in the vicinity of the north pole. What effect does this produce on naviga-
tional charts?

Let u = u(x, y), v = v(x, y) be a transformation of points of the xy plane onto points of the uv plane.

(a) Show that in order that the transformation preserve angles, it is necessary and sufficient that

) ()L (), () i
ox ox)  \ay )’ xdy dxdy
(b) Deduce from (a) that we must have either

.. Ou 0v Ou av ... ou o ou Jv
O ==, 7=—> o (i) —=——, =
dx dy dy ox ox ay dy Ox
Thus, conclude that u + iv must be an analytic function of x + iy.

Find the area of the ellipse ax® + bxy 4+ cy> = 1 where a > 0, ¢ > 0, and b*> < 4ac.

A transformation w = f(z) of points in a plane is called involutory if z = f(w). In this case, a single repetition of
the transformation restores each point to its original position. Find conditions on «, B, v, & in order that the
bilinear transformation w = (az + 8)/(7vz + 6) be involutory.

Show that the transformations (a) w =(z+1)/(z—1), (b) w =Incoth(z/2) are involutory.



8.89.

8.90.

8.91.

8.92.

8.93.

8.94.

8.95.

8.96.

8.97.

8.98.
8.99.

8.100.

8.101.
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Find a bilinear transformation that maps |z| < 1 onto [w — 1| < 1 so that the points 1, —i correspond to 2, 0,
respectively.

Discuss the significance of the vanishing of the Jacobian for a bilinear transformation.

Prove that the bilinear transformation w = (az+ B)/(yz+ 6) has one fixed point if and only if
(8+ a)? = 4(ad— By) # 0.

(a) Show that the transformation w = (az + y)/(yz + &) where la)® — |y|2 = 1 transforms the unit circle and
its interior into itself.

(b) Show that if |y|2 — |af*> = 1, the interior is mapped into the exterior.

Suppose under the transformation w = F(z, 7) any intersecting curves C; and C, in the z plane map, respect-
ively, into corresponding intersecting curves C| and C, in the w plane. Prove that if the transformation is con-
formal, then (a) F(z, 7) is a function of z alone, say f(z), and (b) f(z) is analytic.

(a) Prove the multiplication rule for determinants [see Problem 8.7]:

ayay + b1C2 albz + bldz
ciay +cicr ciby +dids

a by
¢ dr

a) bl
Cq d]

(b) Show how to generalize the result in (a) to third order and higher order determinants.

Find a function that maps onto each other the shaded regions of Figs. 8-105 and 8-106, where QS has length b.

w plane z plane
v y
S
a ’
P oyr U Ui 2 s U
u - - X
-1 0 1
Fig. 8-105 Fig. 8-106

(a) Show that the function w = [; dt/(1 — °)'/? maps a regular hexagon into the unit circle.

(b) What is the length of a side of the hexagon in (a)?

Show that the transformation w = (Az> + Bz + C)/(Dz* + Ez + F) can be considered as a combination of two
bilinear transformations separated by a transformation of the type 7= 2.

Find a function that maps a regular polygon of n sides into the unit circle.

Verify the entries: (a) A-9, page 251; (b) A-10, page 251; (c) B-3, page 254; (d) B-4, page 254;
(e) C-3, page 255; (f) C-4, page 255.

Suppose the mapping function w = f(z) has the Taylor series expansion

(@)

n!

w=[f@) =f@+f@z—a)+ -+ —a)y'+---

Suppose fX(a) = 0fork =0, 1,...,n — 1 while f®(a) # 0. Show that the angles in the z plane with vertices at
z = a are multiplied by n in the w plane.

Determine a function that maps the infinite strip — /4 < x < /4 onto the interior of the unit circle |w| < 1 so
that z = 0 corresponds to w = 0.
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8.102. Verify the value of K obtained in equation (2) of Problem 8.25.

8.103. Find a function that maps the upper half plane onto the interior of a triangle with vertices at w =0, 1, i
corresponding to z = 0, 1, o, respectively.

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.33. (b) 2cosh « and 2 sinh «, respectively 8.70. z = a(coshw + sinhw)
834. (w2 +20=1,0)u> +2uv+20* =u+v 871. z=aw+i—ie™™)
837. @ w=(>14+)Z+7>)+Q2—2i)zz+8iz, 8.72. (a) z = a(cos’ w +isin® w)
byw=7
8.46. (a) |4z — i|%, (b) 4(x* +y?) 8.78. (b) Same as (a) with k> = 1
853. w=(—i)z—1/2z—1) 8.86. 2m/v4ac —b?
8.54. (a) w=(2z—2—2i)/{(i — 1)z —3 — 5i} 887. 6=—a
8.62. Yes 8.96. (b) (1/6)v/2I'(1/3)
8.63. (a) w=2%, (b) w=cosh(mz/2), (c) w = €7, 8.101. w =tanz
d)w= Al .
8.65. z=(w+m— m)*? 8.103. w= %Jr”za -0 ar

0
8.69. (a) One possibility is z=p — pw? + 2piw = p(1 + iw)> obtained by using the parametric equations
x=p(l—1),y=2pt
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Physical Applications of
Conformal Mapping

9.1 Boundary Value Problems

Many problems of science and engineering when formulated mathematically lead to partial differential
equations and associated conditions called boundary conditions. The problem of determining solutions
to partial differential equations, which satisfy the boundary conditions, is called a boundary-value problem.

It is of fundamental importance, from a mathematical as well as physical viewpoint, that one should not
only be able to find such solutions (i.e., that solutions exist), but that for any given problem there should be
only one solution (i.e., the solution is unique).

9.2 Harmonic and Conjugate Functions

A function satisfying Laplace’s equation

Fo PP
VO =—— + 5 =

— =0 9.1
axz - 9y? ©-1)

in aregion R is called harmonic in R. As we have already seen, if f(z) = u(x, y) + iv(x, y) is analytic in R,
then u and v are harmonic in R.

EXAMPLE 9.1: Let f(2) = 422 — 3iz = 4(x + iy)*> — 3i(x + iy) = 4x2 — 4y® + 3y + i(8xy — 3x). Then
u=4x>— 4y?> + 3y, v = 8xy — 3x. Since u and v satisfy Laplace’s equation, they are harmonic.

The functions u and v are called conjugate functions; and given one, the other can be determined within
an arbitrary additive constant [see Chapter 3].

9.3 Dirichlet and Neumann Problems

Let R [Fig. 9-1] be a simply-connected region bounded by a simple closed curve C. Two types of boundary-
value problems are of great importance.

(1) Dirichlet’s problem seeks the determination of a function @ that satisfies Laplace’s equation
(9.1) [i.e., is harmonic] in R and takes prescribed values on the boundary C.
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(2) Neumann’s problem seeks the determination of a function ® that satisfies Laplace’s equation
(9.1) in R and whose normal derivative d®/dn takes prescribed values on the boundary C.

Fig. 9-1

The region ‘'R may be unbounded. For example, R can be the upper half plane with the x axis as the
boundary C.

It can be shown that solutions to both the Dirichlet and Neumann problems exist and are unique [the
Neumann problem within an arbitrary additive constant] under very mild restrictions on the boundary con-
ditions [see Problems 9.29 and 9.80].

It is of interest that a Neumann problem can be stated in terms of an appropriately stated Dirichlet
problem (see Problem 9.79). Hence, if we can solve the Dirichlet problem, we can (at least theoretically)
solve a corresponding Neumann problem.

9.4 The Dirichlet Problem for the Unit Circle. Poisson’s Formula

Let C be the unit circle |z] = 1 and R be its interior. A function that satisfies Laplace’s equation [i.e.,
is harmonic] at each point (r, 6) in R and takes on the prescribed value F(6) on C [i.e., D(1, 6) = F(6)],
is given by

9.2)
ar
0

2
1 (1 —rF($)dd
o(r, 6) _ZJ 1 —2rcos(6— ¢) +r?

This is called Poisson’s formula for a circle [see Chapter 5, page 146].

9.5 The Dirichlet Problem for the Half Plane

A function that is harmonic in the half plane y > 0 [Im{z} > 0] and that takes on the prescribed value G(x)
on the x axis [i.e., P(x, 0) = G(x), —0 < x < 00], is given by

1 T yG(m)dn 03

B By

—00

This is sometimes called Poisson’s formula for the half plane [see Chapter 5, page 146].
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9.6 Solutions to Dirichlet and Neumann Problems by Conformal Mapping

The Dirichlet and Neumann problems can be solved for any simply-connected region R, which can be
mapped conformally by an analytic function onto the interior of a unit circle or half plane. [By Riemann’s
mapping theorem, this can always be accomplished, at least in theory.] The basic ideas involved are as
follows.

(a) Use the mapping function to transform the boundary-value problem for the region R into a cor-
responding one for the unit circle or half plane.

(b) Solve the problem for the unit circle or half plane.

(c) Use the solution in (b) to solve the given problem by employing the inverse mapping function.

Important theorems used in this connection are as follows.

THEOREM 9.1.  Let w = f(2) be analytic and one-to-one in a region R of the z plane. Then there exists a
unique inverse z = g(w) in R, and f'(z) # 0 in R [thus insuring that the mapping is
conformal at each point of R].

THEOREM 9.2.  Let ®(x, y) be harmonic in R and suppose that R is mapped one-to-one onto R’ of the
w plane by the mapping function w = f(z), where f(z) is analytic. Then f’(z) # 0,
x = x(u, v), y=y(u, v), and P(x, y) = P[x(u, v), y(u, v)] = ¥(u, v) is harmonic in
R’. In other words, a harmonic function is transformed into a harmonic function under
a transformation w = f(z), which is analytic [see Problem 9.4].

THEOREM 9.3.  Suppose ® = a [a constant] on the boundary or part of the boundary C of a region in the z

plane. Then ¥ = g on its image C’ in the w plane. Similarly, if the normal derivative of ®
is zero, i.e., 3®/0n = 0 on C, then the normal derivative of W is zero on C'.

Applications to Fluid Flow

9.7 Basic Assumptions

The solution of many important problems in fluid flow, also referred to as fluid dynamics, hydrodynamics or
aerodynamics, is often achieved by complex variable methods under the following assumptions.

(1) The fluid flow is two dimensional, i.e., the basic flow pattern and characteristics of the fluid
motion in any plane are essentially the same as in any parallel plane. This permits us to
confine our attention to just a single plane that we take to be the z plane. Figures constructed
in this plane are interpreted as cross-sections of corresponding infinite cylinders perpendicular
to the plane. For example, in Fig. 9-7, page 286, the circle represents an infinite cylindrical
obstacle around which the fluid flows. Naturally, an infinite cylinder is nothing more than a
mathematical model of a physical cylinder which is so long that end effects can be reasonably
neglected.

(2) The flow is stationary or steady, i.c., the velocity of the fluid at any point depends only on the
position (x, y) and not on time.

(3) The velocity components are derivable from a potential, i.e., suppose V, and V) denote the
components of velocity of the fluid at (x, y) in the positive x and y directions, respectively.
Then there exists a function @, called the velocity potential, such that

oD 9D

= V=% (9.4)

ox’
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“)

&)

An equivalent assumption is that if C is any simple closed curve in the z plane and V; is the
tangential component of velocity on C, then

%ths:ﬂ;vxdx—kvydyzo 9.5)
C C

See Problem 9.48.

Either of the integrals in (9.5) is called the circulation of the fluid along C. When the circulation
is zero, the flow is called irrotational or circulation free.
The fluid is incompressible, i.c., the density, or mass per unit volume of the fluid, is constant. If
V. is the normal component of velocity on C, this leads to the conclusion (see Problem 9.48) that

%V,JiS:%dey— Vydx =0 9.6)
c C
or
v, vV,
—=0 9.7
o T % 9.7

which expresses the condition that the quantity of fluid contained inside C is a constant, i.e., the
quantity entering C is equal to the quantity leaving C. For this reason, equation (9.6), or the equiv-
alent (9.7), is called the equation of continuity.

The fluid is non-viscous, i.e., has no viscosity or internal friction. A moving viscous fluid tends to
adhere to the surface of an obstacle placed in its path. If there is no viscosity, the pressure forces
on the surface are perpendicular to the surface. A fluid which is non-viscous and incompressible,
is often called an ideal fluid. It must of course be realized that such a fluid is only a mathematical
model of a real fluid in which such effects can be safely assumed negligible.

9.8 The Complex Potential

From (9.4) and (9.7), it is seen that the velocity potential ® is harmonic, i.e., satisfies Laplace’s equation

PD PO
PR 0 9.8)

It follows that there must exist a conjugate harmonic function, say W(x, y), such that

Q@) = P(x, y) + iV(x, y) 9.9)

is analytic. By differentiation, we have, using (9.4),

dQ od or  odb od
729/ = — 7:7—7_Vx_ ) '10
dz @ ax Tl T dy Vs ©-10)

Thus, the velocity [sometimes called the complex velocity] is given by

V=V, +iV, =d0/d: = A (2) 9.11)

and has magnitude

V==,/V2+ V2 =100 = Q@) 9.12)

Points at which the velocity is zero, i.e., )'(z) = 0, are called stagnation points.
The function €)(z), of fundamental importance in characterizing a flow, is called the complex potential.



CHAPTER 9 Physical Applications of Conformal Mapping

9.9 Equipotential Lines and Streamlines

The one parameter families of curves
O, y)=a, Wy =p (9.13)

where o and 3 are constants, are orthogonal families called, respectively, the equipotential lines and
streamlines of the flow [although the more appropriate terms equipotential curves and stream curves are
sometimes used]. In steady motion, streamlines represent the actual paths of fluid particles in the flow
pattern.

The function W is called the stream function while, as already seen, the function ® is called the velocity
potential function or simply the velocity potential.

9.10 Sources and Sinks

In the above development of theory, we assumed that there were no points in the z plane [i.e., lines in the
fluid] at which fluid appears or disappears. Such points are called sources and sinks, respectively [also
called line sources and line sinks]. At such points, which are singular points, the equation of continuity
(9.7), and hence (9.8), fail to hold. In particular, the circulation integral in (9.5) may not be zero around
closed curves C that include such points.

No difficulty arises in using the above theory, however, provided we introduce the proper singularities
into the complex potential {)(z) and note that equations such as (9.7) and (9.8) then hold in any region that
excludes these singular points.

9.11 Some Special Flows

Theoretically, any complex potential {)(z) can be associated with, or interpreted as, a particular two-
dimensional fluid flow. The following are some simple cases arising in practice. [Note that a constant
can be added to all complex potentials without affecting the flow pattern.]

(1) Uniform Flow. The complex potential corresponding to the flow of a fluid at constant speed V; in
a direction making an angle 6 with the positive x direction is (Fig. 9-2)

VU2 =Voe "z 9.14)

=

Fig. 9-2 Fig. 9-3
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2)

3)

Source at z = a. If fluid is emerging at a constant rate from a line source at z = a (Fig. 9-3), the
complex potential is

Q@) =kIn(z — a) (9.15)

where k > 0 is called the strength of the source. The streamlines are shown heavy while the equi-
potential lines are dashed.

Sink at z = a. In this case, the fluid is disappearing at z = a (Fig. 9-4) and the complex potential is
obtained from that of the source by replacing k by —k, giving

O(z) = —kIn(z — a) (9.16)

)

&)

Fig. 9-4 Fig. 9-5
Flow with Circulation. The flow corresponding to the complex potential
W) = —ikIn(z — a) 9.17)

is as indicated in Fig. 9-5. The magnitude of the velocity of fluid at any point is in this case inver-
sely proportional to the distance from a.

The point z = a is called a vortex and k is called its strength. The circulation [see equation
(9.5)] about any simple closed curve C enclosing z = a is equal in magnitude to 27k. Note
that, by changing k to —k in (9.17), the complex potential corresponding to a “clockwise”
vortex is obtained.

Superposition of Flows. By addition of complex potentials, more complicated flow patterns can
be described. An important example is obtained by considering the flow due to a source atz = —a
and a sink of equal strength at z = a. Then, the complex potential is

A2 = kIn(z+a) — kIn(z —a) = kln(Z - a) ©.18)

z—a

By letting @ — 0 and k — o0 in such a way that 2ka = . is finite, we obtain the complex potential

O(2) = (9.19)

N '

This is the complex potential due to a doublet or dipole, i.e., the combination of a source and sink
of equal strengths separated by a very small distance. The quantity u is called the dipole moment.
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9.12 Flow Around Obstacles

An important problem in fluid flow is that of determining the flow pattern of a fluid initially moving with
uniform velocity V() in which an obstacle has been placed.

w plane z plane {plane

v n

%

C

)

u

(o)
il

Ja\
S

Fig. 9-6 Fig. 9-7 Fig. 9-8

A general principle involved in this type of problem is to design a complex potential having the form
Q) = Voz + G(2) (9.20)

(if the flow is in the z plane) where G(z) is such that lim,_, G'(z) = 0, which means physically that far
from the obstacle the velocity has constant magnitude (in this case V;). Furthermore, the complex potential
must be chosen so that one of the streamlines represents the boundary of the obstacle.

A knowledge of conformal mapping functions is often useful in obtaining complex potentials. For
example, the complex potential corresponding to the uniform flow in the w plane of Fig. 9-6 is given by
Vow. By use of the mapping function w = z + a%/z [see entry A-4, page 249], the upper half w plane of
Fig. 9-6 corresponds to the upper half z plane exterior to circle C, and the complex potential for the flow
of Fig. 9-7 is given by

a2
Wz) = V()(Z + ?> 9.21)

Similarly, if z = F({) maps C’ and its exterior onto C and its exterior [see Fig. 9-8], then the complex poten-
tial for the flow of Fig. 9-8 is obtained by replacing z by F({) in (9.21). The complex potential can also be
obtained on going directly from the w to the { plane by means of a suitable mapping function.

Using the above and introducing other physical phenomena such as circulation, we can describe the flow
pattern about variously shaped airfoils and thus describe the motion of an airplane in flight.

9.13 Bernoulli’s Theorem

If P denotes the pressure in a fluid and V is the speed of the fluid, then Bernoulli’s theorem states that
1
P+ 5av2 =K (9.22)

where o is the fluid density and K is a constant along any streamline.

9.14 Theorems of Blasius

(1) Let X and Y be the net forces, in the positive x and y directions, respectively, due to fluid pressure
on the surface of an obstacle bounded by a simple closed curve C. Then, if () is the complex
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potential for the flow,

2
(ig) dz (9.23)

. 1,
X—iY=-io
c

(2) Suppose M is the moment about the origin of the pressure forces on the obstacle. Then

1 dQ\?
C

where “Re” denotes as usual “real part of”.

Applications to Electrostatics

9.15 Coulomb’s Law

Let r be the distance between two point electric charges, ¢; and g;. Then, the force between them is given in
magnitude by Coulomb’s law, which states that

F— 6116122
Kr

(9.25)

and is one of repulsion or attraction according as the charges are like (both positive or both negative) or
unlike (one positive and the other negative). The constant « in (9.25), which is called the dielectric constant,
depends on the medium; in a vacuum k = 1, in other cases k > 1. In the following, we assume « = 1 unless
otherwise specified.

9.16 Electric Field Intensity. Electrostatic Potential

Suppose we are given a charge distribution, which may be continuous, discrete, or a combination. This
charge distribution sets up an electric field. If a unit positive charge (small enough so as not to affect the
field appreciably) is placed at any point A not already occupied by charge, the force acting on this
charge is called the electric field intensity at A and is denoted by £. This force is derivable from a potential
®, which is sometimes called the electrostatic potential. In symbols,

E=—grad® = -V (9.26)
If the charge distribution is two dimensional, which is our main concern here, then

. ob b od od
E=FE+iE,=———i— where E, = =

- E,=—— 9.27
ox ay ox Y ay ( )

In such a case, if E; denotes the component of the electric field intensity tangential to any simple closed
curve C in the z plane,

%EMS:%Exdx-l—Eydy:O (9.28)
C C
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9.17 Gauss’ Theorem

Let us confine ourselves to charge distributions, which can be considered two dimensional. If C is any
simple closed curve in the z plane having a net charge ¢ in its interior (actually an infinite cylinder enclosing
anet charge ¢) and E,, is the normal component of the electric field intensity, then Gauss’ theorem states that

i; E,ds =4mq (9.29)
C

If C does not enclose any net charge, this reduces to

ﬂ; E,ds = ﬁ; E.dy—E,dx=0 (9.30)
C C

It follows that in any region not occupied by charge,

oE, OE,
—4+—=0 9.31
ox + ay ( )
From (9.27) and (9.31), we have
’Pb PP
—+—=0 9.32
o2 T 57 (9.32)

i.e., d is harmonic at all points not occupied by charge.

9.18 The Complex Electrostatic Potential

From the above, it is evident that there must exist a harmonic function W conjugate to ® such that
Q(z) = O(x, y) + iV(x, y) (9.33)

is analytic in any region not occupied by charge. We call {)(z) the complex electrostatic potential or, simply
complex potential. In terms of this, (9.27) becomes

3 ab  ad oV dQ

=———— — == 9.34
o % o T % = () 9.34)
and the magnitude of & is given by E = |&] = |- Q' ()| = |Q'2)|.
The curves (cylindrical surfaces in three dimensions)
O, y)=a, Y, y)=p (9.35)

are called equipotential lines and flux lines, respectively.

9.19 Line Charges

The analogy of the above with fluid flow is quite apparent. The electric field in electrostatic problems
corresponds to the velocity field in fluid flow problems, the only difference being a change of sign in the
corresponding complex potentials.

The idea of sources and sinks of fluid flow have corresponding analogs for electrostatics. Thus the
complex (electrostatic) potential due to a line charge ¢ per unit length at z; (in a vacuum) is given by

O(z) = —2g1In(z — z0) (9.36)
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and represents a source or sink according as g < 0 or ¢ > 0. Similarly, we talk about doublets or dipoles,
etc. If the medium is not a vacuum, we replace g in (9.36) by g/ k.

9.20 Conductors

If a solid is perfectly conducting, i.e., is a perfect conductor, all charge is located on its surface. Thus, if we
consider the surface represented by the simple closed curve C in the z plane, the charges are in equilibrium
on C and hence C is an equipotential line.

An important problem is the calculation of potential due to a set of charged cylinders. This can be accom-
plished by use of conformal mapping.

9.21 Capacitance

Two conductors having charges of equal magnitude g but of opposite sign, have a difference of potential,
say V. The quantity C defined by

g=CV (9.37)

depends only on the geometry of the conductors and is called the capacitance. The conductors themselves
form what is called a condenser or capacitor.

Applications to Heat Flow

9.22 Heat Flux

Consider a solid having a temperature distribution that may be varying. We are often interested in the quan-
tity of heat conducted per unit area per unit time across a surface located in the solid. This quantity, some-
times called the heat flux across the surface, is given by

Q=—K grad® (9.38)

where ® is the temperature and K, assumed to be a constant, is called the thermal conductivity and depends
on the material of which the solid is made.

9.23 The Complex Temperature

Suppose we restrict ourselves to problems of a two-dimensional type. Then

o o

o 0= Koo (9.39)

Q:_K<aq)—|—iacp> =0, +1i0, where O, = —K p
’ y

ox ay

Let C be any simple closed curve in the z plane (representing the cross section of a cylinder). If O, and Q,,
are the tangential and normal components of the heat flux and if steady state conditions prevail so that there
is no net accumulation of heat inside C, then we have

1>Qnds=§l;Qxa’y—dex=O, %Q,ds:i;Qxdx-i-dey:O (9.40)

C C C C
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assuming no sources or sinks inside C. The first equation of (9.40) yields

a§X+aa_%: 0 (9.41)
which becomes on using (9.39),
PO PP
) + £ =0
that is, @ is harmonic. Introducing the harmonic conjugate function WV, we see that
O(z) = P(x, y) +iV(x, y) (9.42)
is analytic. The families of curves
O, y)=a, Y(x,y)=p (9.43)

are called isothermal lines and flux lines, respectively, while ()(z) is called the complex temperature.
The analogies with fluid flow and electrostatics are evident and procedures used in these fields can be
similarly employed in solving various temperature problems.

SOLVED PROBLEMS

Harmonic Functions

9.1. Show that the following functions are harmonic in any finite region R of the z plane:
(a) x> —y* +2y (b) sinxcoshy
Solution

(a) Suppose @ = x? —y? 4+ 2y. We have #*®/dx> = 2, #D/dy* = —2. Then (8P /ox?) + (3*®/dy*) = 0
and @ is harmonic in R.

(b) Suppose @& =sinxcoshy. We have & ®/0x*> = —sinxcoshy, 8*®/dy* =sinxcoshy. Then,
(8*®/ax?) + (8*®/9y*) = 0 and ® is harmonic in R.

9.2. Show that the functions of Problem 9.1 are harmonic in the w plane under the transformation z = w?.

Solution
Suppose z = w3. Then x 4 iy = (u + i)’ = u® — 3u? +iGu?v —v*) and x=u® —3u?, y=3u’v—1°.
@ & =x—y"+2y =0’ =3u?? — Gu’v — *)* + 2GBu’v — )

=u® — 1500 + 154%0* — o + 64%0 — 20°

Then  ®/0u® = 30u* — 180u*v? + 300* + 120, ¥ P/0v® = —30u* + 180u*v* — 30v* — 120 and
0*®/3u?) + (8°®/3v*) = 0 as required.
(b) We must show that ® = sin(u® —3ur?) cosh(3u?v — v*) satisfies (82(13/8142) + (BZCD/avz) = 0. This can
readily be established by straightforward but tedious differentiation.
This problem illustrates a general result proved in Problem 9.4.

ox? oz o

’P PP FD PP
9.3. Prove that — + e | f/(Z)IZ( + ) where w = f(z) is analytic and one-to-one.
y
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94.

9.5.

Solution

The function ®(x, y) is transformed into a function ®P[x(u, v), y(u, v)] by the transformation. By differentiation,
we have

W _a0u da 90 _ b abi
ox  duox odvdx  dy dudy v dy
PO 0P i (W) 0P o) (00
x2 "~ u ox2  Axdx \ du ov ox2  Oxdx \ dv
0D Fu  ul[d (dD\du 9 (D) v Py w[d (0D\du d (9D v
=t — 4 bt ——
uox? x| ou\du) ax v\ du)ax a2 ax|au\aw)ax o\ v/ ax
0P w[POu, PON] WP PO PO
©du x? x| Ou? Ox  Ovdu dx v ox2  Ox|Oudvax  ow* ox
Similarly,
PO 9D Fu  u[Fdau  FPa] aPFv w[FPu P
a2 oudy?  dy| o dy  awdudy|  dvay>  dy|dudvdy  ov* dy
Adding,
RO B0 g (u P 00 (0 Py Pl () ()
w2 By2 T du \ox2  By? a2 dy? au? | \ox Ay
9]
#0 [ o] | #0[ () (o’
udv | 0x dx ~ dy dy ov? | \ox dy

Since u and v are harmonic, (Bzu/axz) + (Bzu/ayz) =0, (Bzv/axz) + (321)/3)72) = 0. Also, by the Cauchy—
Riemann equations, du/dx = dv/dy, dv/dx = —ou/dy. Then

%2+%2_@2+@2_%2+ sz 8u 81) e
ax ay)  \ox ay) — \ox ox ax
oudv  oudv
—_——t——=
dx dx  dyay
Hence (1) becomes
32q> aZcI) 32<1> PP
i =11 ( W)

Prove that a harmonic function ®(x, y) remains harmonic under the transformation w = f(z) where
f(2) is analytic and one-to-one.

Solution
This follows at once from Problem 9.3, since (BZCI)/sz) + (82<I>/3y2) =0 and f'(z) # 0 because f(z) is one-
to-one, so (#®/du?) + (3*®/w*) = 0.

Let a be real. Show that the real and imaginary parts of w = In(z — a) are harmonic functions in any
region R not containing z = a.
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Solution

Method 1.1f R does not contain a, then w = In(z — «) is analytic in R. Hence, the real and imaginary parts are
harmonic in R.
Method 2. Let 7 — a = re'®. Then, if principal values are used for 6, w = u + iv = In(z — a) = Inr + i6 so that
u=Inr,v=20.

In the polar coordinates (r, 6), Laplace’s equation is

FO 130 1 PP

LY )
or? +r8r+r2 96

and, by direct substitution, we find that u = In r and v = 6 are solutions if R does not contain r = 0, i.e., 7 = a.

Method 3. If z—a=re, then x —a=rcos 6, y=rsin8 and r = /(x — a)> +y2, 0 = tan"{y/(x — a)}.
Then w = u + iv = JIn{(x — @)* +?} + itan~{y/(x — @)} and u = In{(x — @)* +)?}, v = tan"{y/(x — @)}
Substituting these into Laplace’s equation (8*®/0x?) + (8*D/dy*) = 0, we find after straightforward differen-
tiation that u and v are solutions if z # a.

Dirichlet and Neumann Problems

9.6. Find a function harmonic in the upper half of the z plane, Im{z} > 0, which takes the prescribed
1 x>0

values on the x axis given by G(x) = { 0 x<0

Solution

We must solve for ®(x, y) the boundary-value problem

R N RO
ox2 3y2

. 1 x>0
= > 0; = =
0, y>0; yl_lj& d(x, y) = G(x) {0 <0
This is a Dirichlet problem for the upper half plane [see Fig. 9-9].
The function A+ B, where A and B are real constants, is harmonic since it is the imaginary part of

Alnz + B.
To determine A and B, note that the boundary conditions are ® = 1 for x > 0, i.e., 6 = 0 and ® = 0 for
x <0,i.e., 6 = . Thus

1=A40)+B (D

0=A(mM+B )

from whichA = —1/m, B = 1.
Then the required solution is

1
¢>:A0+B:1—g:1—7tan’l(X>
ar T X

Another Method. Using Poisson’s formula for the half plane

o 0 00

yG(n)dn IJ y[0]dn IJ y[1]dn

1
B, y) = — | 2emwdan 1 1
() 7ij“r(x—n)z 7)Y+ a—n 7y +@x—n’

—o0 —0 0

1 —x\|" 1 1 1
=—tan” (77 x) =_+—tan"' <{> =1 —ftan’l(x)
T y 0o 2 9w y T X
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Fig. 9-9 Fig. 9-10

9.7. Solve the boundary-value problem

Solution
To x<-—1
PO PO , 0
—+-—=0, y>0; lim ®(x, y))=Gx)=31T1 —-1<x<I1
8x2 3}12 y—>0+
Tz x> 1

where Ty, Ty, T, are constants.

This is a Dirichlet problem for the upper half plane [see Fig. 9-10].

The function A0, + B, + C where A, B, and C are real constants, is harmonic since it is the imaginary part
of Aln(z+ 1)+ Bln(z— 1)+ C.

To determine A, B, C, note that the boundary conditions are: (a) & =T, for x > 1, i.e., 6; = 6, = 0;
®)YDP=Tfor—1<x<1,ie, 0, =0,06=m ()®P=T,forx<-—1,ie., 6 =, 6 = 7. Thus

DT =A0)+BO)+C, T =A0)+B(m+C, 3)Ty=Am+B(m+C

from which C =T,, B= (T} — Tz)/m A= Ty —T1)/m.
Then the required solution is

To—T T, —T:
b =A6;+B6,+C = 0 1tan_1< Y >+ ! 2tan_1< b4 )+T2
T x+1 T X

Another Method. Using Poisson’s formula for the half plane

00

1 yG(n)dn
= | Sy

-1 1 o0
1 J yTodn 1 J yTidn 1 J yI dn
VH@—n? w ¥+ —mn)?

w

) I +a—n? 7

T, -x\|"" T -x\|' T —x\[®
="tan™! (u) + Lan™! <u> +tan”! (u)
T y —o T y - T y

1

To—T T, —T

=20 ! tan~! Y + ! 2tan_l< Y )—l—Tz
T x+1 T x—1
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9.8. Find a function harmonic inside the unit circle |z| = 1 and taking the prescribed values given by
1 0<o<m

F(0) = { 0 m<6<2m on its circumference.

Solution

This is a Dirichlet problem for the unit circle [Fig. 9-11] in which we seek a function satisfying Laplace’s
equation inside |z| = 1 and taking the values O on arc ABC and 1 on arc CDE.

z plane w plane
Y v
D=1 D
E X A B (of D E
A C “
=0 =1
B D=0
Fig. 9-11 Fig. 9-12

Method 1. Using conformal mapping.

We map the interior of the circle |z| = 1 onto the upper half of the w plane [Fig. 9-12] by using the mapping
function z = (i — w)/(i +w) or w = i{(1 — 2)/(1 + z)} [see Problem 8.12, page 263, and interchange z and w].

Under this transformation, arcs ABC and CDE are mapped onto the negative and positive real axis A’B'C’
and C'D'E’, respectively, of the w plane. Then, by Problem 9.81, the boundary conditions ® = 0 on arc ABC
and @ = 1 on arc CDE become, respectively, ® =0 on A’B'C’ and ® = 1 on C'D'E'.

Thus, we have reduced the problem to finding a function ® harmonic in the upper half w plane and taking
the values O for u < 0 and 1 for u > 0. But this problem has already been solved in Problem 9.6 and the sol-
ution (replacing x by u and y by v) is given by

®o—1- " tan! (3) (1)
a u

Now from w = i{(1 — 2)/(1 + z)}, we find

_ 2y 1=+
(I +x)? 4y (14+x7+y*

Then, substituting these in (1), we find the required solution

_ l -1 2y
bd=1- 77_tan <71 e +y2]) )

or, in polar coordinates (r, ), where x = rcos 6, y = rsin 6,

1 2rsi
D=1 ——tan—l( rs1n0) 3)
a

1—r2
Method 2. Using Poisson’s formula,
2

1
27

0[
17JT _1 ltan_l 2rsin 0
T on l—2rcos((9 ¢) + 2 T 1—72
0

by direct integration [see Problem 5.69(b), page 165].

F($)do
1 —2rcos(0— ¢) + 12

O(r, 0) =
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Applications to Fluid Flow

9.9. (a) Find the complex potential for a fluid moving with constant speed V) in a direction making an

angle & with the positive x axis [see Fig. 9-13].

z plane

/
T

Fig. 9-13

(b) Determine the velocity potential and stream function.

(c) Determine the equations for the streamlines and equipotential lines.

Solution

(a)

(b)

The x and y components of velocity are V, = V,cos 8, and V, = V{sin .
The complex velocity is

V=V, +iV, = Vycos 8+ iVysin 8 = Vp e

The complex potential )(z) is given by

Q. - ;
V=V ®
dz 0¢
Then integrating,
Q) = Vye

omitting the constant of integration.
The velocity potential ® and stream function W are the real and imaginary parts of the complex potential.
Thus

Q) = P+ iV = Ve 7 = Vo(xcos & ~+ ysin ) + iVy(y cos  — xsin )

and
O = Vy(xcos 6+ ysind), V¥ = Vy(ycosd— xsind)
Another Method.
@:VX:VOCOSS 1)
ox
odb
— =V, =Vpsind 2)
ay ’

Solving for ®@ in (1), ® = (Vj cos 8)x + G(y). Substituting in (2), G’(y) = Vy sin 6 and G(y) = (V, sin 8)y,
omitting the constant of integration. Then

d = (Vg cos d)x + (Vy sin d)y
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From the Cauchy—Riemann equations,

v 0P

—:—:VX:VOCOS(S (3)
ay ax

o 0P .

a: —a—y: _Vy :—V()sm8 (4)

Solving for ¥ in (3), W = (Vycosd)y+ H(x). Substituting in (4), H'(x) =—Vysind and
H(x) = —(Vj sin 6)x, omitting the constant of integration. Then

¥ = (Vycos 8)y — (Vp sin 8)x

The streamlines are given by ¥ = Vy(ycos § — xsin 8) = B for different values of B. Physically, under
steady-state conditions, a streamline represents the path actually taken by a fluid particle; in this case,
a straight line path.

The equipotential lines are given by ® = Vjy(xcos 6 + ysin 6) = « for different values of «. Geometri-
cally, they are lines perpendicular to the streamlines; all points on an equipotential line are at equal potential.

The complex potential of a fluid flow is given by Q(z) = V, {z + (d*/ z)} where Vj and a are positive
constants. (a) Obtain equations for the streamlines and equipotential lines, represent them graphi-
cally, and interpret physically. (b) Show that we can interpret the flow as that around a circular
obstacle of radius a. (c) Find the velocity at any point and determine its value far from the obstacle.

(d) Find the stagnation points.

Solution

(a) Let z=re'®. Then

2 2 2
Q)= +iV =V, <re"f’ + “—e"’f’) =V <r + a—) cos 04V (r - a—) sin 0
r r r

from which

& &
(D:Vo(r+—)cost9, ‘If:Vo(r——)sinO
r r

The streamlines are given by ¥ = constant = S, that is,

2
V0<r—a—) sinf =B
r

These are indicated by the heavy curves of Fig. 9-14 and show the actual paths taken by fluid particles.
Note that ¥ = 0 corresponds to r = a and 6 = 0 or 7.
The equipotential lines are given by ® = constant = «, i.e.,

&
V0<r+—> cos =«
r

These are indicated by the dashed curves of Fig. 9-14 and are orthogonal to the family of streamlines.

y //Gﬂ’@'\’@\
sg//@//
Ji W\ T L Sy
: o e
\ -~ _
T B T
! ’Q R -

/A
)

Fig. 9-14
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(b) The circle r = a represents a streamline; and since there cannot be any flow across a streamline, it can be
considered as a circular obstacle of radius a placed in the path of the fluid.
(c) We have

2 2 2 Vod?
Q@) = Vo(l _%) = Vo(l _%6—216> = Vo(l —Crl—zcos 20) +i :;l sin26

Then, the complex velocity is

- 2 \% 2
V:Q’(z):vo(l —%cosze) i 2% Gno2g )

r2

and its magnitude is

2 2 (Vo2 2
V:|V|=\/{Vo<l—az<:0526)] +{ o sin26}
r r

2a%2cos260 a*
- Vo\/l -t @

Far from the obstacle, we see from (1) that V = V|, approximately, i.e., the fluid is traveling in the
direction of the positive x axis with constant speed V.

(d) The stagnation points (i.e., points at which the velocity is zero), are given by Q'(z) =0, i.e.,

VO{I —(a? /zz)} =0 or z=a and z = —a. The stagnation points are therefore at A and D in Fig. 9-14.

9.11. Show that under the transformation w = z + (a*/z), the fluid flow in the z plane considered in

Problem 9.10 is mapped into a uniform flow with constant velocity Vj in the w plane.

Solution

The complex potential for the flow in the w plane is given by

a2
Vo <Z + ?> = Vow

which represents uniform flow with constant velocity Vj in the w plane [compare entry A-4 on page 249].

In general, the transformation w = {)(z) maps the fluid flow in the z plane with complex potential {)(z) into a
uniform flow in the w plane. This is very useful in determining complex potentials of complicated fluid patterns
through a knowledge of mapping functions.

9.12. Fluid emanates at a constant rate from an infinite line source perpendicular to the z plane at z =0
[Fig. 9-15]. (a) Show that the speed of the fluid at a distance r from the source is V = k/r where k is a
constant. (b) Show that the complex potential is {)(z) = kInz. (c) What modification should be
made in (b) if the line source is at z = a? (d) What modification is made in (b) if the source is
replaced by a sink in which fluid is disappearing at a constant rate?

Solution

(a) Consider a portion of the line source of unit length [Fig. 9-16]. If V, is the radial velocity of the fluid at
distance r from the source and o is the density of the fluid (assumed incompressible so that ¢ is constant),
then:

Mass of fluid per unit time emanating from line source of unit length
= mass of fluid crossing surface of cylinder of radius r and height 1
= (surface area)(radial velocity)(fluid density)
= Qmr-1)(V,)(o)=27rV,.o
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If this is to be a constant k, then

K k

r = =
2wor r

where k = k/20 is called the strength of the source.

Fig. 9-15 Fig. 9-16

(b) Since V, = 0®/dr = k/r, we have on integrating and omitting the constant of integration, ® = kIn r. But

this is the real part of )(z) = kInz, which is therefore the required complex potential.
(c) If the line source is at z = a instead of 7 =0, replace z by z —a to obtain the complex potential
O(2) = kln(z — a).

(d) If the source is replaced by a sink, the complex potential is {)(z) = —k In z, the minus sign arising from the
fact that the velocity is directed toward z = 0.
Similarly, (z) = —kIn(z — a) is the complex potential for a sink at z = a.
(a) Find the complex potential due to a source at z = —a and a sink at z = a of equal strengths k.

(b) Determine the equipotential lines and streamlines and represent graphically.
(c) Find the speed of the fluid at any point.

Solution

(a) Complex potential due to source at z = —a of strength k is kIn(z + a).
Complex potential due to sink at z = a of strength k is —kIn(z — a).
Then, by superposition:
Complex potential due to source at z = —a and sink at z = a of strengths k is

Q@) =kIn(z+a) —kln(z —a) = kln<z+a>

(b) Letz+a=re?, z—a=re?. Then

) rieit T .
Q=P+ i¥V=kIn =kln{—) + ik(6; — 6,)
)

ryelt:
so that ® = k1In(ry/r2), ¥ = k(6; — 6,). The equipotential lines and streamlines are thus given by
O =kin(ri/rn)=a, VY =k6,—6)=8
Using r =@+ a)? +2, rn=+yx—a?+)2, 6 =tan"! /& +a)}, 6 =tan{y/(x — @)}, the

equipotential lines are given by

Vx4 a)* +y? _ gk
Vx—ay+y?
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This can be written in the form
[x — acoth(a/k)]? 4+ y* = a® csch?(a/k)

which for different values of « are circles having centers at a coth(a/k) and radii equal to a|csch(a/k)|.
These circles are shown by the dashed curves of Fig. 9-17.

The streamlines are given by
tan’l( J ) —tan"(%) = B/k
X+a —a

or, taking the tangent of both sides and simplifying,
2+ [y + acot(B/k)]* = a* ese*(B/k)

which for different values of B are circles having centers at —acot(8/k) and radii a|csc(B/k)|. These
circles, which pass through (—a, 0) and (a, 0), are shown heavy in Fig. 9-17.

(©  Speed = |Q(2)| = ' k __k
z+a z—a
_ 2ka 2ka

a2 —r2e¥® Jat —2a%2cos 20+ 14

_ 2ka
2 -

Fig. 9-17 Fig. 9-18

9.14. Discuss the motion of a fluid having complex potential {)(z) = ik Inz where k > 0.

Solution

If z = re'%, then O(z) = ® + iV = ik(Inr + i0) = iklnr — kO or & = —k6, ¥ =klInr.
The streamlines are given by

W = constant or r = constant

which are circles having a common center at z = 0 [shown heavy in Fig. 9-18].
The equipotential lines, given by 6 = constant, are shown dashed in Fig. 9-18. Since

0@ = % _ %e_m _ k sin 0+ ik cos 6
Z r r r
the complex velocity is given by
V:m:ksine_ikCOSG

r
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and shows that the direction of fluid flow is clockwise as indicated in the figure. The speed is given by
V=V =k/r

Thus, the complex potential describes the flow of a fluid, which is rotating around z = 0. The flow is some-
times referred to as a vortex flow and z = 0 is called a vortex.

Show that the circulation about the vortex in Problem 9.14 is given by y = 27k.

Solution

If curve C encloses z = 0, the circulation integral is given by

P od
'y:{)V,ds:{)dex—l—Vydyzi;—adx—ady:§—d<l): Jkd0:27rk
X y

C C c Cc 0

2m

In terms of the circulation, the complex potential can be written {}(z) = (iy/2m)Inz.

Discuss the motion of a fluid having complex potential

a2 i
Q) =V (z + —) + —ylnz
Z 27T

Solution

This complex potential has the effect of superimposing a circulation on the flow of Problem 9.10. If z = re’®,

2 2
0=+ =Vo(r+“Veoso— 2 v ilv(r—“\sino+ L 1nr
r 2 r 2

Then, the equipotential lines and streamlines are given by
2 2
0
V0<r+a—>cos0—7—:a, V0<r—a—>sin0+llnrzﬁ
r 2w r 27

There are, in general, two stagnation points occurring where {)'(z) = 0, that is,

2 . s
Vg(l—a—z)jtizo or z=—2 4 | r
z 7

In case y = 4maV), there is only one stagnation point.
Since r = a is a streamline corresponding to 3 = (7y/2)Ina, the flow can be considered as one about a
circular obstacle as in Problem 9.10. Far from this obstacle, the fluid has velocity Vj since limy;—0 Q'(z) = Vo.
The flow pattern changes, depending on the magnitude of vy. In Figs. 9-19 and 9-20, we have shown two of
the many possible ones. Fig. 9-19 corresponds to y < 47aVj; the stagnation points are situated at A and B.
Fig. 9-20 corresponds to y > 4maV,, and there is only one stagnation point in the fluid at C.

<

y

N

P
i

Fig. 9-19 Fig. 9-20
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Theorems of Blasius

9.17. Let ()(z) be the complex potential describing the flow about a cylindrical obstacle of unit length
whose boundary in the z plane is a simple closed curve C. Prove that the net fluid force on the

obstacle is given by
F=X-iY L fi; Q0 2d
=X—-iY=—icp|—
2 dz ¢
c

where X and Y are the components of force in the positive x and y directions, respectively, and o is
the fluid density.

Solution

The force acting on the element of area ds in Fig. 9-21 is normal to ds and given in magnitude by P ds where P
is the pressure. On resolving this force into components parallel to the x and y axes, we see that it is given by

dF =dX +idY = —Pdssin 0+ iPdscos 0
= iPds(cos 0+ isin 0) = iPdse'® = iPdz
using the fact that

dz = dx + idy = dscos 0+ idssin 0 = dse’’

P ds cos 0

Fig. 9-21

Since C represents a streamline, we have by Bernoulli’s theorem, P + 16V? = K or P = K — V2, where V
is the fluid speed on the streamline. Also, by Problem 9.49, we have dQ/dz = Ve™.
Then, integrating over C, we find

1 1
F:X+iY:§isz:if[)(K—ichz)dz:—Eicrfi;Vzdz

1 . 1 . )
= —Eiai; V2l ds = —Eia ﬂ; (Vzez’g)(e_’g ds)
c C

or

o 1 . 1 d\?
F=X-iY=3io jﬁ (Ve 2% (e ds) = Fio jﬁ (E) dz
C C
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9.18. Let M denote the total moment about the origin of the pressure forces on the obstacle in

Problem 9.17. Prove that
1 a0\’
M =Re{ —= — d
e 2Ujgz<dz> Z

C
Solution

We consider counterclockwise moments as positive. The moment about the origin of the force acting on
element ds of Fig. 9-21 is

dM = (P dssin 0)y + (P dscos 0)x = P(y dy + x dx)

since ds sin @ = dy and ds cos 6 = dx. Then, on using Bernoulli’s equation, the total moment is
1
M = 1; P(ydy +xdx) = fi‘)<l( — ioVZ)(ydy + xdx)
C c

1 1
:K('{)(ydy—i—xdx)—icrf{; Vz(ydy—i-xdx)—iofl; V2(xcos 6 + ysin 6) ds
c c c
=0

where we have used the fact that fﬁc (ydy + xdx) = 0 since ydy + xdx is an exact differential. Hence

1 1
M= —Eo?f) V2(xcos 6 + ysin 6) ds = Re —Eaﬂ; Vz(x—i-iy)(cose—isine)ds

c C
1 2 —if 1 2 —2i0y, if
=Re _EO- Veze " dsy =Re —EO' zZ(VZe ") (€' ds)
c c
1 dO\?
=Re{ —= — d
© 20%Z<dz> ¢

Sometimes, we write this result in the form
1 dQ\’
M+iN=—— | —) dz
+1 2 o 4;0 z( & ) Z
where N has no simple physical significance.
9.19. Find the net force acting on the cylindrical obstacle of Problem 9.16.

Solution

The complex potential for the flow in Problem 9.16 is

2 .
Q= Vo(z+i> +ﬂlnz
z 27
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where Vj is the speed of the fluid at distances far from the obstacle and vy is the circulation. By Problem 9.17,
the net force acting on the cylindrical obstacle is given by F, where

_ 1 do\? 1 2\ iy’
l mei;(a'z) ¢ 21()'%{ 0( 22)+27TZ} <
C C

1 \ a?\’ 2iVyy a? v
=i Vi1-= l—= ) ———S5=1dz=—0V,
2”“ °< Zz> " ( z2> a2 [T T
c

Then X = 0, Y = oVjy and it follows that there is a net force in the positive y direction of magnitude oVy7y. In
the case where the cylinder is horizontal and the flow takes place in a vertical plane, this force is called the /ift
on the cylinder.

Applications to Electrostatics

9.20. (a) Find the complex potential due to a line of charge ¢ per unit length perpendicular to the z plane
atz=0.

(b) What modification should be made in (a) if the line is at z = a?
(c) Discuss the similarity with the complex potential for a line source or sink in fluid flow.
Solution

(a) The electric field due to a line charge g per unit length is radial and the normal component of the electric
vector is constant and equal to E, while the tangential component is zero (see Fig. 9-22). If Cis any cylin-
der of radius » with axis at z = 0, then by Gauss’ theorem,

%EndS:E,f{;dS:E,~27Tr:47Tq
c c

and

Since E, = —(0®/dr), we have & = —2¢In r, omitting the constant of integration. This is the real part of
QO(z) = —2qInz, which is the required complex potential.

(b) If the line of charge is at z = a, the complex potential is ((z) = —2¢In(z — a).

(c) The complex potential has the same form as that for a line source of fluid if k = —2¢g [see Problem 9.12].
If g is a positive charge, this corresponds to a line sink.

(x,y)

Fig. 9-22 Fig. 9-23
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9.21. (a) Find the potential at any point of the region shown in Fig. 9-23 if the potentials on the x axis are

9.22.

given by V, for x > 0 and —V, for x < 0.
(b) Determine the equipotential and flux lines.
Solution

(a) We must find a function, harmonic in the plane, which takes on the values V for x > 0 (i.e., # = 0) and
—Vp for x < 0 (i.e., 6 = 7). As in Problem 9.6, if A and B are real constants A6 + B is harmonic. Then
AQ0) 4+ B = Vy, A(m) + B = =V, from which A = —2Vy/r, B = V|, so that the required potential is

2 2y
Voll——6) =Vl ——tan" "=
a v X

in the upper half plane y > 0. The potential in the lower half plane is obtained by symmetry.

2
V0<1 — Ztan™! X) =«
T x

that is, y = mx where m is a constant. These are straight lines passing through the origin.
The flux lines are the orthogonal trajectories of the lines y = mux and are given by x> + y? = B. They are
circles with center at the origin.

(b) The equipotential lines are given by

2V,
- X) is —=Inr. Then the flux lines are given by
X T

. . 2

Another Method. A function conjugate to V()(l — —tan
T

r= \/m = constant, which are circles with center at the origin.

(a) Find the potential due to a line charge ¢ per unit length at z = zy and a line charge —¢g per unit
length at z = Zo.

(b) Show that the potential due to an infinite plane [ABC in Fig. 9-25] kept at zero potential
(ground potential) and a line charge g per unit length parallel to this plane can be found
from the result in (a).

Solution

(a) The complex potential due to the two line charges [Fig. 9-24] is

O(z) = —2q1In(z — z9) + 2q In(z — Zp) = 2¢In (%)
— 20

Then the required potential is the real part of this, i.e.,

CI):2qRe{ln<§:Z))} (1)

(b) To prove this, we must show that the potential (1) reduces to @ = 0 on the x axis, i.e., ABC in Fig. 9-25 is
at potential zero. This follows at once from the fact that on the x axis, z = x so that

QZZqIH(X_ZO) and ﬁ:qun(x_f()):—Q

X—20 X—20

that is, ® = Re{{)} = 0 on the x axis.
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Thus, we can replace the charge —q at 7y [Fig. 9-24] by a plane ABC at potential zero [Fig. 9-25] and
conversely.

y y
q q
Qez, Yoy,
A B C
X X
Potential = 0
_q,L.ZO
Fig. 9-24 Fig. 9-25

9.23. Two infinite parallel planes, separated by a distance a, are grounded (i.e., are at potential zero). A
line charge ¢ per unit length is located between the planes at a distance b from one plane. Determine
the potential at any point between the planes.

Solution

Let ABC and DEF in Fig. 9-26 represent the two planes perpendicular to the z plane, and suppose the line
charge passes through the imaginary axis at the point z = bi.

z plane w plane
| Y
Potential = 0
C B A

()

97\ g prbila

q

D E F

. Al B’ c'|lp’ E F

Potential = 0 Potential = 0

Fig. 9-26 Fig. 9-27

From entry A-2 on page 248, we see that the transformation w = ™/ maps the shaded region of Fig. 9-26
onto the upper half w plane of Fig. 9-27. The line charge g at z = bi in Fig. 9-26 is mapped into the line charge
g at w = e™"/?_ The boundary ABCDEF of Fig. 9-26 (at potential zero) is mapped into the x axis A’'B'C'D'E'F’
(at potential zero) where C’ and D’ are coincident at w = 0.

By Problem 9.22, the potential at any point of the shaded region in Fig. 9-27 is

w— e*ﬂbi/a
=2 Re{m}

Then, the potential at any point of the shaded region in Fig. 9-26 is

em/a _ gmbija

mz/a __ ,—mbija
O =2¢q Re{e ¢ }

Applications to Heat Flow

9.24. A semi-infinite slab (shaded in Fig. 9-28) has its boundaries maintained at the indicated tempera-
tures where T is constant. Find the steady-state temperature.
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Solution

The shaded region of the z plane is mapped into the upper half of the w plane [Fig. 9-29] by the mapping func-
tion w = sin(7z/a) which is equivalent to u = sin(mx/a)cosh(mwy/a), v = cos(wx/a)sinh(my/a) [see
entry A-3(a) on page 248].

z plane w plane

=T -1 D=0 1 ®=2T

Fig. 9-28 Fig. 9-29

‘We must now solve the equivalent problem in the w plane. We use the method of Problem 9.7 to find that the
solution in the w plane is

and the required solution to the problem in the z plane is therefore

cos(mx/a) sinh(ry/a) } _2r n‘l{ cos(rx/a) sinh(mry/a)

T sin(7rx/a) cosh(my/a) + 1 T sin(7rx/a) cosh(my/a) — 1

CI>=Ztan_1{ }+2T

9.25. Find the steady-state temperature at any point of the region shown shaded in Fig. 9-30 if the
temperatures are maintained as indicated.

z plane w plane

0°C -2 60°C 2 0°C

Fig. 9-30 Fig. 9-31

Solution

The shaded region of the z plane is mapped onto the upper half of the w plane [shaded in Fig. 9-31] by means of
the mapping function w = z + (1/z) [entry A-4 on page 249], which is equivalent to

. . 1 X . y . X y
_ — , e, U= L=
i x+ly+x+iy x+x2+y2+l<y x2+y2> ! " x+x2+y2 =y x2+y2

The solution to the problem in the w plane is, using the method of Problem 9.7,

60 tan~! v 60 an—t (2
T u—2 T u-+2
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Then, substituting the values of u and v, the solution to the required problem in the z plane is

60 _1[ yx?+y2 —1) } 60 _1{ yx? +y?2 —1) }
—tan an

@Y+ x—202+y)] 7 (2 +32 + Dx + 262 +2)

or, in polar coordinates,

60 [ (*>—1)sing 60 [ @*—1)sing
n (ﬂ———an (r2—

T +DcosO—2r| = + D)cos 6+ 2r

Miscellaneous Problems

9.26. A region is bounded by two infinitely long concentric cylindrical conductors of radii 7 and r, (1, > ry),
which are charged to potentials @, and ®,, respectively [see Fig. 9-32]. Find the (a) potential and
(b) electric field vector everywhere in the region.

Solution

(a) Consider the function ) = Alnz + B where A and B are real constants. If z = re'?, then

O=P+V=Alnr+A4i0+B, or ®=Alnr+B, VY =A0

Now & satisfies Laplace’s equation, i.e., is harmonic, everywhere in the region r; < r < r, and reduces
to ® = d, and ® = ®, on r = r| and r = r, provided A and B are chosen so that

d, =Alnr+B, &, =Alnr, +B
that is,
Dy — Py _ ®ylnr, —DyInry
In(ry/r1)" In(ra/r1)
Then, the required potential is
:(CI>2—(I>1) 0y diInrp —DyInr
In(rz/r1) In(rz/r1)

Fig. 9-32

(b) Electric field vector

0> D —D, 1

=-gadb=—"=—-.—
€ gta or  In(rp/r) r

Note that the lines of force, or flux lines, are orthogonal to the equipotential lines, and some of these are
indicated by the dashed lines of Fig. 9-33.
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Find the capacitance of the condenser formed by the two cylindrical conductors in Problem 9.26.

Solution

If ' is any simple closed curve containing the inner cylinder and ¢ is the charge on this cylinder, then by Gauss’
theorem and the results of Problem 9.26, we have

27
%E,,ds = J {%~%}rd6 = % = 4mq
Then
b, — P,
172G/
and so
charge q 1

Capacitance C = - -
apacitance difference in potential &, — P, 21In(ry/ry)

which depends only on the geometry of the condensers, as it should.
The above result holds if there is a vacuum between the conductors. If there is a medium of dielectric con-
stant k between the conductors, we must replace ¢ by ¢/« and in this case the capacitance is 1/[2k In(r,/r1)].

Two circular cylindrical conductors of equal radius R and centers at distance D from each other
[Fig. 9-34] are charged to potentials V, and —V), respectively. (a) Determine the charge per unit
length needed to accomplish this. (b) Find an expression for the capacitance.

Solution

(a) We use the results of Problem 9.13, since we can
replace any of the equipotential curves (surfaces)
by circular conductors at the specified potentials. D

Placing o« = -V, and a =V, and noting that

i i
| |
k = 2q, we find that the centers of the circles are 7V@ f@‘\/‘)
at x = —acoth(Vy/2¢) and x = acoth(Vy/2q) so ' ' x
that U U
\%
D = 2acoth (J) (1)
2q
The radius R of the circles is
Fig. 9-34
Vi
R =a csch (—0> 2)
2q
Division of (1) by (2) yields 2 cosh(Vy/2q) = D/R so that the required charge is
Vo

175 cosh " (D/2R)

. charge q 1
®) apaciiance difference in potential 2V,  4cosh™'(D/2R)
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9.29.

9.30.

The result holds for a vacuum. If there is a medium of dielectric constant k, we must divide the result by «.
Note that the capacitance depends as usual only on the geometry. The result is fundamental in the theory
of transmission line cables.

Prove the uniqueness of the solution to Dirichlet’s problem.

Solution

Dirichlet’s problem is the problem of determining a function @ that satisfies (3*®/dx?) + (#®/3dy*) =0 in a
simply-connected region R and that takes on a prescribed value ® = f(x, y) on the boundary C of R. To prove
the uniqueness, we must show that, if such a solution exists, it is the only one. To do this, suppose that there are
two different solutions, say ®; and ®,. Then

R TR .
szl 3y21 =0inR and P =f(x,y)on C (D
PD, 9D, .
P 5 =0inR and P, =f(x,y)on C )

Subtracting and letting G = ®; — ®,, we have

PG  #G
W-ﬁ-fz:OinR and G=0onC 3)
X y

To show that ®; = ®, identically, we must show that G = 0 identically in R.
Let F = G in Problem 4.31, page 137, to obtain

G 3G G G AG\> [3G\*

—_— —_— = — —_— —_— —_— —_ 4
§G<8x dx oy dy) ” |:G(8x2 + 8y2> + (8x> +<8y) dxdy 4)
C R

Suppose that G is not identically equal to a constant in R. From the fact that G=0 on C, and
(8*G/0x?) + (°G/dy*) = 0 identically in R, (4) becomes

) (5 oo

But this contradicts the assumption that G is not identically equal to a constant in R, since in such a case

I+ o=

It follows that G must be constant in R, and by continuity we must have G = 0. Thus ®; = ®; and there is only
one solution.

An infinite wedge-shaped region ABDE of angle /4 [shaded in Fig. 9-35] has one of its sides (AB)
maintained at constant temperature 7. The other side BDE has part BD [of unit length] insulated
while the remaining part DE is maintained at constant temperature 75. Find the temperature every-
where in the region.
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2
Fig. 9-35 Fig. 9-36
w plane w plane
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A E
1
T T,
T T,
" D" B .
S " B b "
Insulated 1
T T,
Fig. 9-37 Fig. 9-38
Solution

By the transformation £ = 72, the shaded region of the z plane [Fig. 9-35] is mapped into the region shaded in
Fig. 9-36 with the indicated boundary conditions [see entry A-1 on page 248].

By the transformation { = sin(7w/2), the shaded region of the { plane [Fig. 9-36] is mapped into the region
shaded in Fig. 9-37 with the indicated boundary conditions [see entry C-1 on page 254].

Now the temperature problem represented by Fig. 9-37 with B”D” insulated is equivalent to the
temperature problem represented by Fig. 9-38 since, by symmetry, no heat transfer can take place across
B’D". But this is the problem of determining the temperature between two parallel planes kept at constant
temperatures 7} and 7>, respectively. In this case, the temperature variation is linear and so must be given
by T] + (Tz — T] )M

From { = 7% and { = sin(7w/2), we have on eliminating £, w = (2/m) sin~!' 22 oru = 2/m) Re{sin™! 22}.
Then, the required temperature is

2T, — T
+(2 I)Re
T

T, {sin™! 22}

In polar coordinates (r, 6), this can be written as [see Problem 9.95],

2T, —T
+ (2 l)sin’l
Ko

1 1
T, {§/r4+2r200526+1—5\/r4—27200529+1}
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SUPPLEMENTARY PROBLEMS

Harmonic Functions

9.31.

9.32.

9.33.

9.34.

9.35.

9.36.

Show that the functions (a) 2xy +y> — 3x2y, (b) e~ siny are harmonic.
Show that the functions of Problem 9.31 remain harmonic under the transformations (a) z = w?, (b) z = sinw.
Suppose P(x, y) is harmonic. Prove that ®(x + a, y + b), where a and b are any constants, is also harmonic.

Suppose @, P,, ..., P, are harmonic in a region R and cy, ¢z, ..., ¢, are any constants. Prove that
1P+ P +--- + ¢, D, is harmonic in R.

Prove that all the harmonic functions that depend only on the distance r from a fixed point must have the form
Alnr+ B where A and B are any constants.

Suppose F(z) is analytic and different from zero in a region R. Prove that the real and imaginary parts of In F(z)
are harmonic in R.

Dirichlet and Neumann Problems

9.37.

9.38.

9.39.

9.40.

9.41.

9.42.

9.43.

9.44.

9.45.

Find a function harmonic in the upper half z plane Im{z} > 0 that takes the prescribed values on the x axis given

1 x>0
1 x< -1
Work Problem 9.37 if G(x) = 0 —-1<x<1.
-1 x>1

Find a function harmonic inside the circle |z| = 1 and taking the values F(6) =
circumference.

{ T 0<6<m .
on 1ts

T 7w<6<2mw

T 0<6<m/2
Work Problem 9.39 if F(6) = 0 7/2<6<3m/2.
—T 3m/2<60<2w

. _Jsinf 0<O0<m
Work Problem 9.39 if F(6) _I 0 med<im

10 0<O6<m

Find a function harmonic inside the circle |z| = 2 and taking the values F(6) = { 0 m<f<2m

Show by direct substitution that the answers obtained in (a) Problem 9.6, (b) Problem 9.7, (c) Problem 9.8
are actually solutions to the corresponding boundary-value problems.

Find a function ®(x, y) harmonic in the first quadrant x > 0, y > 0, which takes on the values V(x, 0) = —1,
V(O, y) =2.

Find a function ®(x, y) that is harmonic in the first quadrant x > 0, y > 0 and that satisfies the boundary con-
ditions ®(x, 0) = e, 3P/dx|,—¢ = 0.

Applications to Fluid Flow

9.46.

9.47.

9.48.

9.49.

Sketch the streamlines and equipotential lines for fluid motion in which the complex potential is given by
(@) 22 +2z (b () e (d)cosz

Discuss the fluid flow corresponding to the complex potential (z) = Vy(z + 1/22).
Verify the statements made before equations (9.5) and (9.6) on page 283.

Derive the relation dQ)/dz = Ve~'%, where V and 6 are defined as in Problem 9.17.



9.50.

9.51.

9.52.

9.53.
9.54.

9.55.

9.56.

9.57.

9.58.

9.59.

9.60.

9.61.
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Referring to Problem 9.10, (a) show that the speed of the fluid at any point E [Fig. 9-14] is given by 2Vy|sin 6|
and (b) determine at what points on the cylinder the speed is greatest.

(a) Suppose P is the pressure at point E of the obstacle in Fig. 9-14 of Problem 9.10 and suppose P, is the

pressure far from the obstacle. Show that

1
P— Py = 5avg(l — 4sin’ 6)

(b) Show that a vacuum is created at points B and F if the speed of the fluid is equal to or greater than
Vo = +/2P/30. This is often called cavitation.

Derive equation (9.19), page 285, by a limiting procedure applied to equation (9.18).

Discuss the fluid flow due to three sources of equal strength & located at z = —a, 0, a.

Discuss the fluid flow due to two sources at z= ta and a sink at z =0 if the strengths all have
equal magnitude.

Prove that under the transformation w = F(z) where F(z) is analytic, a source (or sink) in the z plane at 7 = zq is
mapped into a source (or sink) of equal strength in the w plane at w = wy = F(2).

Show that the total moment on the cylindrical obstacle of Problem 9.10 is zero and explain physically.

Suppose W(x, y) is the stream function. Prove that the mass rate of flow of fluid across an arc C joining points
(x1, y1) and (x2, y2) is o{W(x2, y2) — Wxy, y1)}.

(a) Show that the complex potential due to a source of strength k > 0 in a fluid moving with speed V; is
Q = Vyz+ klInz and (b) discuss the motion.

A source and sink of equal strengths m are located at z = +1 between the parallel lines y = +1. Show that the
complex potential for the fluid motion is

m(z+1) 1
0= mln{e }

g’”(Z*l) — 1

Given a source of fluid at z = zy and a wall x = 0. Prove that the resulting flow is equivalent to removing the
wall and introducing another source of equal strength at z = —zp.

Fluid flows between the two branches of the hyperbola ax?> — by> = 1, a > 0, b > 0. Prove that the complex
potential for the flow is given by K cosh™ az where K is a positive constant and a = +/ab/(a + b).

Applications to Electrostatics

9.62.

Two semi-infinite plane conductors, as indicated in Fig. 9-39, are charged to constant potentials ®; and ®,,
respectively. Find the (a) potential ® and (b) electric field £ everywhere in the shaded region between them.

y
y

— VO

X A

B Potential @, C

Fig. 9-39 Fig. 9-40
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9.63. Find the (a) potential and (b) electric field everywhere in the shaded region of Fig. 9-40 if the potentials on the
positive x and y axes are constant and equal to V and —V), respectively.

9.64. An infinite region has in it three wires located at z = —1, 0, 1 and maintained at constant potentials
—Vo, 2V, — V), respectively. Find the (a) potential and (b) electric field everywhere.

9.65. Prove that the capacity of a capacitor is invariant under a conformal transformation.

9.66. The semi-infinite plane conductors AB and BC, which inter-
sect at angle «, are grounded [Fig. 9-41]. A line charge g per
unit length is located at point z; in the shaded region at equal
distances a from AB and BC. Find the potential.

9.67. Work Problem 9.66 if ¢ is at a distance a from AB and b
from BC.

9.68. Work Problem 9.23 if there are two line charges, g per unit .
length and —g per unit length, located at z = bi and z = ci, AL
respectively, where 0 < b < a, 0 <c¢ <aand b #c.

9.69. An infinitely long circular cylinder has half of its surface
charged to constant potential V; while the other half is B c
grounded, the two halves being insulated from each other. Fig. 9-41
Find the potential everywhere.

Applications to Heat Flow

9.70. (a) Find the steady-state temperature at any point of the region shown shaded in Fig. 9-42.

(b) Determine the isothermal and flux lines.

9.71. Find the steady-state temperature at the point (2, 1) of the region shown shaded in Fig. 9-43.

=

y
B
3 \
= 100°C
2 A c
50°C (4,0 * D
60°C c
Fig. 9-42 Fig. 9-43 Fig. 9-44

9.72. The convex portions ABC and ADC of a unit cylinder [Fig. 9-44] are maintained at temperatures 40°C and
80°C, respectively. (a) Find the steady-state temperature at any point inside. (b) Determine the isothermal and
flux lines.
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9.73. Find the steady-state temperature at the point (5, 2) in the shaded region of Fig. 9-45 if the temperatures are
maintained as shown.

y
Y B
A
40°C 3
A c
X
B$ (0, 1)
80°C
X D
c 100°C D
Fig. 9-45 Fig. 9-46

9.74. An infinite conducting plate has in it a circular hole ABCD of unit radius [Fig. 9-46]. Temperatures of 20°C and
80°C are applied to arcs ABC and ADC and maintained indefinitely. Find the steady-state temperature at any
point of the plate.

Miscellaneous Problems

9.75. Suppose ®(x, y) is harmonic. Prove that ®(x/r2, y/r?) where r = \/x2 + y2 is also harmonic.
9.76. Suppose U and V are continuously differentiable. Prove that

vV 9Vdy 0dVdx

w_awds wwdy

@) E_Bxds-’_ayds s 8xds+87yds

where n and s denote the outward drawn normal and arc length parameter, respectively, to a simple closed
curve C.

9.77. Let U and V be conjugate harmonic functions. Prove that (a) dU/dn = dV /ds, (b) dU/ds = —(3V /an).

9.78. Prove that the function 1 — 7*/(1 — 27 cos 8 4 %) is harmonic in every region that does not include the point
r=1,0=0.

9.79. Let it be required to solve the Neumann problem, i.e., to find a function V harmonic in a region R such that on
the boundary C of R, aV/on = G(s) where s is the arc length parameter. Let H(s) = ff G(s) ds where a is any
point of C, and suppose that 55C G(s)ds = 0. Show that to find V, we must find the conjugate harmonic function
U that satisfies the condition U = —H(s) on C. This is an equivalent Dirichlet problem. [Hint. Use Problem
9.77.]

9.80. Prove that, apart from an arbitrary additive constant, the solution to the Neumann problem is unique.
9.81. Prove Theorem 9.3, page 282.

9.82. How must Theorem 9.3, page 282, be modified if the boundary condition ® =a on C is replaced by
b = f(x, y) on C?

9.83. How must Theorem 9.3, page 282, be modified if the boundary condition 3®/dn = 0 on C is replaced by
ad/9n = g(x, y) on C?

9.84. Suppose a fluid motion is due to some distribution of sources, sinks, and doublets and suppose C'is some curve such
that no flow takes place across it. Then the distribution of sources, sinks, and doublets to one side of C is called the
image of the distribution of sources, sinks, and doublets on the other side of C. Prove that the image of a source
inside a circle C is a source of equal strength at the inverse point together with a sink of equal strength at the



CHAPTER 9 Physical Applications of Conformal Mapping

9.85.

9.86.

9.87.

9.88.

9.89.

center of C. [Point P is called the inverse of point Q with respect to a circle C with center at O if OPQ is a straight line
and OP - OQ = a* where a is the radius of C.]

A source of strength k > 0 is located at point zy in a fluid that is contained in the first quadrant where the x and y
axes are considered as rigid barriers. Prove that the speed of the fluid at any point is given by

kKz—20)""+G—20)" "+ @420 F@+Z0)7

Two infinitely long cylindrical conductors having cross-sections that are confocal ellipses with foci at (—c, 0)
and (c, 0) [see Fig. 9-47] are charged to constant potentials ®; and ®,, respectively. Show that the capacitance
per unit length is equal to

27
cosh™!(Ry/c) — cosh™' (R, /¢)

[Hint. Use the transformation z = ¢ coshw.]

In Problem 9.86, suppose that @, and ®, represent constant temperatures applied to the elliptic cylinders. Find
the steady-state temperature at any point in the conducting region between the cylinders.

2R,

y
(I)Z

,

\ o0 ©0) /

\_/ Vo Vo

2R,

Fig. 9-47 Fig. 9-48
A circular cylinder obstacle of radius a rests at the bottom of a channel of fluid, which at distances far from the
obstacle flows with velocity V [see Fig. 9-48].

(a) Prove that the complex potential is given by
\(z) = maVy coth(ma/7)

(b) Show that the speed at the top of the cylinder is % 7%V, and compare with that for a circular obstacle in the
middle of a fluid.

(c) Show that the difference in pressure between top and bottom points of the cylinder is oz Vg /32.

(a) Show that the complex potential for fluid flow past the elliptic cylinder of Fig. 9-49 is given by

- (a+ by
Q(Z)—Vo{§+ a7 }

where ¢ = %(z + /72 — ¢2) and ¢? = a® — b2



9.90.

9.91.

9.92.

9.93.

9.94.

9.95.

9.96.
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(b) Prove that the fluid speed at the top and bottom of the cylinder is V(1 4+ b/a). Discuss the case a = b.
[Hint. Express the complex potential in terms of elliptic coordinates (&, 1) where

z=x+1iy = ccosh(é+in) = ccosh (]

o
= ——

Fig. 9-49

Suppose the flow in Problem 9.89 is in a direction making an angle § with the positive x axis. Show that the
complex potential is given by the result in (a) with { = 1(z 4+ v/z2 — ?)e™.

In the theory of elasticity, the equation

MO FO P
VO =V (VD) =— 42— +—— =0
( ) ox* + ox2dy? + oy*

called the biharmonic equation, is of fundamental importance. Solutions to this equation are called biharmonic.
Prove that if F(z) and G(z) are analytic in a region R, then the real part of zF'(z) + G(z) is biharmonic in R.

Show that biharmonic functions (see Problem 9.91) do not, in general, remain biharmonic under a conformal
transformation.

(a) Show that ((z) = K Insinh(mz/a), k > 0, a > 0 represents the complex potential due to a row of fluid
sources at z =0, +ai, +2ai,....

(b) Show that, apart from additive constants, the potential and stream functions are given by

® = K Infcosh(2mx/a) — cosCmy/a)}, W =K tan”! { tan(my/a) }

tanh(mx/a)
(c) Graph some of the streamlines for the flow.

Prove that the complex potential of Problem 9.93 is the same as that due to a source located halfway between
the parallel lines y = +3a/2.

Verify the statement made at the end of Problem 9.30 [compare Problem 2.137].

A condenser is formed from an elliptic cylinder, with major and minor axes of lengths 2a and 2b, respectively,
together with a flat plate AB of length 2/ [see Fig. 9-50]. Show that the capacitance is equal to 277/ { cosh™!(a/h) }

| 2a
A
e
A B 2b Vo —— D
| 2h |
[ | ——
B

Fig. 9-50 Fig. 9-51
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9.97.

9.98.

9.99.

9.100.

9.101.

9.102.

9.103.

9.104.

A fluid flows with uniform velocity V| through a semi-infinite channel of width D and emerges through
the opening AB [Fig. 9-51]. (a) Find the complex potential for the flow. (b) Determine the streamlines and equi-
potential lines and obtain graphs of some of these. [Hint. Use entry C-5 on page 256.]

Give a potential theory interpretation to Problem 9.30.
(a) Show that in a vacuum, the capacitance of the parallel cylindrical conductors in Fig. 9-52 is

1
D2 _ RZ _ R2
2cosh™ | m———L 2
2R\R,

(b) Examine the case Ry = R, = R and compare with Problem 9.28.

Show that in a vacuum, the capacitance of the two parallel cylindrical conductors in Fig. 9-53 is

1

R+ R:—-D?
2 cosh"(l_'_Z)

2RiR,

N ;
b D] c
Fig. 9-52 Fig. 9-53 Fig. 9-54

Find the potential at any point of the unit cylinder of Fig. 9-54 if AB, BC, CD, and DA are kept at potentials
Vo, 0, — Vo, and 0, respectively.

The shaded region of Fig. 9-55 represents an infinite conducting half plane in which lines AD, DE, and DB are
maintained at temperatures 0, 7 and 27, respectively, where T is a constant. (a) Find the temperature every-
where. (b) Give an interpretation involving potential theory.

E

Fig. 9-55

Work the preceding problem if (a) DE is insulated, (b) AB is insulated.

In Fig. 9-55, suppose that DE represents an obstacle perpendicular to the base of an infinite channel in which a
fluid is flowing from left to right so that, far from the obstacle, the speed of the fluid is V}. Find (a) the speed and
(b) the pressure at any point of the fluid.
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9.105. Find the steady-state temperature at the point (3, 2) in the shaded region of Fig. 9-56.
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9.106. An infinite wedge-shaped region ABCD of angle /4 [shaded in Fig. 9-57] has one of its sides (CD) maintained
at 50°C; the other side ABC has the part AB at temperature 25°C while part BC, of unit length, is insulated. Find

the steady-state temperature at any point.

20°C 80°C

Fig. 9-56

ANSWERS TO SUPPLEMENTARY PROBLEMS

9.37. 1—(2/mtan"'(y/x)

) y | R A
9.38. 1 77_tan (x—l) 71_tan (x+1)
939. 7)1 - Zan1 (2S00
T 1—172
9.42. 10[ 1 Ltan™! (4r Smf) ]
T 4—r

9044, Jtan (=22 ) —1
T x2 —y?

9.62. (a)® =D, + (@) 0, (b) e = (@ — Dy)/ar 9.101.

9.63.

9.64.

9.66.

9.70.

9.73.

Fig. 9-57

(a) Vo{l —ztan—l(%)}
T x2—y

(a) Vo In{z(z> — )}

m/a _ T/a
tm] —2gin( 2=
7 — 7]

(a) 60 — (120/77) tan~" (y/x)

45.9°C
Vo tan-" 2rsin 0 4 tan~! 2rcos 6
T 1—r? 1—r?
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Special Topics

10.1 Analytic Continuation

Let F(z) be a function of z which is analytic in a region R; [Fig. 10-1]. Suppose that we can find a function
F>(z) which is analytic in a region R, and which is such that F(z) = F»(z) in the region common
to R and R,. Then we say that F,(z) is an analytic continuation of F(z). This means that there is
a function F(z) analytic in the combined regions R; and R, such that F(z) = Fi(z) in R; and
F(z) = F»(2) in 'R,. Actually, it suffices for R; and R, to have only a small arc in common, such as
LMN in Fig. 10-2.

Fig. 10-1 Fig. 10-2

By analytic continuation to regions R3, R4, etc., we can extend the original region of definition to other
parts of the complex plane. The functions F(z), F2(z), F3(2), ..., definedin R, R,, Rs, ..., respectively,
are sometimes called function elements or simply elements. It is sometimes impossible to extend a function
analytically beyond the boundary of a region. We then call the boundary a natural boundary.

Suppose a function F(z) defined in R is continued analytically to region R, along two different paths
[Fig. 10-3]. Then the two analytic continuations will be identical if there is no singularity between the paths.
This is the uniqueness theorem for analytic continuation.

If we do get different results, we can show that there is a singularity (specifically a branch point) between
the paths. It is in this manner that we arrive at the various branches of multiple-valued functions. In this
connection, the concept of Riemann surfaces [Chapter 2] proves valuable.

We have already seen how functions represented by power series may be continued analytically
(Chapter 6). In this chapter, we consider how functions with other representations (such as integrals) may
be continued analytically.



CHAPTER 10 Special Topics

N

!
.

Ny

Fig. 10-3 Fig. 10-4

10.2 Schwarz’s Reflection Principle

Suppose that F(z) is analytic in the region R; [Fig. 10-4] and that F(z) assumes real values on the part
LMN of the real axis.

Then Schwarz’s reflection principle states that the analytic continuation of Fi(z) into region R,
(considered as a mirror image or reflection of R with LMN as the mirror) is given by

F(2) =Fi1(2) (10.1)

The result can be extended to cases where LMN is a curve instead of a straight line segment.

10.3 Infinite Products

Let P, = (1 +wi)(1 +wy)---(1 +w,) be denoted by [],_, (1 +wi) where we suppose that for all &,
wy # —1. If there exists a value P #0 such that lim,_. P, = P, we say that the infinite product

A 4+w)( +w) - =TT2, (1 +wy), or simply [T(1 + wy), converges to P; otherwise it diverges. The
quantities w; may be constants or functions of z.
If only a finite number of the quantities wy = —1 while the rest of the infinite product omitting these

factors converges, the infinite product is said to converge to zero.

10.4 Absolute, Conditional and Uniform Convergence of Infinite Products

Suppose the infinite product [] (1 + |wk|) converges. We then say that [ | (1 + wy) is absolutely convergent.

Suppose [ (1 + wy) converges but [ [ (1 + [wx|) diverges. We then say that [] (1 4 wy) is conditionally
convergent.

An important theorem, analogous to one for infinite series, states that an absolutely convergent infinite
product is convergent, i.e., if [ ] (1 + |wy|) converges, then [] (1 4+ wy) converges (see Problem 10.65).

The concept of uniform convergence of infinite products is easily defined by analogy with infinite series
or sequences in general. Thus, if [;_, {1 + wk(2)} = P4(z) and ]_[,fl1 {1 +wi(2)} = P(2), we say that P,(z)
converges uniformly to P(z) in a region R if, given any € > 0, we can find a number N, depending only on €
and not on the particular value of z in R, such that |P,(z) — P(z)| < e for all n > N.

As in the case of infinite series, certain things can be done with absolutely or uniformly convergent
infinite products that cannot necessarily be done for infinite products in general. Thus, for example, we
can rearrange factors in an absolutely convergent infinite product without changing the value.
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10.5 Some Important Theorems on Infinite Products

1. A necessary condition that ] (1 + wy) converge is that lim,_, « w, = 0. However, the condition is
not sufficient, i.e., even if lim,_, ., w,, = 0, the infinite product may diverge.

2. If Y |wi| converges [i.e., if ) wy converges absolutely], then [ [ (1 + [wy]), and thus [T (1 4 wy),
converges [i.e., [ ] (1 + wy) converges absolutely]. The converse theorem also holds.

3. [If an infinite product is absolutely convergent, its factors can be altered without affecting the value
of the product.

4. Suppose in a region R, |wi(z)| < My, k=1, 2, 3,..., where M} are constants such that ) M;
converges. Then [ {1 4+ wx(z)} is uniformly (and absolutely) convergent. This is the analog of
the Weierstrass M test for series.

5. Suppose wi(z), k =1, 2, 3,..., are analytic in a region R and )_ wy(z) is uniformly convergent in
R. Then []{l 4+ wx(z)} converges to an analytic function in R.

10.6 Weierstrass’ Theorem for Infinite Products

Let f(z) be analytic for all z [i.e., f(z) is an entire function] and suppose that it has simple zeros

at aj, az, as,... where 0 < |a;| < |az| <a3| < --- and lim,_« |a,| = 0. Then, f(z) can be expressed
as an infinite product of the form
o= (1 2] 102)
k=1 Gk
A generalization of this states that if f(z) has zeros atay #0, k =1, 2, 3,..., of respective multiplicities

or orders g, and if for some integer N, Y -, 1/ay is absolutely convergent, then

) 2 N—1 M
@) = 105 | {(1 - aZk) exp[z+lz+ . +1Z“ . (103)
k=1

ax  2a? N—1d¥!

where G(z) is an entire function. The result is also true if some of the a;’s are poles, in which case their
multiplicities are negative.
The results (10.2) and (10.3) are sometimes called Weierstrass’ factor theorems.

10.7 Some Special Infinite Products

. Z2 Z2 ® Z2
1. smz:z{l—ﬂ_zHl—(ZW)Z}...:Zﬂ(l_kzﬂa)
Z2 ZQ 0 422
> COSZ_{1_w/zf}{l_(3w/2)2}"'_ﬂ<1_<2/<—1>2772>
. Z2 Z2 oo Z2
> S‘“hz:z{l%2}{”<zm2}'“:,ﬂ<”kzﬂ>

4. coshz= {1-+ z }{1-+ < }--~-— fﬁ'<1-+4zz>
' ‘= (7/2)? (3m/2)? U 2k — 1) 72

10.8 The Gamma Function

For Re{z} > 0, we define the gamma function by

R@zjﬁ%”ﬁ (10.4)
0



CHAPTER 10 Special Topics

Then (see Problem 10.11), we have the recursion formula

Fz+1) =20 (10.5)

where I'(1) = 1.
Let z be a positive integer n. We see from (10.5) that

I'n+1)=nn—-1)---(1) =n! (10.6)

so that the gamma function is a generalization of the factorial. For this reason, the gamma function is also
called the factorial function and is written as z! rather than I'(z + 1), in which case we define 0! = 1.

From (10.5), we also see that if z is real and positive, then I'(z) can be determined by knowing the values
of ') for0<z< 1. If z = %, we have [Problem 10.14]

F<1> =Jm (10.7)

For Re{z} < 0, the definition (10.4) breaks down since the integral diverges. By analytic continuation,
however, we can define I'(z) in the left hand plane. Essentially, this amounts to use of (10.5) [see
Problem 10.15]. Atz =0, —1,—2,..., I'(z) has simple poles [see Problem 10.16].

10.9 Properties of the Gamma Function

The following list shows some important properties of the gamma function. The first two can be taken as
definitions from which all other properties can be deduced.

1-2-3...k
L. [(z+1) = lim kK = lim Lk
GHO=lim ey ernt i len
where [ ] (z, k) is sometimes called Gauss’ || function.
2. 1 Yz = { Z} —z/k
—=ze I+ —te
I'(z) ,E k
1 1 1
where y = lim {1 + 3 + 3 R lnp} = .5772157 ... is called Euler’s constant.
p—>© p
3. F@Qra -z =—
sin 717

In particular, if z =3, T'(}) = /7.

4. 22T (z + %) = /7' (22)

This is sometimes called the duplication formula for the gamma function.

5. Form=1,2,3,...,

1 2 -1
I'or (z + —)F(z + —) e F(z + m—) = m27m ()= DIT (1mgz)
m m m
Property 4 is a special case of this with m = 2.
6. '@z +(1 1>+<1 1 )+ +<1 1 >+
NGO YT\ ; 2 z+1 n z+n-—1

7. F’(l)zje"lntdt:—y
0
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1 1 -
8. F(Z) 262m7_1§tz 16 Tdt
C

where C is the contour in Fig. 10-5. This is an analytic continuation to the left hand half plane of the
gamma function defined in (10.4).

t plane
y
B - A
D < X
Fig. 10-5

9. Another contour integral using contour C [Fig. 10-5] is given by

i

1
) e ldt = —— ¢ (=) e dt
2sinwz§;( e 2m'i|;( ) e
C C

I'z) =

10.10 The Beta Function

For Re{m} > 0, Re{n} > 0, we define the beta function by
1

B(m, n) = Jr’”“(l — 0" dr (10.8)
0

As seen in Problem 10.18, this is related to the gamma function according to
I'(m)I"
B(m, n) = (m)I'(n)

=Tt (10.9)

Various integrals can be expressed in terms of the beta function and thus in terms of the gamma function.

Two interesting results are
/2

. ome _ 1 L(m)[(n)
2m—1 2n—1 _ —
J sin 0 cos 60do= 2B(m, n) AT m + 1) (10.10)
0
R 1 T
Jl dt=B(p, 1 —p)=T(pl'd —p)=— (10.11)
+t sinpr
0

the first holding for Re{m} > 0 and Re{n} > 0, and the second holding for 0 < Re{p} < 1.
For Re{m} < 0 and Re{n} < 0, the definition (10.8) can be extended by use of analytic continuation.

10.11 Differential Equations

Suppose we are given the linear differential equation
Y'+p2Y +q(2)Y =0 (10.12)

If p(z) and ¢(z) are analytic at a point a, then a is called an ordinary point of the differential equation. Points
at which p(z) or g(z) or both are not analytic are called singular points of the differential equation.

EXAMPLE 10.1 For Y" + 7Y’ + (z2 — 4)Y = 0, every point is an ordinary point.
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EXAMPLE 10.2 For (1 —22)Y” —2zY' +6Y =0 or Y — {2z/(1 — 2)}Y' 4+ {6/(1 — 2*)}¥Y = 0, we note that
z = =+ 1 are singular points; all other points are ordinary points.

Let z = a be a singular point but (z — a)p(z) and (z — a)*q(z) are analytic at z = a. Then z = a is called a
regular singular point. If z = a is neither an ordinary point or a regular singular point, it is called an irre-
gular singular point.

EXAMPLE 10.3 In Example 10.2, z = 1 is a regular singular point since

2z \ 2z o 6 _6-—6z
(z_l)(_l—Z2>_Z+1 and (Z 1) (1—Z2>_Z+]

are analytic at z = 1. Similarly, z = —1 is a regular singular point.

EXAMPLE 10.4 z’Y” 4+ (1 —2)Y’ —2Y = 0 has z = 0 as a singular point. Also,

l—z l—z of 2 2
z( p >: 2 and Z (—;) :_E

are not analytic at z = 0, so that z = 0 is an irregular singular point.

If Y1(z) and Y;(z) are two solutions of (10.12) that are not constant multiples of each other, we call the
solutions linearly independent. In such a case, if A and B are any constants, the general solution of (10.12) is
Y =AY, +BY, (10.13)

The following theorems are fundamental.

THEOREM 10.1. Let z = a be an ordinary point of (10.12). Then there exist two linearly independent
solutions of (12) having the form

> az—a)f (10.14)
k=0

where the constants g are determined by substitution in (10.12). In doing this, it may be
necessary to expand p(z) and ¢(z) in powers of (z — a). In practice, it is desirable to
replace (z — a) by a new variable.

The solutions (10.14) converge in a circle with center at a, which extends up to the nearest singularity of
the differential equation.

EXAMPLE 10.5 The equation (1 — z%)Y” — 2z¥’ + 6Y = 0 [see Example 10.2] has a solution of the form
> aiZ* that converges inside the circle |z] = 1.

THEOREM 10.2.  Suppose z = a is a regular singular point. Then there exists at least one solution having
the form

@—a) ) alz—a) (10.15)
k=0

where ¢ is a constant. By substituting into (10.12) and equating the lowest power of
(z — a) to zero, a quadratic equation for ¢ (called the indicial equation) is obtained. If
we call the solutions of this quadratic equation c; and c;, the following situations arise.

1. ¢y —cp # an integer. In this case, there are two linearly independent solutions
having the form (10.15).
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2. ¢) = c¢p. Here one solution has the form (10.15) while the other linearly indepen-
dent solution has the form

In(z — a) Z bi(z — a)<te (10.16)
k=0

3. ¢y —cy = an integer # 0. In this case, there is either one solution of the form
(10.15) or two linearly independent solutions having this form. If only one solution
of the form (10.15) can be found, the other linearly independent solution has the
form (10.16).

All solutions obtained converge in a circle with center at a, which extends up to the nearest singularity of
the differential equation.

10.12 Solution of Differential Equations by Contour Integrals

It is often desirable to seek a solution of a linear differential equation in the form

Y(z) = % K(z, )G(r) dt (10.17)
C

where K(z, t) is called the kernel. One useful possibility occurs when K(z, ) = €%, in which case

Y(z) = ﬂ@ A G(t) dt (10.18)
C

Such solutions may occur where the coefficients in the differential equation are rational functions
(see Problems 10.25 and 10.26).

10.13 Bessel Functions

Bessel’s differential equation of order n is given by

Y 472V +( —nP)Y =0 (10.19)
A solution of this equation when n > 0 is
n 2 4
z z z
J.(2) = 1— - 10.20
@ = T D { 22n+2)  2-4en+ 2N+ 4) } (10:20)

which is called Bessel’s function of the first kind of order n.
If n is not an integer, the general solution of (10.18) is

Y =AJ,(2) + BJ_,(2) (10.21)

where A and B are arbitrary constants. However, if n is an integer, then J_,(z) = (—1)"J,(2) and (10.20)
fails to yield the general solution. The general solution in this case can be found as in Problems 10.182
and 10.183.

Bessel functions have many interesting and important properties, among them being the following.

{ U102 Z 1"

n=—oo

The left side is often called the generating function for the Bessel functions of the first kind for
integer values of n.
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2. 2u—1(2) = 2nJp(2) + 2Jp11(2) =0

This is called the recursion formula for Bessel functions [see Problem 10.27].

d d -n —n
> CI@D) =D Ta@). D) = 2 ()
dz dz
1 [ ,
4. Ju(2) = Jcos(nd; —zsingp)d¢p, n = integer
0
1 innm | |
5. J.(2) = _Jcos(nq[) —zsing)dp — Slnnﬂ-J. efnd)*zsmhd’dd)
T T
0 0
Z
J.(b2)J! — bJ,(az)J (b
6. JtJn(at)Jn(bt) dr = 24902 (@2) = bl (@], B2}
b2
0
Z
n b n— b n— b
7. szn(az)Jn(bz) dr = 202 ‘(“]2 uladu1®2) g
0
[ 2
8. Jt{Jn(at)}z dr = Z5[{1,1(az)}2 — Ju-1(az)y41(az)]
0
1
9. Ju(2) = =— ?} VDD g =0, 41, +2,. ..
2770
C
where C is any simple closed curve enclosing ¢ = 0.
1
10. 7" ; _
Ju — izt — 12 n—1/2 dt
@ 1~3~5~~-(2n—1)7TJe (1=
=135 -Z-(2n T Jcos(zcos ) sin”" ¢ dp
0

A second solution to Bessel’s differential equation, when n is a positive integer, is called Bessel’s func-
tion of the second kind of order n or Neumann’s function and is given by

n—1 o k—n
Y,,(z)zJ,,(z)lnz—; (n o D'<2>

k=0 (10.22)

- 1ii (5)2k+n{G(k) +G(n + b))
2 £ R+ 0! \ 2

where G(k) =1+ +1+ -+ 1/k and G(0) = 0.

If n = 0, we have

Yo(2) = Jo(2)1 IESUE A UL P UL S A O (10.23)
0% =l IMIT 5 = 2 2) T rae 273 :
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In terms of these, the general solution of (10.19), when n is a positive integer, can be written

Y = AJ,(2) + BY,(2) (10.24)

10.14 Legendre Functions

Legendre’s differential equation of order n is given by
A =2)Y =22V +n(n+1)Y =0 (10.25)

The general solution of this equation is

Y=A{1 _n(nz—:— 1)Zz +n(n—2)(n4—:— 1)(11—1-3)Z4 _}
' ' (10.26)
+B{z—(n_ 1;('n+2)z3 L= 1)(;1—3;(';1+2)(;1+4)ZS _}

If n is not an integer, these series solutions converge for |z| < 1.If n is zero or a positive integer, polynomial
solutions of degree n are obtained. We call these polynomial solutions Legendre polynomials and denote
them by P,(z), n =0, 1, 2, 3,.... By choosing these so that P,(1) = 1, we find that they can be expressed
by Rodrigues’ formula

dl’l
2nnl dz"

from which Py(z) = 1, Pi(z) = z, P2(z) = (322 — 1), P3(2) = 1(52° — 32), etc.
The following are some properties of Legendre polynomials.

P,(z) = -1y (10.27)

] (o)
1. NP,
V1 =2zt 412 ;

This is called the generating function for Legendre polynomials.

_ e [, n—-1 ,, ne-Dr-2)n-3) ,,
2. P& = 21(n!)> {Z -0 T2 a@n—hen-3 ° }
_ L fe-n
3. P =5 f]g 2t — 2!
C

where C is any simple closed curve enclosing the pole ¢ = z.

! 0 ifm+#n

4 J Pu(2)Pa(2)dz = { 2

2n+1 I m n

=1
[See Problems 10.30 and 10.31.]

5. Pu(z) =

1 w

;J[Z-i-\/zz — lcos ¢|"dop
0

[See Problem 6.34]

6. (n+ DPyi1(2) — 2n + DzPy(z) + nPy—1(2) = 0

This is called the recursion formula for Legendre polynomials [see Problem 10.32].
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7. @2n+DP,(x) =P, (2) — P,_(2)

If n is a positive integer or zero, the general solution of Legendre’s equation can be written as

Y = AP,(2) + BQ,(2) (10.28)

where Q,(z) is an infinite series convergent for |z| < 1 obtained from (10.26). If n is not a positive integer,
there are two infinite series solutions obtained from (10.26) that are convergent for |z| < 1. These solutions
to Legendre’s equation are called Legendre functions. They have properties analogous to those of the
Legendre polynomials.

10.15 The Hypergeometric Function

The function defined by

a-b  aa+Dbb+1) ,
@be )=+ i e D

(10.29)

is called the hypergeometric function and is a solution to Gauss’ differential equation or the hypergeometric
equation

1 =2)Y +{c—(a+b+Dg}Y —aby =0 (10.30)

The series (10.29) is absolutely convergent for |z| < 1 and divergent for |z| > 1. For |z| = 1, it converges
absolutely if Re{c —a — b} > 0.
Suppose |z] < 1 and Re{c} > Re{b} > 0. Then, we have

I'(c)

e b6 = re b

1
J PN =T A — 1) ar (10.31)
0

For |z| > 1, the function can be defined by analytic continuation.

10.16 The Zeta Function

The zeta function, studied extensively by Riemann in connection with the theory of numbers, is defined
for Re{z} > 1 by
1 1 1 =1

{(D==+++ =

— 10.32
12 2z 3z — kz ( )

It can be extended by analytic continuation to other values of z. This extended definition of {(z) has the
interesting property that

(1 —2) =217 T (z) cos(mz/2)L(z) (10.33)
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Other interesting properties are as follows.

1. 1 tz—l
{(z) = mjm dt Re{z} >0
0

2. The only singularity of {(z) is a simple pole at z = 1 having residue 1.
3. IfBi, k=12, 3,...,is the coefficient of z2 in the expansion

1 1 = By
— t| — =1
%0 (2 Z) 2 (2K)!

k=1

then

22k_17T2kBk
2ky)=— k=1,2,3,...
g( ) (2k)! b 9 39

We have, for example, B = 1/6, B, = 1/30,..., from which {(2) = 172/6, (4 = 4/90, AU
The numbers By are called Bernoulli numbers. For another definition of the Bernoulli numbers,
see Problem 6.163, page 203.

e

where the product is taken over all positive primes p.

Riemann conjectured that all zeros of {(z) are situated on the line Re{z} = %, but as yet this has neither
been proved nor disproved. It has, however, been shown by Hardy that there are infinitely many zeros that
do lie on this line.

10.17 Asymptotic Series

A series
a
ap+—+——4---= il (10.34)
Z Z

is called an asymptotic series for a function F(z) if for any specified positive integer M,

M
a
limM{Fz)— Y —=! =0 10.35
Jim, { @) ;Z} (10.35)
In such a case, we write
Fo~Y & (10.36)
n=0

Asymptotic series, and formulas involving them, are very useful in evaluation of functions for large
values of the variable, which might otherwise be difficult. In practice, an asymptotic series may diverge.
However, by taking the sum of successive terms of the series, stopping just before the terms begin to
increase, we may obtain a good approximation for F(z).

Various operations with asymptotic series are permissible. For example, asymptotic series may be added,
multiplied or integrated term by term to yield another asymptotic series. However, differentiation is not
always possible. For a given range of values of z, an asymptotic series, if it exists, is unique.



CHAPTER 10 Special Topics

10.18 The Method of Steepest Descents

Let I(z) be expressible in the form

I(z) = JeZF(’) dt (10.37)
C

where C is some path in the ¢ plane. Since F(¢) is complex, we can consider z to be real.
The method of steepest descents is a method for finding an asymptotic formula for (10.37) valid for large
z. Where applicable, it consists of the following steps.

L.

Determine the points at which F’(t) = 0. Such points are called saddle points, and for this reason
the method is also called the saddle point method.

We shall assume that there is only one saddle point, say #;. The method can be extended if there
is more than one.
Assuming F(f) analytic in a neighborhood of #,, obtain the Taylor series expansion

F'(to)(t — 1)?
2!

Now deform contour C so that it passes through the saddle point 7y, and is such that Re{F ()} is
largest at t; while Im{F ()} can be considered equal to the constant Im{F(#y)} in the neighborhood
of 79. With these assumptions, the variable u defined by (10.38) is real and we obtain to a high
degree of approximation

F(t) = F(tp) + + .- = F(ty) — u? (10.38)

T dr
I(z) = &FW J e () du (10.39)
du
where from (10.38), we can find constants by, by, ... such that
dt )
j:bo+b1u+b2u + - (10.40)
U

Substitute (10.40) into (10.39) and perform the integrations to obtain the required asymptotic

expansion
1b 1-3b 1-3-5b
1(z>~fe2”'ﬂ>{bo+2+ =+ =+ } (10.41)
Z

27 2222228

For many practical purposes, the first term provides enough accuracy and we find

)
12) ~ /% &0 (10.42)

Methods similar to the above are also known as Laplace’s method and the method of stationary phase.

10.19 Special Asymptotic Expansions

1.

The Gamma Function

1 1 139
r ) ~2m77%e 31+ — - 10.43
(z+ 1) mzze { + 12 T 2882 51,840Z2+ } ( )

This is sometimes called Stirling’s asymptotic formula for the gamma function. It holds for large
values of |z| such that —7 < argz < .
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Let n be real and large. Then we have
T(n+1)=~2mn"e "' where 0 < 6 < 1 (10.44)
In particular, if n is a large positive integer, we have
nl ~ V2mmn"e™ (10.45)
called Stirling’s asymptotic formula for n!.

2. Bessel Functions

Ju(2) ~ \/7772 {P(z) c0s<z - %I’MT —iﬂ') + 0(2) sin(z — %nTr— % 77) } (10.46)

where

©\ (— D[4 — 12][4n® — 37] - [4n® — (4 — 1)°]
P(z)=1+ kZI: (2k)!26k22k

(10.47)
00 — i (—=D*[4n* — 12][4n? — 3%] - - - [4n® — (4k — 3)?]
N — (2k — 1)1206k=372k=1
This holds for large values of |z| such that —7 < argz < .
3. The Error Function
Z 2 0o
2 [ p ze™* 'k — (1/2)}
f@Q)=—=|e"dt~1+=—) (-1} ——5 "= 10.48
ert() = e a1 (10.48)
0

This result holds for large values of |z| such that —7/2 < argz < 7/2. For 7/2 < argz < 37/2,
the result holds if we replace z by —z on the right.

4. The Exponential Integral

N R e
EI(Z):JT dt ~ e Z;Z/CT (1049)
. =

This result holds for large values of |z| such that —7 < argz < 7.

10.20 Elliptic Functions

The integral
w

dt
= kl <1 10.50
. JJU—%U—Hﬂ ] (10.50)

is called an elliptic integral of the first kind. The integral exists if w is real and such that |[w| < 1. By analytic
continuation, we can extend it to other values of w. If t = sin 6 and w = sin ¢, the integral (10.50) assumes
an equivalent form

0 de
z:Ji (10.51)
) /1 —k2sin® 0

where we often write ¢ = am z.
Suppose k = 0, then (10.50) becomes z = sin” " w or, equivalently, w = sinz. By analogy, we denote
the integral in (10.50) when k # 0 by sn~!(w; k) or simply sn~'w when k does not change during a

1
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given discussion. Thus

L dt
- - 10.52
cEsmw J\/(l — 21—k R) ( .

0

This leads to the function w = snz, which is called an elliptic function or sometimes a Jacobian
elliptic function.
By analogy with the trigonometric functions, it is convenient to define other elliptic functions

cnz=+/1—sn2z, dnz=+1-—k%sn?z (10.53)

Another function that is sometimes used is tn z = (snz)/(cn z). The following list shows various properties
of these functions.

1. sn(0)=0, cn0)=1, dn(0) =1, sn(—z) =—snz, cn(—z) =cnz, dn(—z) =dnz
2. (d/dz)snz=cnzdnz, (d/dz)cnz = —snzdnz, (d/dz)dnz = —k*snzenz

3. snz=sin(amz), cnz = cos(amz)

snzycnzadnz; +cnzpdnzysnz
4. Sn(g) +29) = o (10.54)
1 —k?sn*z;sn” 2,
cnzycnzy —snzpsnzy dnzydnz
en(zy +29) = 2L (10.55)
1 —k?sn*z;sn’z;
dnz;dnz, —k*snzysnzyenzgcnz
dnz) +20) = ——= bbb (10.56)

1 —k%sn?z;sn?z,

These are called addition formulas for the elliptic functions.
5. The elliptic functions have two periods, and for this reason they are often called doubly-periodic
functions. Let us write

1 /2
dr J do
K= = (10.57)
J\/(l — 2)(1 — k21) ) V1 —ksin® 0
1 d T e
t
= = | ———— (10.58)
J\/(l — )1 — k212) J V1 — k2 sin® 0

0 0

where k and &, called the modulus and complementary modulus, respectively, are such that
k' = +/1 —k?. Then the periods of snz are 4K and 2iK’, the periods of cnz are 4K and
2K + 2iK’, and the periods of dn z are 2K and 4iK’. Tt follows that there exists a periodic set of
parallelograms [often called period parallelograms] in the complex plane in which the values
of an elliptic function repeat. The smallest of these is often referred to as a unit cell or simply a cell.

The above ideas can be extended to other elliptic functions. Thus there exist elliptic integrals of the
second and third kinds defined, respectively, by

w

]
| — 2
=J P = Jm — K2sin2 0.do (10.59)
0

1—1¢
0

¢

T di _J 6 (10.60)
(1 +n2) /(1 — 21— k22 ) (1+n sin® 0)v'1 — k2 sin® 6 '

0

Z
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SOLVED PROBLEMS

Analytic Continuation

10.1.

10.2.

10.3.

Let F(z) be analytic in a region R and suppose that F(z) = 0 at all points on an arc PQ inside R
[Fig. 10-6]. Prove that F(z) = O throughout R.
Solution

Choose any point, say z9, on arc PQ. Then, in some circle of convergence C with center at zq [this circle
extending at least to the boundary of R where a singularity may exist], F(z) has a Taylor series expansion

F(z) = F(z0) + F'(20)(z — 20) + 5 F"(z0)(z — 20)* + - --

But, by hypothesis, F(z9) = F'(z0) = F"(z0) = - -- = 0. Hence, F(z) = 0 inside C.
By choosing another arc inside C, we can continue the process. In this manner, we can show that F(z) = 0
throughout R.

Fig. 10-6 Fig. 10-7

Given that the identity sin? z + cos? z = 1 holds for real values of z, prove that it also holds for all
complex values of z.
Solution

Let F(z) = sin’ z + cos? z — 1 and let R be a region of the z plane containing a portion of the x axis [Fig. 10-7].
Since sin z and cos z are analytic in R, it follows that F(z) is analytic in R. Also F(z) = 0 on the x axis.
Hence, by Problem 10.1, F(z) = 0 identically in R, which shows that sin? z 4 cos? z = 1 for all zin R. Since
‘R is arbitrary, we obtain the required result.
This method is useful in proving, for complex values, many of the results true for real values.

Let Fi(z) and F»(z) be analytic in a region R [Fig. 10-8] and suppose that on an arc PQ in R,
F1(z2) = F»(2). Prove that F(z) = F»(z) in R.

Solution
This follows from Problem 10.1 by choosing F(z) = F(z) — F2(2).

Fig. 10-8 Fig. 10-9
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10.4. Let F';(z) be analytic in region R [Fig. 10-9] and on the boundary JKLM. Suppose that we can find a
function F,(z) analytic in region R, and on the boundary JKLM such that F'|(z) = F»(z) on JKLM.
Prove that the function

Fi(z) forzin R,

F —
@ =1 Fxo) forzin Ry

is analytic in the region R, which is composed of R and R, [sometimes written R = R; + R;].

Solution

Method 1. This follows from Problem 10.3, since there can be only one function F,(z) in R, satisfying the
required properties.

Method 2. Using Cauchy’s integral formulas.
Construct the simple closed curve SLTKS (dashed in Fig. 10-9) and let a be any point inside. From Cauchy’s
integral formula, we have (since F(z) is analytic inside and on LTKL and since F,(z) = F(z) on LTK)

dz

1 F(2) 1 J F(z) 1 J F(z)
F =— dz = — dz +—
2@) 217 % z—a < 2m ) z—a Z_’_277'1' Z—a
LTKL LTK KL

Also, we have by Cauchy’s theorem (since F;(z)/(z —a) is analytic inside and on KSLK and since
F1(z) = F(z) on KSL)

0=—
2w

1 fi;Fl(Z)d 1 JF(z)d+ 1 JF(z)dZ

z—a 2w ) z—a 2 ) z—a

KSLK KSL LK

Adding, using the fact that F(z) = F(z) = F»(z) on LK so that the integrals along KL and LK cancel,
we have since F(a) = F(a)

F(a):% f{) FQ@ 4

i z—a
LTKSL
In a similar manner, we find
n! F(z
F™a) =5 f‘i I
27 (z—a)"t
LTKSL

so that F(z) is analytic at a. But since we can choose a to be any point in the region R by suitably
modifying the dashed contour of Fig. 10-9, it follows that F(z) is analytic in R.

Method 3. Using Morera’s theorem.
Referring to Fig. 10-9, we have

F(z)dz = J F(z)dz + JF(z)dz—i- JF(Z)dZ-F J F(z)dz

KSLTK KSL LK KL LTK
= + Fi(z)dz + 45 Fy(2)dz =0
KSLK KLTK

by Cauchy’s theorem. Thus, the integral around any simple closed path in R is zero, and so, by Morera’s
theorem, F(z) must be analytic.
The function F,(z) is called an analytic continuation of Fi(z).
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10.5. (a) Prove that the function defined by F(z) =z — 7> +z° — z* + - - is analytic in the region
|z] < 1. (b) Find a function that represents all possible analytic continuations of F(z).

Solution

(a) By the ratio test, the series converges for |z| < 1. Then, the series represents an analytic function in this

region.
(b) For |z] < 1, the sum of the series is F»(z) = z/(1 + z). But, this function is analytic at all points except
z = —1. Since F»(z) = F(z) inside |z| = 1, it is the required function.

10.6. (a) Prove that the function defined by Fi(z) = fooo e~ dt is analytic at all points z for which
Re{z} > 0. (b) Find a function that is the analytic continuation of Fj(z) into the left hand
plane Re{z} <O.

Solution

(a) On integrating by parts, we have, when Re{z} > 0,

; e 5 e~ e P M
=1 t — (3¢ 6t —(6
() -on(5) v oo(5) o))
~ im {6_M3€_MZ 3 3M2e—Mz _6Me—Mz _6e—Mz} _E
Moo |zt z 2 3 [ S

(b) For Re{z} > 0, the integral has the value F,(z) = 6/z*. But this function is analytic at all points except
z=0. Since Fy(z) = F|(z) for Re{z} > 0, we see that Fy(z) = 6/z* must be the required analytic
continuation.

Schwarz’s Reflection Principle
10.7. Prove Schwarz’s reflection principle (see page 320).

Solution

Refer to Fig. 10-4, page 320. On the real axis [y = 0], we have F|(z) = F(x) = F|(x) = F|(2). Then, by
Problem 10.3, we have only to prove that F';(z) = F,(z) is analytic in R,.

Let Fi(z) = Ui(x, y) + iVi(x, y). Since this is analytic in R; [i.e., y > 0], we have by the Cauchy—
Riemann equations,

au; v, vy al, )
x oy’ ax 3y
where these partial derivatives are continuous.
Now, F1(z) = Fi(x —iy) = Ui(x, —y) +iVi(x, —y),andso F(z) = Ui(x, —y) —iVi(x, —y).Ifthisisto
be analytic in R,, we must have, for y > 0,

U, A=Vi) A=V _ U
Ay Ay

(@)
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But these are equivalent to (1), since

A=V Vi A=V 9V ond U, 93U
a(—y) dy’ oax  ox a(—y) By

Hence, the required result follows.

Infinite Products

10.8.

10.9.

10.10.

Prove that a necessary and sufficient condition for ]_[,?:1 (1 + |wy|) to converge is that ) [wy|
converges.

Solution

Sufficiency. If x > 0, then 1 +x < ¢* so that

n
Py =TT+ D = (0 D+ Dwal) -+ (14 Pgl) < ePlell o gl = gt
k=1

If ZZ":I |wk| converges, it follows that P, is a bounded monotonic increasing sequence and so has a limit,
ie., [Ti; (1 4 [wl), converges.

Necessity. If S, = Y ;_; [wi|, we have

Py =0+ wiDAd+ w2} (T wa) Z T+ Iwi + o + -+ wy| =145, = 1

If lim,,_, P, exists, i.e., the infinite product converges, it follows that S, is a bounded monotonic increasing
sequence and so has a limit, i.e., Y ., [wi| converges.

) 2
Prove that k];[1 <1 - %) converges.
Solution

Let w; = —(zz/kz). Then |wy| = |z|2/k2 and ) |wi| = 2|2 > l/k2 converges. Hence, by Problem 10.8, the

infinite product is absolutely convergent and thus convergent.

. 2 2 2 = 2
Prove that sinz = z(l —77_2) (1 —477_2> (1 —971_2> = Zl_[ (1 o k2772>'

Solution

From Problem 7.35, page 233, we have

¥4

J (cott — 1)dt =In (Lnt>
t 13

0

: | sinz j 2t . 2t N Ut
= n|{—— = —_— —_— ce.
0 z 2—m -4
0

0 2
Then, sinz = zl—[ (1 _kzzﬂ.z)'

k=1
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The Gamma Function
10.11. Prove that I'(z + 1) = zI'(z) using definition 10.4, page 321.

Solution

Integrating by parts, we have if Re{z} > 0,

M
Tz+1) =

M
z,—t 1 z,—t . T Nt
tte dt—A}gante dl‘—A}l_r)noo () (—e )0
0

M
- J(zf*l)(—e*')dt
0

O — 3

=z J et dr = ZI'(2)
0

10.12. Prove that I'(m) = 2 szm_le_xzdx, m > 0.
0

Solution

If + = x%, we have

00

T'(m) = [r’"_le_’ dt = J(xz)’"—le_szx dx =2 Jx2m_le_"2 dx
{ 0 0

0

The result also holds if Re{m} > 0.

10.13. Prove that I'(z)I'(1 — z) = — .
sin 71z
Solution

We first prove it for real values of z such that 0 < z < 1. By analytic continuation, we can then extend it to
other values of z.
From Problem 10.12, we have for 0 <m < 1,

Tl —m) = {2

0

In terms of polar coordinates (r, ) with x = rcos 6, y = rsin 6, this becomes

00
1 42 _ 2
x2m le,\dx ZJyl Zineydy
0

x2m71yl 72m€7(x2+_\’2)dx dy

o8 o3

w2 o -

4 J J (tan!~2m 0)(re*’2)drd9:2J tan' 2" 0dH = —
0 sinmi

o

6=0 r=0

using Problem 7.20, page 223, with x = tan> fand p = 1 — m.
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Prove that T'(}) =2 [ e " du = /7.

Solution

From Problem 10.12, letting m = %, we have

since I'(}) > 0. Thus, the required result follows.
Another Method. As in Problem 10.13,

{F(%)}Z = 2J€_xzdx 2Je‘y2dy = 4JJe_(’(z+y2)dxdy
0 0 00
/2 (oo s
=4J J e "rdrdd =
6=0 Jr=0

from which I'(}) = /.

By use of analytic continuation, show that I'(—}) = —2/7.

Solution

If Re{z} > 0, I'(z) is defined by (10.4), page 321, but this definition cannot be used for Re{z} < 0. However,
we can use the recursion formula I'(z + 1) = zI'(z), which holds for Re{z} > 0, to extend the definition for
Re{z} <0, i.e., it provides an analytic continuation into the left-hand plane.

Substituting z=—1 in T(z+1) =z, we find I'(})=-I(-}) or I'(-))=-2/7 using
Problem 10.14.

TFz+n+1)

(a) Prove that I'(z) = T DEED G

(b) Use (a) to show that I'(z) is an analytic function except for simple poles in the left-hand plane
atz=0, —1, =2, =3,....

Solution

(@ We have I'z+1)=2I'(), Tz +2) =+ DI'G+ D =@+ Dzl'@), I'z+3) = @+ DIz +2) =
(z4+2)(z+ )zl'(z) and, in general, I'z+n+1)=(+n)(z+n—1)---(z+2)(z+ Dz['(z) from
which the required result follows.

(b) We know that I'(z) is analytic for Re{z} > 0, from definition (10.4), page 321. Also, it is clear from
the result in (a) that I'(z) is defined and analytic for Re{z} > —n except for the simple poles at
z=0, —1, =2,..., —n. Since this is the case for any positive integer n, the required result follows.
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10.17. Use Weierstrass’ factor theorem for infinite products [equation (10.2), page 321] to obtain the
infinite product for the gamma function [Property 2, page 327].

Solution

Let f(z) = 1/I'(z 4+ 1). Then f(z) is analytic everywhere and has simple zeros at z = —1, =2, =3, ....
By Weierstrass’ factor theorem, we find

1 .. z .
— /') —z/k
=e | | 14+-=)e
I'z+1) i < k)

To determine f7(0), let z = 1. Then, since I'(2) = 1, we have

oy 1 , M 1
—_ L) N Vk — LSO 13 — - 1/k
l=e g(l+k>e e A}linwlg(ljtk)e

Taking logarithms, we see that

0= tim 1L b L ! No(i4L
f(O)_/JIPM{l+2+3+ + 27 1n[(1+1><1+2> <1+M)“

11 1
=lm{l+=+-+-+——InM} =
Mlinm{ +3t3t I } y

where vy is Euler’s constant. Then, the required result follows on noting that I'(z 4+ 1) = zI'(2).

The Beta Function

10.18. Prove that B(m, n) = B(n, m).
Solution

Letting t =1 —u,
1 1
B(m, n) = Jt’”"(l — " dr = J(l — """ du = B(n, m)

0 0

/2 /2
10.19. Prove that B(m, n) = 2 J sin?" 10 cos? ' do =2 J cos? 19 sin?16 de.
0 0

Solution

Let ¢ = sin® 6. Then
1 /2
B(m, n) = er—lu — i ldr = J (sin® 0)" ' (cos® 6)" 2 sin Ocos 6 dO
0 0

/2 /2
=2 J sin”" 19 cos? 10 do =2 J cos? 10 sin” 19 do
0 0

by Problem 10.18.
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I'm)I'(n)

1
_ m—1 _ -1 —
10.20. Prove that B(m, n) = Jl‘ (I =o' dr Ton+n)
0

Solution

From Problem 10.12, we have on transforming to polar coordinates,

I'mI'(n) = IZ J ¥l e)‘zdx’ [2 Jy2"*le*)’2 dy] -4 J Jx2m71y2nflef(x2+y2) dx dy
0 0

0 0

m/2 o0
=4 J J (cos?™ 9 sin2" = 9)(P2" 21 o) dr d 6

0=0 r=0

/2 0
= [2 J cos?" 19 sin?*! Od(il [J r2<m+”)‘1e_r2dr] = B(m, m)I'(m + n)

0 0

where we have used Problem 10.19 and Problem 10.12 with r replacing ¢ and m + n replacing m. From this,
the required result follows.

2 /2
10.21. Evaluate (a) J\/x(Z — x) dx, (b) J tan 6 d6.

0 0
Solution

(a) Letting x = 2¢, the integral becomes
1

1
Jw/4z(1 —02dr = 4[;‘/2(1 — "2 dt =4B(3/2, 3/2)

0 0
_4LGTG/) _4evmGym) _ 7
a I'3) o 2 )
/2 /2
(b) J A/tan 0 df = J sin'/?9 cos71/20d6=%3(%, )
0 0
1 T ﬂﬁ
2 (4) (4) 2 Sin(’lT/4) 2
using Problems 10.13, 10.19, and 10.20.
} 6
4 2 2
3/2 2N1/2 g 1
10.22. Show that Jy (16— )P dy = > \/; (ro).
0
Solution
Let y> = 161, i.e., y = 4t'/2, dy = 2r='/? dr. Then the integral becomes
1 1
J (8741 = V222 dry = 64Jt1/4(1 — )% dr
0 0
s,y OO _SOrHONY

U

_ 128V L) _ 12807 () 64\/2

2T 2 IO 2
using the fact that F(%)F(%) = a/[sin(w/4)] = /2 [Problem 10.13].
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Differential Equations

10.23.

10.24.

Determine the singular points of each of the following differential equations and specify whether
they are regular or irregular.

1 2 2
@ 2V +¥V +@—-n)Y =0 or Y”+ZY’+<Z Zzn)Y:O

2 1

b =DV 4+2z-1DY+Y=0 o Y+ Y+ LY =0
=1 (-1

Ly Ly

(1 —2) (1 —2)

© 220 —-Y"+Y -Y=0 o Y'+

Solution

(a) z =0 is a singular point. Since z(1/z) =1 and zz{(z2 — nz)/zz} =7 -n

regular singular point.

(b) At the singular pointz = 1, (z — 1){2/(z — 1)} = 2 is analytic but (z — D% {1/(z— DYy = {1/(z— 1%} is
not analytic. Then, z = 1 is an irregular singular point.

(c) At the singular point z = 0,

are analytic at z =0, it is a

{ | }_ | . 2{ - }__1
N20-2) 20-2 “N2a=o) "1-2

are not both analytic. Hence, z = 0 is an irregular singular point.
At the singular point z =1,

z—1)- {L} :_—21 and (z— 1)2{

2(1 —2z) z

are both analytic. Hence, z = 1 is a regular singular point.

1 }_z—l
2(1—2) 2

Find the general solution of Bessel’s differential equation

ZZY// +Zy/ + (ZZ _ nZ)Y =0
where n 20, +1, +2,....

Solution

The point z = 0 is a regular singular point. Hence, there is a series solution of the form ¥ = Y ;2 agZte
where a; = 0 for k = —1, —2, —3,.... By differentiation, omitting the summation limits, we have

Y — Z(k + C)akajLCil, Y = Z(k + C)(k +c— l)akzk+c—2
Then

Y = Z (k+ o)k +c— Dadte, zv' = Z (k + a2t

(2 — )Y = Z a e — Z nad e = Z e — Z na e

ZY 2V + @ =Y =Y (lk+0) = nla + a0} =0

Adding,

from which we obtain
[(k+¢)* —n*lag + ar2 =0 ()

2

If k =0, (¢ — n¥)ag = 0; and if ag # 0, we obtain the indicial equation c* — n? = 0 with roots ¢ = +n.

Case 1: ¢ = n.
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From (1), [(k + n)2 —n?lag + ar—p = 0 or k(2n + k)ay + ax_» = 0.
Ifhk=1,a=0.Itk=2,a, = —{ap/22n+2)}. If k =3, a3 = 0.
Iftk=4, a4 = —{a/42n + 4)} = {ap/2 - 42n + 2)(2n + 4)}, etc. Then

2 4
Y = k+c = & 1 — i < — e 2
D doz { 2212 2-4en+ 2+ 4) @
Case 2: ¢ = —n.
The result obtained is
_ Z Fal
Y'=aoz {1_2(2—2n)+2.4(2n+2)(2n+4)_"'] 3

which can be obtained formally from Case 1 on replacing n by —n.
The general solution if n # 0, +1, +2,... is given by

z ¢
Y:Az"{l —2(2n+2)+2.4(2n+2)(2"+4)_m’
2 z
+Bzin{1_2(2—2n)+2.4(2—2n)(4—2n)_W} "

If n=0, +£1, +2,... only one solution is obtained. To find the general solution in this case, we must
proceed as in Problems 10.175 and 10.176.

Since the singularity nearest to z = 0 is at infinity, the solutions should converge for all z. This is easily
shown by the ratio test.

Solution of Differential Equations by Contour Integrals

10.25. (a) Obtain a solution of the equation zY” 4+ (2n+ 1)Y' +z¥ =0 having the form

Y = §.e"G(r) dt.

(b) By letting Y = z"U and choosing the constant r appropriately, obtain a contour integral sol-
ution of 2U" + zU’ + (% — n>)U = 0.

Solution

(@) IfY =§.e"G(r)dt, we find Y = §.1e"G(r)dt, Y = §. > G(t) dt. Then, integrating by parts, assum-
ing that C is chosen so that the functional values at the initial and final points P are equal [and the inte-
grated part in zero], we have

P

¥ = i; 22“G(t)dt = e“G(t)| — {; G dt = —i; G (1) dt
C P C C
@Cn+ 1Y = f{; 2n + Dte G(t) dt
C
¥ = jﬁ e G(t) dt = ﬁ; (NP G} dt
C C

P
= PG} —

13 FRGOY di = —} SR dr

C

P

9}

Thus

Y +Qn+ DY +2¥ =0= % A—G'(H) + 2n + DIG(t) — {£GO)Y1dt
C
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10.26.

This is satisfied if we choose G(t) so that the integrand is zero, i.e.,

2n— 1)

—G'()+Q2n+ DG — GOy =0 or G@) = T

G(1)
Solving, G(r) = A(£> + 1)""/2 where A is any constant. Hence, a solution is

Y=A f]; @+ 112 ar
C
) fY=7U,thenY =z7U +r7'Uand Y =7U" +2r7'U + r(r — 1)Z"2U. Hence

Y+ QA+ )Y +zY =70 + 27U +r(r — DU
+@n+DZU +Qn+ D 'U+ 27U
=MV + 21 + @n+ DU
+[rr =D+ @n+ D+ 27U
The given differential equation is thus equivalent to
U+ Q2r+2n+ 1)U + [ +r* + 207U =0
Letting » = —n, this becomes z2U” + zU’ + (22 — n>)U = 0.

Hence, a contour integral solution is

U — Zr‘lY ZAZnieZt(IZ + 1)71*1/2 d[
C

Obtain the general solution of Y — 3Y’ 4+ 2Y = 0 by the method of contour integrals.

Solution

Let Y = ﬁ; EGdt, Y = + "Gt dt, Y = 4; ?¢“G()dr. Then
C C C

Y”—3Y’+2Y:$Fe”(t2—3t+2)G(t)dt:0
c
eZ[
is satisfied if we ch =1/ —3t+2). H Y=05——dt
is satisfied if we choose G(¢) /( + 2). Hence §t2—3t—|—2

o

If we choose C so that the simple pole # = 1 lies inside C while ¢ = 2 lies outside C, the integral has the value
2mies. If t = 2 lies inside C while ¢ = 1 lies outside C, the integral has the value 2mie*.
The general solution is given by ¥ = Ae? 4+ Be ™.

Bessel Functions

10.27.

Prove that zJ,,_1(z) — 2nJ,(2) + 2J,+1(2) = 0.

Solution

Differentiating with respect to ¢ both sides of the identity

e(l/Z)Z(I*I/[): Z ]n(z)tn

n=—o00

a/2z0-1/n) % l _ > 2z l _ = n—1
PURE {2<1+[2)}_ > 2<1+t2 L@ =" nl@)t

n=—00 n=—oo

yields
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that is,

i 2@t + i "2 = i 21, ()" !

n=—00 n=—00 n=-—0oo

Equating coefficients of #* on both sides, we have

2n(2) + 2hpi2(2) = 2(n + DJpy1(2)

and the required result follows on replacing n by n — 1.
Since we have used the generating function, the above result is established only for integral values of n.
The result also holds for non-integral values of n [see Problem 10.114].

L
C

1 . . .
Prove J,(2) = oy fi; 1 1/DA=D gr where C is a simple closed curve enclosing ¢ = 0.

Solution

We have e/2=1/0 — 5~ J ()"

m=—o0

00
so that t—n—le(l/Z)z(t—l/t) — Z tln_n_ljm(Z) and

f‘; /R gy = 3 Jm(z)ﬁ; =t gy 0
C m=—0oo C
Now, by Problems 4.21 and 4.22, page 132, we have
m—n—1 5, __ | 2m ifm=n
4” dt_{o if m @

Thus the series on the right of (1) reduces to 2miJ,(z), from which the required result follows.

Prove that if a # b,

{at,(bz)J) (az) — bJ,(az)J, (bz)}
»_ 2

J thy(at)J,(bt) dt =
0

Solution
Y, = J,(at) and Y, = J,(bt) satisty the respective differential equations
2Y] + 1Y + (@ —n*)Y; =0 (1)
Yy + 1Y) + (b —n*)Y, =0 )
Multiplying (1) by Y», (2) by Y; and subtracting, we find
ALY — 1Y) + 1YY — 1Y) = — )Y Ys
This can be written

t%(YzY{ - 1Y) + (Y] — 1 Y)) = (b — a)iYYs

or
d 4 !
S Y] = 1Y)} = (b* — Y Y,
Integrating with respect to ¢ from O to z yields

(v — az)JtYl Y,dt = (Y,Y| — Y Y})

Z

0
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or since a # b

zZ
J t],(at)J,(bt) dt = datn(b2)J (a2) = bl,(a)],(b2)}
2 — a2
0
Legendre Functions
1
10.30. Prove that J P(2)P,(2)dz =0 if m # n.
-1
Solution
We have
(1 =P —2zP, +m(m+ )P, =0 1)
(1 — 2P, —2zP, + n(n + 1)P, = 0 )

Multiplying (1) by P,, (2) by P,,, and subtracting, we obtain
(1 = D{P.P), — PP} — 2z{P,P,, — P,P,} = {n(n+ 1) — m(m + 1)}P,,P,

which can be written

d

(1- zz)[7 {P.P,, — PuP,} — 2z{P,P,, — P,,P,} = {n(n+ 1) — m(m + 1)}P,,P,

74
or

d ) ,

d—z{(l —2)(PuP,, — PuP,)} = {n(n + 1) — m(m + 1)}P,,P,

Integrating from —1 to 1, we have
1

1
{n(n + 1) — m(m + 1)) J Pu(@Pu(2)dz = (1 — 2)(PuP, — PuP,)| =0
-1

from which the required result follows, since m # n.

The result is often called the orthogonality principle for Legendre polynomials and we say that the Legendre
polynomials form an orthogonal set.

if m =n.

1
2
10.31. P that P, (2P, (2)dz =
rove thal Jl (P, (2)dz 1
Solution

Squaring both sides of the identity,

—_ P, ()"
V1-— 22t+t2 2_(; "

we obtain

11— 2zt 1-2z+2 Z ZPm(z)Pn(z)t’”*"

m=0 n=0
Integrating from —1 to 1 and using Problem 10.30, we find

1
J 1 1 — 2Zl + [2 Z Z{J m(Z)Pn(Z) dZ}tm+n

m=0 n=0

= i“ 1{Pn<z>}2dz}z2” (1)

n=0
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But the left side is equal to

1
——1In(1 =2z + 7
5 n( 7t + )

1+1¢ > 2 -
(i) = 2 @

using Problem 6.23(c), page 185. Equating coefficients of /> in the series (1) and (2) yields the required result.
10.32. Prove that (n + 1)P,41(z) — 2n+ 1)zP,(z) + nP,—1(z) =0

Solution

Differentiating with respect to ¢ both sides of the identity

P,()t"
Vi—2a+2 —2Zt+t2 Z;

we have
-t - n—1
= nP, ()1
(I =221+ 27" ;)" ©
Then, multiplying by 1 — 2zz + >, we have
(z—1) ZP @ = (1 =2zt +1%) ZnP !
n=0

or

Z 2Py — ZP @t = inP,,(z)t" : Z 2nzP, ()" + Z nP, ()"

n=0 n=0 n=0
Equating coefficients of ¢’ on each side, we obtain
ZPu(2) = Pu1(2) = (n + DPyy1(2) — 2nzPy(z) + (n — DP,—1(2)

which yields the required result on simplifying.

The Hypergeometric Function

-
10.33. Show that F(1/2, 1/2:3/2:22) = 22 %

Solution

i

e Fa breisy — 1 480, @@ DO+ 1)
O T T S T e+ 1) ¢

we have

(1/2)(1/2)z2+(1/2)(3/2)(1/2)(3/2)z4

1-(3/2) 1-2-(3/2)(5/2)

(1/2)(3/2)(5/2)(1/2)(3/2)(5/2)z6
1-2-3-(3/2)5/2(1/2)

122 1-3z24 1.3.5x° sin”!'z

. il 4=
+23+2 45+ -67+ Z

F(1/2,1/2;3/2;2) = 1+

using Problem 6.89, page 197.
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The Zeta Function

10.34. Prove that the zeta function {(z) = Y ,.; 1/k% is analytic in the region of the z plane for which

Re{z} = 1 4 & where 6 is any fixed positive number.

Solution
Each term 1/k* of the series is an analytic function. Also, if x = Re{z} > 1 4 §, then
‘ 1

kz

1

1 1
etink X

exlnk = Jex

Since Y 1/k'*? converges, we see by the Weierstrass M test that > e, 1/k* converges uniformly for

Refz} > 1 + 6. Hence, by Theorem 6.21, page 172, {(z) is analytic in this region.
Asymptotic Expansions and the Method of Steepest Descents

10.35. (a) Let p > 0. Prove that

7P ZP'H Zp+2 rdan

F(z) =

el Pt D
v
Z

< —t
n+1 €
(D) p(p+ 1) (p Jrn)Jﬂ,W1 dr
b4

(b) Use (a) to prove that

e v p , pp+1 B

that is, the series on the right is an asymptotic expansion of the function on the left.

Solution
(a) Integrating by parts, we have

M

- J (—e™)(—pr ") di

Z

M

e—l‘
I,=|—dt=1i P = i (a
§ J dt Mlinmje tPdt Mme (—e™H([E™?)
M o0

-z -M —t -z —t Z
e e e e e e
—im e al = [ a =
Moo | 22 MP P | P P P Plpt

4 4

Similarly, /,11 = (g—Z/ZPH) — (p + DIy4» so that

et et et pe*
I, = ZT_p{ZPﬁ —-(p+ 1)1p+2} =2 o +p(p+Dipps

By continuing in this manner, the result follows.

(b) Let

Su(z) = e’z{i—L_FM_

] P+2

...(_l)np(p+1)-~~(p+n—1)}

Zp+n
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Then

« —t
_ _ _ (_ 1)+l . e
R\(2) =F(2) — S =(—D""'p(p+ 1) (P+H)Jﬂ,+,,+ldt
Now, for real z > 0, :

© - ot
|&@n:mp+n~4p+mfﬁggdrsMp+n~«p+mJ;;;dr
z

4

_Ppt D (ptn)
- Zp+n+1

since
o0 o0
J e 'dt < J e ldr=1
z 0

Thus

plp+1)---(p+n)
[ N

0

lim |Z'R,(2)| < lim
—> 7—00

and it follows that lim,_, » z"R,(z) = 0. Hence, the required result is proved for real z > 0. The result can
also be extended to complex values of z.
Note that since

Unit| ‘ p(p+ 1) (p+n)/F™ | p+n
u | Ap(p+ 1) (p+n—=D/| ]
where u,, is the nth term of the series, we have for all fixed z
lim |24 —
n—oo un
and the series diverges for all z by the ratio test.
10.36. Show that I'(z + 1) ~ /2 e 1+ : + 1 139 +
.36. Show that I'(z ~ mIZze s — —
12z 28872 51,8407
Solution
We have I'(z+ 1) = fow T*e~"dt. By letting 7 = zt, this becomes
FE+1) =" leefz’dt = Jez('"“’)dt (D
0 0

which has the form (10.37), page 330, where F(f) =Int —¢.
F'(t)y =0 when ¢ = 1. Letting t = 1 +w, we find, using Problem 6.23, page 185, or otherwise, the

Taylor series

2 3 4

2 3 4 12 1y T
_gww W e e oD
273 4 2 3 4

2 3 4
F()=Int—1=1In(1 +w) — (1 +w) = <w—1+1—1+...)—1—w




CHAPTER 10 Special Topics

Hence from (1),

2 3 4
F(Z + 1) — Zz+le—z e—z(t—l) /2ez(t—1) /3—z(t—1)" J4+-- dt

z+1 -z

=7 e e*zwz/2ezwz/3fzw4/4+m dw (2)

L s o—s8

Letting w = 4/2/zv, this becomes
T+ 1) = 272 J 67026(2/3)«/51"/%371’1v4+~- dv 3)
z/2

For large values of z, the lower limit can be replaced by —oo, and on expanding the exponential, we have
F(Z+ 1) ~ \/— +1/2 — J e—vz{l + (%ﬁZ_I/ZUS _ Z—IU4) + .. } dv (4)

or

(&)

, 1 1 139
F(z+1)~«/27rzz"efz{l+ }

12z 288z2 ©51,8407% *

Although we have proceeded above in a formal manner, the analysis can be justified rigorously.

Another Method. Given

(-1 -1 «-1n

F(t)y=-1- — o= —1—
(® ) + 3 1 + u
Then
12 1)
uzz(t D> @¢-1 .
2 3
and by reversion of series or by using the fact that F(r) = Int — ¢, we find
dt
—=by +byu+ by’ +- - f+f V2 W
du 216

Then, from (10.41), page 330, we find

. 1/V2\1 1-3/42\1
Fiot 1) o [T atigni-nf s L¥2NT 1-3 i
e+ \/;Z ¢ V2+3(% ) stz la) 2t

or

1 1
T+ 1D ~2mzfe )1 ti et
28872

Note that since F”(1) = —1, we find on using (10.42), page 330,

T'z+1) ~ 27wz

which is the first term. For many purposes this first term provides sufficient accuracy.
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Elliptic Functions

d d
10.37. Prove: (a) —snz=-cnzdnz, (b)—cnz= —snzdnz.
dz dz

Solution y
dt
By definition, if z = J , then w = snz. Hence
V(I =2)1 — k2?)

0

dw 1

d
(@) d*Z(SUZ) ZEZ dzjdw

=/(1 —w?)(1 —k>w?) = cnzdnz
d d 1 d

b £ a2 A2 = (] —sn2 )12 —sn?

(b) dz(cnz) dz(l sn” z) 2(1 sn” z) —dz( sn” z)

1
= 5(1 —sn?2) 2 (=2snz)(cnzdnz) = —snzdnz

10.38. Prove (a) sn(—z) = —snz, (b) cn(—z) =cnz, (¢) dn(—z) = dnz.

Solution
[ d
(a) Ifz= , then w = snz. Let t = —r; then
; VA =21 = k22)
_JW dr ]W dr
7=- or —z= s
J 1 —r)H(1 — k2r?) J 1 =1 —k*r?)
that is, sn(—z) = —w = —snz

() ent—d) = 155 = V=575 —en:
(C) dn(_z) = \/1 — k2 Snz(—z) — \/1 — k2 SHZZ =dnz

10.39. Prove that (a) sn(z + 2K) = —snz, (b) cn(z + 2K) = —cnz.

Solution
¢ do .
We have z = | ——————s0 that ¢) = amz and sin ¢ = snz, cos ¢ = cnz. Now
0 V1 —k2sin* 0
d+m T O+
[ do J do [ do
= + _—
J V1 —k2sin® 0 V1 —k2sin?0 ) V1 —k2sin® 6
0 0 ™

/2 3

_ZJ o +J di
V1 —Kk2sin’ 6 0\/1—kzsin2¢/

0

using the transformation 6§ = 7+ . Hence, ¢ + 7 = am (z + 2K).
Thus we have

(a) sn(z+ 2K) = sin{am(z + 2K)} = sin(¢p + ) = —sin¢p = —anz

(b) cn(z+ 2K) = cos{am(z + 2K)} = cos(¢p + m) = —cos ¢ = —cnz
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10.40. Prove that (a) sn(z +4K) = snz, (b) cn(z + 4K) = cnz, (¢) dn(z + 2K) = dnz.

Solution

From Problem 10.39

(a) sn(z+4K) = —sn(z+2K) =snz

(b) cn(z+4K) = —cn(z+2K) =cnz

(¢) dn(z+2K)=+/1—k2sn2(z+2K) =~/1—k*sn?z=dnz

Another Method. The integrand 1/+/(1 — 2)(1 — k%#2) has branch points at t = +1 and r = +1/k in the ¢
plane [Fig. 10-10]. Consider the integral from O to w along two paths C; and C,. We can deform C, into the
path ABDEFGHJA + C,, where BDE and GHJ are circles of radius € while JAB and EFG, drawn separately
for visual purposes, are actually coincident with the x axis.

t plane t plane
y y
w w
C, G
e LN
N D . N: :\1—>—A— o B7 N\p_
1k \//_} 1k NS e Ik
C2
Fig. 10-10 Fig. 10-11

We then have

1—e

T J d . J dr
Va —z2)(1 —ke) ) Ja—D -k V(I =2)(1 - k2)
0 BDE

C
0 —1+e
J dx J dx
+ +
. —/(1 = x)(1 — k2x?) 5 —/(1 —x2)(1 — k2x2)
0
dt dx
* J (1 —2)(1 — k?12) * J (1 —x2)(1 — k2x2)
GHJ _
T dt
+
: 1 =) — k22)
Cl
1—e w
—4 + J
) v —xz)(l — k2x2) ) V(1= t2)(1 — k2£2)

c

dt dt
* J V(I =) —k2t2)jL J —/(1 =) — k2£?)
BDE GHJ

where we have used the fact that in encircling a branch point, the sign of the radical is changed.
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On BDE and GHJ, we have t =1 —ee'® and t = —1 + ee'®, respectively. Then, the corresponding
integrals equal

T —iee'’ db . ET ¢ d

) V(2 = ee)(ee)(1 — KA(1 — eel)’) ) V(@2 — {1 — (1 — ee?)’)
2 . 2m .

J iee’®do iy j e do

) V(€2 - ee®){1 — KA(~1 + ee'’)’) ) V(2 = e - (—1 + ee’)’)

As € — 0, these integrals approach zero and we obtain

1 w

]V' dr o, J dx . J dr
5 (1 —2)(1 — k2%) . (1 —x2)(1 — k2x?) 5 V(I =21 —k2?)
Cz Cl

Now, if we write

J dt .

7= , i.e., w=snz
) VA=A -
C

then
dt

JaA =1 = k)’

7+ 4K = i.e., w=sn(z+4K)

[ R pa—

and since the value of w is the same in both cases, sn(z + 4K) = sn z.
Similarly, we can establish the other results.

10.41. Prove that (a) sn(K + iK') = 1/k, (b) cn(K + iK') = —ik'/k, (¢) dn(K + iK") = 0.
Solution

(a) We have

/_Jl dt
o /A =21 —k28)

where k' = +/1 — k2.
Letu=1/+1—k?2. Whent =0, u = 1; whent = 1, u = 1/k. Thus as ¢ varies from O to 1, u varies
from 1 to 1/k. By Problem 2.43, page 69, with p = 1/k, it follows that v1 — 12 = —ik'u/~/1 — k”u?.

Thus, by substitution, we have

1/k
K — i J du
) VA —u)(1 - k)
from which
1 1/k 1/k
o J du J du J du
K + iK' = —‘r =
JVA =)A= k) ) A=A - ) ) - - u?)

ie., sn(K +iK') = 1/k.
(b) From part (a),

en(K + iK'y = /1 —sn2(K +iK') = /1 — 1/k2 = —iN1 — k2 Jk = —ik'Jk

(¢) dn(K +iK') = /1 —k? sn®(K + iK') = 0 by part (a).
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10.42. Prove that (a) sn(2K +2iK’) =0, (b) cn(2K +2iK') =1, (c¢) dn(2K +2iK') = —1.

Solution

From the addition formulas with z; = zo0 = K + iK', we have

2sn(K + iK') en(K + iK') dn(K + iK")

=0
1 — k2 sn*(K + iK")

(a) sn(2K 4 2iK') =

en?(K + iK") — sn?(K + iK’) dn*(K + iK")

=1
1 — k% sn*(K + iK’)

(b) cn(2K + 2iK’) =

dn®(K + iK') — k? sn®(K + iK’) cn®(K + iK’)
dn(2K +2iK") = -1
(©)  dn(2K +2iK) 1= KZsn*(K + iK'

10.43. Prove that (a) sn(z +2iK’) =snz, (b)cn(z+2K +2iK')=cnz, (c)dn(z+4iK')=dnz.

Solution

Using Problems 10.39, 10.42, 10.170, and the addition formulas, we have

(a) sn(z+ 2iK') = sn(z — 2K + 2K + 2iK’)

__sn(z — 2K) en(2K + 2iK") dn(2K + 2iK") + sn(2K + 2iK") en(z — 2K) dn(z — 2K)
- 1 — k2 sn2(z — 2K) sn2(2K + 2iK’)

=Snz

.. cnzen(2K 4 2iK’) — snzsn(2K + 2iK") dn zdn(2K + 2iK")
(b) cnz+ 2K +2iK) 1 — 12 sn? 2sn2(2K + 2K") cnz

(¢) dn(z+4iK') = dn(z — 4K + 4K + 4iK")

_dn(z — 4K) dn(4K + 4iK") — k*sn(z — 4K) sn(4K + 4iK’) cn(z — 4K) cn(4K + 4iK")
- 1 — k2 sn2(z — 4K) sn2(4K + 4iK")

=dnz

10.44. Construct period parallelograms or cells for the functions (a)snz, (b)cnz, (c)dnz.

Solution

The results are shown in Figs. 10-12, 10-13, and 10-14, respectively.

y y y

VAN L/ L el L1

Y iy ey g S L =

L T S ke S T T

| L / . ||

| K| * T x T 1 KT

Iy syl I R iR

-t /S S S A
- o [
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Miscellaneous Problems

1 —
10.45. Prove that P,(z) = F(—n, n+1;1; ZZ)’ n=0,1,23,....

Solution

The Legendre polynomials P,(z) are of degree n and have the value 1 for z = 1. Similarly, from (10.29),
page 328, it is seen that

F(—n,n+1; I %) :1_n(n-|-l)(1 _Z)+n(n—1)(n+1)(n+2)

1—2)24...
2 16 -2+

is a polynomial of degree n having the value 1 for z = 1.
The required result follows if we show that P, and F satisfy the same differential equation. To do this, let

(1—-2)/2=u,ie., z=1-—2u, in Legendre’s equation (10.25), page 327, to obtain

d’y dy

ull —u)—+ {1 —-2u)—+nn+1)Y =0

du? du
But this is the hypergeometric equation (10.30), page 328, witha = —n,b =n+1,c =1,andu = (1 — 2)/2.
Hence the result is proved.

10.46. Prove that form =1, 2, 3,...,

PG5 -

Solution

We have

=G 3 - (-3 )

Then, multiplying these products term by term and using Problem 10.13, page 337, and Problem 1.52,

B e R et

’7T ks ’7T

sin(ar/m) sin@m/m)  sin(m — \)m/m
_ 17.mfl _ ,n.m—l _(27Tm71

= g]n(ﬂ'/m) Sln(zﬂ'/m) -+ -sin(m — 1)7T/m - m/szl - m

or P = 2m)™=Y2/ /m, as required.

10.47. Show that for large positive values of z,
Ju(2) ~ 2 cos( nT ﬂ')
e mzZ T2y

Solution

By Problem 6.33, we have

[ N

J.(2) = —Jcos(nt —zsin ) dt = Re —J e et gy

T T
0 0
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Let F(f) = isint. Then F'(t) = icost =0 where t = 7/2. If we let t = m/2 + v, the integral in braces

becomes
2 2 2
1 g ) o e—in'fr/2 g ) . e—in'n’/2 m . . 5 .
- efm(fn'/2+v)elz sin(7/2+4v) dv = eIV iz COSU gy e*tnvelz(lfv /240" /24—--1) dv
T T
—/2 —/2 —m/2
im0
eiz—nm, P oA
— e inv p—izv /2+izv* /24 dv
a
—m/2

Let v* = —2iu?/zor v = (1 — u//z, i€, u= %(1 + i)4/zv. Then, the integral can be approximated by

00
N pi(z—n/2
(1 = pe'erm J o~ AHDnu//z y—u =i (62— 1,

Wﬁ
or for large positive values of z,
(1 _ i)ei(zfnw/Z) < ) (] _ l-)ei(zfnw/Z)
_ J e du=——""""—
T2 JTz

and the real part is

! {cos( MT) + sin( mr)} =,/ 2 cos( nr 77)
7z \* 2 . 2 T Vmz . 2 4
Higher-order terms can also be obtained [see Problem 10.162].

10.48. Let C be the contour of Fig. 10-15. Prove that for all values of z

1 1t
F(Z):m§tz e 'dt
C

Solution

Referring to Fig. 10-15, we see that along AB, ¢ = x; along BDE, t = €¢'’; and along EF, t = xe*™. Then

€ 2 R
Flot gt — sz—le—x dx + J (eeie)zflefeeml-eeie do+ ‘[xz—lezﬁ(zfl) e dx
ABDEF R 0 €
R 27
_ 27z —1 _—x . 7 i —ee®
=™ =1 [xXTetdx+i| €% db
€ 0

Now, if Re{z} > 0, we have on taking the limit as € — 0 and R — oo,

[o )
z—1 _—t __ (¢ 2miz z—1 _—x
It e 'dt = (e —1)Jx e " dx ¢ plane
0

C

— (e277'iz _ ])F(Z)

But the functions on both sides are analytic for all z. D f \ B A

Hence, for all z,

1 -
F(Z):ezmi_litz e tdt
C

Fig. 10-15
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snzj;cnzpdn cnzp snzydn
10.49. Prove that sn(z; + zp) = 2161z nz; + Gz SNz, Zl.

1 —k%sn?z;sn%z,

Solution

Let z; 4+ z2 = «, a constant. Then dz,/dz; = —1. Let us define U = snz;, V = snz,. It follows that
du . dav . dVdzp
—=U =cnzydnz, — =V=—-"=—cnzpdnz
dZ] ! ! dZ] de dZ] 2 2

where dots denote differentiation with respect to z;. Then
UP=(1-UH1—-KU» and V2=(1-VH(1-kV?)
Differentiating and simplifying, we find
U=2K0° -1+ iU 1)
V=2V — (1 + KV 2
Multiplying (1) by V, (2) by U, and subtracting, we have
UV — UV =2k UV(U* — V%) 3
It is easy to verify that
UV — UPV? = (1 - PUPVH(V? = UP) “)
or

(1 = K2URVA)(V? - U?)

Uv -uv = : : )
uv+uv
Dividing equations (3) and (5), we have
UV —Uv _ —2K*UV(UV + UV) ©
uv—-uv 1 -RUV?
But
.. .. d . .
Uv-Uv=— UV -UV)
dz;
and

. . d
—2KPUV(UV 4+ UV) = d—(1 —K*UPV?)
Z1
so that (6) becomes

dUV —UV) _d(l —KU?V?)
uv-uv 1=k UV?

Uv—-uv
1 —k2U?V2
snzycnzpdnzy +cnzypsnzydnzg _

1 —k?sn?z;sn?z B

An integration yields = ¢ (a constant), that is,
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is a solution of the differential equation. It is also clear that z; 4+ z, = « is a solution. The two solutions must be
related as follows:

snzjcnzpdnzy +cnzpsnzzdnz;
1 —k?sn?z;sn?z

=F(z1 + 22)

Putting z, = 0, we see that F(z;) = snz;. Then, F(z; + z2) = sn(z; + z2) and the required result follows.

SUPPLEMENTARY PROBLEMS

Analytic Continuation

10.50.

10.51.

10.52.

10.53.

10.54.

10.55.

10.56.

10.57.

(a) Show that F\(z) = z+ 42> +52° +42* + -+ converges for |z] < 1.

. N 2 N\ 3

(b) Show that F5(z) =L —1In2 + G l.) +1 G l.) +1 G l,) + .- converges for |z — i| < /2.
—i —i —i

(c) Show that F(z) and F,(z) are analytic continuations of each other.

(d) Can you find a function that represents all possible analytic continuations of F;(z)? Justify your answer.

A function F(z) is represented in |z — 1| < 2 by the series

i(—l)”(z - >
s 22n+1
Prove that the value of the function at z = 5 is 1/16.
(a) Show that F(z) = fgo (1 + t)e™¥ dt converges only if Re{z} > 0.
(b) Find a function that is the analytic continuation of F(z) into the left hand plane.

(a) Find the region of convergence of F(z) = fow e~ G’ gt and graph this region.

(b) Find the value of the analytic continuation of F(z) corresponding to z =2 — 4i.

2 4 .
b4 Z b4 /-2 ifz <1
(a) Provethat1_22—1—1_24—1-1_28—1-“-—{l/(l_z) if 12 > 1

(b) Discuss these results from the point of view of analytic continuation.

Show that the series Y . ;z* cannot be continued analytically beyond the circle |z| = 1.

Suppose Yo", a,zP has |z] = 1 as a natural barrier. Would you expect Y v, (—1)"a,zP" to have |z = 1 as
natural barrier also? Justify your conclusion.

Let{z,}, n =1, 2, 3,...be asequence such that lim,_, «» z, = a, and suppose that for all n, z, # a. Let F(z) and

G(z) be analytic at a and such that F(z,) = G(z,),n =1, 2, 3,....

(a) Prove that F(z) = G(z). (b) Explain the relationship of the result in (a) with analytic continuation. [Hint.
Consider the expansion of F(z) — G(z) in a Taylor series about z = a.]

Schwarz’s Reflection Principle

10.58.

Work Problem 10.2 using Schwarz’s reflection principle.
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10.59. (a) Given that sin2z = 2 sin zcos z holds for all real values of z, prove that it also holds for all complex
values of z.

(b) Can you use the Schwarz reflection principle to prove that tan 2z = (2tanz)/(1 — tan® z)? Justify your
conclusion.

10.60. Does the Schwarz reflection principle apply if reflection takes place in the imaginary rather than the real axis?
Prove your statements.

10.61. Can you extend the Schwarz reflection principle to apply to reflection in a curve C?
Infinite Products
10.62. Investigate the convergence of the infinite products
cos kr
(a)]‘[<1+k3>,<b)]"[( )(c)]‘[<1+k2+1)

10.63. Prove that a necessary condition for [];~, (1 4+ wy) to converge is that lim,_,c w, = 0.

10.64. Investigate the convergence of (a) H (1 + %)’ (b) l_[ (1 + m), (©) 1_[ (1 + cot™' &%).
k=1 k=1

k=1

10.65. Suppose an infinite product is absolutely convergent. Prove that it is convergent.

o 2
10.66. Prove that cosz = 1_[ <1 — #)
il 2k — 1)* 72

—kz
10.67. Show that 1_[ <1 + 2 ) (a) converges absolutely and uniformly in the right half plane Re{z} > 0 and
=1

(b) represents an analytic function of z for Re{z} > 0.

1 1 1 1
10.68. Prove that (1 —?)(1 _ﬁ) (1 _E) cee = >

1 1 1 1
10.69. Prove that <1 —§> (1 +§><1 _Z> =3

00

2 0 4 2
10.70. Prove that: (a) sinhz = l_[ (l + 2 2) (b) coshz = 1_[ <1 + ﬁ)

k=1 k=

10.71. Use infinite products to show that sin 2z = 2 sin z cos z. Justify all steps.

1
10.72. Prove that 1_[ (l + Zsm 7> (a) converges absolutely and uniformly for all z and

k=1
(b) represents an analytic function.

10.73. Prove that l_[ (1 + k) k converges.
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The Gamma Function

10.74. Evaluate each of the following by use of the gamma function.
@ [7ye@dy (o) [y dy © Jy e} dy

) [ uwe 3 du (d) [} {In(1/0)""? dr

10.75. Prove that I'(z) = fol {ln(l/t)}z_1 dt for Re{z} > 0.

10.76. Show that J
1
10.77. Suppose m, n, and a are positive constants. Show that

J)gnefax" dr = Lg-mevmp (M1
n
0

(x— 1)

x2

dx=T1+p)I'(A —p), where —1 <p < 1.

n

[

-z

10.78. Show thatJe dr = \/ZT if Re{z} > 0.
Jt z

0

10.79. Evaluate [ (xInx)*dx.

10.80. Evaluate (a) I'(—7/2), (b) I'(—1/3).

B (_1)m+1 ﬁ21n+l

10.81. ShowthatT(—%—m)_] 35 omi D)
. . “ .. m

m=0,1,2,....

10.82. Prove that the residue of I'(z) at z = —m, m =0, 1, 2, 3,..., is (—1)"/m! where 0! = 1 by definition.

10.83. Use the infinite product representation of the gamma function to prove that

@ TN -9 = = (0) 22 TOr(+1) = V7T22)

10.84. Prove that if y > 0, then |T(iy)| = |——.
ysinh 7y

10.85. Discuss Problem 10.84 if y < 0.
10.86. Prove (a) Property 6, (b) Property 7, (c) Property 9 on pages 322 and 323.
10.87. Prove that T()T'(2) = 472/+/5.

10.88. (a) By using the infinite product representation of the gamma function, prove that for any positive integer m,

m™ Tl + 1/m(z+2/m)---T'(z+ [m — 11/m)
I'(mz)

is a constant independent of z.
(b) By letting z — 0 in the result of (a), evaluate the constant and thus establish Property 5, page 322.
The Beta Function

10.89. Evaluate: (a) B(3, 5/2), (b) B(1/3, 2/3).

10.90. Evaluate each of the following using the beta function:

@ fy B =0Pdr, ) A=y du, (o) [} O -2 dr, () [ dijSa— 1.



10.91.

10.92.

10.93.

10.94.

10.95.

10.96.

10.97.
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Prove that M = T.
Bm,n+1) n

a

[ d T(1/4))?
Given a > 0, prove thatJ y _{Id/4)

0,/a4—y4 N 4a\/27T '

p+1 1
BlY—— =
(5 3)

p+1 p+1
B(~——., ~——
(5"5)

Prove that = 27 stating any restrictions on p.

Evaluate: (a) [/”sin® §cos* 646, (b) [7* v/tan 0 d6.

(1 + x)m-Hz

3

Prove that Jﬂ =—
14+x5 33

1
1 m—1 xnfl
Prove that B(m, n) = 3 J de where Re{m} > 0 and Re{n} > 0. [Hint. Let y = x/(1 + x).]
0
T

0

(a) Show that if either m or n (but not both) is a negative integer and if m + n < 0, then B(m, n) is infinite.
(b) Investigate B(m, n) when both m and n are negative integers.

Differential Equations

10.98.

10.99.

10.100.

10.101.

10.102.

10.103.

10.104.

10.105.

Determine the singular points of each of the following differential equations and state whether they are regular
orirregular. (a) (1 —z)Y" —2Y' +6Y =0, (b) Q=2 +z2V'+ @+ 1Y =0,
© 20 =Y +Q2—2)Y +42Y =0

Solve each of the following differential equations using power series and find the region of convergence. If
possible, sum the series and show that the sum satisfies the differential equation.

@Y +2Y +Y=0, (b)Y +z¥=0, (c)z¥" +2Y +z¥ =0.

(a) Suppose you solved (1 — z2)Y” + 2Y = 0 by substituting the assumed solution ¥ = 3" a,z". What region
of convergence would you expect? Explain.
(b) Determine whether your expectations in (a) are correct by actually finding the series solution.

(a) Solve Y” + z2Y = 0 subject to Y(0) = 1, ¥'(0) = —1 and (b) determine the region of convergence.

Suppose Y = Yi(z) is a solution of Y 4+ p(2)Y’ + g(z)Y = 0. Show that the general solution is

exp{— | p(z) dz} d

Y = AY; BY|(z
1(z) + 1(Z)J A

(a) Solve zY” + (1 — z)Y’ — Y = 0 and (b) determine the region of convergence.

(a) Use Problem 10.102 to show that the solution to the differential equation of Problem 10.103 can be
written as

Z
Y =Aé —l—BeZJL dz
b4

(b) Reconcile the result of (a) with the series solution obtained in Problem 10.103.

(a) Solve zY” + Y — Y = 0 and (b) determine the region of convergence.
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10.106. Prove that Y = Vexp —%j p(z) dz} transforms the differential equation Y’ + p(2)Y’ + ¢(z)Y = 0 into
v+ {a@ 1@ - Hp@P v =0
10.107. Use the method of Problem 10.106 to find the general solution of zY” + 2Y’ + z¥ = 0 [see Problem 10.99(c)].

Solution of Differential Equations by Contour Integrals

10.108. Use the method of contour integrals to solve each of the following.
(a Y—-Y —=2Y=0, (b) Y'+4Y' +4Y =0, (c) Y"+2Y +2Y=0.

10.109. Prove that a solution of zY” + (a — z)Y’ — bY = 0, where Re{a} > 0, Re{b} > 0, is given by
1
Y = J eZ’tb71(1 _ Z)afbfl dt
0

Bessel Functions

10.110. Prove that J_,(z) = (—=1)"J,(z) forn =0, 1, 2, 3,....

d d
10.111. Prove (a) EZ{Z'IJ"(Z)} =7"J,-1(2), (b) d—z{zf”J,,(z)} =—7 "1 ).

10.112. Show that (a) Jj(z) = —Ji(z), (b) [Zh(@dz=22T3) +c. (¢) [P dz = 2T1(2)—2220(2) + c.
10.113. Show that (a) Ji2(z) = v/2/mzsinz, (b) J_1,2(z) = /2/mzcos 2.
10.114. Prove the result of Problem 10.27 for non-integral values of n.
10.115. Show that J35(z) sinz — J_3/,cos 7 = \/Z/Tf
10.116. Prove that J)(2) = 3 {/u—1(2) — Jut1(2)}.
10.117. Prove that (a) J)/(z) = ${/u—2(2) — 2Ju(2) + Jus2(2)}
(b) J;/(2) = §{/n3(2) = 3J5-1(2) + 3J041(2) = Juy3(2)}.

10.118. Generalize the results in Problems 10.116 and 10.117.

1 o
10.119. By direct substitution, prove that Jo(z) = —Jcos(z sin 0) d 0 satisfies the equation
T
0

V' +Y +z2¥=0

1
VZ+T
10.121. Prove that: (a) cos(acos 0) = Jo(a) — 2J2(a) cos 20 + 2J4(a) cos 460 + - - -
(b) sin(acos 0) = 2J;(a) cos 0 — 2J3(a) cos 360 + 2J5(a) cos 56 — - - - .

10.120. Suppose Re{z} > 0. Prove that JeiZ’Jo(z) dt =
0

10.122. Suppose p is an integer. Prove that J,(x +y) = > J,(x)J p—n(y)

n=—00

[Hint. Use the generating function.]

10.123. Establish Property 8, page 326.
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10.124. Let Re{z} > 0. Prove that

Z"L . o
Ju(2) = 3o % /=20 =n=1 g

A

where C is the contour of Fig. 10-5, page 323.
1 w . 00 .
10.125. Let Re{z} > 0. Prove that J,(z) = — J cos(ne — zsin ) dp — 2T J e nd-wsinhd g
T T

0 0
10.126. (a) Verify that Yy(z), given by equation (10.23) on page 326, is a solution to Bessel’s equation of order zero.

(b) Verify that Y,(z) given by equation (10.22) on page 326 is a solution to Bessel’s equation of order n.

10.127. Show that: (a) zY,—1(z) — 2nY,(2) + z¥n+1(z2) =0
d d
(b) Z{Zn Y2} =7"Yu1(2), (©) - {z7"Vu(@)} = =27 Y1 ().
z dz

10.128. Prove that V = /z{AJ,(z) + BY,(z)} is the general solution of

2
V”—I—{l—ﬂ}V:O
Ve

10.129. Prove that J,,11(2)Y,(z) — Ju(2)Yut1(2) = 1/z.

10.130. Show that the general solution of V" 42”2V =0 is

2 2
V= ﬁ{AJl/m (Ezmﬂ) + BYi/m (sz/z)}

10.131. (a) Show that the general solution to Bessel’s equation z2Y” 4 zV' + (22 — n®)Y =0 is

dz
z2J2(2)

Y = AJu(2) + BJy(2) J

(b) Reconcile this result with that of equation (24), page 327.
Legendre Functions
10.132. Obtain the Legendre polynomials (a) P3(z), (b) P4(z), (c) Ps(2).
10.133. Prove (a) P, ,(2) — P,_(zx) = 2n+ DP,(z), (b) (n+ DP,(z) =P, ,(z) — 2P, (2).
10.134. Prove that nP, ,(z) — (2n + 1zP)(z) + (n + DP,_,(z) = 0.

10.135. Prove that (a) Pp(—1) = (=1)",  (b) Pay41(0) = 0.

(=D 1\ 3\ /(5 2n—1\ 21-3:5---2n—1)
10.136. Prove that P,,(0) = oy <§><§)<E>( 2 )-(—1) 346

10.137. Verify Property 2, page 327.

WA (<1 @n -2k
10.138. Let [1/2] denotes the greatest integer < n/2. Show that P,(z) = Z 2kl — K1 — 2] 7

k=0

10.139. Prove that the general solution of Legendre’s equation (1 — z2)Y” — 2z¥’ 4+ n(n 4+ 1)¥Y = 0 for
n=0,1, 2,3,...is Y = AP,(2) + BQ,(z) where Q,(z) = P,(2) foo dr/(* — D{P,(D)}>.

10.140. Use Problem 10.139 to find the general solution of the differential equation (1 — z2)Y” — 2zY'+ 2Y = 0.
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The Zeta Function

1 1 1 1 (®f'adr
10.141. Let Re{z} > 0. Prove that {(z) = T +—4—=4--- J

ERTCT: TT@), e —1

1 1 1 1 L
10.142. Prove that, where 2, 3, 5, 7, ... represent prime numbers, <1 — ?> <1 — 3—2> <1 — 5—2) (1 — ﬁ) o= 3
10.143. Prove that the only singularity of {(z) is a simple pole at z = 1 whose residue is equal to 1.

10.144. Use the analytic continuation of {(z) given by equation (10.33), page 328, to show that
(@) {(—1)=—-1/12, (b) {(—3) =1/120.

10.145. Show that if z is replaced by 1 — z in equation (10.33), page 328, the equation remains the same.

The Hypergeometric Function

tan~! z

10.146. Prove that: (a) In(1 +z) = zF(1, 1; 2; —z), (b) =F(1/2,1;3/2 —2%).

Z

10.147. Prove that cos2az = F(a, —a; 1/2; sin® 7).
d ab

10.148. Prove that d—F(a, b,c;2)=—Fa+1,b+1;c+1;2).
z c

10.149. Suppose Re{c —a — b} > 0 and ¢ #0, —1, —2,.... Prove that

I'c)l'(c —a—b)

F b' M 1 = ——————
@b e D)= F e —b)
10.150. Prove the result (10.31), page 328.

10.151. Prove that: (a) F(a, b; ¢; 2) = (1 — 2" °F(c —a, c — b; c; )
(b) F(a, b; ¢c;2) = (1 —2)™F(a, ¢ — b; ¢; z/[z — 1]).

10.152. Show that for |z — 1| < 1, the equation z(1 — 2)Y” + {¢ — (a + b + 1)z}Y’ — abY = 0 has the solution
Fa, b,a+b—c+1;1—2).

Asymptotic Expansions and the Method of Steepest Descents

10.153. Prove that

Je_z,zdt:ezﬁ o U3 ypl3seeno
2pz 202z (2p%2)? (2p*2)"
P
1.3.5...(2n+1)°°e—zt2
n+1
x (=1 22y Jt2n+2 dt

p

and thus obtain an asymptotic expansion for the integral on the left.
10.154. Use Problem 10.153 to verify the result (10.48) on page 331.

10.155. Evaluate 50!.
1-3-5---2n-1) 1
2:4.-6---(2n) T

10.156. Show that for large values of n,

10.157. Obtain the asymptotic expansions:

[

e 1 7 1 1.3 1-3.5
—dt~— |— 1 —— -
@) J 1+ 2\/; { 2 o @ }

0
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0

ez’ 1 20 3
o [ Cant 2

1+t z 2 £ 7
0

10.158. Verify the asymptotic expansion (10.49) on page 331.

g
10.159. Use asymptotic series to evaluate Jert.
10 ©
10.160. Under suitable conditions on F(f), prove that J R dt ~
0

F(O) F'(0) F’(0)
- ° z2 &

10.161. Perform the steps needed in order to go from (4) to (5) of Problem 10.36.

10.162. Prove the asymptotic expansion (10.46), page 331, for the Bessel function.

0 00

n bn
10.163. Let F(z) ~ Z n and G(z) ~ E —. Prove that:
" "

n=0 n=0

[

@) F@) +G@) ~ Z ”“’”, (b) F(Z)G(Z)NZ;Where Cn = Zakbn .

n=0 n=0

10.164. Let F:) ~ Y~ Prove that JF(Z) dz~y %
n=2 4 n=2 (I’l - )Z

(]

dt ZA ! 3 25
10.165. Show that for large values of z, Jm ~ 5 [Zl7 + PR + 12872 + .. }
0

Elliptic Functions

10.166. Suppose 0 < k < 1. Prove that

/2

de T 1\’ 1-3
K= | ————=-1{1+(3) ¥ Kt
J V1—k2sin® 0 2{ +<2> +<2 4) o ]
0
10.167. Prove: (a) sn2 —M (b) cn2z = 1-2s’z+ K ez
B ' ST ket LT 1 —k2sn*z
10.168. If k = +/3/2, show that (a) sn(K/2) = «/2/3, (b) en(K/2) = /1/3, (c) dn(K/2) = /1/2.
snA +snB
10.169. Prove that m =1tn %(A =+ B) dn%(A — B)
10.170. Prove that (a) sn(4K +4iK’) =0, (b)cn(4K +4iK')=1, (c¢)dn4K +4iK')=1.
10.171. Prove: (a) snz =z — §(1 + k)2 + 75(1 + 14k + kH2° + - -,
(b)enz=1-32 +5(1 + 4" + -, () dnz=1—3k2 + KK +4)* +---
T 11
10.172. Prove that J =—K (—)
A-1 V2 \V2

10.173. Use contour integration to prove the results of Problem 10.40 (b) and (c).
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10.174. (a) Show that

¢ ¢
J' de 2 J de,
0\/1—k2sin2¢ 1+ko,/1—k2sinz¢>1

where k; = 2/k/(1 + k) by using Landen’s transformation, tan ¢ = (sin 2¢b,)/(k + cos 2¢, ).
(b) If 0 <k <1, prove that k < k; < 1.

(c) Show that by successive applications of Landen’s transformation a sequence of moduli k,, n = 1, 2, 3,...
is obtained such that lim,_, . k, = 1. Hence, show that if ® = lim, . ¢,

¢
J d¢ _ k1k2k3...1ntan<z+?)
0«/1—k2sin2¢ Vo & 42

(d) Explain how the result in (c) can be used in the evaluation of elliptic integrals.

10.175. Is tnz = (snz)/(cnz) a doubly periodic function? Explain.

10.176. Derive the addition formulas for (a) cn(z; + z2) and (b) dn(z; + z2) given on page 332.

Miscellaneous Problems
/2

1
10.177. Let |p| < 1. Show that J tan” 046 — EWSCC(pW/z),
0 [o )
10.178. Let 0 < n < 2. Show that Jsmtdz _ mosclnm/2)
" 2T ()
0
10.179. Let 0 < n < 1. Show that JCOS’ dr = TS0/
" 2I(n)
0

10.180. Prove that the general solution of (1 — z>)¥” —4z¥’ 4+ 10Y = 0 is given by
Y =AF(5/2, —1;1/2; 2%) + BzF(3, —1/2; 3/2; 7%)

00 1 (o]
10.181. Show that: (a) Jsin £ dt :EF(1/3)’ (b) Jcos £ dt :?m /3).
0 0

10.182. (a) Find a solution of zY” + Y’ + z¥ = 0 having the form (In z)(ZZ":O akz"), and thus verify the result (10.23)
given on page 326. (b) What is the general solution?

10.183. Use the method of Problem 10.182 to find the general solution of Z2Y” + zV’ + (z*> — n?)Y = 0. [See equation
(10.22), page 326.]

10.184. Show that the general solution of zU” + 2m + 1)U’ + zU = 0 is U = 77"{AJ,,(z) + BY,.(2)}.

10.185. (a) Prove that z'/2J(2iz'/?) is a solution of zU” — U = 0. (b) What is the general solution?

10.186. Prove that {Jo(2)}* + 2{/1(2)}* + 2{L(@)}* +--- = 1.
= Pll
10.187. Prove that ¢“*%Jy(zsin @) = Z Pu(cos @) 7
e n!
10.188. Prove that I'(}) = —/7(y+21n2).
Te 7 2
10.189. how that | —df = —y—1 L
0.189 (a)SowtatJ tdt y—Inz+z 2.2!+3.3!
z 0

—t

(b) Is the result in (a) suitable for finding the value of J %dt? Explain. [Compare with Problem 10.159.]

10



10.190.

10.191.

10.192.

10.193.

10.194.

10.195.

10.196.

10.197.

10.198.

10.199.

10.200.

10.201.

10.202.
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Let m be a positive integer. Show that F(3, —m; 1 —m; 1) =

Provethat(l—i—z)(l—E)(1+£)(1_§)...: VT
r

2 8 4

/2

d
Prove that J 7¢:IF(%, 1L K).
! V1—k2sin?¢ 2

The associated Legendre functions are defined by P (z) = (1 — 2ym/? (;1;7 P,(2)

(a) Determine P(32) (2).

(b) Prove that PU"(z) satisfies the differential equation

2
a _ZZ)Y//_ZZY/_I_ {n(n—l— 1) — 1TZZ}Y:O

(c) Prove that j_l . P ()P (2)dz = 0 if n # L.

This is called the orthogonality property for the associated Legendre functions.

1

xm—l 1— n—1 B ,

Suppose m, n, and r are positive constants. Prove that J ( ”izn x = (m nzl o
x+r (1 +r)

[Hint. Let x = (r + 1)y/(r +).]

Prove that if m, n, a, and b are positive constants,

/2
J sin? ! 6cos® ! 0dO  B(m, n)

(asin® 6+ bcos? O)""  2a"b"

0

[Hint. Let x = sin? 6 in Problem 10.194 and choose r appropriately.]

Prove that: (a) z/2 = J1(2) + 3J3(2) + 5J5s@) + -+, (b) 22/8 = 12J5(2) + 22J4(2) + 32Js(2) + - - -
(=" @2m)!

22m (! )? F(—m,m+%; 1 2%)

Let m be a positive integer. Prove that: (a) P;,(z) =
=D"2m+ 1)!

(b) P2m+l(z) = sz(m')z

ZF(—m, m—I—%; %; Zz)

(a) Prove that 1/(sn z) has a simple pole at z = 0 and (b) find the residue at this pole.

8§-10-12-14-16-18---
9.9.13.13-17-17--+°

Prove that {F(ﬁ)}2= 8T 4565

1
T - -)

Let |z| < 1. Prove Euler’s identity: (1 + z)(1 +z22)(1 +2°) - - -
Let |z| < 1. Prove that (1 —2)(1 — 2)(1 —2%)--- = 1 4+ Y o | (= 1) {"Cr=1D/2 4 znGnth/2y

(a) Prove that the following converges for |z| < 1 and |z| > 1:

z 7 7

I taroara T aroa+a+m

(b) Show that in each region the series represents an analytic function, say F(z) and F»(z), respectively.

(c) Are Fi(z) and F»(z) analytic continuations of each other? Is F(z) = F»(z) identically? Justify your
answers.
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10.203.

10.204.

10.205.

10.206.

10.207.

10.208.

10.209.

10.210.

10.211.

10.212.

10.213.

10.214.

10.215.

10.216.

10.217.

(a) Show that the series Z % converges at all points of the region |z| < 1.
n=1
(b) Show that the function represented by all analytic continuations of the series in (a) has a singularity at
z = 1 and reconcile this with the result in (a).

Let )" a,7z" have a finite circle of convergence C and let F(z) be the function represented by all analytic
continuations of this series. Prove that F(z) has at least one singularity on C.
cn2z+dn2z
Prove that —————— = dn’z.
1+4+cn2z
Prove that a function, which is not identically constant, cannot have two periods whose ratio is a real irrational
number.

Prove that a function, not identically constant, cannot have three or more independent periods.

(a) If a doubly-periodic function is analytic everywhere in a cell [period parallelogram], prove that it must
be a constant. (b) Deduce that a doubly-periodic function, not identically constant, has at least one singularity
in a cell.

Let F(z) be a doubly-periodic function. (a) Suppose C is the boundary of its period parallelogram. Prove that
fﬁc F(z)dz = 0. (b) Prove that the number of poles inside a period parallelogram equals the number of zeros,
due attention being paid to their multiplicities.

Prove that the Jacobian elliptic functions sn z, cn z and dn z (a) have exactly two zeros and two poles in each
cell and that (b) each function assumes any given value exactly twice in each cell.

pove i (15) (1 1) (14.2) - - o {)<}/{>}( o

3 3

/2
1 2! 4! 6!
—ztan 6
Prove that Je an dQNE_;S_;_;S_?
0
1-3-5---2n—1)
2:-4.6---(12n)

1-2
Prove that P,(cos 0) = 2{ ”cos 0+ Tn)cos(n —2)6

1-3-2n(2n—2)
2-4-2n—1)2n—23)

cos(n—4)0+---}

[Hint. 1 —2tcos O+ 1> = (1 — te'%)(1 — te=).]
(a) Prove that I'(z) is a meromorphic function and (b) determine the principal part at each of its poles.

Let Re{n} > —1/2. Prove that
1

. m
J 1 =AYV dr = Z7J(:0s(zcos9)sin2" 0deo

o= NSl

2nfr

2nl_,<m+n+1)
2 J
m—n+1\ "~
r(Z2—="-
(=)
/2

Prove that J cos”’Hcos g0db =
0

Prove that Jt” () dt =
0

al(p+1)

2”+1F<2+”+q)r(2 +p— q)'
2 2




10.218

. Prove that {F(%)}zz 4/ J

ANSWERS TO SUPPLEMENTARY PROBLEMS

10.50.
10.52.
10.53.
10.62.
10.64.
10.74.

10.98.
10.99.

10.100

10.101

10.103

10.105

(d) —In(1 — 2)

(b) z+ 1)/

(@) Refz + 1} > 0, (b) (=7 + 24i)/625
(a) conv., (b) div., (¢c) conv.,

(a) div., (b) div., (c) conv.,

10.79.
10.80.
10.89.
10.90.
10.94.

(a) 3/8, (b) ~/37/36, (¢) V/27/16, (d) /T,
() I'(5/8)/32

(@) Y =Ae 4+ Bze™*

(b) Y:A(l S -

Asinz+ Bcosz

CHAPTER 10 Special Topics

24/3125
(a) 16/m/105, (b) —3T(2/3)

(a) 16/315, (b) 27/3

(a) 41/3+/3, (b) /4, (c) 2437/16, (d) 7
(a) 37/512, (b) 7/+/2

(a) z = =1, regular. (b) z = 2, regular; z = 0, irregular. (c¢) z = 0, 1, irregular.

© Y=
Z
3 5
. (b)Y =A(l -2 +B £z
(b) (1 -2z7)+ (z 137 3.5°5.7
4 5 8
@Y =1-g— g f

3.474.5"'3.4.7.8 4.5-8.9 "

2
e Y:(A+Blnz)ez—B{z+Z—(1+%)+

2!

z 7 z

. (a) Y:(A—}-Blnz){

3

Z3

3!

(b) |z < o0

(1+%+§)+m}, (b) 21 > 0

2 3
artarart ] - ola et a0

10.108. (a) Y = Ae* +Be %, (b) Y = Ae 2 + Bze %, (c) Y = e *(Asinz + Bcosz)

10.132. (a) 3(52° — 32), 3(35z* — 302% + 3), (¢) §(63z° — 702° + 152)

10.140.

10.185

z—1
Y:Az+B=1+(1/2)zln(Z+l)}

. (b)Y = 712{A],(2iz'?) + BY, (2iz'/%)}

10.155. 3.04 x 10%

10.193. (a) 15z(1 — %) 10.198. 1



Abel’s theorem, 173, 196
Absolute convergence, 170, 179, 183, 195, 320, 328, 358
Absolute value, 2, 3, 4
Acceleration, 83
Addition, 1, 2
formula, 332, 365
Airfoil, 271
Algebraic:
function, 45
number, 29
Alternating series test, 152
Amplitude, 4
Analytic:
continuation, 176, 319, 322, 323, 328, 331, 333,
334, 337, 338, 357, 363, 366, 367
extension, 176
function, 77, 87, 88, 98, 105, 109, 115, 131, 142,
149, 160, 161, 282, 290, 291, 311, 319, 330,
333, 338, 341, 347, 357, 358, 366
part, 174
Annular region, 174
Annulus, 174, 255
Anti-derivative, 115
Arc, 83
Arc sine, 44
Area magnification factor, 243
Arg (Argument), 4
Argand diagram, 4
Argument, 4
theorem 145, 154, 155, 164
Associative law:
of addition 3, 9, 34
of multiplication 3, 9, 34
Asymptotic:
expansion, 330, 347, 363
series 329, 364
Axes 3
Axiomatic foundation of complex numbers, 3

Bernoulli:
numbers, 203, 329
theorem, 286
Bessel’s:
differential equation of order n, 325, 341, 362, 366
function, 193
of the first kind of order n, 325, 331, 343, 344,
354, 361, 362
of the second kind of order n, 326
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Beta function, 323, 339, 340, 359, 360
Biharmonic equation, 316
Bilinear transformation, 43, 245, 261, 263,
273, 278
Binomial:
coefficients, 19
formula, 19, 174
theorem, 174, 197
Blasius theorem, 301
Boundary:
conditions, 280
point, 8
Boundary-value problem, 280
Bounded set, 8, 48, 171
Branch, 41, 53
cut, 46, 5
line, 46, 53
point, 46, 81, 98, 175, 319, 351

Capacitance, 289
Capacitor, 289, 313
Cardioid, 255
Casorati—Weierstrass theorem, 175, 202
Cauchy principal value, 208
Cauchy—Goursat theorem, 115, 125, 140,
163, 334
Cauchy—Riemann equations, 27, 87, 102, 142,
296, 335
Cauchy’s:
convergence criterion, 171
inequality, 145, 151, 167, 176
integral formulas, 144, 146, 150, 163, 206,
238, 334
integral theorem, 115
theorem, 115, 125, 130, 140, 206, 238, 312
Cavitation, 312
Cell, 332, 353, 367
Centripetal acceleration, 100
Chain rules, 79
Change of variable, 113
Circle of convergence, 170, 183, 320, 358
Circular functions, 43
Circulation, 283
free flow, 283
Closed:
curve, 83
interval, 2
region 8§, 48



Closure:
law, 3
of a set, 8
property, 1
Cluster point, 8
Commutative law:
of addition, 3, 9
of multiplication, 3, 9
Compact set, 8
Comparison tests, 171, 178
Complement, 8
Complementary modulus of an elliptic function, 332
Complex:
conjugate, 2
conjugate coordinates, 7
electrostatic potential, 288
line integral, 112
numbers, 2
plane, 4
potential, 283, 288, 295, 301, 302
temperature, 290
variable, 41
velocity, 283
Components, 11
Composite function, 48
Condensor, 289
Conditional convergence, 170, 320
Conformal mapping, 83, 243, 259, 277, 282,
313, 316
Conjugate, 2
coordinates, 7
functions, 77, 109, 163, 280, 290, 314
Connected set, 8
Continuity, 47
Continuous curve, 83
Contour, 83, 207, 355, 362
integral, 114, 325, 342, 343, 344, 345, 361, 364
Convergence, 49, 169, 194, 320, 325, 328, 336, 342,
358, 366
to zero, 320
Converse of Cauchy’s theorem, 115, 125, 140
Coordinate curves, 42
Coulomb’s law, 287
Countable set, 8
Critical points, 243, 259
Cross:
product, 7
ratio, 245, 261
Curl, 85, 104

Definite integral, 112
Degree, 5, 43
Del, 84, 142

bar, 84
Deleted neighborhood, 7
Delta neighborhood, 7

DeMoivre’s theorem, 5, 35
Denominator, 1
Denumerable set, 8
Dependent variable, 41
Derivative, 77
Dielectric constant, 287
Differentiability, 77
Differential, 79

equations, 341, 360
Dipole, 285, 289

moment, 285
Dirchlet’s problem, 280, 309, 314
Direction, 6, 83
Disjoint sets, 8
Distributive law, 3, 16, 29
Divergence:

of a sequence, 49

of a vector function, 84, 108
Division, 1, 2
Domain, 8
Dot product, 7
Doublet, 285, 289

Doubly periodic function, 332, 365, 367

Dummy:

symbol, 117

variable, 117
Duplication formula, 332

Electric field intensity, 287
Element:
of an analytic function, 176, 319
of a set, 7
Elliptic:
function of the second kind, 332
function of the third kind, 332
integral of the first kind, 331
Entire:
complex plane, 7
function, 176, 202, 321
Equality, 3
Equation of continuity, 283
Equilibrant, 34
Equipotential:
curves, 284
lines, 284, 288, 296
Error function, 331
Essential singularity, 82, 97, 175
Euler’s:
constant, 330
formula, 5
identity, 366
Evaluation of definite integral, 207
Even function, 55
Exponential:
functions, 43
integral, 331
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Extended complex plane, 7 Image, 42, 242
Exterior: point, 50
of a curve, 114 Imaginary part, 2
point, 8 Incompressible flow, 283
Indefinite integral, 115, 131
Factored form, 6 Independence of path, 117
Factorial: Independent variable, 41
function, 322 Indicial equation, 324, 341
n, 19 Infinite:
Field, 3 product, 320, 336, 358, 359
Finite sequence, 48 sequence, 48
Fixed point, 70, 244 series, 49, 169
Fourier series, 201 Infinity, 47
Fluid: Initial point, 6
density, 301 Inside of a curve, 114
dynamics, 282 Integer, 1
flow, 282 Integrability, 112
about an obstacles, 286 Integral:
lines, 288, 290 function, 176
Fraction, 1 test, 172, 195
Fractional linear transformation, 43, 245 Integration by parts, 134
Function, 41 Interior:
Fundamental theorem of algebra, 6, 145, 152, 156 of a curve, 114
point, 8
Gamma function, 321, 325, 337, 348, 354, 359, Intersection of sets, 8
363, 367 Invariant point, 70, 244
Gauss’: Inverse:
differential equation, 328 function, 41
mean value theorem, 145, 152 hyperbolic functions, 45
II function, 322 of addition, 1
test, 172 of a point with respect to a circle, 157
theorem, 283 of a transformation, 242
Generating function, 325, 327, 361 of multiplication, 1
Geometric series, 68 trigonometric functions, 44
Green’s: with respect to addition, 3
first identity, 142 with respect to multiplication, 3
second identity, 142 Inversion, 245, 263
theorem, 114, 120, 122, 123, 124, 125 Involutory transformation, 277
Irrational number, 1
Harmonic function, 78, 88, 104, 142, 160, 163, 167, Irregular singular point, 324, 341, 360
280, 288, 290, 311, 314 Irrotational flow, 283
Heat flux, 289 Isogonal mapping, 243
Heine—Borel theorem, 8 Isolated singularity, 81, 98, 239
Higher order derivatives, 81 Isothermal lines, 290

Holomorphic function, 77
Hydrodynamics, 282

Hyperbolic functions, 43 Jacob'%an., 242, %78
Hypergeometric: elliptic function, 332
equation, 328, 354 of a transformation, 259
function, 328, 346, 354, 363, 366 Jensen’s theorem, 167
series, 200 Jordan curve, 114
, theorem, 114
Ideal fluid, 283 Jouk.ow§ki:
Identity with respect to: airfoils, 271
addition, 3 profiles, 271

multiplication, 3 transformation 271, 276
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Kepler’s problem, 198 Monotonic:
Kernel, 325 decreasing, 171
increasing, 171
Lacunary function, 177 Morera’s theorem, 115, 145, 151, 163, 192, 334
Lagrange’s expansions, 176, 190, 198 Multiple-valued function, 41
Landen’s transformation, 365 Multiplication, 1, 2
Laplace’s: Multiply-connected region, 113, 239
equation, 78, 103, 165, 280, 283, 288, 309, 314 Mutually exclusive sets, 8
method, 330
Laplacian, 78, 85 Natural:
operator, 85 barrier, 357
Laurant: base of logarithms, 43
expansion, 174 boundary, 43
series, 174, 178 logarithm, 43
theorem, 176, 186 number, 1
Least upper bound, 75 Negative number, 1
Legendre: Neumann’s problem, 281
functions, 328, 345, 366 Non-countable set, 8
polynomials, 193, 327, 354, 362, 366, Non-denumerable set, 8
differential equation of order n, 327, 362 Non-essential singularity, 82
Leibnitz’s rule, 148, 208 Non-isolated singularity, 81, 97, 98
Leminscate, 27, 276 Non-viscous flow, 283
Length, 6, 112, 137, 142 North pole, 6
L’Hospital’s rule, 81, 95 nth:
Limit, 46, 49, 159 derivative, 81, 144
of a sequence, 49 partial sum, 49, 169
point, 8 roots, 23
Linear: roots of unity, 26
differential equation, 323, 325 term, 48
independence, 324 Null set, 8, 29
transformation, 43, 245 Numerator, 1
Line:
integral, 112, 118 Odd function, 55
sink, 284 One-to-one:
source, 284 mapping, 242
Liouville’s theorem, 145, 151, 163, 201 transformation, 242
Logarithmic functions, 44 Open:
region, 8
Maclaurin series, 173 set, 8
Magnification factor, 243, 259 Operator, 79
Magnitude, 6 Ordinary point, 323
Many-valued function, 41 Origin, 1
Mapping, 242 Orthogonal:
function, 42, 50 family of curves, 82, 98
Mathematical model, 282 property for associated Legendre functions, 366
Maximum modulus theorem, 145, 153, 164 set, 345
Member, 7 trajectories, 108
Meromorphic function, 176, 367 Orthogonality principle, 345
Method of: Outside of a curve, 114
stationary phase, 330
steepest descents, 330, 363 Parallelogram, 332, 353
Minimum modulus theorem, 145, 154 area, 27
Mittag-Leffler’s expansion theorem, 209, 231 law, 6
Modulus, 3, 4 Parametric equations, 14
of an elliptic function, 332 Partial differential equation, 280

Moment, 286, 302 Path, 177
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Perfect conductor, 289 Remainder, 170
Period, 54 Removable:
Picard’s theorem, 175, 202 discontinuity, 47, 65
Piecewise smooth, 83 singularity, 82, 98, 175
Point, 4 Residue, 162, 205, 211, 329
at infinity, 7, 47, 57, 175 theorem, 162, 206, 209, 234
of accumulation, 8 Riemann:
Poisson’s integral formulas, 281 mapping theorem, 233-234, 282
for a circle, 145, 157, 281 sphere, 7
for a half plane, 146, 158, 281 surface, 46, 61, 72, 319
Polar: Rodrigue’s formula, 327
coordinates, 4 Root:
form, 4, 16 complex number, 22
Pole of order n, 81, 97, 161, 175, 205, 211 of an equation, 5
Polygonal path, 8 of unity, 6
Polynomial: test, 172, 195
equation, 5 Rotation, 244, 263
function, 43 Rouche’s Theorem, 156, 165
Position vector, 6
Positive: Saddle point, 330
direction, 114 method, 330
integer, 1 Scalar product, 7
Power series, 170, 173, 183 Schlaefli’s:
Principal: formula, 193
branch, 41, 44, 53, 57 representation, 193
of mathematical induction, 19 Schwarz—Christoffel transformation, 246, 265, 270
part, 79, 174, 367 Schwarz’s:
range, 4, 53 inequality, 39
value, 4, 41, 44 reflection principle, 320, 335, 357,
Proper subset, 8 theorem, 160
Pure imaginary number, 2 Sectionally smooth, 83
Sequence, 48
Quadratic equation, 24 Series (infinite), 49, 169-177
Quotient, 1 Simple:
closed curve, 83, 314, 327, 344
Raabe’s test, 172, 196 harmonic motion, 100
Radius of convergence, 170, 180, 183 pole, 81, 97, 175, 322, 329, 338, 343, 363, 366
Ratio test, 172, 180, 342, 348 zero, 82, 97, 175
Rational: Simply connected region, 113
function, 43, 198, 207, 325 Single-valued function, 41
number, 1 Singular point, 81, 105, 323, 341, 360
transformation, 43 Singularity, 81, 198, 319, 325, 329, 363, 367
Ray, 57 at infinity 82, 97, 175
Real: Sink, 284, 288
axis, 1, 4 Smooth:
line integral, 112 arc, 83
number, 1 curve, 83
part, 2 Solutions of an equation, 23
variable, 2 Source, 284, 288, 312
Rectangular coordinates, 42 South pole, 6
Rectifiable curve, 111 Stagnation point, 283
Region, 8 Standard form, 14
of convergence, 169, 170, 360 Stationary flow, 282
Regular: Steady state, 282
function, 77 Steepest decent, 347, 363

singular point, 324, 341, 360 Stereographic projection, 7



Stirling’s formula for:

I, 330

n!, 331
Straight line equation, 14
Stream:

curve, 284

function, 284, 295, 312
Streamline, 284, 296
Strength, 285, 312
Stretching, 245, 263
Subset, 8
Subtraction, 1, 2
Successive transformations, 245, 273
Summation of series, 5
Symmetric form, 14

Tangent, 83
Taylor:
expansion, 173, 278, 330
series, 173, 278, 330, 348, 357
theorem, 173, 184
Terminal point, 6
Terms of a sequence, 48
Theorems of Blasius, 286, 301, 302
Theory of:
alternating currents, 109
elasticity, 316
Thermal conductivity, 289
Transcendental:
function, 45
number, 30
Transformation, 42, 50, 242

Translation, 244, 263
Trigonometric functions, 43

Unbounded set, 8
Uniform:
convergence, 170, 183, 320, 358
flow, 284
Union of sets, 8
Uniqueness theorem for analytic continuation,
319, 333
Unit:
cell, 332
circle, 6
disk, 243
Upper bound, 112

Value of a function, 41
Velocity, 83
potential, 282, 284
potential function, 284, 295
Vortex, 285

Weierstrass—Bolzano theorem, 8
Weierstrass’:

factor theorems, 321, 339

M test, 172, 181, 321, 347

Zero, 1

of an equation, 5

of order n, 81, 206, 321
Zeta function, 328, 347, 363
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