Number System conversions

Number Systems

- There are four systems of arithmetic which are often used in digital electronics.
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexa Decimal System

Decimal Number system

- Decimal number system contains 10 digits: 0,1,2,3,4,5,6,7,8,9; and that is why its base or radix is 10.
- Here radix means total number of digits used in any system.

Decimal Number System

- The decimal number system is a positional number system.
- Example:

 $10^3 \ 10^2 \ 10^1 \ 10^0$

- 5 6 2 1 $1 \times 10^{\circ} = 1$
 - $2 X 10^1 = 20$
 - $6 \ge 10^2 = 600$
 - $5 \times 10^3 = 5000$

Binary Number System

- The binary number system is also a positional numbering system.
- Instead of using ten digits, 0 9, the binary system uses only two digits, 0 and 1.

Binary Number System

• The binary number system is also known as **base 2**. The values of the positions are calculated by taking 2 to some power.

 Why is the base 2 for binary numbers?
 Because we use 2 digits, the digits 0 and 1. Examples: Binary number system: 11001010
 11111111

Octal Number System

- Also known as the Base 8 System
- Uses digits 0 7
- Readily converts to binary
- Groups of three (binary) digits can be used to represent each octal digit

Hexadecimal Number System

- Base 16 system
- Uses digits 0-9 & letters A,B,C,D,E,F
- Groups of four bits represent each base 16 digit

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

Binary Numbering Scale

Base 2 Number	Base 10 Equivalent	Power	Positional Value
000	0	2 ⁰	1
001	1	2 ¹	2
010	2	2 ²	4
011	3	2 ³	8
100	4	24	16
101	5	2 ⁵	32
110	6	26	64
111	7	27	128

Significant Digits

Binary: 11101101

Most significant digit

Least significant digit

Hexadecimal: 1D63A7A

Most significant digit -

Least significant digit

Converting From Decimal to Binary

- Make a list of the binary place values up to the number being converted.
- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42_{10}

DECIMAL TO BINARY CONVERSION

There are two methods to convert it:-

i. Revese of Binary-To-Digital Method
✓ Decimal number write as the sum of square
✓ 0 & 1 is writen on the byte

Example 1: Convert decimal 45 to the binary value

Solve =
$$45_{10} = 32 + 8 + 4 + 1$$

= $2^5 \ 0 \ 2^3 \ 2^2 \ 0 \ 2^0$
= $1 \ 0 \ 1 \ 1 \ 0 \ 1_2$

ii. Repeat division method

 \checkmark The numbers is divide by 2.

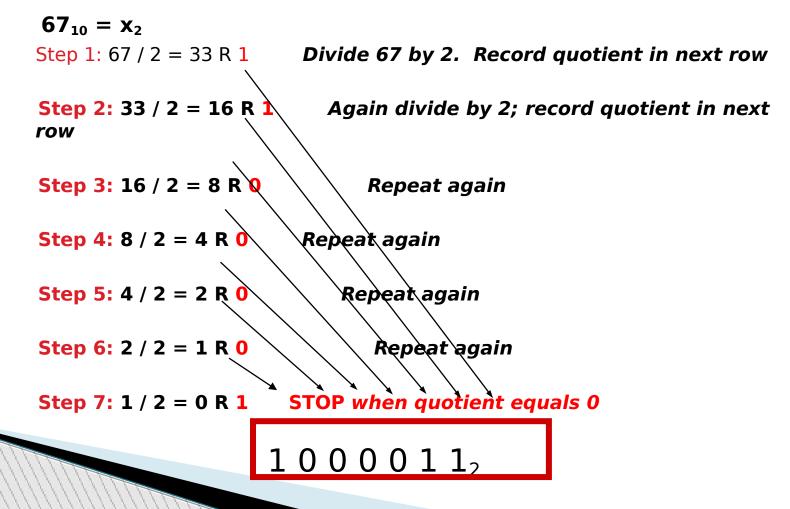
 \checkmark Balance for the question is written until the last answer.

Example : convert 25₁₀ to binary

• •

Solve =
$$25_{10} = ?_2$$

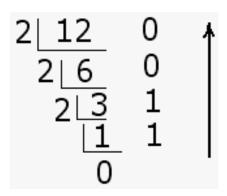
= $\frac{25}{2} \longrightarrow 12$ balance 1 \longrightarrow LSB
= $\frac{12}{2} \longrightarrow 6$ balance 0
= $\frac{6}{2} \longrightarrow 3$ balance 0
= $\frac{3}{2} \longrightarrow 1$ balance 1
= $\frac{1}{2} \longrightarrow 0$ balance 1 \longrightarrow MSB


Answer = 11001_{2}

Decimal to Binary Conversion

- The easiest way to convert a decimal number to its binary equivalent is to use the *Division Algorithm*
- This method repeatedly divides a decimal number by
 2 and records the quotient and remainder
 - The remainder digits (a sequence of zeros and ones) form the binary equivalent in least significant to most significant digit sequence

Division Algorithm


Convert 67 to its binary equivalent:

Decimal to binary (fractional)

- Examples:
- Convert the decimal number (12.0625)₁₀ into binary number.
 Solution:

Fractional part:

 $\begin{array}{ll} 0.0625 \ x \ 2 = 0.1250 & 0 \\ 0.1250 \ x \ 2 = 0.2500 & 0 \\ 0.2500 \ x \ 2 = 0.500 & 0 \\ 0.500 \ x \ 2 = 1.000 \ 1 \end{array}$

 $(12.0625)_{10} = (1100.0001)_2$

Decimal to Octal Conversion

Examples:

$$(315)_{10} = (473)_8$$

DECIMAL TO OCTAL CONVERSION

- Convert from decimal to octal by using the repeated division method used for decimal to binary conversion.
- Divide the decimal number by 8
- The first remainder is the LSB and the last is the MSB.

Example : convert 35910 to Decimal Value

Solve =
$$359_{10} = ?_8$$

 $= \frac{359}{8} \longrightarrow 44$ balance 7 \longrightarrow LSB
 $= \frac{44}{8} \longrightarrow 5$ balance 4
 $= \frac{5}{8} \longrightarrow 0$ balance 5 \longrightarrow MSB
 \therefore Answer = 547_8

Decimal to Octal Conversion

Convert 427_{10} to its octal equivalent:

427 / 8 = 53 R-3 Divide by 8; R is LSD 53 / 8 = 6 R-5 Divide Q by 8; R is next digit 6 / 8 = 0 R-6 Repeat until Q = 0 653_8

Decimal to Octal (fractional)

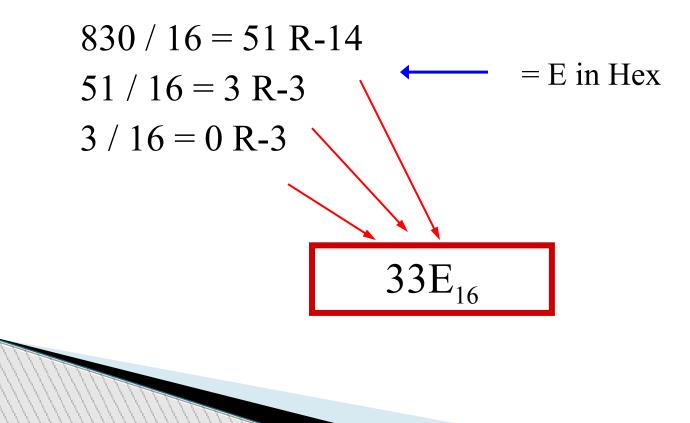
- Examples:
- Convert the decimal number (225.225)₁₀ into octal number.
 Solution:

Fractional part:

8|225 | 8|28 1 8|3 4 0 3 |

 $\begin{array}{c} 0.225 \ x \ 8 = 1.800 \quad 1 \\ 0.800 \ x \ 8 = 6.400 \quad 6 \\ 0.400 \ x \ 8 = 3.200 \quad 3 \\ 0.200 \ x \ 8 = 1.600 \quad 1 \\ 0.600 \ x \ 8 = 4.800 \quad 4 \end{array}$

 $(225.225)_{10} = (341.16314)_8$


Decimal to Hexadecimal Conversion

• Examples

$$\begin{bmatrix} (315)_{10} = (13B)_{16} \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 0 \end{bmatrix} \xrightarrow{16} B \\ 16 \\ 0 \\ B \\ MSD$$

Decimal to Hexadecimal Conversion

Convert 830_{10} to its hexadecimal equivalent:

Decimal to Hexadecimal (fractional)

- Examples:
- Convert the decimal number (225.225)₁₀ into hexadecimal number.

Solution:

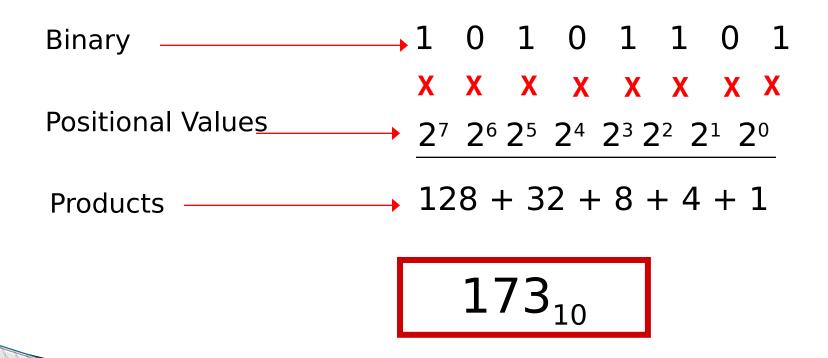
$$\begin{array}{c|cccc}
16 & 225 \\
16 & 14 \\
0 & 14 \\
(or E)
\end{array} \qquad Fractional part: 225 x 16 = 3.600 3 \\
600 x 16 = 9.600 9 \\
\end{array}$$

$$(225.225)_{10} = (E1.39)_{16}$$

Converting from Binary to Decimal

• Example of a binary number and the values of the positions:

Converting from Binary to Decimal


Answer: 77₁₀

Binary to Decimal Conversion

- The easiest method for converting a binary number to its decimal equivalent is to use the *Multiplication Algorithm*
- Multiply the binary digits by increasing powers of two, starting from the right
- Then, to find the decimal number equivalent, sum those products

Multiplication Algorithm

Convert (10101101)₂ to its decimal equivalent:

Converting from Binary to Decimal

Practice conversions:

11101 1010101 100111

Converting From Decimal to Binary

Practice conversions:

59 82 175

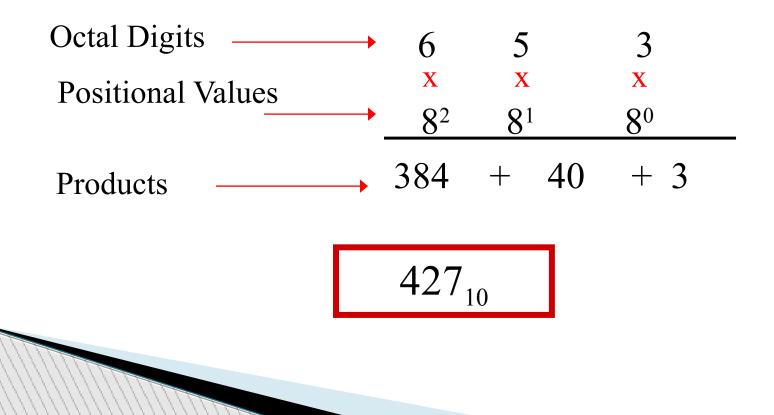
binary to hexadecimal system

- Group the digits of the binary number by **four** starting from the right.
- Replace each group of **four** digits by an equivalent hexadecimal digit.

Convert 10110101_2 into a hexadecimal number. 1011 $0101_2 = B5_{16}$

B

5


Exercise

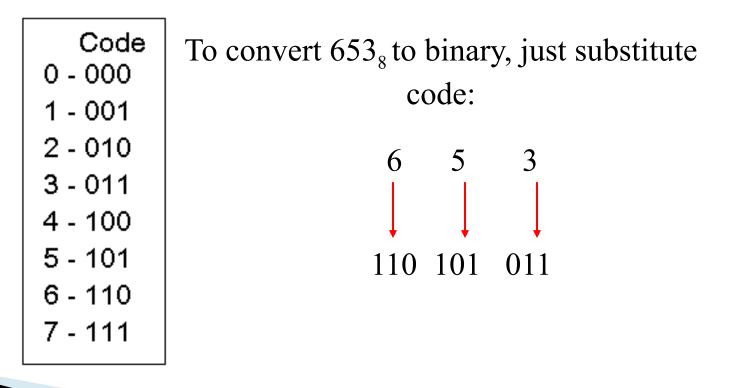
Convert 101000_2 into a hexadecimal number.

Convert 11101111_2 into a hexadecimal number.

Octal to Decimal Conversion

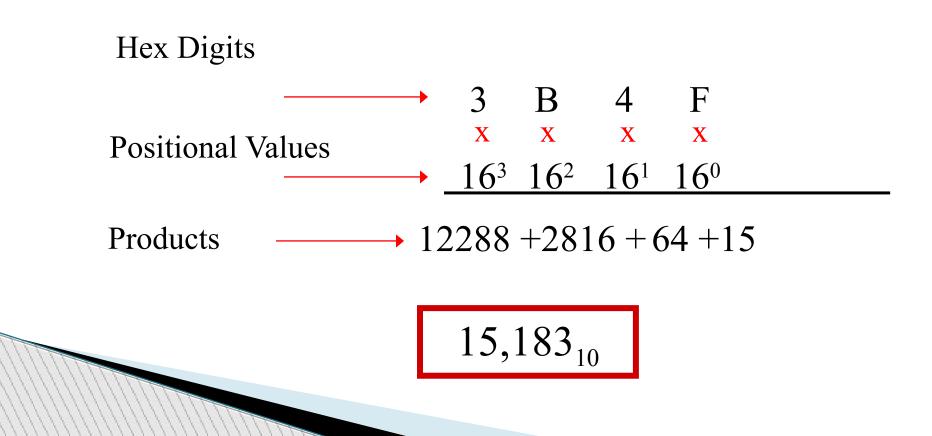
Convert 653_8 to its decimal equivalent:

OCTAL TO BINARY CONVERSION


Convert from octal to binary by converting each octal digit to a three bit binary equivalent

Octal digit	0	1	2	3	4	5	6	7
Binary Equivalent	000	001	010	011	100	101	110	111

- Convert from **binary to octal** by grouping bits in threes starting with the LSB.
- Each group is then converted to the octal equivalent
- Leading zeros can be added to the left of the MSB to fill out the last group.


Octal to Binary Conversion

Each octal number converts to 3 binary digits

Hexadecimal to Decimal Conversion

Convert 3B4F (Hexadecimal) to its decimal equivalent:

HEXADECIMAL TO binary

- To convert a hexadecimal to binary number, convert each hexadecimal digit to its 4 bit equivalent using the hexa number.
- Example: $(23.AB)_{16} = ()_2$

Solution: $(23.AB)_{16} = 2$ 3 . A B

0010 0011 1010 1011

 $(23.AB)_{16} = (00100011.10101011)_2$

Hexadecimal Number System

<u>Binary</u>	<u>Decimal</u>	<u>Hexadecimal</u>	<u>Binary</u>	<u>Decimal</u>	<u>Hex</u>
0	0	0	1010	10	А
1	1	1	1011	11	В
10	2	2	1100	12	С
11	3	3	1101	13	D
100	4	4	1110	14	Е
101	5	5	1111	15	F
110	6	6			
111	7	7			
1000	8	8			
1001	9	9			

Exercise

Practice conversions:			
Binary	<u>Decimal</u>	<u>Octa</u> l	<u>He</u> x
01111101			
1110101			
1101010111			
Practice conversions:			
Decimal	Binary	<u>Octal</u>	Hex
72			
92			
185			

➢ Convert 11011111₂ into a hexadecimal number.

Answer Exercise

Practice conversions:

<u>Binary</u>	<u>Decimal</u>	<u>Octa</u> l	<u>He</u> x
01111101	125(10)	175(8)	$7D_{(16)}$
1110101	117(10)	165(8)	75(16)
1101010111	855(10)	1527(8)	357(16)
Practice conversions:			
Decimal	Binary	<u>Octal</u>	Hex
72	$1001000_{(2)}$	110(8)	48(16)
92	1011100(2)	$134_{(8)}$	5C(16)
185	$10111001_{(2)}$	271(8)	$B9_{(16)}$

> Convert 11011111₂ into a hexadecimal number. $11011111_{(2)} = DF_{(16)}$

Any Questions ???????

End of Session End of Session