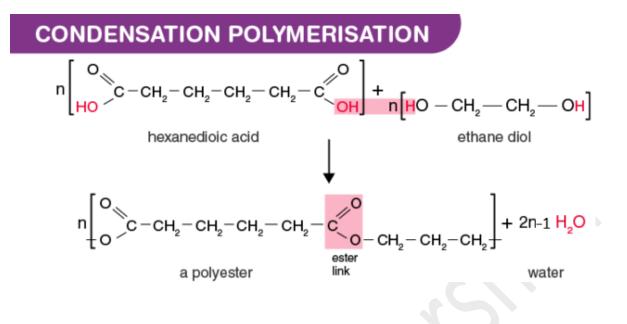
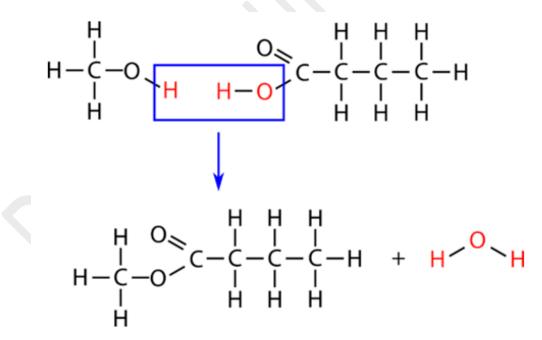

Condensation Polymerization

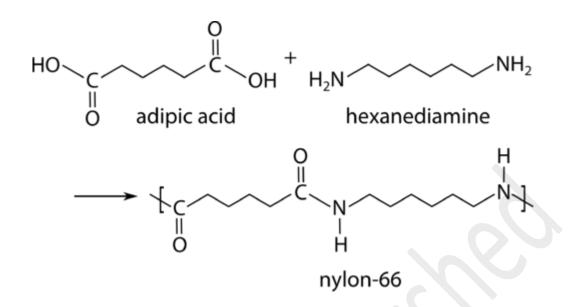


Characteristics of Condensation Polymerization

Some main characteristics of this type of polymerization are;

- ✓ The molecules should have one or two functional groups (like alcohol, amine, or carboxylic acid groups).
- The reaction occurs between two similar or different functional groups or monomers.
- ✓ Smaller molecules usually combine to form larger molecules.
- ✓ Mixed properties of both the molecules or functional groups are taken into consideration.
- ✓ A linear polymer is obtained as the condensation product when both functional groups are difunctional.
- ✓ When one of the functional groups is tri- or tetra-functional, the polymer formed will be a cross-linked polymer having a three-dimensional network.


Differences between Condensation and Addition Polymerization---H.W.


Types of Condensation Reaction

Two types of condensation reactions used to produce polymers:

Esterification: reaction between alcohol (-OH) and carboxylic acid (-COOH) to form an ester.

Amidation: reaction between amine (-NH₂) and carboxylic acid (-COOH) to form an amide. (extension)

Types of Condensation Polymerization:

1) Polyaddition Polymerization:

A polyaddition polymerization describes a reaction in which **monomers with different functional groups** react to form macromolecules/polymers **without splitting off by-products.**

Notes

 The growth steps are expressed by
 P_X + P_y → P_{X+y} {x} ∈ {1, 2, ... ∞}; {y} ∈ {1, 2, ... ∞}
 where P_x and P_y denote chains of degrees of polymerization x and y, respectively.

 The earlier term addition polymerization embraced both the current concepts of polyaddition and chain polymerization, but did not include condensative chain polymerization.

Polyurethane, for example, is formed by a **polyaddition polymerization process** between **two hydroxyl groups**.

2) Polycondensation Polymerization:

It is a form of a **step-growth polymerization** where smaller molecules or monomers react with each other to form larger structural units (usually polymers) while **releasing by-products such as water or methanol molecule**. The by-products are normally **referred to as condensate**. Notes

1. The growth steps are expressed by

 $P_{x} + P_{y} \to P_{x+y} + L \{x\} \in \{1, 2, \dots, \infty\}; \{y\} \in \{1, 2, \dots, \infty\}$

where P_x and P_y denote chains of degree of polymerization x and y, respectively, and L a low-molar- mass by-product.

2. The earlier term *polycondensation* was synonymous with *condensation polymerization*. It should be noted that the current definitions of polycondensation and condensative chain polymerization were both embraced by the earlier term *polycondensation*.

Polyester, Polyamide etc. are formed by the Polycondensation polymerization process.