Problem Statement
Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). We have to design an equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such that L(Y) = L(X). The following procedure converts the NDFA to its equivalent DFA −
Algorithm
Input − An NDFA
Output − An equivalent DFA
Step 1 − Create state table from the given NDFA.
Step 2 − Create a blank state table under possible input alphabets for the equivalent DFA.
Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA).
Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each possible input alphabet.
Step 5 − Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6.
Step 6 − The states which contain any of the final states of the NDFA are the final states of the equivalent DFA.









Example
Let us consider the NDFA shown in the figure below.
[image: NDFA]
	Q
	δ(q,0)
	δ(q,1)

	a
	{a,b,c,d,e}
	{d,e}

	b
	{c}
	{e}

	c
	∅
	{b}

	d
	{e}
	∅

	e
	∅
	∅








Using the above algorithm, we find its equivalent DFA. The state table of the DFA is shown in below.
	q
	δ(q,0)
	δ(q,1)

	[a]
	[a,b,c,d,e]
	[d,e]

	[a,b,c,d,e]
	[a,b,c,d,e]
	[b,d,e]

	[d,e]
	[e]
	∅

	[b,d,e]
	[c,e]
	[e]

	[e]
	∅
	∅

	[c, e]
	∅
	[b]

	[b]
	[c]
	[e]

	[c]
	∅
	[b]


The state diagram of the DFA is as follows −
[image: State Diagram of DFA]









Set Substitution Method to convert NFA to DFA
We convert NFA to DFA so that we can implement the state machine represented by DFA.
The method is as follows:

1. First find out the state transition table
2. Then take one state from the transtion table and then whenever you find out that output is not defined then put dead state there
3. Create new DFA

We will understand the whole method step by step:
Step 1:
Following is the NFA for strings starting with 'a'
[image: ]
Step 2:
Create state transition table
	State
	a
	b

	A
	{B}
	ϕ

	B
	{B}
	{B}


Step 3:
Now create new transition table,
Rule is whenever there is ϕ, we will include one more state as dead state.
	State
	a
	b

	 A
	B
	C

	*B
	B
	B

	C
	C
	C


Note: Here C is a dead state
Step 4:
Now create new DFA from the new transition table
[image: ]

Note: Do not think that in the new table we will take the states which we have already, for example
If on state A for input 'a' we go to A and B both in NFA then we will write as
	State
	a
	b

	A
	AB
	D

	AB
	AB
	B

	D
	D
	D



If you did not get the point I have just mentioned then follow the below example, you will understand
Step 1:
Following is the NFA for strings ending with 'a'
[image: ]
Step 2:
Create state transition table
	State
	a
	b

	A
	{A,B}
	{A}

	*B
	ϕ
	ϕ


Step 3:
Now create new transition table,
Rule is whenever there is ϕ, we will include one more state as dead state.
	State
	a
	b

	A
	[AB]
	[A]

	*[AB]
	[AB]
	[A]


Note: 1 Here State D goes to D on both inputs so we have not written it.
Note: 2 Here State [AB] is denoted by state B and [A] is denoted by state A.

Step 4:
Now create new DFA from the new transition table
[image: ]
Note: If there are n states in NFA then there could be 2n states in DFA after conversion.
Note: Final state(s) of DFA will be the one which includes final state of NFA



The proof of the above statement is explained by the below example:
Step 1:
Following is the NFA for strings having 3rd symbol 'a' from r.h.s.
[image: ]
Step 2:
Create state transiton table
	State
	a
	b

	A
	{AB}
	{A}

	B
	{C}
	{C}

	C
	{D}
	{D}

	D*
	ϕ
	ϕ


Step 3:
Now create new transition table,
Rule is whenever there is ϕ, we will include one more state as dead state.
	State
	a
	b

	[A]
	[AB]
	[A]

	[AB]
	[ABC]
	[AC]

	[AC]
	[ABD]
	[AD]

	[AD]
	[AB]
	[A]

	[ABC]
	[ABCD]
	[ACD]

	[ABD]
	[ABC]
	[AC]

	[ACD]
	[ABD]
	[AD]

	[ABCD]
	[ABCD]
	[ACD]


List of final states
[AD], [ABD], [ACD] and [ABCD] because they include D, final state of NFA.
Step 4:
Now create new DFA from the new transition table
[image: ]
[image: ]

Transition table for NFA:
	
	a
	b

	A
	{A, B}
	{A}

	*B
	{B}
	{B}



Transition table for DFA:
	
	a
	b

	· A
	[AB]
	[A]

	*[AB]
	[AB]
	[AB]



Practice Problem:
String starts with ab
String ends with ab
String does contain with ab

image6.png




image7.png




image8.png




image9.png




image1.jpeg




image2.png




image3.png




image4.png




image5.png




