Types of NOSQL

NoSQL databases are categorized based on their data model. Here are the main types:

[bookmark: _nnc96aivgr09]1. Key-Value Pairs
· Description: Store data as key-value pairs. Each key is unique, and its associated value can be any type of data.
· Use Cases: Caching, session management, user profiles.
· Examples: Redis, DynamoDB, Riak.


[bookmark: _6lm1vej0lcgu]2. Document Stores
· Description: Store data as documents, typically in JSON, BSON, or XML format. Each document contains semi-structured data with fields and values.
· Use Cases: Content management systems, catalogs, user data.
· Examples: MongoDB, CouchDB, RavenDB.




[bookmark: _67sitg3uv3hu]3. Column-Family Stores
· Description: Store data in columns rather than rows, allowing efficient querying and aggregation for large datasets.
· Use Cases: Analytics, time-series data, event logging.
· Examples: Apache Cassandra, HBase, ScyllaDB.






[bookmark: _9ricc9undvu0]4. Graph Databases
· Description: Represent data as nodes (entities) and edges (relationships) in a graph structure.
· Use Cases: Social networks, fraud detection, recommendation engines.
· Examples: Neo4j, ArangoDB, Amazon Neptune.


[bookmark: _8ipieqj5pkuk]
[bookmark: _niltyu6yuvgf]
[bookmark: _ibp81jgq31uq]
[bookmark: _liqj9oojprte]Examples of the 4 Types of NoSQL Databases:
[bookmark: _x2oawdeabrkz]1. Key-Value Stores
· Example: Redis
· Use Case: Caching frequently accessed data for a web application.
· Scenario: Storing user session data, e.g.,
Key: user123
Value: { "name": "John Doe", "lastLogin": "2024-12-03" }
· [image: ]
· Another Example: Amazon DynamoDB for scalable key-value storage.





[bookmark: _srdrwdqzg7mi]2. Document Stores
· Example: MongoDB
Use Case: Storing product catalog data.
Scenario:
json
Copy code
{
  "productID": "123",
  "name": "Wireless Mouse",
  "price": 29.99,
  "tags": ["electronics", "accessories"]
}
· Another Example: CouchDB for managing semi-structured data with HTTP/JSON APIs.











[bookmark: _dtewghietzw7]Column-Family Stores
[bookmark: _hf4wiieowhlc]Use Case: Time-Series Data Storage
Suppose we are storing sensor data for an IoT application. The data could be structured as follows:
[bookmark: _97gatakdcazc]Schema in Apache Cassandra:
· Keyspace: iot_data
· Table (Column Family): sensor_readings
· Columns:
· sensor_id (Primary Key)
· timestamp (Clustering Key)
· temperature
· humidity
· pressure
[bookmark: _stupdfkx3wlp]Sample Data Representation:
[image: ]
[bookmark: _8ldufxgl8b4r]Key Features:
· [bookmark: _xx0ir2sfblv]Data is stored by row keys (e.g., sensor_id) and partitioned across nodes for scalability.
· [bookmark: _w6bna2b3z0ha]Columns are grouped and queried efficiently, especially for use cases with sequential or grouped data like time-series logs.
[bookmark: _xx0ir2sfblv]
[bookmark: _qai7mejbl8ay]
[bookmark: _lqrrs8ffey6s]Graph Databases
· Example: Neo4j
· Use Case: Modeling relationships in a social network.
· Scenario: Nodes represent people, and edges represent relationships:
· Node A: John
· Node B: Jane
· Edge: FRIENDS_WITH
· Another Example: Amazon Neptune for managing complex, interconnected data.



CAP Theorem

The CAP Theorem, also known as Brewer's Theorem, is a fundamental concept in distributed systems, including NoSQL databases. It states that a distributed database can guarantee only two out of three properties at any given time:
[bookmark: _xswzvnnpp8ce]CAP Properties
1. Consistency (C):
· Every read receives the most recent write or an error.
· Example: If you update a record in one node, all subsequent reads across all nodes reflect that update.
2. Availability (A):
· Every request (read/write) receives a response, even if it's not the most recent data.
· Example: Even if part of the system fails, the database continues to operate and serve requests.
3. Partition Tolerance (P):
· The system continues to function despite network partitions or communication breakdowns between nodes.
· Example: If two parts of the database cluster can't communicate, the system doesn't crash.

[bookmark: _z0p63zvbhqua]Trade-offs in NoSQL
Since network partitions (P) are unavoidable in distributed systems, NoSQL databases must choose between Consistency and Availability:
1. CP (Consistency + Partition Tolerance):
· Guarantees consistency across nodes but might sacrifice availability during a network partition.
· Examples:
· HBase
· MongoDB (in strong consistency mode)
2. AP (Availability + Partition Tolerance):
· Ensures availability even if some nodes are unreachable, but data consistency may be temporarily compromised.
· Examples:
· Cassandra
· DynamoDB
· CouchDB
3. CA (Consistency + Availability):
· Not achievable in distributed systems with partitions; only possible in non-distributed databases.

[bookmark: _8l0ebgtsj74y]Application Scenarios
· Consistency-Critical Applications: Banking systems, stock trading platforms, etc. (CP systems preferred).
· High-Availability Applications: Social media, online stores, IoT applications (AP systems preferred).
Understanding the CAP theorem helps in selecting the right NoSQL database for specific use cases based on business requirements.
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