Types of NOSQL

NoSQL databases are categorized based on their data model. Here are the main types:

[bookmark: _nnc96aivgr09]1. Key-Value Pairs
· Description: Store data as key-value pairs. Each key is unique, and its associated value can be any type of data.
· Use Cases: Caching, session management, user profiles.
· Examples: Redis, DynamoDB, Riak.


[bookmark: _6lm1vej0lcgu]2. Document Stores
· Description: Store data as documents, typically in JSON, BSON, or XML format. Each document contains semi-structured data with fields and values.
· Use Cases: Content management systems, catalogs, user data.
· Examples: MongoDB, CouchDB, RavenDB.




[bookmark: _67sitg3uv3hu]3. Column-Family Stores
· Description: Store data in columns rather than rows, allowing efficient querying and aggregation for large datasets.
· Use Cases: Analytics, time-series data, event logging.
· Examples: Apache Cassandra, HBase, ScyllaDB.






[bookmark: _9ricc9undvu0]4. Graph Databases
· Description: Represent data as nodes (entities) and edges (relationships) in a graph structure.
· Use Cases: Social networks, fraud detection, recommendation engines.
· Examples: Neo4j, ArangoDB, Amazon Neptune.


[bookmark: _8ipieqj5pkuk]
[bookmark: _niltyu6yuvgf]
[bookmark: _ibp81jgq31uq]
[bookmark: _liqj9oojprte]Examples of the 4 Types of NoSQL Databases:
[bookmark: _x2oawdeabrkz]1. Key-Value Stores
· Example: Redis
· Use Case: Caching frequently accessed data for a web application.
· Scenario: Storing user session data, e.g.,
Key: user123
Value: { "name": "John Doe", "lastLogin": "2024-12-03" }
· [image: ]
· Another Example: Amazon DynamoDB for scalable key-value storage.





[bookmark: _srdrwdqzg7mi]2. Document Stores
· Example: MongoDB
Use Case: Storing product catalog data.
Scenario:
json
Copy code
{
  "productID": "123",
  "name": "Wireless Mouse",
  "price": 29.99,
  "tags": ["electronics", "accessories"]
}
· Another Example: CouchDB for managing semi-structured data with HTTP/JSON APIs.











[bookmark: _dtewghietzw7]Column-Family Stores
[bookmark: _hf4wiieowhlc]Use Case: Time-Series Data Storage
Suppose we are storing sensor data for an IoT application. The data could be structured as follows:
[bookmark: _97gatakdcazc]Schema in Apache Cassandra:
· Keyspace: iot_data
· Table (Column Family): sensor_readings
· Columns:
· sensor_id (Primary Key)
· timestamp (Clustering Key)
· temperature
· humidity
· pressure
[bookmark: _stupdfkx3wlp]Sample Data Representation:
[image: ]
[bookmark: _8ldufxgl8b4r]Key Features:
· [bookmark: _xx0ir2sfblv]Data is stored by row keys (e.g., sensor_id) and partitioned across nodes for scalability.
· [bookmark: _w6bna2b3z0ha]Columns are grouped and queried efficiently, especially for use cases with sequential or grouped data like time-series logs.
[bookmark: _xx0ir2sfblv]
[bookmark: _qai7mejbl8ay]
[bookmark: _lqrrs8ffey6s]Graph Databases
· Example: Neo4j
· Use Case: Modeling relationships in a social network.
· Scenario: Nodes represent people, and edges represent relationships:
· Node A: John
· Node B: Jane
· Edge: FRIENDS_WITH
· Another Example: Amazon Neptune for managing complex, interconnected data.



CAP Theorem

The CAP Theorem, also known as Brewer's Theorem, is a fundamental concept in distributed systems, including NoSQL databases. It states that a distributed database can guarantee only two out of three properties at any given time:
[bookmark: _xswzvnnpp8ce]CAP Properties
1. Consistency (C):
· Every read receives the most recent write or an error.
· Example: If you update a record in one node, all subsequent reads across all nodes reflect that update.
2. Availability (A):
· Every request (read/write) receives a response, even if it's not the most recent data.
· Example: Even if part of the system fails, the database continues to operate and serve requests.
3. Partition Tolerance (P):
· The system continues to function despite network partitions or communication breakdowns between nodes.
· Example: If two parts of the database cluster can't communicate, the system doesn't crash.

[bookmark: _z0p63zvbhqua]Trade-offs in NoSQL
Since network partitions (P) are unavoidable in distributed systems, NoSQL databases must choose between Consistency and Availability:
1. CP (Consistency + Partition Tolerance):
· Guarantees consistency across nodes but might sacrifice availability during a network partition.
· Examples:
· HBase
· MongoDB (in strong consistency mode)
2. AP (Availability + Partition Tolerance):
· Ensures availability even if some nodes are unreachable, but data consistency may be temporarily compromised.
· Examples:
· Cassandra
· DynamoDB
· CouchDB
3. CA (Consistency + Availability):
· Not achievable in distributed systems with partitions; only possible in non-distributed databases.

[bookmark: _8l0ebgtsj74y]Application Scenarios
· Consistency-Critical Applications: Banking systems, stock trading platforms, etc. (CP systems preferred).
· High-Availability Applications: Social media, online stores, IoT applications (AP systems preferred).
Understanding the CAP theorem helps in selecting the right NoSQL database for specific use cases based on business requirements.


image1.png
Key Value

user_ @01 | { "items™: [{ "product_id": "AI23", "name": "Laptop", "quantity”: 1}, { "product_id"

"B456", "name”: “Mouse", "quantity”: 2 }] }

user 002 { "items’

: [{ "product_id": "C789", "name": "Headphones”, "quantity": 1} }




image2.png
sensor_id
sensor_01
sensor_01

sensor_02

timestamp
2024-12-03T10:00:002
2024-12-03T10:05:00Z

2024-12-03T10:00:002

temperature
225°C
2.7°¢C

201°C

humidity
55%
54%

0%

pressure

1013 hPa

1012 hPa

1015 hPa




