Chapter 15
Probability Metrics

The central limit theorem is a very good example of approximating a potentially
complicated exact distribution by a simpler and easily computable approximate dis-
tribution. In mathematics, whenever we do an approximation, we like to quantify the
error of the approximation. Common sense tells us that an error should be measured
by some notion of distance between the exact and the approximate. Therefore, when
we approximate one probability distribution (measure) by another, we need a notion
of distances between probability measures. Fortunately, we have an abundant supply
of distances between probability measures. Some of them are for probability mea-
sures on the real line, and others for probability measures on a general Euclidean
space. Still others work in more general spaces. These distances on probability mea-
sures have other independent uses besides quantifying the error of an approximation.
We provide a basic treatment of some common distances on probability measures
in this chapter. Some of the distances have the so-called metric property, and they
are called probability metrics, whereas some others satisfy only the weaker notion
of being a distance. Our choice of which metrics and distances to include was nec-
essarily subjective.

The main references for this chapter are Rachev (1991), Reiss (1989), Zolotarev
(1983), Leise and Vajda (1987), Dudley (2002), DasGupta (2008), Rao (1987), and
Gibbs and Su (2002). Diaconis and Saloff-Coste (2006) illustrate some concrete
uses of probability metrics. Additional references are given in the sections.

15.1 Standard Probability Metrics Useful in Statistics

As we said above, there are numerous metrics and distances on probability mea-
sures. The choice of the metric depends on the need in a specific situation. No single
metric or distance is the best or the most preferable. There is also the very important
issue of analytic tractability and ease of computing. Some of the metrics are more
easily bound, and some less so. Some of them are hard to compute. Our choice of
metrics and distances to cover in this chapter is guided by all these factors, and also
personal preferences. The definitions of the metrics and distances are given below.
However, we must first precisely draw the distinction between metrics and distances.
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Definition 15.1. Let M be a class of probability measures on a sample space 2.
A functiond : M@ M — R is called a distance on M if

(@) d(P,Q) >0V P,Q0,e Mandd(P,Q) =04 P = Q;

(b) d(P1, P3)<d(P1, P2)+d (P2, P3) VY Py, P2, P3 € M (Triangular inequality).
d is called a metric on M if, moreover.

(c) d(P,Q)=d(Q,P)V P,Q,e M (Symmetry).

Here now are the probability metrics and distances that we mention in this chapter.
Definition 15.2 (Kolmogorov Metric). Let P, O be probability measures on Rd,
d > 1, with corresponding CDFs F, G. The Kolmogorov metric is defined as

d(P,Q) = sup |F(x)—G(x)|.

xeRr4d

Wasserstein Metric. Let P, Q be probability measures on R with corresponding
CDFs F, G. The Wasserstein metric is defined as

[e.]

W(P. Q) = / |F(x) — G(x)\dx.

Total Variation Metric. Let P, O be absolutely continuous probability measures
on RY,d > 1, with corresponding densities f, g. The rotal variation metric is
defined as

p(P.0) = plf.8) = 5 [ 17(0) ~ goldx.

If P, O are discrete, with corresponding mass functions p, g on the set of values
{x1,X2,...,}, then the total variation metric is defined as

p(P.0) = p(p.) = 5 3 Ip) — 40,

where p(i), g (i) are the probabilities at x; under P and Q, respectively.

Separation Distance. Let P, Q be discrete, with corresponding mass functions
P, q, The separation distance is defined as

D(P, Q) = sup (1 - &) .
i q(i)

Note that the order of P, Q matters in defining D(P, Q).

Hellinger Metric. Let P, O be absolutely continuous probability measures on
R4, d > 1, with corresponding densities f, g. The Hellinger metric is defined as

H(P, Q) = [ EE \/g(_x))zdx}l/z.
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If P, Q are discrete, with corresponding mass functions p, ¢, the Hellinger metric
is defined as

1/2
H(P.Q) = [;(m— @)2} :

Kullback-Leibler Distance. Let P, O be absolutely continuous probability mea-
sures on R4, d > 1, with corresponding densities f, g. The Kullback—Leibler
distance is defined as

K(r.0) = k(o) = [ Footog L

()

If P, Q are discrete, with corresponding mass functions p, ¢, then the Kullback—
Leibler distance is defined as

K(P.0) = K(p.) = 32 pli) oz ) .

Note that the order of P, Q matters in defining K(P, Q).

Lévy-Prokhorov Metric. Let P, Q be probability measures on Rd, d > 1. The
Lévy—Prokhorov metric is defined as

L(P,Q) = inf{e > 0: V BBorel, P(B) < Q(B€) + €},
where B€ is, the outer e-parallel body of B; that is,

c=f{xeR?: inf ||x— < e}
{ Jnf =yl < el

Ifd =1, then L(P, Q) equals
L(P,Q)=inf{e >0: Vx, F(x) <G(x +¢€)+¢€},
where F, G are the CDFs of P, Q.

f -Divergences. Let P, Q be absolutely continuous probability measures on R,
d > 1, with densities p,q, and f any real-valued convex function on Rt ,with
f(1) = 0. The f-divergence between P, Q is defined as

47.0)= [aws (23 ax.

If P, Q are discrete, with corresponding mass functions p, ¢, then the f-divergence

is defined as
(.01 = 3 at)s (”8)

[ -divergences have the finite partition property that d ¢ (P, Q)= SUP(4 ;) Zj Q(A))

f (ggi-f ;) where the supremum is taken over all possible finite partitions {4 ;}
J
of RY.



